
8. CBR for Design

Katy Börner

8.1 Introduction

Design research has a number of goals, including a better understanding of
design, the development of tools to aid human designers, and the potential
automation of some design tasks. Computer-aided design is concerned with
using computers to assist in the design process to produce better designs in
shorter time. The reuse of well-tested and optimized designs is an important
aspect for decreasing design times, increasing design quality, and improving
the predictability of designs.

This chapter summarizes the main results of applying CBR to support
human problem solving in design. Its special focus is on research carried out
in Europe and in particular in Germany. We start by providing a general
characterization of design tasks. An overview of applicable reasoning meth-
ods, as well as a survey of case-based systems for design assistance, will be
provided in Section 8.3. Following this, Section 8.4 discusses characteristics of
case-based design (CBD) using the domain of architectural design for illustra-
tion. Reoccurring problems in CBD are listed. Sections 8.5 and 8.6 describe
a number of methods that have been developed to handle the complexity of
design tasks. Section 8.5 introduces an algorithm for flexible case retrieval
that allows for the combination of several similarity measures at query time
dynamically. In Section 8.6 three approaches to structural similarity assess-
ment and adaptation are presented and discussed. Section 8.7 introduces
Eadocs, a multi-level and hybrid expert system for conceptual design tasks
that achieves structural adaptation by case combination. To conclude, ap-
proaches for automating configuration tasks, as introduced in Chapter 6, are
contrasted with approaches aimed at the assistant-like support of design tasks
and directions for future research are pointed out.

Rather than preparing new descriptions of the Fish & Shrink algorithm
(Section 8.5) and the Eadocs system (Section 8.7), collaborative participa-
tion was solicited from the original authors Jörg W. Schaaf and Bart Netten,
respectively.

tneirync
Text Box
Börner, Katy. (1998). CBR for design. In Bartsch-Spörl, B., Wess, S., Burkhard, H. D., and Lenz, M. (Eds.), Case-Based Reasoning Technology: From Foundations to Application, Springer Verlag, LNAI 1400 <http://link.springer.de/link/service/series/0558/tocs/t1400.htm>, chapter 8, pp. 201-234

202 8. Börner: CBR for Design

8.2 The Design Task

Design is concerned with the construction of an artifact from single parts that
may be either known and given or newly created for this particular artifact.
Constraints on the artifact may be rigidly or informally defined.

Routine, Innovative, and Creative Design. There is a general accep-
tance of the classification of design tasks into routine, innovative, and creative
that has proved to be useful (Coyne et al. 1987; Gero 1990).

Routine design can be defined as design that proceeds within a well-defined
state space of potential designs. That is, all the variables and their ap-
plication ranges, as well as the knowledge to compute their values, are
directly derivable from existing designs.

Innovative design can be defined as non-routine design that proceeds within
a well-defined state space of potential designs. In contrast to routine
design, the applicable ranges for values of variables may change. What
results is a design with a familiar structure but novel appearance be-
cause the values of the defining variables (and their combinations) are
unfamiliar.

Creative design can be defined as non-routine design that introduces new
variables and, as a result, extends or moves the state space of potential
designs.

The development of knowledge-based systems has concentrated on routine
design tasks (also called configuration tasks, see Chapter 6), i.e., tasks that
involve a well understood problem solving space where all decision points and
outcomes are known a priori. Routine design problems are typically repre-
sented by a well defined set of configurable components, a set of constraints
that the final design must satisfy, and operators that encode valid component
configurations (cf. Section 6.4). There is a rich set of approaches that can be
used to efficiently control the search for solutions. Configuration can be seen
as a comparatively tractable design task that allows for a closed world as-
sumption in knowledge-based systems development and can be completely
automated.

Innovative and creative design tasks are usually described by incomplete
knowledge about the number and type of components to arrange. Often, a
complete set of constraints that the final design must satisfy is not available.
The problem solution may correspond to a set of design solutions that can be
ordered corresponding to preference criteria. Knowledge about the validity of
solutions is not available in general. Often the complexity of this reasoning
process requires an iterative process in which the level of abstraction is incre-
mentally refined to establish the solution. That is, each solution reduces the
design space and serves as a starting point for local search at a more concrete
level.

8.3 Design Assistance 203

8.3 Design Assistance

In recognition of the open ended nature of the input data and the lack of
formal methods, approaches to innovative and creative design support have
aimed at assisting the user rather than automating the architectural pro-
gramming process. Usually, design systems work as interactive assistants em-
ploying user intervention whenever needed to generate or evaluate a proper
solution.

In order to built assistance systems that are effective and can easily be
integrated into the daily working environment, adequate user interfaces must
be provided (Pearce et al. 1992). If drawings are the central medium for the
communication (e.g., in architectural designs), then a design support system
should offer a graphical, CAD-like user interface. Adequate user interfaces
are an indispensable requirement to enable high interactivity. This is needed
for two reasons. Firstly, the huge amount of knowledge necessary to support
complex design tasks requires partially automatic knowledge acquisition; i.e.,
without bothering the user to answer thousands of questions. Systems that
require an immense effort for knowledge elicitation will rarely if ever suc-
ceed. Filling in large forms to label and save each possibly useful experience
is very difficult to integrate into the workflow of potential users. Secondly,
the complexity of such design processes needs to be communicated in an
appropriate, domain specific way. Highly user-interactive frameworks, which
manage knowledge elicitation during the system usage, are a real challenge
to enable efficient computer-aided support in design.

The more complex the real-world applications, the higher the need for hav-
ing deeply integrated system architectures. Knowledge acquisition, learning,
and problem solving are advantageously viewed as constructive and coopera-
tive processes, in which the user is an integrated part (Aamodt 1991; Veloso
1994). Ideally, the system works as a learning apprentice (Mitchell et al. 1985)
improving reasoning performance continually by requiring a user to accept,
correct, or refuse solutions or to provide solutions for problems. The knowl-
edge is integrated into the knowledge base, compiled, and exploited during
continuous problem solving. By this close linkage of knowledge acquisition
and problem solving, the system is able to provide incrementally increas-
ing support that is adaptable to the user and the peculiarities of the chosen
domain. However, the integration of problem solving and learning in a sin-
gle system still demands progress in both fields. This is especially true for
systems that aim at the support of design tasks.

8.3.1 Reasoning Methods

There are several approaches which have been proposed to handle design
tasks. Among them are formulae (Coyne 1988), constraints (Thagard et al.
1990), rules and grammars (Fu 1974; Gonzalez and Thomason 1978), au-
tonomous agents (Morgenstern 1993; Bhat 1995), case-based reasoning (Goel

204 8. Börner: CBR for Design

1989; Domeshek and Kolodner 1992; Hinrichs 1992a), and prototype-based
reasoning (Gero 1990).

Formulae, grammars, or complete and consistent sets of constraints can
only be defined for routine design tasks. They are often constructed based
on the a priori knowledge available to the designers and their experiences. In
order to support innovative design tasks, classical AI problem solving meth-
ods are not applicable, in general. Here, the use of experience is of particular
importance and case-based reasoning comes into play. In order to support
creative design tasks, the application of analogical problem solving is advan-
tageous. It allows for the transfer of knowledge across different domains with
special emphasis put on structural dependencies. This chapter concentrates
on the application of case-based reasoning to support innovative and creative
design tasks.

8.3.2 Case-Based Design Systems

There are many case-based design systems described in the literature. They
have been proposed for a variety of domains that range from well-structured
domains, such as the design of mechanical devices, to largely informal do-
mains, such as architectural design. For example, Cyclops (Navinchandra
1988) does landscape design. Archie, Archie-II (Domeshek and Kolodner
1992; Domeshek and Kolodner 1997), Seed (Flemming et al. 1997), Janus

(Fisher et al. 1989), Cadre (Hua et al. 1993) and Fabel (Voß 1997) support
architectural design. Kritik (Goel 1989) and Kritik-II (Bhatta 1995; Goel
et al. 1997) combine case-based with model-based reasoning for the design of
physical devices. Software interface design is supported by AskJef (Barber
et al. 1992), Asp-II and Benton (Tsatsoulis and Alexander 1997). Cadsyn

(Maher and Zhang 1991; Maher and Zhang 1993; Maher et al. 1996) solves
structural design tasks. Cadet is a case-based design tool that aids the con-
ceptual design of electro-mechanical devices (Sycara et al. 1992; Narashiman
et al. 1997). Detailed descriptions of many of these systems can be found in
(Maher et al. 1996; Maher and Pu 1997).

Every application domain requires special considerations about the knowl-
edge representation used and the retrieval, solution adaptation, and solution
verification applied. Many systems support architectural design tasks. There-
fore, this domain is used in Section 8.4 to illustrate a number of reoccurring
problems that have to be addressed by every implemented system that aims
at the support of design tasks.

