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Organ Mapping Antibody Panels: a 
community resource for standardized 
multiplexed tissue imaging
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Multiplexed antibody-based imaging enables the detailed characterization 
of molecular and cellular organization in tissues. Advances in the field 
now allow high-parameter data collection (>60 targets); however, 
considerable expertise and capital are needed to construct the antibody 
panels employed by these methods. Organ mapping antibody panels 
are community-validated resources that save time and money, increase 
reproducibility, accelerate discovery and support the construction of a 
Human Reference Atlas.

Multiplexed antibody-based imaging provides critical spatial data for 
mapping the vast network of cell types and anatomical structures present 
in multicellular organisms. Beyond preserving cell–cell interactions and 
tissue architecture, this approach offers insight into the cellular morphol-
ogy and spatial patterns of complex tissues. When coupled with advanced 
analytical methods, high-content imaging allows for the quantification of 
heterogeneous cell types, including rare and difficult to extract popula-
tions. While imaging methods may vary in conjugate, mode of imaging 
or mode of immunolabeling, all aim for the in situ detection of molecular 
targets1. Importantly, these techniques are central to research efforts 
across several domains, but also foundational to international efforts 
aimed at building atlases of normal and diseased tissues.

Spatial mapping approaches pose substantial challenges as they 
are (1) targeted (antibodies must be carefully selected before data 
acquisition), (2) fallible (nonreproducible and off-target labeling are 

well described2,3) (3) resource-intensive (a collection of 50 unique anti-
bodies may require tens of thousands of US dollars in reagent costs and 
often months to build) and (4) dependent on subject matter experts 
for their construction and optimization1.

To overcome these challenges, we are establishing a framework for 
the construction of organ mapping antibody panels (OMAPs)—com-
binations of antibodies that define cell populations and anatomical 
structures reproducibly in diverse tissues of human origin. This initia-
tive emerged from the Human BioMolecular Atlas Program (HuBMAP)4 
and parallel efforts in the field of cytometry to construct peer reviewed 
optimized multicolor immunofluorescence panels (OMIPs)5. OMAPs 
expand upon other antibody validation efforts, such as the HuBMAP 
antibody validation reports and the Human Protein Atlas, by provid-
ing experimental details relevant for their successful application and 
domain expertise for atlas construction.
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traditional imaging techniques and (4) relevant details for implementa-
tion. OMAPs are designed for integration with the anatomical struc-
tures, cell types, plus biomarkers (ASCT+B) Reporter6—a state-of-the-art 
visualization tool (https://hubmapconsortium.github.io/ 
ccf-asct-reporter/)—to facilitate tissue mapping efforts within and 

OMAPs are tested rigorously to overcome technical challenges, 
such as steric hindrance, epitope loss, spectral overlap, target specific-
ity and native tissue autofluorescence. Furthermore, OMAPs include 
details such as (1) critical markers for downstream analyses, (2) rationale 
for selected reagents, (3) four to six core markers to accommodate more 
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Fig. 1 | OMAPs enhance standardization, discovery and stewardship of 
resources used in the spatial mapping of tissues at single-cell resolution. 
a, Bar graph depicting the number of AS, CT and BP covered by each OMAP. 
Numbers were calculated by comparing with the relevant ASCT+B table6 and 
were reviewed by domain experts. b, Plot showing the cost to develop (filled 
circles) and use (unfilled circle) the OMAPs described here. Costs (in 2022 US 
dollars) are shown for antibodies and/or conjugation kits and exclude labor, 
amortization of purchased equipment such as microscopes, and consumables 
other than antibodies and conjugation kits. Cost to use is calculated for 100 
tests. DNA (CODEX), Fluorophore (IBEX), Fluorophore* (Cell DIVE), Metal 

(SIMS). c, Schematic detailing the creation of a base OMAP panel. Gray 
antibodies indicate antibodies that do not pass the first quality control check 
for accurate immunolabeling. Colored antibodies outside of the filter reflect 
validated antibodies that are not suitable for the final OMAP, for example, need 
amplification or a different conjugate. d, Images of human lymph node depicting 
AS, CT and cell states identified using IBEX. GC, Tfr (follicular regulatory T cells), 
Treg (regulatory T cells), TBM (tingible body macrophages) and R1–R4 refer to 
different regions in the secondary follicle. 3++ indicates CD69++, ICOS++ and PD-1++; 
1+ indicates CD69+ or ICOS+ or PD-1+. Large insets, 150 µm; small insets, 50 µm. 
Representative of a dataset of ten samples.
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beyond the HuBMAP community. To this end, we strongly encourage 
inclusion of blood endothelial markers to empower construction of 
a Human Reference Atlas using the vasculature common coordinate 
framework (VCCF)7 as well as lymphatic endothelial markers to further 
our understanding of the human lymphatic system8. We additionally 
recommend panels designed to evaluate signaling pathways, probe 
tissue-specific immunity and detect cell death processes under physi-
ological and pathological conditions.

