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3D reconstruction of skin and spatial mapping of
immune cell density, vascular distance and effects
of sun exposure and aging
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Mapping the human body at single cell resolution in three dimensions (3D) is important for

understanding cellular interactions in context of tissue and organ organization. 2D spatial cell

analysis in a single tissue section may be limited by cell numbers and histology. Here we

show a workflow for 3D reconstruction of multiplexed sequential tissue sections: MATRICS-

A (Multiplexed Image Three-D Reconstruction and Integrated Cell Spatial - Analysis). We

demonstrate MATRICS-A in 26 serial sections of fixed skin (stained with 18 biomarkers) from

12 donors aged between 32–72 years. Comparing the 3D reconstructed cellular data with the

2D data, we show significantly shorter distances between immune cells and vascular

endothelial cells (56 µm in 3D vs 108 µm in 2D). We also show 10–70% more T cells (total)

within 30 µm of a neighboring T helper cell in 3D vs 2D. Distances of p53, DDB2 and Ki67

positive cells to the skin surface were consistent across all ages/sun exposure and largely

localized to the lower stratum basale layer of the epidermis. MATRICS-A provides a fra-

mework for analysis of 3D spatial cell relationships in healthy and aging organs and could be

further extended to diseased organs.
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The National Institutes of Health’s (NIH) Human Biomo-
lecular Atlas Program (HuBMAP) aims to create a com-
prehensive high-resolution atlas of all cells in the healthy

human body using data from multiple laboratories across the US
and Europe1. Integrating and harmonizing the data derived from
these samples and “mapping” them into a common three-
dimensional (3D) space is a major challenge. HuBMAP, in close
collaboration with 17 other international consortia and projects,
is systematically constructing a Human Reference Atlas (HRA)2.
At the core of this Atlas is a common coordinate framework
(CCF) that supports spatially and semantically explicit human
tissue registration and exploration. The completed Atlas will
support the design of a “digital twin” for healthy men and women
that can be parameterized in support of precision health and
medicine. The CCF has two key components: (1) Anatomical
Structures, Cell Types, and Biomarkers (ASCT+ B) tables for
each organ, which utilize existing ontologies (e.g., Uberon multi-
species anatomy ontology, Foundational Model of Anatomy
Ontology [FMA], Cell Ontology [CL], or HUGO Gene Nomen-
clature [HGNC]) and (2) a 3D reference object library that spa-
tially defines anatomical structures and cell types for each organ
and characterizes their 3D spatial relationships within the human
body. Using the Atlas, tissue data can be registered spatially and
semantically (using standardized and unified names for anatomy,
cell types, and biomarkers). This paper focuses on the generation
of 3D skin data and automated computation of 3D spatial maps.
To the best of our knowledge, this is the first-time immune cell
cluster density in 3D, distance distributions for immune cells to
the nearest endothelial cell in 3D, and distance of damaged or
proliferating cells to the skin surface has been presented.

Skin is the largest human organ. It is composed of at least 36
different cell types (documented in version 1.2 of ASCT+ B3)
and a vast microenvironment of over 16 anatomical structures
including glandular structures, hair follicles, vasculature, and
immune system components. At least 70 protein biomarkers are
commonly used to characterize major skin cell types and anato-
mical structures3. While several single-cell atlas studies of human
skin have been conducted in recent years4,5, these have focused
on single-cell (sc) RNAseq analysis and not on 2D in situ or 3D
spatial analysis of cell types and proteins. An in-depth proteomics
analysis of healthy skin identified 10,701 proteins and used
advanced dissection and flow cytometry to map them to the
location within the skin layers and cellular origin6. While much
work has been done on characterizing pre-cancerous and can-
cerous skin, there is less understanding of cellular changes in
otherwise healthy individuals across the lifecycle, including the
effects of UV7,8. A recent multimodal analysis (combining
scRNAseq, spatial transcriptomic, and multiplexed ion beam
imaging)9 of cutaneous squamous cell carcinoma (cSCC) and
matched normal skin showed largely overlapping keratinocyte
populations, with just one unique tumor-specific keratinocyte
subpopulation in sSCC. This highlights the value of developing
normal/healthy reference organ datasets to understand the cel-
lular transition to disease.

In recent years, there have been a growing number of inves-
tigations into the cellular biology of healthy and diseased organs
in 3D10–17. Specifically in relation to skin, Wang et al.18 used
confocal microscopy to demonstrate blood vessel and lymphatic
networks in the human dermis using immunostaining for CD31
(endothelial cells), podoplanin, and LYVE1 (lymphatic cells).
Light-sheet microscopy has been used to image skin structure in
3D10, however, the use of low numerical aperture objectives and
low magnification required to achieve a wide field of view results
in low spatial resolution at a cellular level. Reconstruction in 3D
of serially sectioned H&E-stained skin/scalp samples using the
CODA method has demonstrated variations in dermis structure

and other anatomical features, including hair follicles and
vasculature19. In oncology applications, 3D reconstruction of
colon cancer12 combined serial H&E sections (n= 22) and serial
multiplexed images (n= 25) and demonstrated features in 3D
that were not evident in 2D, including the interconnectivity of
histological structures in the tumor microenvironment, such as
tumor buds, as well as cellular and morphology transitions and
gradients. Imaging mass cytometry of serially cut tissue sections
(n= 152) of breast cancer reconstructed in 3D13 demonstrated
cellular and microenvironment heterogeneity that was not mea-
surable in 2D, including more cell–cell interactions and coloca-
lization (e.g. pS6+ cells and SMA+ cells) and clusters of
invasive cells.

In general, reconstruction of 3D volumes from 2D serial sec-
tions is a complex procedure and can suffer from the “banana
effect” (where curved structures are incorrectly straightened
during image registration) in the absence of external reference
structures20,21. Further, the 3D reconstruction process tends to be
computationally slow. To address these challenges, we have
developed an automated, reproducible workflow (Multiplexed
Image Three-D Reconstruction and Integrated Cell Spatial -
Analysis - MATRICS-A) for 3D reconstruction of highly multi-
plexed tissue sections. Compared to previous 3D reconstruction
methods14–17, our approach is calibrated using micro CT images
of the formalin-fixed block, thus improving 3D reconstruction
accuracy (and reducing the “banana effect”). We demonstrate the
utility of MATRICS-A in multiplexed serial sections of skin col-
lected from younger and older donors and different anatomical
regions. We provide interactive visualization tools for 3D cellular
data in the skin epidermis and dermis, including immune cell
cluster density, spatial distances between immune cells and
nearest endothelial cells, and localization of ultraviolet (UV)
radiation-damaged cells (e.g., p53 mutations), DNA repair
(DDB2), proliferation (Ki67) markers and their distance to the
skin surface. Comparing the 3D reconstructed data with the 2D
data from each section, we show significantly shorter distances
between immune cells and vascular endothelial cells (56 µm in 3D
vs 108 µm in 2D). Most T helper cells were found within 25 µm of
the nearest endothelial cell, hence it is possible that spatial rela-
tionships with vasculature are not fully accounted for in 2D. We
also show 10–70% more T cells (total) within 30 µm of a neigh-
boring T helper cell in 3D vs 2D. This is an important con-
sideration in samples with low immune cell density where spatial
relationships and cell–cell interaction analysis in 2D may be
challenging to accurately quantify. Distances of p53, DDB2, and
Ki67 positive cells to the skin surface were consistent across all
ages/sun exposure and largely localized to the lower stratum
basale layer of the epidermis. This agrees with previous studies
that show that Ki67 and/or p53 positive cells do not increase until
actinic keratosis (damage to keratinocytes in the lower third of
the epidermal layer) or a pre-cancerous/cancerous (full epidermis
thickness) squamous in situ state is reached22. MATRICS-A
software provides an open access framework for 3D reconstruc-
tion of multiplexed tissue and helps increase understanding of
cell–cell relationships including immune cell interactions and
vascular distances in the skin, which can be extended to other
organs and disease states.

Results
Building a skin 3D reference organ. The end-to-end workflow
for this study is shown in Fig. 1. To generate the samples needed
for reconstruction we leveraged archived formalin-fixed, healthy
skin biopsies from 12 donors (age range 32–72 years) (Supple-
mentary Table 1). The samples were trimmed (~2 to 7 mm size
range), preserving the epidermis and dermis structure, and
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embedded in a single paraffin block (layout shown in Supple-
mentary Fig. 1). We used a human male and female skin 3D
reference organ to spatially register and semantically annotate the
biopsies via the HuBMAP Registration User Interface (RUI)
(Supplementary Fig. 2)23. These reference organs were derived
from the National Library of Medicine (NLM) Visible Human
project24 data and added to the HuBMAP RUI, making it possible
to formally register all tissue samples into the evolving Human
Reference Atlas. The resulting metadata for each tissue block
documents the size, spatial location, and rotation in 3D. All
registered tissue blocks used in this study can be interactively
explored in the HuBMAP portal’s CCF Exploration User Inter-
face (CCF-EUI)25.