Focusing on research pursued in Europe, Sections 8.5 and 8.6 describe re-
search results achieved in Fabel, a major research project in Germany (Voß
1997). The aim of Fabel was to investigate ways of supporting design tasks
by case-based and model-based methods, thus bridging the gap between case-
based systems (which so far did little more than presenting former cases to the
user) and expert systems, which embody theories and heuristics. Fabel has
been a research project with a strong application orientation. In the Fabel

8.4 Characteristics of Case-Based Design 205

prototype, diverse approaches and tools to case retrieval and case adaptation
have been developed (see (Voß 1994) and (Börner 1995c) for surveys). While
the tools are rather independent, they have comparable user interfaces and
work together according to the paradigm of a virtual construction site (Hov-
estadt and Schmidt-Belz 1995). Section 8.7 introduces Eadocs, a system
that applies structural adaptation by case combination for the expert assisted
design of composite sandwich panels (Netten et al. 1995).

8.4 Characteristics of Case-Based Design

Maher and Gomez de Silva Garza (1997) list three reoccurring themes in
the implementation of case-based design systems; the need to represent and
to manage complex design cases, the need to augment cases with general-
ized design knowledge, and the need to formalize a typically informal body of
knowledge:

Complex Cases. According to Gebhardt et al. (1997) complex cases can be
characterized as case which:

– may have to be cut out of large data models (such as CAD plans repre-
senting entire buildings);

– may not be described sufficiently in terms of attributes but have to be
represented structurally (e.g., by graphs);

– contains variables that do not statically describe a problem or a solution.
Instead these variables dynamically take the role of, e.g., problem variables
if they match the query;

– may be useful in multiple ways and allow for more than one interpretation;
– may have to be composed and adapted to solve a problem.

The need for complex case representations has several implications. Among
them are:

– Often, a new problem has to be reinterpreted or reformulated to be com-
parable with past experiences.

– Without distinguished problem and solution parts, the overlapping parts of
a problem and past case(s) have to be identified and case parts for transfer
and combination must be chosen.

– Multiple case interpretations require a flexible combination of several sim-
ilarity functions. Similarity assessment has to proceed over complex struc-
tures.

– Different aspects of a case (e.g., pragmatic features, the structure of cases)
may have to be jointly considered for retrieval, match, and adaptation.

Taken together, complex case representations cause increased computational
expense in the retrieval, matching and adaptation of cases. To guarantee an-
swer times that are acceptable for real world applications, efficient memory

206 8. Börner: CBR for Design

organizations directly tailored to the applied reasoning mechanisms are es-
sential. Problems that relate to the amount and the structural complexity of
the knowledge have to be addressed.

Generalized design knowledge. Design knowledge may include causal
models, state interactions, heuristic models, heuristic rules, and geometric
constraints. Often, this knowledge is not available for innovative and creative
design tasks.

Lack of formal knowledge. In situations where only an informal body of
knowledge is available, this may result in case representations that are suited
to support human problem solving rather than automated reasoning or by
focusing on tasks that can be formalized. However, this chapter concentrates
on approaches that assist design tasks despite the informal character of the
given knowledge.

8.4.1 Case-Based Architectural Design

Much work in CBD has been carried out in the domain of architectural design.
Reasons for this may be the centrality of past experiences and the economical
impact of design support. Both aspects are outlined in what follows.

In architectural design, prior experiences, typically represented by CAD-
layouts, constitute the main source of knowledge. These layouts are used to
inspire, guide, and communicate architectural work. By applying CBR, anno-
tated layouts are employed directly in the case base. During problem solving,
cases serve as a first guess to shortcut reasoning from first principles. Con-
versely, cases allow architects to refine, supplement, and qualify the rules of
thumb, principles, and theories architects learned at school or university. The
continuously increasing amount of electronically available data, the electron-
ical connection of architectural bureaus, and the continuing standardization
ease the access and reuse of this huge amount of design knowledge. The cen-
trality of layouts directly suggests an application of case-based approaches to
support design tasks.

Additionally, architectural design is one of the keystones to economic
competitiveness. Each country spents about 30 percent of it gross national
product (i.e., the annual total value of goods produced and services provided)
for housing. In the modern competitive world, designers are under a constant
pressure to turn out new and innovative products quickly. As a consequence,
computational models for architectural design are important research topics
and the development of computational models founded Artificial Intelligence
paradigms has provided an impetus for much of current research in this di-
rection (Coyne et al. 1988; Gero and Sudweeks 1994). For of all these reasons,
the domain of architectural design was selected for illustration purposes here.

8.4 Characteristics of Case-Based Design 207

8.4.2 Knowledge Representation and Reasoning

As introduced in Section 1.3.8, four knowledge containers of a CBR system
are distinguished; the vocabulary used, the similarity measure, the case base,
and the solution transformation. We assume that the knowledge required to
evaluate solutions is included in the container for solution transformation.
While the content of the containers can be changed locally, the knowledge
contained in these containers has to supplement each other. That is, the
similarity measure has to be defined in such a way that it allows the compar-
ison of queries and cases in their corresponding representations and to derive
some degree of similarity from this comparison, for example, as a numerical
value in the interval [0, 1]. The cases, the similarity measure, and the solution
transformations will define the space of possible solutions.

Vocabulary. The selection of an appropriate vocabulary is to a great extend
task and domain dependent. The vocabulary should be able to capture all
the salient features of the design that are relevant to support problem solving
in the selected domain.

Cases. Examining the way architects work reveals a wide variety of what
should constitute a design case: the size varies from few design objects to a
whole storey or even an entire building; the case layout could be a simple list
of some properties or a complex structure involving many types of relations
between components with composite attributes.

Among the major considerations in representing past design experience
by cases are the usage, the granularity, the level of abstraction, and the per-
spective cases should have:

Usage: There are two ways cases can be used. On the one hand, cases may
represent abnormal situations or exceptions while rules are applied to
capture norms and regular situations. On the other hand, cases may suc-
cessfully be used to capture regular or normal situations in a more natu-
ral way (especially if other knowledge is not available). Another decision
refers to the use of positive good cases or the incorporation of negative
cases helping to anticipate and thus avoid mistakes made in the past.

Granularity: In architecture, complete buildings have been taken as cases
(Goel 1989; Domeshek and Kolodner 1992; Hinrichs 1992b). Other ap-
proaches promoted user-defined cases which are marked in an overall
project in a creative way that is hardly definable and repeatable (Voß
1994). Aiming at a task-oriented user support, the grain size of cases
matches the grain size of decisions the architect needs to make. A uni-
form, task-oriented methodology to derive cases out of CAD layouts rep-
resenting entire projects was proposed by Janetzko et al. (1994).

Level of abstraction: Corresponding to their level of abstraction, Riesbeck
and Schank (1989, p.12) distinguish ossified cases, paradigmatic cases,
and stories. Ossified cases are like general rules of thumb and independent
of the events they were originally derived from. They tend to be relevant

208 8. Börner: CBR for Design

in only the areas for which they were originally intended and form the
basis for making everyday decisions. Paradigmatic cases represent the one
experience that was in any way relevant to what you are now experiencing
and the task left is to find where the current situation differs in order to
adapt the case to solve the new situation. They form the base of expertise
that a person accumulates beyond the textbook rules that s/he has been
taught. Stories relate by virtue of their complexity and myriad aspects to
a large variety of possible circumstances. They can be indexed and, later,
accessed in multiple ways. Creativity depends on the ability to analyze
stories effectively and under various poin ts of view.

Perspective: Cases may be acquired according to a state-oriented perspec-
tive or a solution-path perspective. While state-oriented cases represent
essentially the problem and its solution, solution-path cases refer to the
process or operator that derives the solution from the problem descrip-
tion.

Similarity Measure and Case Retrieval. Basically, there are two differ-
ent approaches to similarity assessment in CBR. The computational approach
(Tversky 1977; Stanfill and Waltz 1986; Aha 1991), which is based on com-
puting an explicit similarity function for all cases in the case base, and the
representational approach, proposed by (Kolodner 1980; Kolodner 1984) using
a structured memory of cases. Some techniques, such as kd-trees and CRNs
(both introduced in Chapter 3), attempt to combine these two fundamental
approaches.

Similarity approach. Case sets are stored in an unstructured way. Retrieval is
performed on the basis of a similarity measure1. Most approaches to similarity
assessment in CBR estimate the usefulness of cases, based on the presence
or absence of certain features (cf. Domeshek and Kolodner 1992; Richter
1992a). The features are pre-classified as important with respect to retrieval.
Similarity is assessed by a numeric computation and results in a single number
which is intended to reflect all aspects of the similarity.