Here, we present an inaugural collection of OMAPs that provide 
a spatial context for 171 anatomical structures and 155 cell types in 
seven human organs, using 203 validated antibodies (Fig. 1a and Sup-
plementary Tables 1 and 2). The described OMAPs represent multiple 
imaging modalities employing diverse antibody labels (DNA, fluoro-
phore, metal), including codetection by indexing (CODEX)9, iterative 
bleaching extends multiplexity (IBEX)10, Cell DIVE11 and secondary 
ion mass spectrometry (SIMS)12. Using data contributed by domain 
experts, we highlight several challenges related to the building of 
multiplexed panels while underscoring the value of developed OMAPs 
(Fig. 1b,c). First, an average of two antibodies were evaluated for each 
protein marker across all OMAPs, with some investigators screening 
multiple clones per target to ensure the best performing antibody 
was selected (around three per biomarker for Cell DIVE). The require-
ment to evaluate multiple clones and/or antibody formats is directly 
responsible for the substantial difference between the cost to design 
a new OMAP and the cost to use an existing one (Fig. 1b). Thus, we envi-
sion OMAPs serving as base panels that can be extended with curated 
marker sets in a modular fashion, saving researchers time and reagent 
costs (Fig. 1c). Lastly, even a sixplex panel can capture 63 theoretical 
cell types based on the presence or absence of a particular marker.  

Such binary estimates undervalue the additional spatial, morpho-
logical and expression level differences that are critical for discerning 
structures, cell types and cell states in intact tissues (Fig. 1d and Sup-
plementary Table 2).

OMAP construction begins with identifying the main anatomi-
cal structures (AS) and cell types (CT) present in a particular tissue 
or organ. Then, key protein biomarkers (BP) that characterize cell 
types of interest are determined (step 1; Fig. 2a). At a minimum, an 
OMAP should include at least ten protein targets along with critical 
markers for downstream image analysis (for example, nuclear and 
panmembrane markers for cell segmentation). Once a list of protein 
biomarkers is compiled, it is important to select antibodies compatible 
with the specific organ, tissue preservation method and multiplexed 
imaging platform (step 2, Fig. 2a). Presently, this process is achieved by 
querying antibody databases, existing literature and vendor websites 
for suitable candidates1. However, our community effort seeks to estab-
lish lists of expertly curated clones already validated for multiplexed 
tissue imaging, accelerating the selection process while establishing 
consensus among investigators (Supplementary Table 1). Another aim 
of this initiative is to support integration across tools and multimodal 
datasets generated by HuBMAP and other consortia for single-cell map-
ping. Accordingly, we report well-established gene and protein identi-
fiers for each target using the HUGO Gene Nomenclature Committee 
(HGNC)13 and Universal Protein Resource (UniProt) IDs14 (Fig. 2b).  
OMAPs are linked to ASCT+B tables through their common metadata 
fields specifying each protein biomarker—making it easy to map experi-
mental data to the evolving Human Reference Atlas.

Following antibody selection, each antibody is extensively charac-
terized before inclusion in an OMAP (step 3; Fig. 2a). Several approaches 
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for validating antibodies have been described: positive and negative 
controls, colocalization with orthogonal markers and assessing the 
spatial pattern and subcellular localization of antibody labeling based 
on published data1–3. Importantly, these practices and relevant meta-
data are captured in antibody validation reports (AVRs)—a parallel 
effort that complements the OMAP initiative (Supplementary Table 3). 
AVRs provide an overview of the validated antibodies for each protein 
marker, any alternative clones tested, specific details on the char-
acterization process and representative images to allow qualitative 
assessment of antibody specificity, sensitivity and reproducibility. 
AVRs and OMAPs conform to antibody reporting guidelines designed to 
thwart the replication crisis in biomedical research by including fields 
that uniquely identify a reagent, such as a research resource identi-
fier (RRID)15. In addition to capturing antibody-specific information, 
AVRs and OMAPs also include links to relevant protocols and critical 
methodology details (Fig. 2b). Beginning in 2023, all OMAP authors 
will be asked to contribute an AVR for each antibody included in their 
panel. Future goals include data integration between AVRs and OMAPs 
to support OMAP construction using well-characterized reagents.

