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Facing the Data Deluge 
The number of active researchers exceeds the number of all previous researchers. Researchers either 
publish or perish. Some areas of science produce more than 40,000 papers a month.  Not only library 
buildings and storage facilities, but also databases are filling up more quickly than they can be built. In 
addition, there are scientific datasets, algorithms, and tools that need to be mastered in order to advance 
science. No single man or machine can process and make sense of this enormous stream of data, 
information, knowledge, and expertise.   

The tools we use to access, manage, and utilize our collective knowledge are primitive. Our main 
means of accessing everything we collectively know is search engines. While this seems to work well for 
fact-finding, it keeps us scrounging on the floor among confirmed and unconfirmed records. There is no 
“zoom out” button that provides us with a global view of what we collectively know – how everything is 
interlinked, what patterns, trends or outliers exist, or in what context a specific piece of knowledge was 
created or can be used. Without context, intelligent data selection, prioritization, and quality judgments 
become extremely difficult to make. 

This reality leads to increasing specialization of researchers, practitioners, and other knowledge 
workers, a disconcerting fragmentation of science, a world of missed opportunities for collaboration, and a 
nightmarish feeling that we are doomed to reinvent the wheel forever.  This is a major concern. Scientific 
results are needed to enable all human beings to live healthy, productive, and fulfilling lives.    

 
Embracing Science Maps 
Recent advances in the digitization, federation, mining, and mapping of data make it possible to chart the 
structure and dynamics of science (Börner et al 2003, Chen 2003, Shiffrin & Börner 2004). The resulting 
maps of science serve today’s explorers navigating the world of scientific research. The maps are generated 
through analysis of large-scale scholarly datasets in an effort to connect and make sense of the bits and 
pieces of knowledge they contain. They objectively identify major research areas, experts, institutions, 
collections, grants, papers, journals, and ideas in domains of interest. They provide overviews of specific 
fields of science: homogeneity, import-export factors, and relative speed of innovation. They allow one to 
track the emergence, evolution, and disappearance of topics and help to identify the most promising areas 
of research.  

Currently, many of the datasets and tools used to generate maps of science are proprietary and 
particular to each analyst. There are few, if any, standardized tools that can access appropriate data, link 
them, and present the results in such a way as to enable decision making by non-experts. This paper 
introduces open data and code that can be used by anyone to map scientific activity and technologically- 
relevant data in a user-friendly yet professional manner. 

 
Chasing Free Data 
The Scholarly Database (SDB) (http://sdb.slis.indiana.edu) at Indiana University evolved from seven years 
of development towards a free data source for science and technology (S&T) studies (La Rowe 2007). It 
offers three distinct advantages that are critical for S&T studies:  
 Search queries, e.g., for an author/investigator/inventor name or topic term, can be run against multiple 

databases offering simultaneous retrieval – e.g., all funding, publications, and patents relevant for a 
query.  

 Search results can be downloaded as complete record data dumps in a format easily processed.  
 As query results are processed, derivative datasets such as co-author/investigator/inventor tables or 

patent-citation tables can be downloaded as well.  
Currently, SDB provides access to four datasets: 17,764,826 Medline papers provided by the National 
Library of Medicine (NLM), 1,043,804 funding awards by the National Institutes of Health (NIH) and 
174,835 from the National Science Foundation (NSF), and 3,875,694 U.S. Patent and Trademark Office 



patents (USPTO). Information regarding data provenance, system architecture, table schemas, and search 
functionality is available on the ‘About’ page of SDB. Any researcher or layperson can register to search 
the approximately 23 million records. Currently, the system has over 120 registered users from four 
continents and over 60 institutions in academia, industry, and government. 
 
Sharing Free Code 
The Network Workbench (NWB) tool (http://nwb.slis.indiana.edu) supports researchers, educators, and 
practitioners interested in the study of biomedical, social and behavioral science, physics, and other 
networks (NWB Team, 2006). As of February 2009, the tool contains more than 100 plug-ins for the 
preprocessing, analysis, modeling, and visualization of networks. About 40 of the plug-ins can be applied 
to or were specifically designed for S&T studies. The NWB tool comes with an associated community wiki 
(https://nwb.slis.indiana.edu/community) with extensive documentation of algorithms and sample datasets. 
The tool has been downloaded more than 22,000 times since Dec. 2006. 
 