To reduce the complexity of structural comparisons, two-stage models
have been proposed in the literature, e.g., the MAC/FAC model (Gentner
and Forbus 1991). In the first stage, Many cases Are Called using a compu-
tationally cheap filter. Here, flat vector representations of a past case and a
problem representing the predicates are matched to identify a number of pos-
sible candidate cases; information about the inter-relating structure between
these predicates is not considered. In the second stage, Few of these possi-
ble candidates Are Chosen by carrying out a structure mapping between the
problem and each candidate resulting in useful, structurally sound matches.
In such a way, the complexity of phenomena in similarity-based access can
be reduced.

1 See also memory-based reasoning (Stanfill and Waltz 1986) or instance-based
learning (Aha 1991; Aha et al. 1991)

8.4 Characteristics of Case-Based Design 209

Representational approach. For representational approaches, the case base
is pre-structured. Retrieval proceeds by traversing the index structure, e.g.,
memory organization packets (Schank 1982; Kolodner 1984). Cases that are
neighbors according to the index structure are assumed to be similar. Con-
straints on a problem serve as indices into the memory. Probing the memory,
returns cases that provide a solution, some of the context as well as feedback
for external evaluation. This information is used to determine how applicable
the case is, how to adapt it, and how to avoid repeating previous failures.

If case-based reasoning is applied to support innovative and creative de-
sign tasks, then case retrieval requires:

Flexible case retrieval: The need to exploit different views on single cases
requires a method for so-called flexible case retrieval. Given a large case
base, a problem, and a number of aspects that are relevant for similarity
assessment, a set of cases have to be retrieved which show similar aspects
as in the actual problem. Be aware that the importance of certain aspects
for similarity assessment is not known at memory organization time.
That is, different similarity measures, each determining the similarity of
a case and a query under a certain point of view have to be dynamically
composed during retrieval. Approaches, such as kd-trees (Wess 1995)
or Case Retrieval Nets (cf. Chapter 3), allow for dynamic weighting of
certain features to be considered during similarity assessment but apply
exactly one similarity measure.

Structural similarity assessment: In order to consider the structure of cases
during retrieval, similarity assessment has to process structural case rep-
resentations in which variables dynamically take the role of problem or
solution variables.

Similarity assessment in terms of adaptability: Conventional CBR systems
treat retrieval, matching (or justification), and adaptation separately and
sequentially. Recent work, however, shows that the integration of these
stages, especially retrieval in terms of adaptability, improves the suitabil-
ity and performance of CBR significantly (Smyth and Keane 1993). A
more general notion of case usability (instead of similarity) is required
(Paulokat et al. 1992). Ideally, similarity should imply adaptability. That
is, retrieved cases should be adaptable to correctly solve a current prob-
lem. Existing techniques for so called adaptation-guided retrieval, such
as implemented in Déjà Vu(Smyth and Cunningham 1992; Smyth and
Keane 1993) try to determine similarity without actually performing the
computationally expensive adaptations.

Solution Transformation and Case Adaptation. In design, new situa-
tions rarely match old ones exactly. Even small differences between the actual
problem and the most similar case may require significant adaptations. Adap-
tation plays a central role and comprises the selection of the parts of the past
solution(s) that need(s) to be adapted, as well as the adaptation itself. Cun-
ningham and Slattery (1993) distinguish three general kinds of adaptation:

210 8. Börner: CBR for Design

(i) Parametric adaptation corresponds to the substitution, instantiation or
adjustment of parameters.

(ii) Structural adaptation, as done by transformational analogy (Carbonell
1983b) or approaches that use grammars (Fu and Bhargava 1973), re-
trieves stored solutions and revises them by applying adaptation opera-
tors (or grammar rules) to solve a new problem.

(iii) Generative adaptation, such as derivational analogy (Carbonell 1986),
reuses and adapts problem-solving episodes by replaying their derivation.

Given that architectural design is a weak theory domain, hardly any in-
formation about the relevance of features guiding the selection of similar (i.e.,
adaptable) cases is available. Often, the adaptation of prior layouts mainly
corresponds to adding, eliminating, or substituting physical objects. Because
of the variety and the possible high number of combinations of these modifica-
tions, adaptation knowledge is difficult to acquire by hand. Here, structural
adaptation (as introduced in Sections 8.6.2 to 8.6.4) or adaptation by case
combination (see Section 8.7) may provide a better approach.

8.5 Fish & Shrink Algorithm for Flexible Case Retrieval

This section proposes an algorithm for flexible case retrieval, named Fish
& Shrink, that is able to search quickly through the case base, even if the
aspects that define usefulness are spontaneously combined at query time.

8.5.1 Required Functionality

Given rich and complex cases, as in the design domain, it is reasonable to
use them in different contexts by regarding different aspects. For example, if
an engineer and an interior decorator both try to solve a problem, they can
use the same case base if each one gets result cases selected with focus on
their own special needs. To exhaust the full potential of inherent solutions of
cases, we suggest to represent cases with respect to as many different aspects
as reasonable. Regarding different aspects leads to different representations
of cases, each trying to catch a very specific view of them.

We do not have any formal definition of what an aspect is. Nevertheless
the idea of regarding aspects leads to some formal constructs. We use the
name of an aspect to identify a point of view and to index a pair of functions.
Firstly, αname denotes a representation function. As input, αname takes the
original representation of a case and as output it produces a representation in
the aspect representation space Ωname which emphasizes features important
to the aspect idea and which is usually condensed. Secondly, the distance
function δname takes two representations (from Ωname) and calculates the
distance of two cases with regard to this particular aspect. Fulfillment of the
triangle inequality is recommended but not postulated. How the presented

8.5 Fish & Shrink Algorithm for Flexible Case Retrieval 211

approach handles violations of the triangle inequality is presented in Schaaf
(1998).

As a result, a case base can be seen as a multiply linked set of polyhedrons
(Figure 8.1(a)). Each polyhedron (representing a case) consists of several
aspect representations linked to corresponding aspect representations of other
cases by edges. These edges are labeled with the calculated distance between
cases concerning one particular aspect.

(a) (b)

Fig. 8.1. Illustration of Fish & Shrink: (a) The case base as a network of cases.
(b) The retrieval metaphor of sinking cases being dragged down by others

Up to this point, most standard approaches towards case base organiza-
tion are very similar. Each network concerning one aspect can be seen as
a separate case base with its own search structure. Problems arise in these
standard approaches if ad hoc combinations (for example, a weighted combi-
nation) of several aspects should be allowed.

To describe a new approach, called the Fish & Shrink method, we first
introduce the term view distance SD defined between two cases; the cus-
tomized distance based on predefined aspect distances δi. As an example, the
view distance may be the result of the function

SD(Fx, Fy,W) =
n∑

i=1

wiδi(Fx, Fy)

where two cases Fx and Fy and a weight vector W = (w1...wn) serve as
input. The weight vector holds an importance value for each aspect and can
be manipulated in an ad hoc way; i.e., before each search request. Experts in
case-based reasoning and domain experts are invited to invent more sophis-
ticated view distance functions. They can be integrated online and tested.

212 8. Börner: CBR for Design

Each view distance function ought to fulfill the triangle inequality. Violation
can be detected while running the algorithm. Schaaf (1998) suggests a fault
compensation based on empirical data.

8.5.2 Fish & Shrink

Given reasonable aspects, the corresponding representation functions, proper
aspect distance functions, and a collection of view distance functions, we now
define an anytime algorithm to search the case base.

The metaphor which led to the Fish & Shrink algorithm is sketched in
Figure 8.1(b). Imagine cases being positioned in a continuous space. The
closer a case (represented by a small circle or dot) is positioned to the top
region of this space the smaller is its distance to the problem. While run-
ning, the Fish & Shrink algorithm successively picks up and directly tests
cases from the surface which is represented as a plain. Each direct test has
two effects: Firstly, the tested case sinks to a position according to its view
distance to the problem. Secondly, cases in its neighborhood disappear from
the surface and from the bottom. This effect is represented by two craters
with the tested case at their joint peak. The craters indicate that cases in the
nearby neighborhood of sunk test cases are dragged down deeper than cases
afar. Closeness to the surface recommends cases to further examination.

Figure 8.1(b) shows what happens while the series of cases (T1, ..., T4)
is being directly compared to the problem. Firstly, T1 sinks according to
its view distance to the problem. A case labeled V in the neighborhood of
T1 becomes part of the two craters. Using the triangle inequality, minimum
and maximum distance between V and the problem are computed. Both
distances are represented by the position of V within the craters of test case
T1. The remaining interval of possible distances between V and the problem
(represented by a line) is called the uncertainty interval of V . Further direct
tests of cases from the surface can only shrink this interval. This is what
happens to the uncertainty interval of V while testing cases (T2, ..., T4). To
simplify illustration of these tests, only the uncertainty intervals and case
positions are pictured. If no case is left upon the surface, the surface level
starts to sink and cases which have been sunk earlier reappear.

The main idea represented in Figure 8.1(b) is that it should be more
efficient to avoid searching in the nearby neighborhood of cases which have
already been found to be inappropriate. Inappropriateness is seen and treated
as a gradual statement and depends on how close the neighborhood was.