The next step of OMAP construction is validating the full panel 
by assessing nonspecific interactions, spectral overlap and poten-
tial impact of cycle number on immunogenicity and tissue loss1,10,16,17 
(step 4; Fig. 2a). Several antibodies, reflecting different clones and/or 
conjugates, may be evaluated and compared with their performance 
in traditional imaging assays and serial sections. Each antibody must 
be carefully titrated and exposure times adjusted to yield the best 
signal-to-noise for a given antibody. These details are included in the 
supporting materials required for each OMAP: the OMAP Table (Sup-
plementary Table 4), OMAP Description Document (Supplementary 
Table 5) and AVRs in the next release (step 5; Fig. 2a). In contrast to 
AVRs, OMAPs also report the cell markers that characterize distinct 
cell types and states in different human tissues. These designations are 
assigned by OMAP authors, reviewed by subject matter experts, and 
annotated using standardized cell ontology (CL) terms6,18, allowing for 
future integration with the ASCT+B Reporter (Supplementary Table 2). 
The rationale for including a particular antibody is documented in the 
OMAP Table provided by the contributing author(s) (Supplementary 
Table 4). After review by subject matter experts, OMAPs are given a digi-
tal object identifier (DOI) and published online with a representative 
dataset deposited into a public repository—a requirement starting in 
2023. A high priority within the coming year is expanding the function-
ality of Vitessce—an open-source interactive visualization framework 
for exploration of multimodal and spatially resolved single-cell data19—
to allow visualization of imaging datasets with expert annotations for 
anatomical structures and cell types (Fig. 2c).

By establishing OMAPs, we aim to offset the considerable time and 
cost associated with creating such resources de novo, while standard-
izing data acquisition and reporting for multiplexed tissue imaging 
studies—a key objective in the field20. To achieve this goal, we invite the 
spatial biology community to construct OMAPs for use in 2D and 3D 
imaging of healthy, diseased and aging tissues, such as those acquired 
through the SenNet program (https://sennetconsortium.org). Beyond 
conforming to journal reporting guidelines, OMAPs and associated 
AVRs establish confidence in antibody clones by aggregating usage 
data across laboratories and technologies. Data from studies that use 
OMAPs are automatically aligned to, and can be compared with, data in 
the Human Reference Atlas6, providing evidence for cell types in specific 
anatomical structures. In closing, OMAPs save time and money, increase 
reproducibility, support Human Reference Atlas construction, and 
accelerate biological insights gained from multiplexed tissue imaging.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
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Methods
Overview
All OMAPs require completion of an OMAP Table and an OMAP Descrip-
tion Document. Additional details on how to complete these docu-
ments are included in Supplementary Tables 4 and 5. Beginning in 2023, 
each OMAP will require a representative dataset deposited to a public 
repository and an AVR for each included antibody. Additional details 
related to the construction of OMAPs can be found in our standard 
operating procedure (SOP)22 and frequently asked questions (FAQs) 
on the Human Reference Atlas Portal: https://humanatlas.io/omap.

Marker selection
The first step in OMAP construction is to identify the main anatomi-
cal structures and cell types for an organ of interest. This will inform 
the biomarkers to target using appropriate antibodies. The ASCT+B 
Reporter6 (https://hubmapconsortium.github.io/ccf-asct-reporter/) 
is a useful resource reporting the AS, CT and gene and protein BP for 
several human organs. To obtain a spreadsheet of the AS and CT present 
in an organ of interest, select the newest version of an organ-specific 
ASCT+B table and use the ‘Report’ feature to download a spreadsheet 
listing the AS and CT. The best way to view the BP for a particular cell 
type is to visit the Data Tables in the ASCT+B Reporter. The biomarkers 
used to phenotype a particular cell are listed sequentially as BProtein/1, 
BProtein/2 and BProtein/3. Additional resources for identifying cell 
markers are described in the OMAP SOP22 and a multiplexed tissue 
imaging primer1. Authors should designate four to six markers that, 
when used together, allow profiling of main anatomical structures 
and cell types in a given tissue. Beyond these core markers, an OMAP 
should allow ten or more unique biomarkers to be visualized in a single 
tissue section and support downstream image analysis with appropri-
ate nuclear and panmembrane targets. The inclusion of antibodies 
directed against one or more blood endothelial markers (for example, 
CD31) is strongly encouraged to support the construction of a Human 
Reference Atlas using the Vasculature Common Coordinate Framework 
(VCCF)7,23,24. Additionally, antibodies directed against one or more 
lymphatic endothelial markers (for example, LYVE1) are highly recom-
mended to further our understanding of the human lymphatic system8.

