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Segmenting functional tissue units across
human organs using community-driven
development of generalizable machine
learning algorithms

Yashvardhan Jain 1 , Leah L. Godwin1, Sripad Joshi 1, Shriya Mandarapu 1,
Trang Le2,3, Cecilia Lindskog 4, Emma Lundberg 2,3,5,6 & Katy Börner 1

The development of a reference atlas of the healthy human body requires
automated image segmentation of major anatomical structures across multi-
ple organs based on spatial bioimages generated from various sources with
differences in sample preparation. We present the setup and results of the
Hacking the Human Body machine learning algorithm development compe-
tition hosted by the Human Biomolecular Atlas (HuBMAP) and the Human
Protein Atlas (HPA) teams on the Kaggle platform. We create a dataset con-
taining 880 histology images with 12,901 segmented structures, engaging 1175
teams from 78 countries in community-driven, open-science development of
machine learning models. Tissue variations in the dataset pose a major chal-
lenge to the teams which they overcome by using color normalization tech-
niques and combining vision transformers with convolutional models. The
best model will be productized in the HuBMAP portal to process tissue image
datasets at scale in support of Human Reference Atlas construction.

Constructing the Human Reference Atlas (HRA) requires harmoniza-
tion and analysis of massive amounts of imaging and other data to
capture the organization and function of major anatomical structures
and cell types1–3. A key task is the segmentation of major anatomical
structures—from the whole body to the single-cell level. Functional
tissue units (FTUs) help bridge the scale difference and are used as a
stepping stone from the organ to the single-cell level. FTUs are defined
as the smallest tissue organization that performs a unique physiologic
function and is replicatedmultiple times in a whole organ4. The spatial
organization of FTUs matters and strongly impacts the function of an
organ. FTUs that are diseased have different cell type populations and
possibly different sizes and shapes, or are altered in the number or
organization of FTUswithin anorgan. Several organ atlas effortswithin

the HuBMAP1 effort are now focusing on cell types, cell states, and
biomarkers in specific FTUs5,6. Being able to segment FTUs is an
important part of identifying cell types and their gene/protein
expression patterns within an FTU.

To segment anatomical structures in histological tissue sections
efficiently, human intelligence must be combined with machine intel-
ligence to overcome several challenges: segmenting histological ima-
ges manually is labor-intensive, there are challenges with inter-
observer variability, and there might be subtle differences and
details that cannot be recognized ormay bemissed by the human eye.
In support of efficient and high-quality tissue segmentation, human-in-
the-loop approaches have been implemented7,8. Here, human exper-
tise is used to identify and prepare relevant image data; design,
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optimize, train, and run effective machine learning (ML) algorithms;
and interpret results. Once high-quality ML training datasets are
compiled, generation, and federation pipelines are set up, ML algo-
rithms canbe trained andoptimized to segment imagedata at scale. As
new datasets are segmented, and these ML segmentations are vali-
dated and/or improved by human experts, ML algorithm performance
can be further improved using this additional training data. Over the
last decade, much work has been done on segmenting histological
images; most of this work focuses on single-cell segmentation8 or
target structures in a single organ7,9–11, including functional tissue units
(FTUs). Although there are foundation models12 for image segmenta-
tion emerging, their performance on medical imaging tasks is fairly
limited13. To the best of our knowledge, there exist no ML algorithms
that can segment FTUs across multiple organs in datasets from dif-
ferent laboratories.

In 2021, the Human BioMolecular Atlas Program (HuBMAP) con-
ducted a Kaggle competition4,14 that focused exclusively on the seg-
mentation of renal glomeruli in PAS-stained histological images of
kidney tissue, engaging 1200 teams from 60 countries. The winning
model from this competition was validated and productized in the
HuBMAP data portal to run on all PAS-stained kidney tissue data at
scale. In parallel, the Human Protein Atlas (HPA)2 conducted two
Kaggle competitions15–18 that focused on classification of subcellular
patterns in cultivated cells in microscope confocal images, engaging
nearly 3000 teams across the two competitions. In addition to the
confocal images of cultivated cells, the HPA has also generated >10
million immunohistochemically stained images from 44 major tissue
types of the human body, corresponding to all the major normal
organs19.

HuBMAP and HPA partnered to address two major challenges
when constructing the Human Reference Atlas (HRA): (1) standardi-
zation of data coming from various sources (different sample pre-
paration and staining protocol, different equipment readout, etc.) and
(2) robust and generalized segmentation of FTUs across various tissue
types. The two teams hosted a joint competition on Google’s ML
community platform, Kaggle20, inviting competitors to develop

machine learning algorithms that correctly segment FTUs of different
shapes and sizes across five organs. This paper details the competition
design (see Fig. 1) and highlights the major challenges of the compe-
tition and the strategies used by the winning teams. We present an
analysis of model failures for each FTU type and the impact of addi-
tional metrics on team performance and competition rankings. In
addition, we analyze and visualize competition dynamics and code
performance improvements by 1175 teams making 39,568 code sub-
missions over the 3-months period.