Thus, the fundamental concept of the formal Fish & Shrink algorithm
is the uncertainty interval which is applied to each case. Initially (when a
new retrieval task starts), it is set to [0, 1]. The initial value represents the
fact that we do not know anything about the distance between the case and
the user’s problem. The Fish & Shrink algorithm tries to position the uncer-
tainty interval and minimize its length. Both increase knowledge about the

8.5 Fish & Shrink Algorithm for Flexible Case Retrieval 213

corresponding case. The target of Fish & Shrink is to maximize the num-
ber of shrunk uncertainty intervals and the amount of shrinking in each step
without losing reliability. Between two shrinking loops, the algorithm tries
to interpret the position and length of uncertainty intervals to find whether
user demands have already been fulfilled or not. The algorithm conceptually
performs the steps depicted in Figure 8.2.

1

Input: The case base CB, the problem A, a vector of aspect weights W
and the actual view distance function SD.

Output: A sequence of cases with increasing distance to the problem.

1. Represent problem A in all aspects with corresp. field in W 6= 0.
2. Set uncertainty interval for each case to [0, 1].
3. Set precision line to 0.
4. While user demands not fulfilled and not interrupted:

a) Move precision line according to prescription and present all
cases that have been passed.

b) Select (fish) a test case T depending on the position of the
precision line.

c) Calculate actual SD(A, T,W) (direct test).
d) ∀ view neighbors V of T do (indirect test):

i. Minimum distance between V and A :=

Max
(
|SD(A, T) − SD(T, V)|, minimum distance

)
;

ii. Maximum distance between V and A :=

Min
(
SD(A, T) + SD(T, V), maximum distance

)
;

e) Recalculation of view neighbors finished.

Fig. 8.2. A sketch of the Fish & Shrink algorithm

To follow the steps of the algorithm, some more terms need to be ex-
plained. Firstly, in line 3, the precision line is set to zero. The precision line
is a concept corresponding to the idea of having a surface level. Its task is to
mark the smallest minimum distance of all uncertainty intervals (with length
> 0) during retrieval. If an uncertainty interval (even with length > 0) is
passed by the line, the corresponding case belongs to the output stream. A
predefined movement prescription of the precision line determines the behav-
ior of the algorithm. By using special prescriptions, answers to the following
questions are possible:

– Which cases are better than a threshold?
– Which are the k best cases without ranking?
– Which are the k best cases with ranking?
– Which are the k best cases with ranking and their exact distances to a

given problem?

The biggest challenge in developing precision line prescriptions is to avoid
over-answering a user demand. For example, if a user wants to know the k

214 8. Börner: CBR for Design

best cases, there is possibly no interest in getting a ranking of them. Leaving
unasked questions unanswered can help to save time.

Each case V with SD(T, V) ≥ 0 is called a view neighbor of T . The loop
starting in line 4d examines the view neighbors of a test case T . The un-
certainty interval of each view neighbor of T is recalculated in that loop.
Recalculation of the uncertainty intervals is done by using three interpreta-
tions of the triangle inequality.

SD(T,V)

SD(A,T)

SD(A,V) ³½SD(A,T)-SD(T,V)½

V1
V2

additional view
neighbors of T

V

TAA T

SD(T,V)

SD(A,T)
V1

V2

additional view
neighbors of T

V

SD(AV)£ SD(A,T)+SD(T,V)

SD(A,V) ³SD(A,T)-SD(T,V)

Fig. 8.3. Three interpretations of the triangle inequality to shrink uncertainty
intervals of view neighbors of directly tested cases

Two interpretations, shown in Figure 8.3, maximize the lower limit (min-
imum distance). One interpretation minimizes the upper limit (maximum
distance) - compare lines 4di and 4dii of Figure 8.2. As mentioned, recal-
culation can only shrink intervals. Because every direct test (line 4c) shrinks
at least one interval to zero, Fish & Shrink definitely terminates. It can stop
before having tested all cases if an interrupt condition becomes true. The
interrupt condition depends on the user demand and is usually described
within the precision line prescription.

The Fish & Shrink algorithm delivers the correct and complete set of re-
sult cases if the triangle inequality holds for distance functions. In contrast to
most competitors in the field of retrieval algorithms for case based reasoning,
Fish & Shrink does not make the closed world assumption that undocumented
similarity automatically means implicit dissimilarity.

Fish & Shrink normally comes up with the requested results without
searching the whole case base. Up to now, we have not been able to give
exact information about the theoretical complexity. Some empirical tests have
shown a positive behavior (Schaaf 1998). Systematic tests to confirm the
evident performance of Fish & Shrink and the applicability of the presented
approach have still to be performed.

To summarize, the Fish & Shrink algorithm enables the efficient exploita-
tion of the different views on single cases. While in most CBR approaches to
retrieval exactly one (sometimes dynamically weighted) similarity measure is

8.6 Approaches to Structural Similarity Assessment and Adaptation 215

used, Fish & Shrink combines different similarity measures dynamically at
retrieval time time, thus, achieving flexible case retrieval.

8.6 Approaches to Structural Similarity Assessment and
Adaptation

As stressed in Section 8.4, case retrieval for innovative and creative design
tasks requires structural similarity assessment in terms of adaptability, as
well as structural adaptation. This section introduces approaches that define
the structural similarity (cf. Section 1.3.3) between structured case represen-
tations, i.e. graphs, via their maximal common subgraph (mcs) (Börner 1993;
Jantke 1994). Given a new problem, the structurally most similar case(s) are
retrieved. One out of several mcs is transferred and the remaining case parts
are transferred as needed. Additionally, the mcs may be used to represent
and access classes of structurally similar cases in an efficient manner. The
remaining case parts can be seen as proper instantiations of mcs, i.e., as a
special kind of adaptation knowledge that allows the adaptation of past cases
to solve new problems. In such a way, structural case representations and lim-
ited domain knowledge is explored to support design tasks. The approaches
have been exemplarily instantiated in three modules of the design assistant
system Fabel-Idea that generates adapted design solutions on the basis of
prior CAD layouts. For more details see Börner et al. (1996).

8.6.1 Required Functionality

The application domain used for motivation, illustration, and evaluation is
architectural design. In particular we are concerned with supporting the spa-
tial layout2 of rooms and pipe systems in rectangular buildings.

Past experiences, stored as cases, correspond to arrangements of physical
objects represented by CAD layouts and refer to parts in real buildings. Each
object is represented by a set of attributes describing its geometry (i.e., po-
sition and extent in three dimensions) and its type (e.g., fresh air connection
pipe). Concentrating on the design of complex installation infrastructures for
industrial buildings, cases correspond to pipe systems that connect a given
set of outlets to the main access. Pipe systems for fresh and return air, electri-
cal circuits, computer networks, phone cables, etc., are numerous and show
varied topological structures. For the retrieval, transfer, and adaptation of
past cases to new problems not the geometry and type of single objects but
their topological relations are important.

Because of the above, objects and their (topological) relations need to be
represented and considered during reasoning. Therefore, a compile function
2 Spatial layout can be seen as a representative of design tasks in general (Coyne

1988).

216 8. Börner: CBR for Design

is used to translate attribute value representations of objects and their rela-
tions into graphs. In general, objects are represented by vertices and relations
between objects are represented by edges. Reasoning, i.e., structural retrieval
and adaptation, proceeds via graph-based representations. A recompile func-
tion translates the graph-based solution into its attribute-based representa-
tion that may be depicted graphically to the user. Concentrating on different
aspects of structural similarity assessment and adaptation, different compile
functions are appropriate, resulting in different graph representations of cases
with their corresponding expressive power and reasoning complexity. They
are explained in detail in Sections 8.6.2 to 8.6.4.

Figure 8.4 shows a design problem and its solution. Spatial relations
(touches, overlaps, is close to) that can be used to represent cases structurally
are visualized by arrows in the figures.

Fig. 8.4. Domain example: A problem and its solution

Given a base of cases represented by graphs and a structurally represented
problem, reasoning proceeds as follows: Firstly, one or a set of cases that show
a high structural similarity to the problem is/are retrieved. Here, structural
similarity is defined via the maximal common subgraph (mcs) of a case and a
problem. Assuming that cases and problem share more in common than their
maximal common subgraph, structural adaptation proceeds by transferring
and combining case parts that connect unconnected problem objects to the
mcs.

In the following, we define the functionality of structural similarity as-
sessment and adaptation by the mappings required to transfer a set of cases
and a problem into exactly one solution or a set of problem solutions.

We give some basic notations first. A graph g = (V g, Eg) is an ordered
pair of vertices V g and edges Eg with Eg ⊆ V g × V g. Let mcs(G) denote
the set of all maximal common subgraphs of a set of graphs G, with respect
to some criteria. If there is no danger of misunderstanding, the argument of
mcs will be omitted. Let Γ be the set of all graphs, and O be a finite set of
objects represented by attribute values for geometry and type. P(Γ) denotes
the power set of Γ ; that is, the set of all subsets of Γ .