Construction of a skin anatomical structure and cell type+
biomarker (ASCT+ B) table. In accordance with HuBMAP
mission to document all cell types in the organs under investi-
gation, an Anatomical Structure, Cell Type and Biomarkers
(ASCT+ B) table was constructed for the skin. The table was
authored in consultation with organ experts, and it provides a
reference framework for all major cell types, their anatomical
location, and the protein biomarkers used to characterize these cell
types. The version 1.2 skin ASCT+ B master table3 captures three
critical elements: (1) the part_of relationships between 15 anato-
mical structures that are linked to their respective Uberon IDs; (2)
the 36 skin cell types (linked to CL ontology) that are located_in
one or more of these anatomical structures; and (3) 70 protein
biomarkers (linked to HGNC ontology) that are commonly used
to characterize the 36 cell types. A subset of the skin ASCT+ B
report is shown in Supplementary Fig. 3. The complete table with

all 36 cell types and 70 biomarkers is also accessible on our
Companion Website26 and can be interactively explored via the
HuBMAP ASCT+ B Reporter tool27. Here we focus on a subset of
the skin ASCT+ B table comprising 14 cell types and/or anato-
mical structures spanning the epidermis (stratum granulosum,
stratum spinosum, and stratum basale) keratinocytes and dermis
(glandular structures, fibroblasts, macrophages, T helper cells, T
killer cells, T regs, nerve fibers, and endothelial cells), as well as
markers of DNA damage (p53), DNA repair (DDB2), and cell
proliferation (Ki67) (summarized in Supplementary Table 2). The
rationale for choosing these biomarkers was to quantify (1)
immune cell density in 3D vs 2D; (2) demonstrate 3D spatial
relationships between immune cells and nearest endothelial cells;
(3) measure the spatial cellular effects of aging and sun exposure
on epidermis cells. Antibody information for each target protein is
shown in Supplementary Table 3. Commercially sourced anti-
bodies were validated and conjugated using a standardized
protocol28 (see Methods) and an organ mapping antibody panel
(OMAP) was developed and published as part of the 4th HRA
release29. We used two cytokeratin cocktails CK26 (KRT1, KRT5,
KRT6, and KRT8) and AE1 (KRT10, KRT14, KRT15, KRT16, and
KRT19), which had broad keratinocyte coverage. For example,
PCK26 stained the entire epidermis and AE1 was more localized
to the lower half of the epidermis, highlighting the stratum basale.
Both cytokeratin cocktails also stained adnexal glandular and hair
follicular units in the dermis. However, additional staining with
specific keratins would be required to resolve each of the specific
cell types (e.g., KRT10 for granular keratinocytes30). In future
studies, additional markers can be included to achieve greater cell
specificity (e.g., hair follicle stem cells) and combined with spatial
transcriptomic methods to achieve even higher resolution.

Fig. 1 End-to-end workflow for generation of a 3D skin map of cell types and spatial distance analysis visualization tools. (1) Healthy skin biopsies were
embedded into a single formalin-fixed and paraffin-embedded (FFPE) tissue block. The human male and female skin 3D reference organ was used to
spatially register and semantically annotate the biopsies via the HuBMAP Registration User Interface; (2) Skin biomarkers were identified using the skin
ASCT+ B tables and corresponding antibodies were validated; (3) The tissue block underwent micro CT imaging and was then sectioned into 26 serial
sections for highly multiplexed immunofluorescence imaging using 18 protein and cell type markers; (4) Cell classification was conducted for each section
using a hybrid supervised (deep learning-based) and unsupervised (probability-based) GMM workflow; 2D serial sections and segmented cells then
underwent 3D reconstruction. The 3D spatial location of cells was used to compute immune cell cluster density, immune cell distributions from endothelial
cells, and distribution and distances of p53, DDB2, and Ki67 positive cells from the skin surface. Created using BioRender.com.
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Hybrid supervised and unsupervised approach for accurate cell
segmentation and classification. The tissue block containing the
12 skin samples first underwent micro CT imaging (see Methods
and Supplementary Fig. 4), followed by sectioning into
100 × 5 µm sections. Twenty-six of the best-quality serial sections
were downselected for analysis (to minimize spacing, no more
than two sequential sections were excluded between each retained
section). Each section underwent multiplexed immuno-
fluorescence imaging with 18 skin biomarkers plus nuclear
marker DAPI (see Methods). Our method provides an integrated
workflow for 2D segmentation and classification of cell types
from the multiplexed images, followed by automated 3D recon-
struction (see Methods and Supplementary Fig. 5a, b). Cell type
classification is not usually integrated into segmentation work-
flows, and manual thresholding/gating of biomarker signal or
clustering of segmented cells is often used, which is manual and
prone to errors. We developed a hybrid supervised and unsu-
pervised segmentation/classification model where a super-
vised deep learning (DL) model was first used for 2D DAPI/nuclei
segmentation, followed by unsupervised Gaussian mixture mod-
els (GMM)31 for probabilistic segmentation/classification of
individual cell-type (i.e., epithelial and immune) and DNA
damage/repair and proliferation markers (i.e., p53, DDB2, and
Ki67). GMM is an excellent tool for simultaneous image nor-
malization and detecting relative changes in biomarker intensity,
allowing robust classification in each section. Combining DL and
GMM provides a generalizable solution for cell segmentation and
classification that works for large datasets of whole slide images.
While there are several open source options available for cell
segmentation (e.g., CellSeg32, Cell Profiler33, or StarDist3D34),
these would have been relatively time-consuming to implement
here given the large amount of data generated for 26 serial
sections (~15 GB and ~40 stitched FOV per sample
(0.832 mm × 0.702 mm/FOV). Typically, thousands of manually
annotated cells are required to develop a DL-based segmentation
model, and manual annotation introduces inter- and intra-rater
variability. For example, the development of the CellSeg model
required 29,000+ manually segmented nuclei to build a DAPI-
based nuclei segmentation model32. Our hybrid approach is faster
and more generalizable for handling larger tissue images, and it
does not rely on the manual tuning of image thresholding values,
image normalization, and morphological operations (median fil-
tering, difference of Gaussian) and watershed algorithm para-
meters (such as gradient thresholding and diffusion values). For
the purpose of this study, it is currently limited to nuclear seg-
mentation and nuclear/peri-nuclear markers, but the workflow is
adaptable and can be expanded to whole cells through dilation or
including membrane markers such as pan-cadherin or Na+K
+ATPase35. We found excellent sensitivity (93–100%), specificity
(85–100%) and accuracy was above 90% for all markers
(Fig. 2a–e), compared to manual annotations (see Methods). We
further benchmarked the immune cell counts against previous
literature in healthy skin and found comparable results. After
scaling each sample to 1 cm × 5 μm, we estimated a median count
of 712 T cells (SD= 329, n= 10), which is comparable to the
previously reported median of 590 T cells (SD= 105) in 1 cm ×
5 μm skin sections36. More than 95% of T cells in normal skin
have been identified as T memory or helper cells37 with T reg
cells estimated to be 10% of the total T cell population38. We also
found a similar distribution of T helper (89 ± 5%); T killer
(2 ± 5%), and T regs (9 ± 5%).