Results
Competition design and performance criteria
The aim of the Hacking the Human Body21 competition was to develop
machine learning algorithms for the segmentation of functional tissue
units in five human organs using histology images sourced from two
different consortia, namely HuBMAP and HPA (see Fig. 2). The com-
petitionwas designed to build algorithms that are generalizable across
multiple organs and robust across dataset differences such as image
resolution differences, color differences, artifacts, staining differ-
ences, etc. HPA’s primary interest in this competition is that models
that can segment FTUs in tissue sections can pave the way for more
quantitative analysis of the data generated for the Tissue Atlas section
of the HPA, e.g., to understand differences in protein expression pat-
terns within FTUs as donor sex, ethnicity, or age change, or compar-
ison of expression patterns of different proteins in the same donors.
Human Reference Atlas construction in HuBMAP and other consortia
use FTUs to characterize local cell neighborhoods with well-defined
physiologic functions; they are interested in capturing differences in
FTU numbers, sizes, and shapes for different donor demographics
in health and disease. Being able to segment FTUs in tissue sections in
histology images is an important step for characterizing their mor-
phology, cell types and gene/protein expression patterns.

The HPA and HuBMAP datasets cover five FTUs in five organs,
namely renal glomeruli in the kidney (renal corpuscle,
UBERON:0001229), crypts in the large intestine (crypt of Lieberkühn
of the large intestine, UBERON:0001984), alveoli in the lung

Immunohistochemistry
images from tissue microarrays

PAS/H&E stain whole slide images
of tissue sections

432 HPA images with 6,173 FTUs 448 HuBMAP images with 6,728 FTUs

Public train (351 images) Public test (81+209 images) Private test (239 images)

Kaggle competitors
train models

Kaggle competitors
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via the Public 
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Fig. 1 | Overview of competition setup. Tissue data for five organs collected
within HPA and HuBMAP using different tissue harvesting and processing proto-
cols are collected and divided into a public training, public test, and private test
dataset. Kaggle teams use the public training data to train their models; they then

submit the models to the Kaggle Submission Portal to receive performance scores
computedusing the public test data. At the end of the competition, when all teams
submit their best algorithmsolutions, their score on the private test set determines
the Performance Prize winners.
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(pulmonary alveolus, UBERON:0002299), glandular acini in the pros-
tate (prostate glandular acinus, UBERON:0004179), and white pulps in
the spleen (white pulp, UBERON:0001959). A dataset of 880 images
was compiled, containing 432 images from HPA and 448 images from
HuBMAP. This dataset was split into a training dataset of 351 images,
and a private and public test dataset of 529 images (see Table 1 for
detailed breakdown). The HuBMAP dataset was preprocessed into a
set of smaller tiled images (see “Methods”) to make HPA and HuBMAP
datasets more comparable and to ensure teams could fully focus on
developing machine learning algorithms rather than handling large
format whole slide images (WSIs); providing image tiles also made the
competition more equitable as computing requirements such as high
RAM and high GPU access were not needed to develop code. Partici-
pantswere allowed touse any external, publicly availabledata. All code
submitted via the Kaggle submission portal was run on the public and
private test sets, leading to team rankings on the public and private
leaderboards, respectively (see “Methods”). The algorithm perfor-
mancewasmeasured using themeanDice coefficient22 on the test sets.
The top-3 teams on the private leaderboard at the end of the compe-
tition won the performance prizes. In addition, teams submitted
entries to win the scientific prizes and the diversity prize (see
“Methods”).

The major challenge in this competition was to build ML code
solutions that are trained on one type of staining method (from HPA)
and can generalize to cover other types of staining methods (from
HuBMAP) during inference. Consequently, teamsdeveloped strategies
to deal with differences in terms of resolution, color, tissue thickness,
etc. (see details in SupplementaryNotes 1–3). In addition, teams had to
optimize code formultiple organs, as lower performance on any organ
would negatively impact the overall score. Other challenges included
small training set size, uneven train/test split, and class imbalance,
whichmotivated teams to build optimal solutions to extractmaximum
signal from the training data.

Performance and winning strategies
The winning team for the performance prize reached a mean Dice
score of 0.835 on the private leaderboard, followed closely by the
second (0.833) and third (0.832) place winners. The score drops by
0.005 for the fourth-place solution, reaching a mean Dice score of
0.827. The top-3 teams made a combined total of 619 submissions
throughout the 3-months competition period. In general, the teams

found the kidney and large intestine to be the easiest classes, followed
by the spleen, prostate, and lung. Lung was the most challenging class
in the competition (see Table 2 for Dice scores per organ for the three
winning teams), primarily due to the variations in alveoli segmenta-
tions as they contained both collapsed and uncollapsed alveoli, as well
as the variations in cuts (elongated vs. circular, see Supplemen-
tary Note 4).