8.6 Approaches to Structural Similarity Assessment and Adaptation 217

The mappings needed to accomplish the required functionality are de-
picted in Figure 8.5. Knowledge is denoted by circles and boxes denote func-
tions. The indices a and g refer to attribute-value and graph represen-
tations, respectively. Arrows denote the sequence of mappings. The double
arrow refers to the interaction between the compile and recompile function
applied.

case base_a problem_a

set of solutions_gcase base_g problem_g

set of solutions_a

set of
cases

compile compile recompile

retrieve adaptmatch mcs

Fig. 8.5. Mappings required to accomplish the desired functionality

In order to access and interact via CAD layouts (that are represented by
attribute values of their constituting objects) but to reason via their topo-
logical structure, there must be a way of translating attribute value repre-
sentations of cases into graph representations and vice versa. Therefore, a
compile function has to be defined that maps the attribute value representa-
tion of a set of objects representing a case or a problem into its structural
representation:

compile : P(O) → Γ

Inversely, the function recompile maps the graph representation of a set of
objects denoting a solution into their attribute value representation:

recompile : Γ → P(O)

The concept of structural similarity allows the selection of one or more cases,
that are suitable for solving a problem. It is used by the function retrieve, that
maps a set of cases (i.e. the case base) and a problem into a set of candidate
cases that are applicable to solve the problem:

retrieve : P(Γ) × Γ → P(Γ)

The retrieve function uses (sometimes repeatedly) a function named match
that maps two graphs into their maximal common subgraph(s) mcs:

match : Γ × Γ → P(Γ)

218 8. Börner: CBR for Design

As for adaptation, a mcs is selected and transferred to the problem. If needed,
vertices and edges of the selected set of candidate cases are combined to
complement the problem resulting in a set of solutions:

adapt : P(Γ) × Γ × Γ → P(Γ)

Given a finite object set and a compile function, we can restrict the last four
mappings to finite domains, i.e., Γ may be replaced by compile(P(O)).

In the following, three approaches are presented that provide the defined
functionality. The approaches differ in the compile and recompile functions
applied, the graph representations (trees or arbitrary graphs) used, the mem-
ory organization applied and the retrieval and adaptation strategies proposed.

8.6.2 Topo

Topo (Coulon 1995) is a module that considers geometric neighborhoods as
well as structural similarity to support the case-based extension and correc-
tion of three-dimensional rectangular layouts.

Compile and Recompile. The compile function used by Topo detects
binary topological relations of various types. The type of a relation is deter-
mined by the application dependent attributes of involved objects and their
3-dimensional spatial relations. Topo’s compile function projects each layout
to the three geometric dimensions. For each projection, 8 different directed
relations (similar to the temporal relations of Allen 1984) and several classes
of disjoint intervals can be detected. Thus, a given object may be in one of 16
relationships for each dimension leading to 163 = 4096 different 3-dimensional
relationships (Coulon 1995).

Retrieval. Topo uses the retrieval algorithm Fish & Shrink (see Section 8.5)
and an attribute-value based similarity function to retrieve a case that shows
a high similarity to the problem at hand. Subsequently, a match function
is applied to determine the maximal common subgraph of the graph-based
represented case and the problem. Finding matching subgraphs is known to
be a NP-complete problem (Babel and Tinhofer 1990). Instead of searching
for a common subgraph of two graphs, Topo searches for a maximal clique
in one graph representing all possible matches between the two graphs, called
their combination graph.

Building the Combination Graph. Using the transformation given in Bar-
row and Burstall (1976), the vertices in the combination graph represent all
matchings of compatible vertices in the graphs. Figure 8.6 shows an example.
The graphs f and g contain objects of type a and b connected by directed
relations. The type of a relation is defined by the types of its objects. Two
vertices are connected in the combination graph if and only if the matchings
represented by the vertices do not contradict one another. The matchings

8.6 Approaches to Structural Similarity Assessment and Adaptation 219

(R2(a,b)⇔R8(a,b)) and (R5(b,b)⇔R10(b,b)) are connected because both re-
lations occur in both graphs in the same context. Both are connected by a
shared object of type b. (R2(a,b)⇔R8(a,b)) and (R1(b,a)⇔R6(b,a)) are not
connected because the matched relations share an object of type a in graph
f but do not share any object in graph g.

Fig. 8.6. Transformation of the problem of finding the maximal common subgraph
to the problem of finding a maximal clique in a graph. The maximal clique and the
corresponding matching are marked in black

A General Maximal Clique Algorithm. The algorithm of Bron and Kerbosch
(1973), called max-cliqueBK , finds all cliques in a graph by enumerating and
extending all complete subgraphs. It extends complete subgraphs of size k to
complete subgraphs of size k + 1 by adding (iteratively) vertices which are
connected to all vertices of the complete subgraph.

Given two graphs, the first similarity function returns the size of the maxi-
mal common subgraph relative to the minimum size of both graphs. Because a
maximal common subgraph cannot be larger than the smaller of both graphs,
the result is always a rational number between 0 and 1. In order to avoid the
NP-complete search for the maximum common subgraphs, a second similar-
ity function is defined. It compares the sets of relations occurring in both
graphs. The result is the number of compatible relations relative to the min-
imum number of detected relations of both graphs, leading to a result which
is also between 0 and 1. The second similarity function obviously returns an
upper bound of the first similarity function, but has no NP-complexity.
Adaptation. Topo extends, refines, and corrects layouts by case adapta-
tion. Given that case parts can take the role of a problem or a solution,

220 8. Börner: CBR for Design

Topo uses the heuristics that every object of the case which is not found in
the problem might be part of the solution. After determining the common
subgraph of a case and a problem, Topo transfers those case objects to the
problem that are connected to the common subgraph by a path of topological
relations. The user may influence this process by selecting types of objects
to transfer.

During transfer, Topo may change the size of transferred objects to pre-
serve topological relations. For example, a window is resized in order to touch
both sides of a room. To avoid geometries which are impossible for an object,
Topo limits the resizing to geometries which occurred in the case base. Ad-
ditionally, statistics about the frequency of topological relations occurring in
the case base for each type of objects supports the evaluation of solutions.

8.6.3 Macs

Macs extends the approach of structural similarity and adaptation to arbi-
trary graphs. Clumping techniques are applied in order to reduce the number
of NP-complete matches during retrieval.

Compile and Recompile. The function compile guarantees the transfor-
mation of an attribute value represented case or problem into its graph repre-
sentation. The graph representation should reflect the structure of the domain
objects. In the selected domain, this can be achieved by representing all ob-
jects of a case as vertices and representing the topological relations between
neighboring vertices by edges. Vertices may be labeled by the type of the
object or by additional qualitative and quantitative attributes. Edges can be
labeled with a type name of the topological relationship together with addi-
tional attributes. If the layout contains a certain number of spanning objects,
such as pipes or beams, then it is more suitable to represent the spanning
objects as edges and the remaining objects as vertices and, if necessary, to
label them with their type name and necessary additional attributes.

The function recompile transforms vertices and edges of a graph-based
solution into objects and relations of a concrete layout. In case of labeled
graphs, this mapping is unique. Otherwise, the problem of non-unique map-
pings has to be solved. See Bartsch-Spörl and Tammer (1994) for examples.

Organization of the Case Base. In this approach, we consider arbitrary
graphs which may be either directed or undirected and labeled or unlabeled.
Computing structural similarity equates to the computation of the maxi-
mal common isomorphic subgraph(s). Macs applies a backtracking algorithm
that realizes the function match to compute maximal common subgraphs of
two arbitrary graphs (Tammer et al. 1995). In general, the maximal com-
mon subgraph of a set of graphs is not unique. For any collection of graphs
C ∈ P(Γ), we use mcs(C) to denote the set of maximal common subgraphs
of all graphs in C with respect to counting vertices and edges. In order to

8.6 Approaches to Structural Similarity Assessment and Adaptation 221

determine a unique representative Θ ∈ mcs(C) for each class C, we introduce
some selection operator E : P(Γ) → Γ .

Usually, the peculiarities of the application domain lead to a number of
preferable selection operators:

– other similarity concepts based on labels of vertices or edges of graphs
within mcs(C) may be applied or

– graph–theoretic properties which characterize structures preferred in the
domain can be exploited.

Given mcs(C) and E, the structural similarity of any class C of graphs is
denoted by σ(C) = E(mcs(C)) in the sense of Börner et al. (1993).

In order to reduce the number of NP-complete mappings during retrieval,
cases are organized and indexed corresponding to their structural similarity.
Applying clumping techniques, a case base CB is partitioned into a finite
number of case classes. Each class consists of a set of graph-represented cases
and is indexed by E(mcs(C)), called its representative.