3D reconstruction of multiplexed serial sections. For 3D
reconstruction of the serial sections, we first manually select one
reference 2D AF image from the stack of 26 serial images (Fig. 3a, b

and Methods). All AF images used for reconstruction are unstained
(i.e., the image is taken prior to any marker staining), hence AF-
based registration is independent of biomarker signal or signal
variations associated with staining. Compared to other registration
approaches that have been used for 3D reconstruction14, we
automatically segment AF in each serial image using Otsu
thresholding, morphological closing, and retaining the largest
component39 (Fig. 3c) to generate a 2D AF mask. The 2D AF mask
focuses registration on a region of interest (ROI) and filters out
background noise or artefacts that may interfere with the regis-
tration process. Post serial image registration, 3D volumes of AF
and cells are created, and 3D connectivity of all cells is used to fuse
overlapping cells in adjacent serial sections to prevent overcounting
(Fig. 3d, e). We use ITK’s 3D connected component image filter to
merge overlapping cells and classify cells in 3D40,41. Connected
component image filter has historically been used in merging
segmentations in 3D42–44 and for refining cell segmentation in
2D45. To the best of our knowledge, this is the first time a 3D
connected component has been used to fuse overlapping cells in
3D in serial histological sections. Mean dice similarity coefficient
(DSC)46 was used to assess image registration accuracy, and we
found an overlap accuracy of 0.95 ± 0.04 for 24 serial sections in
the ten reconstructed skin volumes (the last two sections were used
for deep learning training and excluded). An overlap DSC of 0.90 is
classified as high quality in the 3D registration or reconstruction
community14. The normalized cross correlation between the serial
AF sections (a metric of registration quality) was 0.6 ± 0.07 for all
AF serial sections. This result is comparable to established 3D
reconstruction methods13 and is good considering the deforma-
tion/damage that can occur during cyclic multiplexing, which
could negatively affect accurate registration. Slides were also ran-
domly picked from each of the reconstructed skin volumes and
segmented cells and biomarkers were overlaid on the images for
visual validation. To mitigate potential issues associated with
higher or lower signal intensity for a slide, any discrepancies in cell
density of a biomarker were identified and a higher or lower
probability threshold was used on the probabilistic segmentation to
improve segmentation. Such manual biomarker probability
adjustments were necessary in less than 2% of the whole slide
images dataset.

Interactive visualization and quantification of 3D cell density
and distances. Understanding and communicating the 3D spatial
location and distance relationships of multiple cell types and
supporting the comparison of cell type distance distributions
across donors and conditions is non-trivial. For this study, three
interactive visualizations were developed to serve this need: (1)
cluster density plots that illustrate and quantify the number of
cells within a specified distance (we evaluated both 15 and 30 µm,
with the latter providing more biologically meaningful results);
(2) a 3D vasculature CCF visualization (VCCF) to illustrate the
spatial relationships and distances between immune cells and
nearest endothelial cells in 2D and 3D; and (3) spatial illustrations
that quantify the distances between UV-damaged and pro-
liferating keratinocytes and the skin surface. The interactive 3D
visualizations are accessible via the companion website:
Companion Website for “Human Digital Twin: 3D Atlas
Reconstruction of Skin and Spatial Mapping of Immune Cell
Density, Vascular Distance and Effects of Sun Exposure and
Aging” | (hubmapconsortium.github.io)) and make it possible to
examine one 3D reconstructed region at a time. Users can view
one or more serial sections; they can view one or more cell types/
markers in these sections; they can review the automatically
updated distance distribution plots below the 3D skin visualiza-
tion; plus, they can access the virtual H&E image (a mid-point
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b Epidermis cells 

c Endothelial and Immune Cells

d DNA Damage

Soumya – color 
scheme vH&Es
and example
CD3/etc
Liz – image 
overlays

Cell marker Sens vity Specificity Accuracy
CD3 0.93 0.95 0.94
CD4 0.94 0.95 0.95
CD8 1 0.85 0.93
FOXP3 1 0.98 0.98
CD68 1 1 1
CD31 1 0.99 0.99
Ki67 1 0.97 0.98
DDB2 0.97 0.92 0.95
p53 0.96 0.9 0.93

e Sensitivity and specificity of cell type classification

a Multiplexed image showing epidermis and dermis

100 µm

100 µm

100 µm

Fig. 2 Multiplexed images of cell type markers and GMM probability maps overlaid on virtual H&E. a Exampleregion of interest within a multiplexed
image from Donor 9 (region 3); GMM was used to automatically segment/classify different cell types. Sub-regions of interest are shown in b–d panels
with probability maps for each cell type; b cytokeratin CK26 epidermis staining and adjacent probability map of epidermis cells overlaid on the virtual H&E;
c endothelial cells of blood vessels (CD31) and adjacent probability map of endothelial cells; d p53 staining in the epidermis and adjacent probability map of
p53 positive cells; e The sensitivity, specificity, and accuracy metrics for the cell classification workflow for nine biomarkers using manual annotations.

a b c

d e

Serial Sections Reference AF image AF Image Registration

3D Reconstruction of Segmented Cells AF Volume and 3D Mesh Overlay

Fig. 3 3D skin volume reconstruction of autofluorescence skin images and segmented cells. a, b A reference autofluorescence image from the
sequentially imaged sections is used to initiate registration; c A patch-based local correspondences in 2D serial sections is used for affine registration
followed by deformable registration to account for tissue deformation; d 3D reconstruction of the segmented cells is achieved by mapping the cells in 3D
using the affine and deformable transformation map and refinement is achieved by registration to micro CT image; e 3D volumes of classified cells overlaid
on the AF volume and 3D mesh.
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image in the 26 image stack was selected as a representative
image) for histological context. As described in more detail below,
static examples are provided in Fig. 4c–e (immune cluster den-
sity), Fig. 5c (distance between immune cells and endothelial
cells); and Fig. 6b, c (distance of keratinocytes positive for p53
(DNA damage), DDB2 (DNA repair), and Ki67 (proliferation) to
the skin surface).

T cell counts in 3D skin volumes. Previous measurements of
total T cell counts in the skin have been based on 2D tissue
sections36. Using the 3D reconstructed volumes and after cor-
rection for overlapping cells, we estimated the median number of
T cells/cm3 skin to be 33.5 × 106 (SD 15.6 × 106) (Supplementary
Table 4). This result provides further evidence that skin is a vast
reserve of T cells, and the wide variation is attributed to anato-
mical variations in skin thickness, aging, sun exposure, health
status, etc. Since skin thickness is not uniform, an ideal study

design would collect and analyze samples from different anato-
mical sites in the same patient, which was not possible here.
There were no significant differences in normalized counts
(adjusted for tissue 3D volume) in macrophages, T killer cells, T
helper cells, or T reg cells by age or in donors’ skin with mild to
marked spectrum chronic sun exposure-related changes (Sup-
plementary Fig. 6a–g). There was a trend for a positive rela-
tionship between the T helper/T killer ratio and age (corr= 0.82,
adj. p= 0.07) (Supplementary Fig. S6h).

T cell density is higher in 3D vs. 2D. We then compared
immune cell density in 2D vs 3D as the average number of T cells
within 30 µm of a T helper cell (Fig. 4a) and the maximum
number of T cells within 30 µm of a T helper cell (Fig. 4b). There
was wide variation in both measurements across all samples due
to heterogeneous cell density in each section/sample. Overall, we
quantified 10–70% more T cells within 30 µm of a T helper cell in

Fig. 4 Higher spatial density of T cells in 3D vs 2D and visualization of immune cell cluster density. a Average number of all immune cells within 30 µm
of a T helper cell in 2D (red) and 3D (blue) are shown for each donor sample. Overall, the number of immune cells within 30 um of a T helper cell was
higher in 3D compared to 2D with 10–70% more cells found in 3D. Error bars represent the 95% confidence interval. Each error bar was derived from
independent T helper cells detected in each region (n= 10 biologically independent samples). The number of T helper cells for each region is also shown;
b Maximum number of immune cells within 30 µm of a T helper cell. There was variation across all regions, for example, in region 7 there a cluster of 11
immune cells within 30 µm were found in 3D while three cells were quantified in 2D. c Visualization of low immune cell cluster density in 3D. Immune cell
cluster density plot is generated from region 1 (scalp region, marked sun exposure, male, 72 years of age). The size and color of the purple bubbles show
that this sample has a relatively low number of neighboring immune cells in 3D. For interactive visualization of 3D and 2D sections go to: https://
hubmapconsortium.github.io/vccf-visualization-release/html/immune_cluster/immune_cluster_region_1_30.html d Visualization of medium-high immune
cell cluster density in 3D. Medium-high immune cluster density plot from region 9 (lower distal arm region, marked sun exposure, male, 60 years of age).
The increased number and size and colors (going from pink to yellow) of the bubbles sample show the higher number of neighboring immune cells in 3D.
For interactive visualization of 3D and 2D section: https://hubmapconsortium.github.io/vccf-visualization-release/html/immune_cluster/immune_
cluster_region_9_30.html e Visualization of high immune cell cluster density in 3D. High immune cluster density plot from region 12 (biopsy was taken
from the right flank but excluded from further analysis due to scarring; the donor also had systemic lupus erythematosus). The high number of orange and
yellow bubbles shows a high number of neighboring immune cells in 3D (4–6+ cells with the highest density clusters, according to the color-coded legend)
and demonstrates high immune cluster density. For interactive visualization go to: https://hubmapconsortium.github.io/vccf-visualization-release/html/
immune_cluster/immune_cluster_region_12_30.html. All regions can be accessed at: Companion Website for “Human Digital Twin: 3D Atlas
Reconstruction of Skin and Spatial Mapping of Immune Cell Density, Vascular Distance and Effects of Sun Exposure and Aging” | ㅤ (hubmapconsortium.
github.io).
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3D vs 2D. For example, regions 1 and 2 had similar maximum
number of immune cells (n= 3) within 30 µm of a T helper cell in
2D and 3D, whereas region 7 had a maximum of 11T cells in 3D,
and just 3T cells in 2D. This difference is important for samples
with low immune cell density, where analysis of spatial rela-
tionships and cell–cell interactions in 2D would be more chal-
lenging to accurately quantify. The immune cell cluster density
plots in Fig. 4c–e illustrate three contrasting examples of skin
regions with low (region 1), medium-high (region 9) and high
(region 12) immune cell cluster density in 3D, respectively. The
low and high examples may be attributed to the health/therapy
status of the donors who were noted as having rheumatoid
arthritis (region 1) and systemic lupus erythematosus (region 12).