The main strategies that helped the teams to increase perfor-
mance scores were data augmentation (geometric, color, distortions,
scales) which involves artificially increasing the amount of data by
addingmanyminor alterations to the original data, stain normalization
(Vahadane method23,24), using external data for training, and pseudo
labelingwhich involves adding increasingly confident label predictions
from a semi-supervised training loop. All three winning teams used
some version of all these strategies. Interestingly, the fourth-place
solutiononly usedheavy stainnormalization (reducing the importance
of color in a model and forcing it to look for other cues in the images)
and no external data or pseudo labeling, and was able to reach a mean
Dice scoreof 0.827. In addition, vision transformers proved to bemore
efficient compared to traditional convolutional networks due to their
ability to capture long-range dependencies. However, suchmodels are
more sensitive to hyperparameter tuning and data changes. The teams
found SegFormer25 models to be the best-performing vision transfor-
mers. Since the SegFormer license is not completely open-source,
teams also explored other vision transformer models and found Co-
scale conv-attentional image Transformer (CoaT)26 models to be an
effective replacement which performed equally well, while Swin27

transformers performed poorly. Finally, the second-place solution
showed that using bio-relevant auxiliary tasks such as organ classifi-
cation and pixel size prediction also helps boost performance.

The first and third28 place winning teams also performed ablation
studies (see Supplementary Tables 1 and 2) to assess the impact of
different strategies on performance. The three most effective strate-
gies were building ensembles of multiple models with at least one
vision transformer model, using external data and pseudo labeling,
and heavy data augmentation and/or stain normalization strategies.
Team 3 used pixel size adaptation and histogram matching to boost
performance. Team 2 found that heavy encoders and networks with
larger input resolutions worked better. Team 1 showed that while
ensembles provide the best performance, the SegFormer mit-b4
model25 provides the best score (0.828) as a single model. This is an

c d e
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Fig. 2 | Exemplary tissuemicroarray cores with FTU segmentations outlined in
red and illustrations for all five FTUs. a Glomerulus in the kidney. b Crypt in the
large intestine (top: perpendicular cross-section, bottom: lengthwise cross-

section). c Alveolus in the lung. d Glandular acinus in the prostate. eWhite pulp in
the spleen.
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important result as ensembles are resource intensive and can be
impractical for processing images at scale. A single model combined
with carefully selected image preprocessing strategies can be a good
choice in production environments. An extended summary of the
three winning solutions can be found in Supplementary Notes 1–3. All
code implementations and datasets are publicly available on GitHub
and Zenodo29–31 (see “Data availability” and “Code availability”).

Qualitative analysis of predictions
To assess the strengths and failures of the winning models, predicted
segmentation masks are compared with the ground truth masks to
visualize per-pixel false positives and false negatives for five best and
fiveworst cases (per organ; basedon theDice score for the image). The
images with the best Dice scores show that most of the disagreement
between the predictions and the ground truth happens at the
boundaries of the FTUs, but all models are generally able to predict at
least some portion of all instances of the FTUs in the image. Supple-
mentary Figs. 3–32 show the visualizations for all these cases.

The imageswith theworstDice scores for eachorgan showsimilar
trends of failure across all threemodels. For the kidney, sometimes the
algorithm predicts sclerotic (diseased/unhealthy) glomeruli which
were not included in the ground truth. In some cases, team2 and team
3 (but not team 1) may predict large venous structures as well. For the
large intestine, the models often under-segment rather than over-
segment. The models have difficulty identifying the FTUs in the large
intestine when the tissue section cuts through only the epithelial cells
of the intestinal gland but not through the luminal space (see second
image from top in Supplementary Fig. 6). The models struggle the
most at defining the FTU boundaries in the spleen data (see predic-
tions in Supplementary Figs.). Themantle zonebetween thewhite pulp
and the red pulp is the most prone to prediction error, especially in

prediction with the lowest Dice score, possibly due to the decreased
lymphatic cell concentration and subsequent reduction of staining
difference. For the tubuloacinar prostate gland, the models trend
towards over-segmenting as they also predict the glandular tubules of
the prostatic gland while the ground truth only contains the glandular
acini as the FTU of interest. The models seem to segment the entire
gland, not just the acinus, leading to lower Dice scores. However, the
models rarely predict non-glandular tissue in the prostatic gland,
which indicates there is accurate discernment of functional vs non-
functional tissue. Themodels’ predictions in the lung tissue oftenmiss
alveoli that are not closed, i.e., alveoli that have haddamage or rupture
during the tissue sectioning process. Additionally, the ground truth
labels for the lung have the noisiest labels as there are cases where
alveolar structures are missing in the ground truth but are correctly
predicted by the models. The worst-case prediction for team 2 incor-
rectly predicts almost the entire lung tissue image as alveolar struc-
tures, which hurts its score, but perhaps is an anomaly in prediction
(see topmost image in Supplementary Fig. 18).

To further assess performance, the Intersection-Over-Union
(IOU), also known as Jaccard Index32,33, was calculated per image.
Ranking the competition based on mean IOU, instead of mean Dice,
changes the top-50 rankings to some extent, but the top-3 teams rank
the same with a mean IOU of 0.7384, 0.7362, and 0.7333, respectively
(see “Statistical analysis” in “Methods”). In addition, while boundary-
based metrics like Hausdorff Distance34 and the Hausdorff Distance at
95th percentile (HD95)35 may help in further comparison between
teams, these are not evaluated as they are not as relevant nor appro-
priate due to the presence of multiple structures per image as well as
the presence of touching FTU structures36.

Figure 3 shows the violin plots formeanDice scores andmean IOU
scores for all three teams, broken down by organs. For each violin plot,
the individual image scores are alsoplotted as a swarmplot overlaid on
top of the violin plots to show the spread and outliers.