Retrieval from a Structured Case Base. Assuming that a case base CB
with N = |CB| is partitioned into k = b

√
Nc case classes CCi, i = 1, . . . , k

each represented by its unique representative E(mcs(Ci)), retrieval proceeds
in two steps:

1. Determine the maximal similar representative to the given problem g as
well as the corresponding case class.

2. Determine the most similar case in the selected case class.

The retrieval result is a set of cases denoted by Si∗ ⊆ CBi∗ were, for all
cases gj

i∗ ∈ Si∗ , mcs({gj
i∗ , g}) = match(gj

i∗ , g) holds. That is, the number of
vertices and edges shared by a graph in Si∗ and the problem g are identical.

In such a way, the number N of comparisons can be reduced to 2
√
N

matches in the best case. Note that the maximal similar representative/case
determined in the first and the second retrieval step may not be unique. An
appropriate selection operator has to be applied or user interaction is required
to come up with a candidate case that can be used for adaptation.

Adaptation. The selected cases are proposed one after the other to a selec-
tion algorithm, or to the user, who selects the most suitable one.

In general, the number of vertices and edges constituting a problem is
smaller than those representing a solution. Hence, a selected case may corre-
spond to the problem solution itself. However, in building design, solutions
are hardly ever identical and the selected case has to be adapted to solve the
problem. Due to the lack of appropriate adaptation transformations, Macs

realizes adaptation by transferring case structure resulting in a supplemented
problem; i.e. a solution. The function adapt for a problem g and a selected
case, g′i∗ ∈ Si∗ , uses the result of h = match(g, g′i∗); i.e., the list of matching
vertices of g and g′i∗ . The adapted graph (solution) is generated from graph
g by adding all walks in g′i∗ , which do not have an isomorphic mapping in g

222 8. Börner: CBR for Design

but which begin and end with vertices of h. These walks may be sequences
of edges which are incident with vertices not corresponding to a vertex of g
excluding the begin and end vertices.

8.6.4 CA/Syn

Conceptual analogy (CA) is a general approach that relies on conceptual
clustering to facilitate the efficient use of past cases in analogous situations
(Börner 1995a). CA divides the overall design task into memory organization
and analogical reasoning, both processing structural case representations. In
order to ground both processes on attribute value representations of cases, a
compile and a recompile function need to be defined.

Compile and Recompile. The function compile guarantees the uniform
transformation of an attribute value represented case into its structural nor-
mal form; i.e. a tree. Especially suited for the design of pipelines, compile
maps outlets into vertices and pipes into edges. Inversely, recompile maps
vertices and edges into outlets and pipes. Geometrical transformations, such
as translation and rotation, are considered. Representing the main access by
a square, outlets by circles, interconnecting points by circles of smaller size,
and pipes by line segments, Figure 8.7 (left bottom) illustrates six cases rep-
resenting pipe systems. Each of them shows a tree like structure. The main
access corresponds to the root R, outlets correspond to leaves L. Cross-points
of pipes or connections of pipe segments are represented by internal vertices
I. Pipes correspond to edges. Each object is placed on the intersecting points
of a fixed grid (not shown here) and can be uniquely identified by its x and
y coordinates and its type ∈ {R, I, L}. Pipes connect objects horizontally or
vertically. Thus, a case can be represented by a set of vertices and a set of
edges representing connected to relations among these objects.

case1 2 3 4 5 6casecase casecase case

σ

1

0

cases in CB

prototype instantiations and
their probability

potential solutions

0.67

0.33

0.33

0.33

0.33

(I)
(II)

(III)

(IV)

(V)

concept hierarchy concept representation

Fig. 8.7. Concept hierarchy and concept representation

Formally, a structurally represented case c = (V c, Ec) is a tree. A case
base CB is a finite set of cases. A typical design problem provides the main

8.6 Approaches to Structural Similarity Assessment and Adaptation 223

access, the outlets, and perhaps some pipes; i.e., it is a forest. A solution of
a problem contains the problem objects and relations and eventually adds
intermediate vertices from past cases and provides the relations that connect
all outlets to the main access.

Memory Organization. Memory Organization starts with a case base CB
providing a significant number of cases as well as a structural similarity func-
tion σ.

To explain memory organization, some basic definitions will be given first.
A case class CC is a non-empty subset of CB. The (unique) maximum com-
mon, connected subgraph of the cases in CC containing the root vertice is
denoted by mcs(CC) = (V mcs, Emcs). The structural similarity3 is defined
as |Emcs| divided by the total number of edges in the cases of CC:

Eσ(CC) =
|Emcs|

| ∪c∈CC Ec| ∈ [0, 1]

Given a case base and a similarity function σ, a case class partition CCP is
a set of mutually disjoint, exhaustive case classes CC:

CCP = { CCi |
⋃
i

CCi = CB ∧

∀i 6= j(CCi ∩ CCj = ∅) ∧
∀i 6= j((c1, c2 ∈ CCi ∧ c3 ∈ CCj)
→ σ(c1, c2) ≥ σ(c1, c3) ∧ σ(c1, c2) ≥ σ(c2, c3))

}

A case class hierarchy CCH is the set of all partitions CCP of CB =
{c1, .., cN}:

CCH = (CCP 0, CCP 1, ..., CCPn−1)

Memory organization starts with a set of cases CB = {c1, .., cN} rep-
resented by trees. Nearest-neighbor-based, agglomerative, unsupervised con-
ceptual clustering is applied to create a hierarchy of case classes grouping
cases of similar structure. Clustering starts with a set of singleton vertices
representing case classes, each containing a single case. The two most simi-
lar case classes CC1 and CC2 over the entire set are merged to form a new
case class CC = CC1 ∪ CC2 that covers both. This process is repeated for
each of the remaining N − 1 case classes, where N = |CB|. Merging of case
classes continues until a single, all-inclusive cluster remains. At termination,
a uniform, binary hierarchy of case classes is left.

Subsequently, a concept description K(CC) is assigned to each case class
CC. The concept represents the mcs(CC) (named prototype) of the cases in
CC and a set of instantiations thereof, along with the probability of these
3 Note that the structural similarity function is commutative and associative. Thus

it may be applied to a pair of cases as well as to a set of cases.

224 8. Börner: CBR for Design

instantiations. The probability of an instantiation corresponds to the number
of its occurrences in the cases of CC divided by the total number of cases
in CC. The mcs denotes the structure relevant for similarity comparisons
and serves as an index in the case base. The instantiations (subtrees) denote
possibilities for adaptation. The probabilities will direct the search through
the space of alternative instantiations.

In such a way, large numbers of cases with many details can be reduced to
a number of hierarchically organized concepts. The concrete cases, however,
are stored to enable the dynamic reorganization and update of concepts.

Analogical Reasoning. Analogical Reasoning is based on concepts exclusively.
Given a new problem, it is classified in the most applicable concept, i.e., the
concept that shares as many relations as possible (high structural similarity)
and provides instantiations that contain the problem objects that are not
covered by the prototype (adaptability)4. Thus instead of retrieving one or a
set of cases, the function classify maps a concept hierarchy K(CCH) and a
problem p into the most applicable concept K(CC).

Next, the mcs of the most applicable concept is transferred and instanti-
ated. Instantiations of high probability are preferred. Each solution connects
all problem objects by using those objects and edges that show the highest
probability in the concept applied. Instead of adapting one or more cases to
solve the problem, the function instantiate maps the concept representation
K(CC) of a case class CC and the problem p into a set of adapted solutions
SCC,p. In general, there exist more than one applicable concept. The set of
all solutions SCB,p of a CB for a problem p equals the union of solution sets
SCC,p.

Finally, the set of solutions may be ordered corresponding to a set of
preference criteria: (1) maximal structural similarity of the solution and the
concept applied, (2) maximal probability of edges transferred, and (3) mini-
mal solution size.

If the solution was accepted by the user, its incorporation into an existing
concept changes at least the probabilities of the instantiations. Given that
the problem already contained relations, it might add new instantiations or
even change the prototype itself. If the solution was not accepted, the case
memory needs to be reorganized to incorporate the solution provided by the
user.

Figure 8.7 (left) depicts the organization of cases into a concept hierarchy.
N cases are represented by 2N − 1 case classes respective concepts K(CC).
Leaf vertices correspond to concrete cases and are represented by the cases
themselves. Generalized concepts in the concept hierarchy are labeled (I) to
(V) and are characterized by their mcs (prototype) denoted by black circles
and line segments. The representation of concept no. (III) representing case1
to case3 is depicted on the right hand side of Figure 8.7. The instantiation of
4 Note that the most similar concept may be too concrete to allow the generation

of a solution.