Shorter distances between immune cells and endothelial cells
in 3D vs. 2D. Constructing a vasculature-based coordinate sys-
tem makes sense biologically as almost every living cell must be
within a small distance to a blood vessel (~25 µm to 1 mm,
depending on the tissue) to receive oxygen47. Aging has been
shown to reduce the size and density of blood and lymphatic
vessels in the skin as well as disrupt its structure48. We found no
significant differences in endothelial cell numbers, regardless of
age or sun exposure. There were significant differences between

2D and 3D in the average distance of the nearest endothelial cell
to immune cells (macrophages, T helper, T killer, and T regs),
and distances were typically shorter in 3D (~56 µm in 3D vs
108 µm in 2D, (p < 0.0001) (Fig. 5a, b). Distances between each
immune cell type and endothelial cells in 3D are also shown as
violin plots and grouped by age and sun exposure for each donor/
region in Fig. 5c. There was a trend for higher counts of T killer
cells within 100 µm of endothelial cells in younger donors
(corr=−0.73, adjusted p value= 0.08; see Supplementary
Fig. 7e). The implications of this are unclear without further
validation in a larger group of subjects but may reflect age-related
differences in adaptive immune response. An example of a region
with higher total immune cell counts (including T killer) within
100 µm of endothelial cells is shown in Fig. 5d.

No differences in spatial location of sun damage/proliferation
cell markers age or sun exposure. The total count of p53, Ki67,
and DDB2 positive keratinocytes in 3D volume and distance to
the skin surface was also calculated and distributions are shown
as violin plots (Fig. 6a). The premise for this analysis is that
higher counts of p53 damaged and/or Ki67 positive proliferating
keratinocytes in the upper epidermis, or towards the skin surface,
are an indicator for early pre-cancerous lesions. We quantified

All immune cells

a

b

Immune cell types

c

d

Fig. 5 Distances between immune cells and endothelial cells in 3D vs 2D. a Histograms of distance to nearest endothelial cells from each immune cell
type (CD68, T Helper, T Killer, and T Reg). 3D distance to immune cells is typically much shorter (on average, ~56 µm in 3D vs 108 µm in 2D); b Two
sample Kolmogorov–Smirnov test (two-sided) was performed to confirm that there is statistically significant difference between the 2D and 3D
distributions for all immune cell types (D= 0.43, p value <2.2e-16; n= 13,481 (in 2D) and n= 13,489 (in 3D) independent immune cells were included in
each distribution). c Distance between immune cells and nearest endothelial cells is consistent with aging and sun exposure. Violin plots are shown for
each donor and sorted by age. There was a trend for a higher number of T killer cells closer to endothelial cells in younger vs older patients (spearman
correlation=−0.73 (p= 0.02, adjusted p value= 0.08, Supplementary Fig. 7c (n= 9 independent samples were used). The interactive version of this plot
is located at: https://hubmapconsortium.github.io/vccf-visualization-release/html/violin_cell.html d Example of skin region with a higher number of
immune cells within 100 µm of endothelial cells. Reconstructed 3D distance map for immune cells and nearest endothelial cells. Example shown is for
region 4 (superior abdomen, mild sun exposure, male, 48 years of age); histogram plot showing the distribution of immune cells within 50–200 µm, with
the highest T killer cell count within 25–50 µm. For interactive visualization in 3D and 2D go to: https://hubmapconsortium.github.io/vccf-visualization-
release/html/region_4.html).
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distances of p53, Ki67 and DDB2 positive keratinocytes to the
skin surface using two different epidermis masks: (1) using AE1
cytokeratin cocktail, which was more specific for the lower epi-
dermis/stratum basal layer and hair follicular units; and (2) CK26
cocktail, which stained the entire epidermis, as well as hair fol-
licular units. Due to the non-uniformity of the skin surface, the
spatial cell distance analysis was conducted using a hybrid of 3D
and 2D data, whereby the distances of the 3D reconstructed cells
to the skin surface were calculated using the nearest 2D tissue
section. We found that most Ki67 and p53 positive keratinocytes
were largely localized to the AE1+/stratum basal region (where
regenerating keratinocyte stem cells are localized49). There were
no significant differences in the distance of p53, DDB2, and Ki67
positive keratinocytes to the skin surface when analyzed by sun
exposure or aging. Notably, there were three cases (regions 1, 2,
and 9) that had a very wide spatial distribution of p53, Ki67
positive cells (up to 1600 μm from the skin surface (Supple-
mentary Fig. 8a–c). In each case, this was due to a hair follicular
unit extending deeper into the dermis with a high number of p53
and Ki67 positive cells. The number of p53 positive cells has been

shown to extend deeper into the hair follicles and glands in older
patients50 (these samples were from donors aged 52–72 years,
however, we did not have matched younger patients for com-
parison). In all other cases, the average distance of p53 and Ki67
cells from the skin surface was 155 and 143 µm, respectively.
Total Ki67 and p53 positive cell count was not significantly
correlated with age or sun exposure (Supplementary Fig. 9). This
agrees with previous studies that show that Ki67 and/or p53
positive cells do not increase until actinic keratosis (damage to
keratinocytes in the lower third of the epidermal layer) or a pre-
cancerous/cancerous (full epidermis thickness) squamous in situ
state is reached22. There was a significant inverse relationship
between DDB2 positive cells and age in the stratum basale region
of the epidermis (corr=−0.78, adj. p= 0.05, (Supplementary
Fig. 9e) and the entire epidermis (corr=−0.79 adj. p= 0.04)
Supplementary Fig. 9j). Given the critical role of DDB2 in
nucleotide excision repair51, this suggests a decreased capacity for
DNA repair with aging. Figure 6b, c illustrates cell data from two
example regions from younger and older donors with mild and
marked sun exposure, respectively. Notably, the younger donor

a

b

c

Age (years)

Fig. 6 Distances between DDB2, p53, and Ki67 positive cells and the skin surface were consistent with age and sun exposure, and younger donors had
higher counts of DDB2 positive cells. a Violin plots for distances between DDB2, p53, Ki67 positive cells, and skin surface are shown for each donor and
sorted by age. Most positive cells were localized within a 100–200 µm distance from the skin surface. However, regions 1, 9, and 2 had positive cells up to
1600 µm, which were localized to hair follicles. The interactive version of this plot is located at: https://hubmapconsortium.github.io/vccf-visualization-
release/html/epidermis_entire/violin_damage_epidermis.html b Example of higher distribution of DDB2 positive cells within 200 µm distance of the skin
surface in a younger donor. While we did not find differences in distances to the skin surface in relation to aging or sun exposure, there was a significant
inverse correlation between DDB2 positive cells and age (corr=−0.78, adj. p= 0.05, Supplementary Fig. 9a), suggesting the higher capacity for DNA
repair in younger donors. The example is from region 11 (from the upper arm, mild sun exposure, female, 41 years of age) and shows a higher distribution of
DDB2 positive cells within 200 µm distance from the skin surface and lower distribution of cells positive for p53 and Ki67. For interactive visualization go
to: https://hubmapconsortium.github.io/vccf-visualization-release/html/epidermis/epidermis_region_11.html c Example of lower distribution of DDB2
positive cells within 200 µm distance of the skin surface in an older donor. The example shown is region 7 (from the lower forearm, marked sun exposure,
male, 69 years of age) and shows the highest distribution of Ki67 positive cells within 200 µm distance from the skin surface, with lower p53 and lowest
DDB2 positive cells. For interactive visualization go to: https://hubmapconsortium.github.io/vccf-visualization-release/html/epidermis/epidermis_region_
7.html. All regions are at: Companion Website for “Human Digital Twin: 3D Atlas Reconstruction of Skin and Spatial Mapping of Immune Cell Density,
Vascular Distance and Effects of Sun Exposure and Aging” | ㅤ (hubmapconsortium.github.io).
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has a higher number of DDB2 positive cells distributed through
0–200 µm of the epidermis and relatively low counts of p53 and
Ki67 positive cells, compared to the older donor who has nearly
the opposite profile (high Ki67 and p53 and low DDB2 positive
cells).