Participation analysis using meta kaggle
The competition ran from June 22, 2022 to September 22, 2022 and
involved 1517 individual competitors from 78 countries that collabo-
rated in 1175 teams. For 286 competitors, it was their first time parti-
cipating in a Kaggle competition and 36 of themmade the top-100 list
on the private leaderboard during the competition run. In total, the
teams made 39,568 submissions and created 922 public code note-
books. In addition, the participants created 224 public discussion
forum posts and made 943 discussion comments. These metrics help
understand the truly collaborative and globally inclusive nature of
Kaggle competitions where teams interact extensively to share code,
data, and knowledge.

Kaggle ranks all its users in five performance tiers based on their
achievements and engagement on the platform, using their user Pro-
gression System37. In this competition, we had 22 Grand Masters, 103
Masters, 372 Experts, 559 Contributors, and 450 Novices participating
(performance tier data ismissing inMeta Kaggle for 11 users). The top-
2 winning teams included experienced software engineers with a
passion for machine learning and computer vision. The team winning
third place consisted of computer scientists, machine learning
researchers, and analysts. Many participants had biomedical

Table 1 | Metadata for the final public HPA, private HPA and
HuBMAP data that comprised the competition dataset

Number of
images

Number of
unique male/
female donors

Donor
age range

Number
of FTUs

Public HPA data

Kidney 99 5/3 28–73 337

Large intestine 58 3/4 47–84 3107

Lung 48 4/4 21–78 188

Prostate 93 8/0 37–76 1097

Spleen 53 4/4 21–82 167

Public HPA totals 351 24/15 21–84 4896

Private HPA data

Kidney 19 4/3 28–70 69

Large intestine 18 3/4 47–84 892

Lung 14 3/4 43–78 66

Prostate 18 7/0 37–76 212

Spleen 12 3/3 21–74 38

Private HPA totals 81 20/14 21–84 1277

HPA totals 432 29/17 21–84 6173

HuBMAP data

Kidney 79 8/7 20–77 538

Large intestine 43 2/2 22–48 1966

Lung 115 16/7 19–73 2630

Prostate 98 10/0 18–57 1202

Spleen 113 9/2 0–47 392

HuBMAP totals 448 45/18 0–77 6728

Totals 880 74/35 0–84 12,901

All donors in the private HPA dataset are present in the public HPA dataset. All donors in the
HuBMAP dataset are different from donors in the HPA dataset.

Table2 |MeanDice scoresper organ for top-3 teamsbasedon
the private test set

Team Kidney Intestine Lung Prostate Spleen Overall

Team 1 0.96401 0.89676 0.72664 0.85004 0.83862 0.83562

Team 2 0.9665 0.88931 0.72092 0.84851 0.84157 0.83393

Team 3 0.9491 0.86232 0.73599 0.84806 0.84211 0.83266

The performance of all three teams is comparable for each organ. All teams have the lowest
scores on the lung images, and the highest scores on the kidney images.
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backgrounds and shared their domain expertise generously via the
discussion forums.

Figure 4 graphs the dynamics of the three-month competition.
Figure 4a shows the number of teams and messages, and the pro-
gression of top leaderboard scores over the competition period. Note
the sudden increase in the number of messages after the teammerger
deadline and winner announcement. The scores reached nearly 0.80
midway through the competition, after which improvements were
made through fine-tuning solutions using techniques such as pseudo
labels, using ensembles of multiple models, etc. Importantly, the
public and private leaderboard scores remained similar throughout
the competition leading to minimal change in rankings (also called
shake-up) at competition end and indicating a good dataset split
between public test and private test datasets. Figure 4b plots the
number of submissions versus the highest private score; many of the
1175 teams have few submissions with low scores; some teams have
many submissions with high scores. Team1 submitted 264 times, team
2 submitted 100 times, and team 3 made 255 submissions.

Scientific and diversity prizes
A total of six teams submitted their entries for the Scientific and
Diversity prizes using a Google Form. The ten judges reviewed all
submissions and graded them based on the rubric, ranking all sub-
missions. Submission 5 and Submission 6 received the most points
from all the judges for the two scientific prizes. Submission 5 focused
on showcasing differences between a convolution model and a vision
transformer model, the latter achieving better performance as their
bigger receptive field helps analyze images in a global context which is
more suitable for medical image segmentation tasks. In addition, it
also showcased the importance of stain normalization in bridging the
domain difference between the HPA and HuBMAP data. Submission 6
showcased the impact of noisy labels in the ground truth for training
data and proposed a method to dynamically relabel missing annota-
tions and minimize the gap between noisy and clean labels, thereby
boosting performance by 4% on the private leaderboard.

All judges unanimously agreed Submission 1 should receive the
Diversity and Presentation prize for building a team of diverse

members and presenting their experiments and results in a well-
documented and accessible manner.

Discussion
Building the Human Reference Atlas is a challenging task that requires
close collaboration by experts from different scientific domains to
solve key data integration, modeling, and visualization challenges
across spatial and temporal scales. Kaggle’s open-source and
community-driven nature makes it possible to bring in experts from
industry, academia, and government; to try out algorithms that were
originally developed for different application domains; and to discuss
solutions and results publicly empoweringmany to develop innovative
solutions. All data and code are shared openly as a benchmark for
use in future algorithm performance exercises and comparisons.
Kaggle andother code competitionplatformsmake it possible to share
the burden of effective data preprocessing; run and compare thou-
sands ofML algorithms in a very short period of time; and build on and
advance these solutions collectively; something that is not possible at
this speed and scale if research is performed in individual labs.