8.6 Approaches to Structural Similarity Assessment and Adaptation 225

its prototype results in case1 to case3 as well as combinations thereof. Given
a new problem, the most applicable (i.e., most similar) concept containing
all problem objects is determined in a top-down fashion. The set of problems
that may be solved by concept no. (III) corresponds to the set of all subtrees
of either concrete or combined cases, containing the root vertice.

The general approach of Conceptual Analogy has been fully implemented
in Syn, a module of a highly interactive, adaptive design assistant system
(Börner 1995b). While its compile and recompile functions are especially
suited to support the geometrical layout of pipe systems the general approach
to structural similarity assessment and adaptation is domain independent.
See Börner and Faßauer (1995) as well as Börner (1997) for a more detailed
description of the implementation.

8.6.5 Comparison

All three approaches, Topo, Macs, and CA/Syn, apply structural simi-
larity assessment and adaptation to retrieve and transfer case parts to solve
new problems. However, the approaches differ in their focus on different parts
of the CBR-scenario. In the following, the strengths and limitations of each
approach and their domain specific and domain independent parts are dis-
cussed.

First of all, it must be recognized that the definitions of the compile and
recompile functions strongly depend on the domain and task to support. The
higher the required expressibility of structural case representations the more
complex is the graph matching, i.e., the less efficient are retrieval and adap-
tation. The application of labeled graphs (Topo) or trees (Syn) allows the
inversion of the function compile to recompile. This can not be guaranteed for
arbitrary graphs (Macs). Whereas the representation of cases by trees (Syn)
guarantees unique mcs, this does not hold for graph representations, as in
Topo or Macs. Domain specific selection rules need to be defined or exten-
sive user interaction is necessary to select the most suitable mcs. This may
be advantageous during retrieval allowing the selection of different points of
view on two graphs (the mcs and a problem) but may not be acceptable for
efficient memory organization over huge case bases.

While Topo performs no structural retrieval at all, Macs and Syn re-
trieve a set of cases from a dynamically organized case base. Macs uses a two-
level case organization. The lower level contains the concrete cases grouped
into classes of similar cases. The upper level contains graphs describing the
mcs of classes of similar cases. It does a two stage retrieval selecting the case
class of the most similar representative first and searching in its cases for the
most similar concrete case(s). Syn uses a hierarchical memory organization,
i.e., a case class hierarchy. Each case class is represented intentionally by
a concept representing the unique mcs, instantiations thereof, as well as the
probabilities of these instantiations. Given a new problem, the most applicable
concept of the concept hierarchy is searched for.

226 8. Börner: CBR for Design

In order to compare graph representations, Macs and Topo need to
apply graph matching algorithms (clique search and backtracking) that are
known to be NP-complete. For this reason, Topo uses the Fish & Shrink re-
trieval algorithm, reducing retrieval to the computationally expensive match
between a selected case and a problem. Macs memory organization allows
the reduction of the number of matches required to search through N cases
to 2

√
N in the best case. Syn’s restriction to represent cases by trees reduces

expressibility but offers the advantage to match efficiently.
For adaptation, Topo investigates the compatibility of object types and

relation types of layouts. The frequency of relations in past layouts is ex-
ploited to come up with preferable positions for solution objects. Macs real-
izes a simple variant of case adaptation by adding all walks of the case which
do not have an isomorphic mapping in the problem but begin and end with
vertices of their mcs. CA/Syn concentrates on efficient structural case com-
bination. Therefore, the approach integrates the formation of hierarchically
organized concepts (i.e., concept hierarchies) and the application of these
concepts during analogical reasoning to solve new problems. It is unique in
its representation of concepts by the mcs and its instantiations plus proba-
bilities. Its definition of applicability allows the efficient selection of the most
similar concept that is neither too general not too concrete and guarantees
the generation of a problem solution. The instantiation of its mcs is guided
by the probabilities of these instantiations, resulting in a set of solutions that
may be ordered corresponding to a set of preference criteria.

8.7 Structural Adaptation by Case Combination

Eadocs
5 is an interactive, multi-level, and hybrid expert system for aircraft

panel structures (Netten et al. 1995; Netten 1997). The primary design ob-
jective is to find a feasible and optimal concept for a panel design.

The structure of a design defines the set of components, their config-
uration and parameter values. The configuration defines the set of design
variables that can be retrieved and adapted. Parameter values should be
assigned within the context of a configuration. Retrieval and adaptation of
design structures should, therefore, be distinguished for configurations, com-
ponents and parameters.

In many applications, specialist operators are only available for parameter
adaptation. Other approaches are necessary to adapt configurations. The
Eadocs system adapts the configuration, components, and parameters by
combining cases.

5 Expert Assisted Design of Composite Sandwich Panels

8.7 Structural Adaptation by Case Combination 227

8.7.1 Required Functionality

Eadocs’ task is to support the conceptual design phase. In this phase, a
designer specifies the initial requirements, objectives, and preferences. The
system suggests, evaluates and modifies alternative solutions for the config-
uration and discrete design parameters. Initial specifications are elaborated
from Eadocs’ conclusions or a designer’s new input. The optimum panel
concept is the starting point for more detailed (numerical) analysis and op-
timization.

Conceptual design is regarded as an innovative reasoning process for con-
figuration and parametric design. Plans for designing components are not
available. Only partial models for evaluating behavior are available.

Eadocs divides the iterative design process into four subsequent phases.
Each phase solves a specific and more fine-grained iterative step that results
in a set of sub-solutions. A sub-solution is an alternative starting point for the
next phase. The level of detail, type of design decisions, and type of reasoning
changes with each phase (Netten et al. 1995).

Modifying the R4 CBR-cycle introduced by (Aamodt and Plaza 1994),
Figure 8.8 depicts the four phases in bold. The first phase selects a set of
prototype solutions and configures them qualitatively. In the second phase,
case-based reasoning is applied to solve two tasks: Firstly, complete case solu-
tions are retrieved to generate quantitative conceptual solutions. The second
task is to adapt the retrieved concepts by integrating other case components.
The third phase revises the parameters heuristically, while the fourth phase
optimizes the concepts numerically.

The case base covers only a small part of the problem and design spaces,
which is also biased by previous design intentions. It is unlikely that a case is
completely similar to a new problem, and their behavior is not representative
for the feasibility and optimality upon reuse of their solution (Netten and
Vingerhoeds 1997). Additional information is required to guide retrieval.

Eadocs provides this information in the first phase in which the best
solutions are selected and configured into a set of prototypes. In the second
phase, it is assumed that the prototype defines the design space of feasible
and optimal configurations from which conceptual solutions can be retrieved.
If no case can be retrieved for the best prototype, the solution is relaxed to
the next best prototype.

8.7.2 Sandwich Panel Structures

Thin-walled skin panels are applied as components of semi-monocoque air-
craft structures. A skin alone cannot provide sufficient stiffness. Several types
of panels can be configured to provide additional stiffness to the skin, such
as a sandwich panel. A sandwich panel has a core of honeycomb or foam ma-
terial, sandwiched between the skin and an additional inner skin. Figure 8.9
gives an example of a symmetrical sandwich panel with skin laminates of

228 8. Börner: CBR for Design

Fig. 8.8. Eadocs design process

three layers and a honeycomb core. The skins can be made out of light alloy
sheet material or as composite laminates. A laminate is made out of several
layers and a layer is made out of thin plies of fiber reinforced material.

Nx

Ny Nxy

mid-plane of
symmetry

skin

honeycomb
core

Fig. 8.9. Example of a sandwich panel

The configuration defines the type of panel and the lay-up of each lami-
nate. A prototype is an abstract representation of a panel, and only defines
the types of panel, material, and laminates a concept may be selected from.
The concept defines all laminates in detail. The dimensions of the panel, core
or stiffeners are continuous parameters. For each layer, discrete design pa-

8.7 Structural Adaptation by Case Combination 229

rameters are defined for the type of fiber reinforced plastic (FRP) material,
the number of plies, and the orientation of the plies.

A sandwich panel has one of the simplest panel configurations. Other
types of panels can be configured, for example, with longitudinal stiffeners
joined to the skin. Each stiffener is composed of one or more laminates.

The most important function of a panel is to carry aerodynamic and
structural loads. A loading condition is defined as a potentially critical com-
bination of normal and shear (Nxy) loads. A normal load is a combination
of tension or compression loads in the longitudinal (Nx) and transverse (Ny)
panel directions. Typically, several loading conditions are specified for the
most severe operational conditions.

Behavior of panels is modeled in terms of stress, strain, strength, stiffness,
cost, and weight. The strength is primarily a function of the strength, stress,
and strain of individual plies. The stiffness is a function of the panel com-
ponents and their dimensions. Behavior is analyzed with existing numerical
techniques, which require a completely defined concept as input. Prototypical
behavior is represented qualitatively as categories of behavior (Netten and
Vingerhoeds 1997).