Discussion
We have demonstrated a workflow for spatially registering mul-
tiplexed tissue data in three dimensions using the HuBMAP
registration user interface23. Interactive tools allow visualization
of spatial patterns of cell types and distances in relation to vas-
culature and position within the epidermis. We have demon-
strated higher immune cell density and shorter distances of major
immune cells to the nearest blood vessel in 3D, in support of a
vasculature-based human common coordinate framework47.
Antibodies were aligned with the skin anatomical structures, cell
types, and biomarker (ASCT+ B) tables in support of high
quality, ontology-aligned data generation. While these findings
are in healthy skin, this 3D workflow is extendable to other
organs, cell types, and disease states and thus provides a stan-
dardized approach for cellular resolution 3D spatial analysis and
for constructing a human reference system. All datasets and code
for segmentation, classification, reconstruction, and data visuali-
zation are freely available at GitHub - hubmapconsortium/
MATRICS-A: Multiplexed Image Three-D Reconstruction and
Integrated Cell Spatial -Analysis and via a HuBMAP collection at
Samples | HuBMAP (hubmapconsortium.org).

There are several experimental design factors to consider when
planning a 3D reconstruction of serial sections using multiplexed
immunofluorescence images. For the greatest efficiency (cost/
time), we embedded 12 samples in a single paraffin block, which
also allowed consistent staining and imaging across all samples.
Although there is some trade-off in terms of reduced cellular
heterogeneity (compared to larger whole slide sections), this was
offset by having a diverse range of samples from a wide age range
and sun exposure effects and anatomical location. The blocks
were cut into 100 × 5 µm sections and 26 of the highest quality
sections were downselected based on correct placement on the
slide and no visual imperfections such as tears or missing tissue.
This is important for multiplexed imaging processes where the
coverslip is removed between each staining round and may result
in damage to the tissue (in our experience, if tissue loss occurs, it
typically takes place in the first 1–3 rounds of staining, and
especially if samples have small tears due to fragile nature or
sectioning). The use of Superfrost™ slides is an important miti-
gation against tissue loss, due to stronger adherence of tissue to
the positively charged slide surface. More recent commercial
options for multiplexing include the use of a flow cell or
coverslip-free format, hence tissue loss may be less of a concern
for future work. Serial sections were all stained in a single batch
with well-characterized antibodies, providing high quality, con-
sistent images. Quenching methods are sometimes used to reduce
signal in highly autofluorescent tissues (e.g., Sudan black B
treatment has been reported to reduce AF signal by 60–95% in
pancreatic tissue52), however, we did not use quenching to reduce
AF (background/AF is imaged separately and subtracted from
true biomarker signal) and further evaluation is needed to
determine if quenching would negatively affect our AF-based
registration workflow. Although there is inherent variation in AF
signal from section to section or from sample to sample, we
address this using the Otsu thresholding approach, which uses
intra-class variance to set the AF threshold for each sample/slide.
The AF threshold is automatically adjusted from one serial sec-
tion to another to maximize the separation of the background and
the foreground.

As described earlier, one limitation of the 3D reconstruction of
tissue sections has been the introduction of the “banana effect”
which erroneously straightens curved anatomical structures dur-
ing registration. Micro CT imaging of the tissue block prior to
sectioning, provides a reference volume to which the 3D recon-
structed volume of the skin tissue and the cells are registered. A
similar approach has also been successfully applied for whole
human brains using MRI, blockface photography (to bridge the
gap between MRI and histology), and thick sequential histological
brain sections (25 µm thick)17. Posterior registration/alignment of
the 3D reconstructed volumes to micro CT images is valuable
when there is deformation and/or wear and tear in the tissue
samples during the cyclic staining process. The co-registration
maps microfeatures (e.g., cell types) to macro imaging features,
and compared to landmark-constrained 3D histological
imaging53, minimal manual intervention is required for accurate
registration and reconstruction of the 3D volume. Within our
workflow, a single slide from the entire volume is identified
manually based on tissue quality as the reference image; the rest of
the process for registration and 3D reconstruction is completely
automatic. Compared to image similarity-based alignment14,41,
automatic block correspondences is used for initial affine align-
ment, which improves registration speed39,41 and also accounts
for local deformations that may happen during the staining and
image acquisition process.

MATRICS-A was evaluated in skin specimens sampled across
various body locations to account for diversity in an anatomical
organization and differences in sun exposure. Combining 3D
reconstructed cellular data with interactive visualization provided
several insights that have not previously been shown using either
2D or 3D volume imaging of skin by confocal or LSFM. We show
that that T cell counts in the 3D reconstructed volumes ranged
from 500–2000 cells and scaled to an estimated 15–60 million in
1 cm3. To our knowledge, the only prior work to quantify the
pool of T cells in the skin was done in 2D by ref. 36 where they
estimated 20 billion T cells in 1.8 m2 (average surface area of
skin). One important consideration when interpreting volumetric
immune cell counts is the anatomical location of the skin sample
which affects the keratin layer thickness, as well as the distribu-
tion and density of adnexal structures such as hair follicles, and
cumulative sun exposure. Partially addressing this, our samples
were collected from across the anatomy, including arms, legs,
abdomen, and scalp, and normalized for volume and endothelial
cell count to account for sample-to-sample differences. However,
an ideal study design would be to prospectively collect at least two
distinct anatomical samples from the same donor and expand
racial diversity, which is planned as part of future efforts on
HuBMAP. While our 3D reconstructed skin volumes are rela-
tively small (we used 100 × 5 µm sections and downselected
26 × 5 µm sections), this is on a par with confocal imaging where
typical imaging depth is 50–100 µm (up to 2 mm is possible with
customized clearing protocols54), but with limited multiplexing
capability (4–5 markers). Light-sheet fluorescence microscopy
(LSFM), coupled with clearing protocols, achieves the highest
imaging depth (between 1 mm3 and 1 cm3) and up to 7 cm3

prostate and brain samples was recently reported55. However, the
maximum number of markers still remains relatively low, com-
pared to the multiplexing potential in thinner tissue sections (e.g.,
LSFM imaging of 9 proteins in 500 µm thick cleared brain sec-
tions was recently reported56). It is also constrained by long
antibody incubation times to achieve maximum and uniform
staining penetration. We demonstrated our reconstruction
workflow with 26 sections, but a larger number of multiplexed
sections is technically feasible and is limited more by cost
than technical constraints. Other factors to consider in 3D
analysis include imaging resolution, including the axial resolution
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(Z-dimension) which is typically 500–700 nm and 200–300 nm
lateral resolution (X-Y dimensions) at 20x magnification in
standard optical microscopes57. Label free 3D imaging methods
can provide anatomical or molecular information but can have
trade-offs in resolution. For example optical coherence micro-
scopy provides a large field of view, but has lower resolution
(1–15 µm); or Raman microscopy provides molecular informa-
tion but resolution is diffraction limited and can require stronger
excitation lasers to increase molecular signal relative to the
background fluorescence and spatial resolution57.

Even with all the recent advancements in 3D imaging, only a
limited number of open access analysis tools are available58,
hindering progress in the interpretation of 3D data. We provide
visualization tools for 3D reconstructed cellular data including
spatial cell distance analysis and 3D cell cluster density. These
provide unique representations of 3D cellular data and future
iterations could be combined with H&E images to increase the
depth and provide more anatomical context. Using conventional
bar-charts we demonstrated 10–70% more T cells within 30 µm of
a T helper cell in 3D vs 2D, however cluster density plots more
clearly visualized T cell density variations in 3D. These plots are
inspired by 3D geospatial and population density maps59 and
combine scatter plots and heatmap in a 3D view. The combina-
tion of these plots allows us to focus on the distribution pattern of
each individual immune cell while still observing the overall
distribution. We anticipate that 3D density plots (and versions
thereof) will become increasingly important for the 3D micro-
scopy field in healthy, aging, and diseased tissue. We found sig-
nificant differences in the average distance of the nearest
endothelial cell to immune cells, with distances in 3D half that
found in 2D (~56 µm vs 108 µm on average). Using confocal
imaging, ref. 18 showed that T cells form perivascular sheaths
throughout the dermis and reside within 15 µm distance from
endothelial cells (in breast skin). Indeed, we found that most
T cells were located within 25 µm of nearest endothelial cell
across all ages, but we also see a wider range of distances up to
150 µm. p53 and Ki67 positive keratinocytes were largely loca-
lized to the stratum basale where the stem cells are located, but
distances to the skin surface or counts did not vary by aging or
sun exposure. Collectively these spatial metrics deepen our
understanding of the interactions between immune cells and
proximity to vasculature and effects of aging/sun exposure and
opens opportunities for further applications in disease context
and other organs. Additional insights will be gained from
incorporation of additional markers of aging, senescence,
immune (e.g., Langerhans cells), functional immune markers
(e.g., exhaustion or activation60) and inflammation markers.
Integration of scRNAseq and spatial transcriptomic data from the
same samples will further dissect the complexity of skin cell
populations and will require prospective sample collection and
different protocols for sample preservation (which is planned as
part of ongoing HuBMAP organ projects, including skin).