The Hacking the Human Body competition showcased the value
of vision transformers in biological image processing, with all three
winning teams building model ensembles consisting of some or all
vision transformer models. This is in stark contrast to the previous
HuBMAP competition14 (concluded in May 2021), where all winning
teams used convolutional models, evincing the quick rise of transfor-
mer models in the field.

Sourcing ground truth labels for supervised learning tasks, espe-
cially in biomedical domains, is a time-consuming and expensive
challenge. The participants used diverse techniques to overcome this
challenge, including using additional unlabeled data and creating
pseudolabels for training iteratively to improve performance using a
semi-supervised approach. This, in addition to clever data augmenta-
tion andnormalization techniques, turnedout tobe thekey tobuilding
generalized solutions that can be deployed at scale.

While this competition provides innovative and high-performing
solutions, there exist several known limitations: (1) since the models
are trained on a small dataset, there is risk ofmodel overfitting; (2) the

Kidney Large Intestine Lung Prostate Spleen

Team 1 Team 2 Team 3 Team 1 Team 2 Team 3 Team 1 Team 2 Team 3 Team 1 Team 2 Team 3 Team 1 Team 2 Team 3
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S
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Fig. 3 | Violin plots for top three teams per organ.Distribution ofmean Dice and
IOU score per image (private test set) is shown as violin plots for each organ for all
three winning teams, coded by Dice score (light red) and IOU score (light blue). A

swarm plot is overlaid on the violin plots to show individual scores for each image,
coded by Dice score (red) and IOU score (blue). Source data are provided as a
source data file on Zenodo (see “Data availability”).
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vision transformermodels aremuchmore sensitive to hyperparameter
tuning and data changes than convolutional models; (3) model
ensembles can be computationally expensive—especially during
training—and might be impractical or inefficient for some production
environments. Yet, this canbeovercomeeither by using the singlebest
model in the ensemble (at the cost of lower accuracy) or by employing
techniques such as cascading38 for faster inference.

Going forward, we plan to address the above-mentioned limita-
tions by training and validating the models on more data, and opti-
mizing the large ensembles for faster inference. The code from the
winningmodels will be productized and deployed in the HuBMAP data
portal to process large amounts of tissue data and extract biological
knowledge in support of Human Reference Atlas construction
and usage.

Methods
Competition and prizes
The “HuBMAP + HPA − Hacking the Human Body” competition was
conducted on Google’s ML and data science community platform
called Kaggle, from June 22, 2022, to September 22, 2022, see Fig. 4a.
The private leaderboard for identifying the three performance prize
winners was finalized on September 26, 2022. The Judges' prize win-
ners were announced 3 weeks later, after a thorough review and dis-
cussion by the judges’ panel. The winners of the performance prize
were awarded cash prizes (US$15,000 for first place; US$10,000 for
second place; US$5,000 for third place). The winners of the Judges’
prize were also awarded cash prizes (US$10,000 each for two scientific
prizes; US$10,000 for one diversity prize).

Performance prize. A fast and efficient performance evaluation
metric was required to score hundreds of submissions per day and a
total of 39,568 submissions over three months. The teams sub-
mitted their inference code, after training their models, on the
Submission portal. The submitted codewas then run over the public
test set to rank the teams on the public leaderboard. The teams
typically use this score to validate their models. They can make an
unlimited number of submissions before the competition deadline,
but are limited to five submissions per day, see Fig. 4b. On com-
petition end, the teams can choose up to two solutions to submit as
their final submissions, which are then scored on the private test set
(which remains inaccessible to the teams until winners are
announced) to rank the teams on the private leaderboard. All
scoring is done using the mean Dice score as the evaluation metric
(see “Evaluation metrics” under “Methods”) and the top-3 teams
on the private leaderboard are selected as winners for the
performance prize.

Judges’prize. Judges’ prizes were aimed to promote experimentation,
diversity, and science communication. The scientific prizes aimed to
motivate solutions that go beyond the Dice evaluation metric and are
more experimental in nature, providing insight into the dataset and/or
computational techniques. The diversity and presentation prize pro-
moted inclusion and the effective communication of scientific results.
The winners were determined by a panel of human judges using a
predefined and publicly available evaluation rubric (see Supplemen-
tary Note 5) that was publicly available on the Kaggle competition
website at the competition start.

0

500

1000

1500

2000
N

um
be

r o
f T

ea
m

s/
M

es
sa

ge
s

Le
ad

er
bo

ar
d 

S
co

re

0.8

0.6

0.4

0.2

0

Days of Competition
2022-07-01 2022-07-15 2022-08-01 2022-08-15 2022-09-01 2022-09-15 2022-10-01

Public Leaderboard Top Score
Private Leaderboard Top Score

Number of Teams
Number of Messages
Competition Start Date 06/22/2022
Team Merger Deadline 09/15/2022
Competition End Date 09/22/2022
Winner Announcement Date 09/26/2022

H
ig

he
st

 P
riv

at
e 

S
co

re

Number of Submissions

D
en

si
ty

0.8

0.6

0.4

0.2

0
0 100 200 300 400

60

50

40

30

20

10Team 1
Team 2
Team 3

a

b

Fig. 4 | Competition dynamics over 3months. aNumber of teams andmessages,
and leaderboard high scores per day over competition period. b Number of sub-
missions vs. highest private leaderboard score for each of the 1175 teams as a

heatscatter. Source data are provided as a source data file on Zenodo (see “Data
availability”).