A designer specifies an initial problem by a set of loading conditions and
panel dimensions. Objectives are defined for optimality and feasibility, while
preferences may be defined for the prototype solutions. For feasibility, panel
behavior should withstand each of the loading conditions. For optimality, the
cost and/or weight of the panel should be minimized.

8.7.3 Cases and Case Retrieval

Eadocs has an object oriented data structure. Classes are defined at several
levels of abstraction for function, behavior, and structure. A design case is
an instance of a design problem with objects, or parts, for these classes.
Figure 8.10 gives an example of a sandwich panel with a symmetric laminate
of 4 skin layers.

All objects are stored in the case with their relations. The buckling be-
havior relates to the panel, while stress and strain behavior relate a loading
condition to a specific layer. The ordering of layer objects defines the lay-up
of a laminate and is defined by a layer number. Generic relations about con-
figuration, such as the relation between a skin laminate and the core, are not
defined in cases.

Cases are indexed on three levels. A case part is indexed by its features
as an object of its class, while the class is indexed by its abstract classes.
A case part is also indexed by its relation to other objects as a part of the
case. The complex indexing hierarchy enables the retrieval of features, parts,
and complete cases. The current implementation of Eadocs indexes features
onto discrete values, which is sufficiently accurate when only a few cases can
be retrieved.

230 8. Börner: CBR for Design

Fig. 8.10. Example of a sandwich panel case

The case base is consulted after selection of a prototype from phase 1
(see Figure 8.8). The initial target restricts retrieval to cases with the con-
figuration of the selected prototype. The initial target for retrieval is defined
by objects, or sub-targets, for the specifications and the selected prototype.
Each sub-target is indexed in a similar way as its counterparts in the case
base. The similarity is measured locally between case parts and sub-targets,
and globally as the aggregate similarity of a case for the target.

8.7.4 Case Combination

One case is retrieved that best matches the initial target. Local similarities
identify which initial sub-targets are satisfied by this precedent case. Repair
of functional or behavioral requirements usually requires the adaptation of
several components. Unfortunately, sub-targets for functional and behavioral
requirements cannot be causally related to components. Specialist operations
are available for the local adaptation of some layer parameters. These adap-
tations are only useful after adaptation of the laminate lay-ups. Additional
information for configurational adaptations may be retrieved from the case
base. Searching the case base again for the remaining sub-targets only will
not reveal the necessary adaptations.

8.8 Discussion and Summary 231

Predicting and adapting behavior for the remaining sub-targets is essen-
tially different from retrieving a solution to the initial target. Here, it can be
assumed that designs with a similar structure will behave similarly as well.
Predictions and adaptations can be retrieved from cases with a structure
similar to the precedent case. Combination of new components requires four
steps:

1. A new target for retrieval is defined by the structure of the precedent
case and the remaining sub-targets.

2. Cases are retrieved for the new target. For these cases:
a) Behavior of the precedent case is predicted from cases with a similar

structure.
b) Adaptations can be retrieved from the differences in functionality,

behavior, and structure of cases from 2a.

The assembly of components is defined in the structural model. This
model is also applied for indexing and can now be searched for other com-
ponents. The similarity of a new case to the new target identifies whether
features or components should be substituted or inserted. Not all differences
in step 2b should be retrieved for adaptation. Some of these differences are
non-conservative adaptations; i.e., adaptations that violate the feasibility of
previously satisfied requirements. Usually, a small set of allowable or conser-
vative adaptations can be defined in conjunction with the modifications of
phases 2a and 2b. In Eadocs, the number of plies in a layer is never reduced,
and layer orientations and materials are never changed but inserted in a new
layer.

The major advantage of this adaptation approach is that new structural
solutions can be generated automatically. The operations for steps 1 and 2
are relatively simple, require little search and little domain knowledge. Their
success depends primarily on the coverage of the case base; i.e., the exis-
tence of cases with similar structures that have been designed for different
purposes. Experiments with Eadocs have shown that, even for a small case
base, design improvements can be quite significant. A large number of possi-
ble loading conditions can be covered by only a few cases, and combination
of these cases strongly increases coverage (Netten 1997). The retrieved struc-
tural adaptations are rudimentary but can be revised. Many such discrete
adaptations, however, could not have been suggested from heuristics or nu-
merical optimization routines (see also Bladel 1995).

8.8 Discussion and Summary

This chapter started with a general characterization of design tasks. Con-
centrating on innovative and creative design tasks, we gave an overview of
applicable reasoning methods and case-based design systems. The domain of

232 8. Börner: CBR for Design

architectural design was used to illustrate the general problems that have to
be solved in order to provide efficient design support. Finally, we presented
approaches to complex case retrieval, to structural similarity assessment, and
to structural adaptation.

To conclude, we contrast approaches for compositional case adaptation
used for automating routine design or configuration tasks, as introduced in
Chapter 6, with approaches for structural adaptation aiming at the interac-
tive, assistant-like support of innovative and creative design tasks. Finally,
the importance of adequate user interfaces and its influence on future research
in CBD is discussed.

Compositional and structural case adaptation. Adaptation is central
to CBR systems for configuration (i.e., routine design) as well as for innova-
tive and creative design. It can work by assimilating parts of different cases
to meet a new specification.

In configuration, a new specification is given by a well defined set of con-
figurable components, a set of constraints that the final configuration solution
must satisfy, and configuration operators that encode valid component config-
urations (cf. Section 6.4). The term compositional adaptation refers to the re-
trieval, adaptation, and subsequent composition of multiple cases (Redmond
1990; Sycara and Navinchandra 1991). Additional knowledge is employed to
repair edges of solution chunks such that they work together as a whole.

Innovative and creative design tasks differ in that constraints or repair
knowledge is not available in general. Structural adaptation, as introduced in
Section 8.6, refers to the transfer and completion of the most specific common
structure shared by a class of structurally similar cases. Exclusively, cases of
high structural similarity are combined.

However, in both approaches adaptation is compositional rather than rule
or operator based. Both approaches share the risk that locally optimal case
components from different cases and, thus, different contexts will not produce
globally optimal solutions when combined.

Adequate human-computer interfaces and future research in CBD.
As discussed in Section 8.3, adequate user interfaces are an indispensable
requirement to built effective assistance systems. Therefore, one major di-
rection of research is appropriately designed human-computer interfaces that
are easy to integrate into the workflow of designers.

In architectural design, CAD tools are very powerful in managing exact
numbers and measurements. They provide less support during the abstract
or sketchy phase at the beginning of a design process in which conceptual de-
cisions are made and major constraints are established. Aiming at an efficient
support of the early stages of design development, Virtual Reality techniques
and fast computer graphics can offer new ways of human-computer inter-
action as well as efficient possibilities to support, e.g., architectural design.
Multiple building partners at different locations can virtually enter the design
and experience the space that gets created. Multimodal interaction directly

8.8 Discussion and Summary 233

in three-dimensional space, using two hands and audio, enables the user to
formulate design ideas in a much more intuitive way. Using AI techniques,
so called interface agents can be provided that are trained by each user to
adapt to their individual preferences. They may support navigation and ma-
nipulation in 3D as well as retrieval, adaptation, and evaluation of design
solutions.

A promising research result in this direction is the spatial modeling tool
Sculptor (Kurmann 1995; Kurmann 1997). The tool and the agents (a
Navigator, a Sound Agent and a Cost Agent, are implemented so far) that
are connected with it allow direct, intuitive, and immersive access to three
dimensional design models. Through interactive modeling in a virtual space,
an easy way of generating and manipulating architectural models is enabled.
Sculptor’s connection to Idiom (Smith et al. 1995; Smith et al. 1996), a
tool that supports spatial configuration using previous designs in domains
such as architectural design, circuit layout or urban planning, results in a
design system that provides extensive design support via a highly interactive
human-computer interface.

The design of intuitive and efficient human-computer interfaces will have
strong implications on the knowledge representations used (they have to sup-
port graphical interaction as well as structural retrieval and adaptation) and
the reasoning mechanisms applied to support design tasks.

Acknowledgments

The author thanks Jörg W. Schaaf for providing Section 8.5 and Bart Netten
for composing Section 8.7. Carl-Helmut Coulon and Elisabeth-Ch. Tammer
deserve thanks for commenting on Sections 8.6.2 and 8.6.3, respectively. Hans-
Dieter Burkhard, Mario Lenz, Michael M. Richter, and Brigitte Bartsch-Spörl
gave many critical comments and improvements to the chapter. Nonetheless,
the paper reflects the authors personal view on case-based design research.

The research within the joint project Fabel was supported by the Ger-
man Ministry for Research and Technology (BMBF) under contract no. 413-
4001-01IW104. Project partners in Fabel have been German National Re-
search Center of Computer Science (GMD), Sankt Augustin, BSR Consulting
GmbH, München, Technical University of Dresden, HTWK Leipzig, Univer-
sity of Freiburg, and University of Karlsruhe.