While 2D spatial analysis will continue to be the method of
choice for most researchers’ due accessibility and cost, it is
important to consider what histological or anatomical informa-
tion is being minimized or lost in thinner tissue sections, and plan
sample collection in accordance with the question/s being asked.
As recently shown by ref. 12, 2D whole slide images may be
sufficient for quantifying the range of cellular interactions and
neighborhoods within a tumor or organ (and superior to small
tissue cores), but to understand cellular relationships in relation
to anatomical structure and tumor budding, reconstructed 3D
images provided more contextual information. Future solutions
could combine higher dimensional 3D microscopy (confocal/
lightspeed) with sequential sectioning from adjacent tissue
regions. This may require prospective tissue collection with

careful selection of regions of interest for each modality and
advance planning sample preservation. Due to the cost/time to do
these methods and the computational requirements for analyzing
the large volumes of data there will have to be some trade-offs
e.g., 3D analysis could be limited to smaller, well defined regions
of interest within an organ and combined with 2D whole slide
data. HuBMAP and the other reference mapping efforts are
providing a unique opportunity to conduct 2D and 3D spatial
cellular analysis across many organs, using standardized methods
for tissue imaging, including spatial protein and transcriptomics
analysis, combined with non-spatial methods such as scRNAseq.
This will lay the foundations for deepening our understanding of
cell types and spatial relationships across the human body in 2D
and 3D.

Methods
Patient samples. Skin biopsies were collected from 12 donors ranging from 32–72
years with a mix of typically UV-exposed and non-exposed anatomical regions
(Supplementary Table 1). The biopsies were trimmed and embedded in a single
block that underwent micro CT imaging. The blocks were then sectioned into
100 × 5 µm serial sections, numbered in sequence, of which up to 26 of the highest
quality in serial succession were selected for further analysis (slide layout shown
with virtual H&Es –comprised of pseudo-colored autofluorescence and DAPI61 in
Supplementary Fig. 1). All 12 biopsies were spatially registered using the HuBMAP
Registration User Interface along with their corresponding metadata, including
donor information, including health status and sample processing (https://
hubmapconsortium.github.io/ccf-ui/rui/ - Supplementary Fig. 2). Of the 12 sam-
ples, ten were downselected for further statistical analysis. The two excluded
samples included a donor with a benign cyst, but with extensive inflammation and
immune cell infiltration compared to other samples (region 6). The second sample
had a scar which also altered the normal organization of the epidermis and dermis
layers (region 12). All donors were in good health and cancer free at the time of
sample collection, with two donors having chronic diseases (RA and HIV), which is
noted in the patient summary table (Supplementary Table 1). All patients con-
sented to provide samples for research and relevant ethical regulations were fol-
lowed. The study protocol was approved by University of Pittsburgh IRB
(STUDY19120023).

Pathologist review. Virtual H&E images (which are pseudo-colored auto-
fluorescence and DAPI images61) from each donor were assessed by a pathologist
for histopathological changes related to chronic sun exposure such as keratinocytic
atypia in the epidermis and degree of solar elastosis changes in the dermis.
Accordingly, the specimens were categorized into groups of skin with mild,
moderate, and marked chronic sun exposure-related changes (Supplementary
Table 1 and virtual H&E for two contrasting regions (mild vs. marked sun expo-
sure) in Supplementary Fig. 10a, b). Donors in the mild chronic sun exposure
group were significantly younger than the moderate-marked exposure donors (42.4
vs. 62.2 years, p= 0.008). All virtual H&E images are located at: vccf-visualization-
release/vheimages at main · hubmapconsortium/vccf-visualization-release · GitHub

Micro CT imaging of skin blocks. A Phoenix micro CT system (GE, Wunstorf,
Germany) with up to 300 kV/500W was used to generate high-resolution CT
images of the 12 skin samples within the tissue block. Example images for micro
CT workflow with corresponding histological section are shown in Supplementary
Fig. 4. Phoenix micro CT scanners have a high dynamic DXR digital detector array
and can produce isotropic images of 1 μm and are frequently used for industrial
process control as well as for scientific research applications. Due to its dual tube
configuration, detailed 3D information for an extremely wide sample range can be
provided. For our purpose a current of 200 kV was found to be optimum in terms
of signal-to-noise ratio to generate high quality volumetric isotropic images of
0.016 mm resolution for the embedded skin samples and this also allowed imaging
of 12 samples in one block within 30 min. The DICOM header with imaging
settings is shown in Supplementary Table 5.

Antibody validation. All antibodies used in this study were subjected to a stan-
dardized characterization process which was developed by our lab and has been
implemented for over a decade for over 500 commercial antibodies28. We typically
start characterization using a reference multiorgan TMA (MTU391, Pantomics)
which contains 15 major types of cancer (surgically resected) and corresponding
uninvolved tissues as controls. The samples used for the reference TMA are
typically fixed in 10% neutral buffered formalin for 24 h and processed using
identical SOPs. To ensure consistent staining in new lots, clones or conjugates, all
antibodies are re-tested on MTU391 arrays (depending on timing, these may be
different donor samples but the same organ format). The MTU391 arrays are also
used for optimizing concentration and testing whether the dye inactivation solu-
tion had any negative effects on the protein epitopes. Initial characterization and
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down-selection includes (1) screening multiple clones/target that are compatible
with immunohistochemical detection in FFPE tissue (using published literature
and Human Protein Atlas62); (2) evaluating performance specificity using the
MTU391 array and isotype control using a labeled secondary antibody; (3) to
confirm epitope stability to the multiplexed cycling process, unstained
MTU391 slides are processed through multiple rounds of signal inactivation and
then stained to evaluate whether target intensity had decreased. In this study, none
of the epitopes showed sensitivity to the signal inactivation protocol (i.e., staining
intensity did not decrease following inactivation); (4) the best performing anti-
bodies were conjugated to a fluorescent dye at multiple dye:protein ratios and
titrated on sequential MTU391 TMA sections to compare sensitivity and specificity
to the unmodified primary antibody. Primary secondary detection be also used in
the first round of staining (assuming different species are available), which provides
flexibility for any antibody that cannot be successfully conjugated. For the current
study, all antibodies were tested in MTU391 arrays as described and then re-tested
in a pilot study using ten skin samples provided by U. Pitt Dermatopathology
department. Supplementary Table 3 shows the antibody clones and conjugates used
in the study. The 18-marker panel provided coverage for 14 cell types: keratino-
cytes (granular, spinous, basal), epithelial, fibroblast, immune cells (macrophage, T
helper, T killer, T reg), nerve, myoepithelial, and endothelial cells. These are also
highlighted using the HuBMAP Anatomical Structures Cell Type and Biomarkers
(ASCT+ B) reporter comparison feature https://hubmapconsortium.github.io/ccf-
releases/v1.0/docs/asct-b/skin.html. Examples shown in Supplementary
Figure 11a–r depict representative staining on both the MTU391 tissue array and
skin tissue. All antibodies showed good staining specificity in skin, with the
exception of UCHL1 (nerve marker), which showed high background/non-specific
staining, in addition to specific nerve staining (Supplementary Fig. 11r).

Multiplexed imaging. Multiplexed immunofluorescence (MxIF) staining and
imaging of the skin samples was performed as described by refs. 61,63 using Cell
DIVE™ technology (Leica Microsystems, Wetzlar, Germany). To summarize, slides
are sectioned onto Superfrost™ (Thermo Fisher), which is critical for minimizing
tissue loss during the cycling process. After slide clearing and using a two-step
antigen retrieval process63, the FFPE slides were stained with DAPI and imaged in
all channels of interest to acquire background autofluorescence (AF) of the tissue.
This was followed by primary/secondary and/or direct conjugate antibody staining
of up to two markers per round plus DAPI, dye inactivation, and repeated cycle for
all 18 biomarkers. Each sample had ~40 20x fields of view (FOV) and up to
26 sections underwent staining (using the Leica Bond) and imaging (IN Cell
Imager 2200) in single batches to ensure consistency. A MTU391 slide (described
above) was also included as a technical control. The Cell DIVE imaging software
allows real-time image processing (registration, AF subtraction and illumination
correction during each round of imaging). Multiplexed images were automatically
registered and processed for autofluorescence (AF) subtraction61,64 and illumina-
tion correction (described in more detail below).