Article https://doi.org/10.1038/s41467-023-40291-0

Nature Communications |         (2023) 14:4656 6



Dataset collection and assembly
All tissue data used in this study is from donors examined and iden-
tifiedbypathologists aspathologically unremarkable tissue that can be
used to derive the function of healthy cells. As the focus of this work is
on the identification of FTUs, all images used in this competition fea-
ture at least one FTU.

HPAdata. TheHPAdata consist of immunohistochemistry images of 1-
mm-diameter tissuemicroarray cores and 4 µm thickness, stainedwith
antibodies visualized with 3,3’-diaminobenzidine (DAB) and counter-
stained hematoxylin (H)19,39. We retrieved over 7TB of public data from
the HPA which comprised 23,610 images of 1mm diameter tissue
microarray (TMA) cores for the large intestine, 27,906 for kidney,
28,098 for lung, 28,934 for prostate, and 27,474 for spleen. Given that
the HRA aims to capture human adults, we removed all images asso-
ciated with patients below the age of 18. We computed sex, age, tissue
region percentage per image and selected 500 public images that
maximize sex and age diversity per organ, have at least 1 FTU, and have
a tissue region percentage above a threshold value (where threshold
value is 5% for lung and 15% for kidney, spleen, large intestine, and
prostate). The resulting dataset has 432 public HPA images distributed
across thefive organs (see Table 1).We further retrieved about 44GBof
private data (not publicly available at the time of competition launch)
from the HPA which comprised 295 images for kidney, 253 images for
large intestine, 291 images for lung, 265 images for prostate, and 290
images for spleen. This dataset was processed in the same way as the
public HPA data. A total of 81 images were selected for the final private
dataset. All images, both public and private, are 3000px × 3000px
(with some exceptions as roughly 19 images lie between 2308 px ×
2308 px and 3070 px × 3070px), and the diameter of each tissue area
within an image is ~2500 px × 2500px which corresponds to 1mm.
Hence, the pixel size of the images in this dataset is roughly 0.4 µm.

HuBMAP data. Multiple teams within or affiliated with HuBMAP
shared 257 periodic acid-Schiff (PAS)40 or hematoxylin and eosin
(H&E)41 stained WSIs of healthy human tissue that were not publicly
available at the time of competition launch. From these WSIs, 1mm×
1mm tiles were extracted to match the size of the HPA TMA core
images.Minimumdonormetadata for allWSIs used in this competition
included organ name, sex, and age. The resulting dataset had 448
image tiles distributed across the five organs and sourced from five
different teams. All donors across all organs were above the age of 18,
an exception being the spleen which included younger donors of ages
0 through 18. The pixel size of images across different organs was
0.5 µm for kidney, 0.229 µm for large intestine, 0.756 µm for lung,
6.263 µm for prostate, and 0.494 µm for spleen. The tissue slice
thickness of all images in HuBMAP data was between 4–10 µm: 10 µm
for kidney, 8 µm for large intestine, 5 µm for lung, 5 µm for prostate,
and 4 µm for spleen.

Dataset sampling. Some images feature space without human tissue.
We calculated the tissue region percentage for each image using
Otsu’s42 thresholding. The specific threshold values for each organ
were selected manually by analyzing the number of images available
against different threshold values (see Supplementary Fig. 1). The
values were selected such that images with very low actual tissue area
are discarded, yet leaving a sufficient number of images to work with.

We then constructed a dataset with similar numbers of donor
samples across age groups and sex for all organs (see Supplementary
Fig. 2a)—insofar possible given available HuBMAP and HPA data. Note
that systematic sampling of healthy human organ tissue is nontrivial;
while human donors do not mind giving up adipose tissue, getting
tissue from other organs is often only possible if an organ transplant
cannot be executed or a patient dies, and the tissue is released for
single-cell research. Consequently, the number of donors above the

age of 50 is higher than those below 50, especially for the HPA data
(see Supplementary Fig. 2b).

Data format. For consistency, all images are exported as TIF files and
all segmentations are provided as run-length encoded (RLE)masks for
efficient storage and submissions (alongwith original JSON files) to the
teams. Note that the RLE versions of the segmentation masks are
cleaner than the JSON masks, although differences are minor. For
example, the JSON versionsmight have segmentation overlaps that do
not exist in the RLE copies but can also allow the teams to identify
multiple adjacent FTUs, which would all end up in the same mask
with RLEs.

Acquiring ground truth labels and the final dataset
For four organs (except the kidney), 1–3 trained pathologists and/or
anatomists (with experience in segmentation and histology) per organ
provided initial segmentations done manually. For the kidney, the
winning model from the previous HuBMAP Kaggle competition4 was
used to generate initial FTU segmentations for all HPA and HuBMAP
kidney data, which were then manually reviewed and corrected by a
professional anatomist.