S&T Studies That Can Be Replicated Anyone  
The Scholarly Database, in combination with the NWB Tool, can be used to study S&T professionally in a 
manner easily replicated by anyone.  The three steps are: dataset retrieval and download using SDB, data 
analysis and visualization using the NWB Tool, and interpretation of results. The sections below show how 
to begin applying this process. 
 
Data Acquisition 
A query for “artificial intelligence” in the “All Text” field over all datasets available in SDB was run; see 
Fig. 1a. The Browse Result page comprises 13,231 records – 10,235 Medline papers, 2,103 NIH awards, 
614 NSF awards, and 279 USPTO patents. The top-5 highest scoring records are five Medline papers; see 
Fig. 1b.  Clicking on the record title opens a page with abstract and other information associated with the 
record. 

 
 

Figure 1: SDB interfaces for search (a), browse results (b), and download results (c). 
 

The Download Results page in Fig. 1c allows users to select different types of data. For example, the 
Medline database offers a master table with general information, an author table that provides paper-author 
associations, a co-author table that stores the co-author network in a format compatible with the NWB 
Tool, as well as several other tables.  Data dictionaries are provided for each database, and sample datasets 
are given.  



 
Medline Co-Authorship Network 
The Medline master table lists all paper records. The top-five most frequently occurring journals are: IEEE 
Transactions on Pattern Analysis and Machine Intelligence with 761 papers, IEEE Transactions on Image 
Processing (526), Bioinformatics (469), IEEE Transactions on Systems, Man, and Cybernetics – Part B, 
Cybernetics (456) and International Conference on Medical Image Computing and Computer-Assisted 
Intervention (443).  

The Medline co-author table provides information on paper-author linkages. It can be loaded into the 
NWB Tool – see NWB Tool (Cyberinfrastructure for Network Science Center, 2009) for details. The table 
then appears in the Data Manager window on the right; see Fig. 2a. Using NWB plug-ins specific to 
Scientometrics research, the co-authorship network can be extracted. The Network Analysis Toolkit 
computes basic properties: The network has 26,206 author nodes and 59,140 co-author edges. Exactly 944 
authors are unconnected (also called isolates). There are almost 5,000 clusters.  The largest component with 
4,355 nodes and 13,804 edges was extracted using Weak Component Clustering. Subsequently, the degree 
of each node was computed via Node Degree analysis. The betweenness centrality (BC) of each node, i.e., 
the fraction of shortest paths between node pairs that pass through the node of interest, was determined by 
running the Node Betweenness Centrality algorithm. The resulting network was visualized using the 
GUESS graph exploration tool available under the Visualization menu.  

 

 
Figure 2: NWB Tool interface (a) and GUESS layouts of the largest component of the co-authorship 
network (b) and zoom into patent citation network (c). 
 
Fig. 2b shows the co-author network with author nodes size and color coded according to their degree, 
which is the same as the number of distinct co-authors. The top-20 highest degree nodes are labeled. The 
five nodes with the highest BC value are shown in pink. The highest BC node, “Zhang, Li”, is the author of 
ten papers from the Medline AI search results.  His papers have been published in journals with ISI Subject 
Categories varying from “Computer Science, Hardware & Architecture” to “Endocrinology & 
Metabolism”, a diversity that is mirrored by his co-authorship connections to researchers from many 



different clusters in the network. Medline contains little Computer Science research but covers works in the 
biomedical sciences. Consequently, the network features major experts that apply AI techniques to 
biomedical research and practice. 
 
USPTO Patent Citation Network 
Loading the USPTO citation table and applying the Scientometrics-specific Extract Directed Network 
algorithm, the patent-citation network can be extracted (see the NWB Tool User Manual for details).  The 
USPTO citation network has 3,614 nodes, 8,393 edges, and 107 components. The network shows many 
network components connected by weak linkages. The 20 nodes with the highest outdegree, i.e., the highest 
number of citations within the set, are labeled by patent number. Fig. 2c shows a zoom into the set of most 
highly cited patents. Among them are patent no. 5597312 entitled “Intelligent tutoring method and system”, 
no. 5372507 describing a “Machine-aided tutorial method”, and no. 5696885 “Expert system and method 
employing hierarchical knowledge base, and interactive multimedia/hypermedia applications”. 
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