Illumination correction. Since every skin specimen in the block was comprised of
multiple FOVs (up to 40), this required image stitching over a large area. Inherent
non-uniformity of illumination can give rise to “quilting” artifacts, in which the
boundaries of single image fields appear distinct when combined with neighboring
fields. To correct for this inherent non-uniformity, we performed several initial
calibrations. In the first step, we cycle through all objectives/filters while imaging a
standard blank glass slide. Focus is determined using a hardware laser autofocuser,
which is part of the Cell DIVE imaging system. We acquire images of the blank
glass at long exposure times, and subsequently use these images to subtract away
any glints or reflections that might be present in the system. For the second step we
image a series of fluorescent plastic slides (Ted Pella Fluorescence Reference,
#2273). Again, we cycle through all objective/filter combinations, imaging the
fluorescent slide closest to the emission peak of a given filter set. Before processing
each of these images we subtract the appropriate image of background glass (i.e.,
for the same objective/filter and with intensity scaled by the ratio of exposure
times). We are then left with an image that nominally should be uniform, but
instead displays the non-uniformity of that filter or objective. We then utilize a
fitting function to compute a set of parameters that characterize the non-
uniformity (including determining the actual center of illumination). These para-
meters are saved, and for subsequent imaging we first subtract a properly scaled
background glass image, and then divide out the non-uniformity using the pre-
determined coefficients.

Image normalization. DAPI images are normalized to zero mean unit variance
values inside our deep learning framework prior to nuclei segmentation. Secondly,
the individual whole slides were normalized between zero mean and unit standard
deviation before estimation of biomarker probabilities using GMM. Whole slide
image specific normalization ensures all images were scaled relative to their
intensity distribution and reduces intensity variability often observed between serial
images. The combination of these two normalizations ensured a single cell was
segmented based on relative intensity difference between the biomarker and the
background and not on absolute intensity distribution that may vary from one slide
to another adversely affecting segmentation accuracy.

Cell segmentation and classification. Figure 2 and Supplementary Fig. 5a, b
summarizes our segmentation model framework. First, an encoder-decoder based
deep learning (DL) model65 was trained on a small sample (194 DAPI image
patches selected from 30 images from ten patients) of manually annotated nuclei
created using the annotation function in QuPATH66. Multiscale Laplacian of
Gaussian (LOG) was introduced along with the DAPI images as separate channels
to our encoder-decoder based DL model. The LOG feature detects blob like
structures (which correspond to nuclei shape and boundary) in the DAPI images,
and thereby provides contextual information to the DL model. Use of multiple
channels allowed us to train an accurate DL model from a small sample of the
manually annotated DAPI images. The depth of the encoder-decoder DL model
was set to 4 and binary cross entropy was used as a loss function. An unsupervised
GMM was then used for automatic probabilistic segmentation of immune cell
types: T killer (CD8), T reg (FOXP3), T helper (CD4), macrophages (CD68), as
well as endothelial cells (CD31), markers of proliferation (Ki67), DNA damage
(p53), and DNA repair (DDB2) (Supplementary Fig. 5b). By design, GMM pro-
duces a probabilistic segmentation for cells and functional biomarkers, which are
continuous probability values between 0–1 (i.e., 0.2, 0.3, 0.4, etc.). A threshold is
then applied to create a binary classification. Since probability values are directly
correlated to signal intensity, high expression would have probability value close to
0.9. GMM with two clusters was used to obtain a probabilistic segmentation of the
cell-type/markers and background. Pixels with high signal for cell type and func-
tional markers were automatically assigned high probability values in one cluster
(positive class) and pixels with low signal intensity were assigned high probability
values in the second cluster (background—negative class). Union of probabilities
obtained from the positive class of GMM model and nuclei segmentation (from the
DL model) were then fused. Probability values were used to automatically scale
(between 0–1) and quantify positive cells (i.e., for each marker of interest) and
determine the percentage overlap between the markers and the segmented nuclei.
Low percentage overlap was further used to remove imaging artifacts, debris, and
cells with low/background marker intensity. The same GMM was used to auto-
matically segment contiguous structures, independent of nuclei, such as blood
vessels (based on CD31 staining) and epithelial masks (based on AE1 and CK26
cytokeratin cocktail staining). In this scenario, we depend on probabilities as
obtained from our GMM and automatically threshold the biomarker probabilities
using Otsu filters67. All code can be found at GitHub - hubmapconsortium/
MATRICS-A: Multiplexed Image Three-D Reconstruction and Integrated Cell
Spatial -Analysis. The docker container/environment to run the code can obtained
by using docker pull hubmap/gehc:skin and test data for skin region 7 can be found
at Human Digital Twin: Automated Cell Type Distance Computation and 3D Atlas
Construction in Multiplexed Skin Biopsies | Zenodo. There is a corresponding
ReadMe file that provides context and instructions for the repository’s contents and
could be found here MATRICS-A/README.md at main · hubmapconsortium/
MATRICS-A · GitHub.

Manual annotations for cell classification accuracy. For validation of the cell
classification approach, a total of 2722 positive and negative cell markers were
manually annotated using the annotation function in QuPATH66. The annotation
breakdown is as follows - CD3: 408; CD4: 281; CD8: 347; FOXP3: 360; CD68: 391,
CD31: 352; Ki67: 150; p53: 164; DDB2: 162. These datasets were then used to
calculate cell classification sensitivity, specificity, and accuracy (Fig. 2e).

3D reconstruction of multiplexed serial images. For 3D reconstruction a
reference AF image was manually identified from 24 serial sections of every region
based on image quality (contrast, wear and tear, deformation etc.). All 2D AF
images were masked (with a tissue mask) and all 2D AF serial section images were
registered to the chosen reference image. Otsu thresholding uses intra-class var-
iance computed from image histogram to set the thresholds for the AF background
and the foreground. Hence while the AF signal distribution may change from one
serial section to another, the threshold is set based on intra-class variance and is
automatically adjusted from one serial section to another to maximize the
separation of the background and the foreground. Our registration model uses
local patch-based, normalized cross correlation to establish correspondences
making our model fast without compromising on accuracy. Patch wise normalized
cross correlation depends less on absolute intensity values and depends more on a
good separation of the background and foreground signal which we obtain by
masking our autofluorescence image. After affine registration, B-spline based
deformable registration68, we use normalized mutual information to mitigate
image intensity differences that may occur between one serial section to another in
the autofluorescence images. A block matching strategy69 was adopted to deter-
mine the transformation parameters for the affine registration from masked AF
images (Fig. 3c). The similarity between a block from the reference AF was
computed relative to the AF serial sections. The best corresponding block defined
the displacement vector for the affine transformation70. Normalized mutual
information was chosen as the similarity matrix and maximized to achieve the
registration. The transformation map obtained from the registration of the AF
images was applied to individual biomarkers for all serial sections to create a 3D
volume of endothelial, T killer, T reg, T helper cells and macrophages (Fig. 3d) and
overlaid on 3D AF volume as shown in Fig. 3e. Post registration, 3D connectivity of
all cells were used to fuse overlapping cells in adjacent serial sections to prevent
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overcounting. Cells overlapping in 3D in adjacent sections are automatically
connected and considered as a single entity in 3D using ITK’s 3D connected
filter40. ITK is an opensource software widely used for both 2D and 3D medical
image analysis. ITK’s 3D connected filter is used to merge binary labels in 3D based
on overlap of the labels in 3D (adjacent sections post 3D reconstruction). While the
Watershed algorithm is often used for merging labels in 3D, it requires multiple
parameters (diffusion, gradient, thresholding) to be tuned manually for a dataset
that may not generalize in a large dataset like ours. This would result in merging of
un-related cells (due to diffusion parameter) or cell dropping (due to gradient
threshold parameter). Instead, a connected component filter has been used to
merge segmented cells that are locally connected in 2D to create a single unit for
each cell. Here, we extend that framework to 3D. No manual tuning of the para-
meters is required for this connected component filter approach, and ITK’s 3D
connected filters are routinely used in medical image analysis. All code can be
found at GitHub - hubmapconsortium/MATRICS-A: Multiplexed Image Three-D
Reconstruction and Integrated Cell Spatial -Analysis, the docker container/envir-
onment to run the code can obtained by using docker pull hubmap/gehc:skin and
test data for skin region 7 can be found at Human Digital Twin: Automated Cell
Type Distance Computation and 3D Atlas Construction in Multiplexed Skin
Biopsies | Zenodo. There is a corresponding ReadMe file that provides context and
instructions for the repository’s contents and could be found here MATRICS-A/
README.md at main · hubmapconsortium/MATRICS-A · GitHub.