All segmentations were verified and corrected through a final
expert review process conducted by the lead pathologist for each
organ. All images that were considered unsuitable were rejected. Par-
tial FTUs were accepted, provided a human expert can segment it with
confidence. All annotators, during the initial segmentation process as
well as during the final reviewprocess, were given access to the images
via an internal web-based segmentation tool (originally developed by
the HPA team and further modified by the HuBMAP team). Please note
thatwhile extreme carewas taken to get thebestpossible ground truth
segmentations from experts, the labels do contain some noise, due to
human bias, and existing issues were openly discussed on the public
discussion forums of the competition.

Final dataset. The final dataset used in the competition contains 432
images from the HPA (including 351 public and 81 previously unpub-
lished imageswith a total of 6,173 FTUannotations) and448previously
unpublished images from HuBMAP (with a total of 6,728 FTU anno-
tations) (see Fig. 1). All data are divided into three distinct datasets: a
public training dataset containing all public HPA data (351 images), a
public test dataset containing all previously unpublished HPA images
(81 images) and HuBMAP images (209 images), and a private test
dataset containing only HuBMAP images (239 images). The training
dataset is openly accessible to the teams, while the test datasets
remain hidden.

Baseline segmentation model
To ensure the task is neither too easy (i.e., nearly 100% accuracy is
achieved with little effort) nor too hard or impossible to accomplish
(i.e., a satisfying accuracy is impossible), initial runs using the winning
algorithm from the previous HuBMAP Kaggle competition, Tom, cre-
ated a baseline model. The model was run on Indiana University’s
Carbonate large-memory compute cluster, using the GPU partition
which consists of 24 Apollo 6500 GPU-accelerated nodes where each
node is equippedwith two Intel 6248 2.5 GHz 20-core CPUs.We used a
single node with 300 GB of RAM and 2 Nvidia V100-PCIE-32GB GPUs.

The model required about 5 h for training and nearly 20min for
the inference task. It achieved a mean Dice score of 0.76 and 0.53 on
the private HPA data and HuBMAP data, respectively. The mean Dice
value achieved across the total private test dataset (HPA andHuBMAP)
was 0.57 (see Supplementary Table 3). The same model achieved a
mean Dice value of about 0.95 for the task of segmenting renal glo-
meruli in kidney images in the previous HuBMAP Kaggle competition.
The results demonstrate the task is neither too easy nor too difficult,
and there is a need for more generalizable algorithms.
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Evaluation metrics
The metric used to rank the performance of the teams in the compe-
tition is mean Dice coefficient22,43 (also referred to as the mean Dice
score). The Dice score compares the pixel-wise agreement between a
predicted segmentation (PS) and its corresponding ground truth
segmentation (GT) for an image: 2*∣GT\PS∣∣GT ∣ + ∣PS∣.

The leaderboard score used is themeanof theDice coefficients for
each image in the test set. It should be noted that calculation of Dice
coefficient does not take into account separation between individual
instances. Hence, in case multiple predicted FTUs overlap/merge, the
Dice coefficient for that prediction may still be high while the FTU
count may be incorrect (and might require further processing, either
programmatic ormanual, to separate the individual instances of FTUs).

After extensive discussion of options with the Kaggle data sci-
entists and machine learning experts from the panel of judges, the
mean Dice coefficient was selected for performance prize ranking.
While othermetrics such as themeanAverage Precision44 (mAP)might
have been better suited for the problem, the Kaggle team recom-
mended going forward with the mean Dice score, taking into account
the nature of the dataset and timeline for the competition. Dice is a
well-tested metric used in many competitions on the Kaggle platform
and other metrics require much more testing by the Kaggle team to
ensureparticipants cannotfind loopholes and exploit vulnerabilities in
themetric during the competition. Hence, while Dice scoremaynotbe
the ideal metric45,46 in a production setting, it is a good enoughmetric
to evaluate and compare solutions from Kaggle competitions.

The post-hoc analysis uses mean Intersection-Over-Union (IOU)
(also known as Jaccard index32,33) as an auxiliary metric to further
test the predictions and rankings. The IOU is defined by
IOUðA,BÞ= ∣A\B∣

∣A∪B∣ =
∣A\B∣

∣A∣ + ∣B∣�∣A\B∣, where A andB are the twoobjects being
compared (e.g., GT and PS). It represents the proportion of area of
overlap out of the area of union for the two objects. The Dice coef-
ficient and the IOU are always within a factor of 2 of each other, and
while they are generally positively correlated—especially for indivi-
dual images—differences may emerge when taking the mean over a
dataset. The IOU tends to penalize incorrect predictions more,
quantitatively, and hence has a squaring effect on the errors. While
Dice measures average performance, the IOU measures worst-case
performance.

Public and private leaderboards
Kaggle ranks teams on two leaderboards—public leaderboard and
private leaderboard—each using a different subset of the test data,
using the predetermined evaluation metric for the performance prize.
The public leaderboard uses the public test data, and the private lea-
derboard uses the private test data. The public leaderboard rankings
and scores are visible to the teams and are used to validate their
algorithms, providing feedback they can use to improve their algo-
rithms. The private leaderboard rankings remain hidden to the teams
until the end of the competition to ensure algorithms are not over-
fitted to the test data. The top-3 teams on the private leaderboard are
considered as winners of the performance prizes.