Antibody selection and validation
Resources for antibody selection include existing OMAPs (https:// 
humanatlas.io/omap), antibody search engines, an extensive clone 
list included in a multiplexed imaging primer1 and Supplementary 
Tables 1 and 2. Using these resources, antibodies can be selected 
for a desired tissue preservation method, imaging platform and 
universal antigen retrieval conditions, if applicable. In general, 
antibodies validated by vendors for immunohistochemistry (IHC) 
of formalin-fixed paraffin-embedded (FFPE) samples often work as 
fluorophore-conjugated antibodies for FFPE or tissues fixed using 1–4% 
paraformaldehyde. Each antibody included in a published OMAP must 
be validated using well-described practices1–3, for example, evaluating 
the immunolabeling pattern of a particular antibody using positive 
and negative controls and colocalization with orthogonal markers.

Full panel (OMAP) validation
Following selection of individual antibodies, the full panel of anti-
bodies must be validated as an assembly. Several excellent resources 
are available on the process of panel construction and additionally 
include validated panels for diverse human tissues1,16,25,26. It is difficult 
to generalize across platforms, as differences exist between meth-
ods employing fluorophore- versus metal-labeled antibodies and 
techniques using cyclic or all-in-one imaging1. Nevertheless, several 
OMAP validation steps are shared across multiplexed imaging meth-
ods. First, the performance of an antibody in an OMAP must be com-
pared with its performance in a single-plex assay using qualitative and 
quantitative assessments, for example, spatial pattern, subcellular 

location and signal intensity. Second, nonspecific interactions, such as 
cross-reactivity between antibodies and tag–tag interactions, should 
be evaluated and eliminated by selecting distinct clones, conjugating 
to other oligonucleotide tags, and moving antibodies to a different 
cycle depending on the overall panel design. Last, each antibody in an 
OMAP must be carefully selected to yield a high signal-to-noise ratio 
and titrated to eliminate nonspecific binding and minimize spectral 
overlap, if applicable. Cyclic methods employing fluorescent anti-
bodies or reporters additionally need to evaluate the impact of cycle 
number on antibody staining quality and tissue integrity. Detailed 
protocols and examples on how to evaluate the impact of cycle number 
on immunogenicity and tissue loss have been reported10,16,17.

OMAP review and publication
A chief aim of this work is to create multiplexed imaging panels that can 
be used across laboratories to generate high-quality spatial data from 
human tissues. To achieve this aim, it is imperative that the described 
OMAPs are reviewed by experts in pathology, histology, cell biology and/
or multiplexed imaging. OMAP authors must perform an internal review 
to ensure that all required documents are completed according to estab-
lished guidelines22 (Supplementary Tables 4 and 5). Next, OMAP authors 
need to quantify the number of AS and CT profiled by an OMAP using the 
relevant ASCT+B table for their organ and other literature. Furthermore, 
the biomarkers used to define each cell type must be documented as 
described in the SOP and shown in Supplementary Table 2. Before publica-
tion, OMAPs are additionally reviewed by pathologists and members of 
the HuBMAP consortium. The external review process includes evaluating 
a prospective OMAP for completeness, accuracy, standardization with 
existing OMAPs and coverage of anatomical structures, cell types and 
biomarkers. Once the review process is complete, OMAPs are assigned 
a unique number that reflects the date created and version of the OMAP. 
OMAPs are also given a DOI for citation purposes and published online on 
the Human Reference Atlas Portal: https://humanatlas.io/omap.

Governance
HuBMAP and 16 international consortia are collaborating on the con-
struction of a Human Reference Atlas6. Experts across these consortia 
are organized via the Anatomical Structures, Cell Types and Biomarkers 
Working Group (ASCT+B WG) that meets monthly to discuss data-
sets, software and cross-consortia efforts such as OMAPs. OMAPs 
are critically important for the construction of a Human Reference 
Atlas as they contain knowledge on cell types and protein biomarkers 
for spatial mapping of human organs. The Human Reference Atlas 
has a 6-month release cycle that includes the publication of new, ver-
sioned datasets for AS, CT and biomarkers (ASCT+B) tables, OMAPs 
and three-dimensional (3D) reference organs. Additional meetings are 
scheduled as needed to resolve conflicts and advance new work. The 
Affinity Reagent Imaging and Validation Working Group (ARWG) meets 
monthly to discuss topics related to the field of multiplexed imaging. 
The ARWG is focused on the construction, review and publication of 
AVRs and OMAPs. Members of both the ASCT+B WG and ARWG advise 
on suggested updates and adjudicate disagreements among OMAP 
authors and reviewers. These conversations will be facilitated by the 
personnel listed in the OMAP SOP22. The longevity and continuity of 
the OMAP effort will be achieved through engagement with dozens 
of consortia and cross-training members to perform different roles 
required for OMAP review, publication and usage.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The datasets described in this manuscript are publicly available on the 
Human Reference Atlas Portal: https://humanatlas.io/omap.
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