Statistics and reproducibility. For patient level comparison, cell counts within the
regions of interest (either entire imaged sample or limited to the epidermis region
in 3D reconstructed data) were aggregated at patient level for each cell type (n= 10
independent datasets for statistical analysis). Then the cell counts were normalized
by the volume of the region of interest to account for sample to sample size dif-
ferences. The number of voxels in the 3D volume were automatically determined
using the Insight Toolkit (ITK) software41. Using the normalized cell counts
aggregated at donor level, statistical hypothesis tests were performed to understand
the correlation between the normalized cell count vs. age or UV exposure. To
measure the correlation with age, Spearman’s correlation was quantified and tested
(two-sided). For UV exposure (mild vs. moderate-marked), two-sided Wilcoxon-
test was performed. For both statistical tests, Benjamini & Hochberg’s multiple
testing correction was applied71. Statistical analysis was conducted using R version
4.1.2, and additional packages reshape (0.8.9), ggplot2 (3.3.6), and plyr (1.8.7) were
used for data processing and visualization.

Violin plots were also included for visualization of cell distance data (i.e.,
distance of immune cells from nearest endothelial cells (Fig. 5c) and distance of UV
damage markers from skin surface (Fig. 6a) These combine a box plot and a
density plot to display the probability density of the data at different values. The
interquartile range is represented by the box in the center, and the extended line
above/below the box shows the upper (max) and lower (min) adjacent values. The
median value of the distance is represented by the line in the middle of the box. In
the online interactive version, a kernel density estimation is shown on each side of
the box to show the distribution shape of the distances of macrophages (CD68+),
T helper cells (CD3+ CD4+), T reg cells (CD3+ CD4+ FOXP3+) and T killer
cells (CD3+ CD8+) to nearest endothelial cell for each donor https://
hubmapconsortium.github.io/vccf-visualization-release/html/violin_cell.html. The
sum of all immune cells grouped by sun exposure is also shown: https://
hubmapconsortium.github.io/vccf-visualization-release/html/violin_cell_all_
region.html.

Similar plots were generated for distance Ki67, p53, and DDB2 positive cells to
the skin surface for two regions that were stained using two different cytokeratin
cocktails: AE1+ cells (more localized to the stratum basale of the epidermis) and
PCK26+ cells (which stained most of entire epidermis). Both cytokeratin cocktails
stained cells associated with glandular structures and hair follicles in the dermis.

Distance plots for p53+, Ki67+, and DDB2+ cells in the AE1+/stratum basale
epidermis region are located in:
https://hubmapconsortium.github.io/vccf-visualization-release/html/epidermis/
violin_damage_all_region_epidermis.html and in
https://hubmapconsortium.github.io/vccf-visualization-release/html/epidermis/
violin_damage_epidermis.html.
Distance plots for p53+, Ki67+, and DDB2+ cells in the PCK26+/entire
epidermis region are located in:
https://hubmapconsortium.github.io/vccf-visualization-release/html/epidermis_
entire/violin_damage_all_region_epidermis.html and in:
https://hubmapconsortium.github.io/vccf-visualization-release/html/epidermis_
entire/violin_damage_epidermis.html

Cell distance metrics. Two types of distance analyses were conducted: (1) the
distance between the centroid of the immune cell nuclei (macrophage, T helper, T
killer, and T reg) and the edge of the nearest blood vessel (endothelial cell) and (2)
the distance between the centroid of cells positive for UV damage and repair
markers (p53 and DDB2) and proliferation (Ki67) and the nearest edge of the skin
surface. To speed up distance calculations for the 13,489 immune cells and 12,407
damage/proliferation markers across the ten 3D regions, a filter was applied to
calculate the square root of the distance for only those cells/markers that fell within

the range of the current minimum value of the distance (i.e., cells/markers whose
distance on either the x, y, or z axis is greater than the current minimum distance
are not included in the distance computation). This approach considerably reduced
run time and memory load.

Interactive visualization of cell and marker distances. Interactive 3D visualiza-
tions of cell and biomarker distances were implemented using the Plotly 3D visua-
lization package, see Fig. 5c. For Ki67, p53, and DDB2 markers within the epidermis
and distance to skin surface: https://hubmapconsortium.github.io/vccf-visualization-
release/html/epidermis/; for immune cell distances to blood vessels in the dermis:
https://hubmapconsortium.github.io/vccf-visualization-release/. The distance calcula-
tion result was visualized in two ways: (1) a 3D view projecting all immune cell nuclei,
damage/proliferation markers, blood vessels, and their shortest distances (lines) in
tissue space; and (2) the histograms showing the distribution of distances between
nuclei and blood vessels, and between damage/proliferation markers and the skin
surface. The visualization of distance links has been optimized by adding invisible
links that unite all of the existing links into a single polyline reducing the size of the
vector data and memory usage, allowing for responsive online interaction with about
20,000 nodes in a web browser. In the 3D view, each cell nucleus is rendered as a
small circle in the 3D visualization, whereas each UV damage/proliferation marker is
rendered as a cross (see legend for cell and biomarker type colors). Endothelial cells
(based on CD31 staining) are rendered as a collection of red circles. The outermost
skin surface for each tissue section is rendered in grey. The slider in the top-right
corner of each 3D view allows the user to view each tissue layer separately. The
histogram provides information about the distribution of distances for further ana-
lysis. The short lines beneath the histograms indicate the relationship between all the
samples and the histogram bars. The histogram can be displayed in three different
layouts: Overlaid (by default), Stacked, or Grouped, see selection button on lower left.
The visualizations can be exported as an HTML file for online presentation and
exploration, or as a vector image for static viewing.

Immune cell cluster density visualization. This 3D visualization illustrates the
distribution of immune cell clusters, see interactive version at https://
hubmapconsortium.github.io/vccf-visualization-release/html/immune_cluster/. It
shows the number of immune cells present within an adjustable radius area,
here we show both 15 30 µm. The immune cell cluster view allows for the iden-
tification of areas with high immune cell density through use of heatmap-like
bubbles of varying sizes and colors. Large, yellow bubbles indicate a high density of
immune cells, while small, dark blue bubbles indicate a lower density. The color bar
on the right side of the view serves as a legend to assist the reader in identifying the
density of the distribution. The slider in the top-right corner of the visualization
allows the user to view the cluster view for each tissue layer individually and to
compare the 3D and 2D views for further analysis.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The anonymized data that support the findings of this study are included in Zenodo
https://zenodo.org/record/7565670#.ZDbF_ObMIuV (Original single-cell data for
interactive plots—source data for Fig. 4C–E; Fig. 5C, D; Fig. 6A–C. Supplementary
Fig. 8A–C) and as a downloadable file from this paper—Supplementary Data 1—source
data for Fig. 5A; Supplementary Figs. 6, 7, and 9. All original images for each donor/
region/sequential section are available via publicly accessible HuBMAP Globus sites for
each donor/region https://hubmapconsortium.github.io/vccf-visualization-2022/.

Code availability
All MATRICS-A code can be found at GitHub - hubmapconsortium/MATRICS-A:
Multiplexed Image Three-D Reconstruction and Integrated Cell Spatial -Analysis
(https://github.com/hubmapconsortium/MATRICS-A). There is a corresponding
ReadMe file that provides context and instructions for the repository’s contents and can
be found at MATRICS-A/README.md at main · hubmapconsortium/MATRICS-A ·
GitHub. The docker container/environment to run the code can obtained by using
docker pull hubmap/gehc:skin. and test data for skin region 7 can be found at https://
zenodo.org/record/7565670#.ZDbF_ObMIuV. Multiple opensource software were used
to create the docker container environment and build the code including ITK (ver 5.1),
Tensorflow (ver 1.15), Keras (ver 2.2.4), opencv-python (ver 3.4), tifffile (ver 2020.9),
Nifty-Reg (ver 1.3), Python (ver 3.6), CMake (ver 3.17). We highly recommend using the
docker container to run the code. All VCCF code is available at https://github.com/
hubmapconsortium/vccf-visualization-2022.
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