Participation analysis
At the conclusion of the competition, participationmetadata becomes
publicly available on Meta Kaggle47—Kaggle’s public data on competi-
tions, users, submission scores and kernels. Meta Kaggle tables were
initiated in 2015 and are updated daily with information on completed
competitions. We use these data to understand how the Hacking the
Human Body competition unfolded over its 3-month period.

We use standard python packages for data science such as
Pandas48, NumPy49,Matplotlib50, andSeaborn51 for running all analyses;
creating all visualizations in Jupyter52 Notebooks. The analyses can be
replicated for any competition on Meta Kaggle using the code we
made available on GitHub (see “Code availability”).

Statistical analysis
To assess the impact of worst-case predictions on the rankings of
the three winning teams relative to each other, a modified leave-
one-out53 analysis is conducted and evaluatedwith both a Dice score
and an IOU score. When removing the worst five cases from each
team per organ (25 cases in total), the rankings remain the same
with mean Dice scores of 0.8463, 0.8452, and 0.8441 and mean IOU
scores of 0.7497, 0.7480, and 0.7451. Leaving out one worst case for
each organ (five cases in total), the rankings stay the same but leads
to a very small difference between the scores for the three teams
(mean Dice scores of 0.8421, 0.8418, and 0.8413, and mean IOU
scores of 0.7452, 0.7446, and 0.7423, respectively). Finally, leaving
out three worst cases for each organ (15 cases in total), team 3 ranks
first based on themeanDice score (0.8505, 0.8503, and 0.8508), but
the rankings based on mean IOU stay the same (0.7554, 0.7548,
and 0.7538).

The ranking stability for the top-50 teams is further assessed by
calculating Kendall’s Tau53–55 (also called Kendall’s Rank Correlation)
which is used to quantify the agreement between two rankings and is
independent of the number of entities ranked. Tau values closer to
1 show a strong positive correlation between the two rankings, where
a value of 1 would mean perfect alignment. A p-value associated with
the tau value indicates the statistical significance of the correlation.
Lower p-values (closer to 0) indicate higher significance of the rela-
tionship between the two rankings such that it is unlikely to occur by
chance. The taubetween ranking for the top-50 teamsbased onmean
Dice score and mean IOU score is 0.74 (p-value = 1.9505e-14). If the
worst case per organ is dropped for each team, the tau is 0.75 (p-
value = 1.5026e-14) and if the worst three cases per organ are drop-
ped, the tau is 0.73 (p-value = 7.0708e-14). In addition, if the com-
petition would have been ranked based on mean IOU, instead of
mean Dice, while the top-50 rankings changed to some extent, the
three winning teams rank the same. The mean Dice score and the
mean IOU score for the top-50 teams is provided in Supplementary
Table 4. Kendall’s tau is computed using the implementation in the
Python Scipy56 library.

Statistics and reproducibility
The final dataset used for the competition was curated from a larger
pool of data available from HuBMAP and HPA. The images were
selected such that a balance can be maintained across sex and age
groups. Images were selected from both HuBMAP and HPA data such
as to maintain balance between both sources. Images with damaged
or unhealthy tissue were excluded, and images containing very low
tissue region percentage were also excluded for the final dataset. All
code submissions for inference were collected and graded auto-
matically, which allows for the reproduction of the scores. The final
ranking was determined after re-running all team’s chosen submis-
sions. On the competition end, all winning algorithms were validated
and compared to scores on competition leaderboard. This was done
once to validate the results and grant prizes to the top-performing
teams. The assignment of data sources to train/test sets was inten-
tional to maintain specific data sources across train/test sets but the
assignment of individual images in the specific train/test sets was
random. The only criteria used was to balance donor sex and age
across these datasets. Since the primary purpose of this final dataset
was to build machine learning models, the randomization provides
the advantage of the algorithms not overfitting to human bias during
sampling. The pathology experts that annotated the ground truth
were aware of the specific tissue they were annotating but not
necessarily aware of the donor metadata associated with it. The
teams in the competition had access to themetadata associated with
the public training data but did not have access to any information
regarding the private test set (which was used for competition
ranking and deciding winners).
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All curated data used in the competition (HuBMAP and HPA), along
with the trained models from the winning teams, is publicly available
via Zenodo. All primary competition data, as well as external data used
by Teams 1 and 2, is published on Zenodo at https://doi.org/10.5281/
zenodo.7545744. All external data used by Team 3 is available as
Kaggle datasets, links to which are provided in the Supplementary
Information. All trained model weights are published on Zenodo at
https://doi.org/10.5281/zenodo.7545792. Source data for all plots
presented in the paper are provided as a Zenodo dataset at https://doi.
org/10.5281/zenodo.8144891.

Code availability
All code used for data preprocessing and analysis, baseline model,
winning algorithms, and participant analysis are publicly available
on GitHub https://github.com/cns-iu/ccf-research-kaggle-2022. An
archived version of this code is also published on Zenodo and is
made publicly available (https://doi.org/10.5281/zenodo.8144891).
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