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NIH SenNet Consortium to map senescent 
cells throughout the human lifespan to 
understand physiological health

SenNet Consortium*

Cells respond to many stressors by senescing, acquiring stable growth 
arrest, morphologic and metabolic changes, and a proinflammatory 
senescence-associated secretory phenotype. The heterogeneity of 
senescent cells (SnCs) and senescence-associated secretory phenotype are 
vast, yet ill characterized. SnCs have diverse roles in health and disease and 
are therapeutically targetable, making characterization of SnCs and their 
detection a priority. The Cellular Senescence Network (SenNet), a National 
Institutes of Health Common Fund initiative, was established to address 
this need. The goal of SenNet is to map SnCs across the human lifespan to 
advance diagnostic and therapeutic approaches to improve human health. 
State-of-the-art methods will be applied to identify, define and map SnCs in 
18 human tissues. A common coordinate framework will integrate data to 
create four-dimensional SnC atlases. Other key SenNet deliverables include 
innovative tools and technologies to detect SnCs, new SnC biomarkers 
and extensive public multi-omics datasets. This Perspective lays out the 
impetus, goals, approaches and products of SenNet.

Senescence is a cell state triggered by numerous cell-intrinsic and  
cell-extrinsic stressors, including mitotic, oxidative, genotoxic, 
mechanical or nutrient stress, and organelle dysfunction1. Senescence 
is driven by p53–p21CIP1 and p16INK4a–Rb tumor suppressor pathways  
and possibly other signaling mechanisms1–3. The senescence  
response is amplified by several mediators, including ATM, IKK–NF-κB, 
JAK–STAT, GATA-4 and mTOR. SnCs generally increase in size and 
protein content, show altered organelle function, chronic genotoxic 
stress, a robust secretome and resistance to apoptosis1. One common 
characteristic of SnCs is a stable cell cycle arrest, which prevents a 
damaged cell from replicating, acquiring mutations and instigating 
tumorigenesis.

Multiple lines of evidence suggest that SnCs drive aging and 
diverse age-related diseases in preclinical models1,4–10. Interventions  
targeting SnCs impact multiple morbidities of old age11. The  
senescence-associated secretory phenotype (SASP) includes  
proinflammatory cytokines, chemokines, growth factors, proteases, 
receptors, extracellular vesicles, bioactive lipids and extracellular 

matrix proteases12–14. The SASP can drive loss of tissue homeostasis 
and secondary senescence, but also attract immune cells that mediate 
tissue regeneration and clear SnCs15. SnCs also have important roles in 
normal physiology, for example, embryonic development, parturition 
and wound healing16,17. The tools to discriminate between pathological 
and physiological SnCs are currently lacking.

In 2011, it was established that genetic clearance of SnCs delays the 
onset of multiple age-related pathologies in transgenic mice18. In 2016, 
it was established that genetic clearance of SnCs in mice delays all-cause 
mortality, extending median not maximum lifespan19, implicating SnCs 
in many diseases that kill mice, including cancer, chronic kidney disease 
and cardiomyopathy19. These genetic studies incentivized the develop-
ment of senotherapeutics—drugs that selectively target SnCs, either 
killing them (senolytics) or suppressing the SASP (senomorphics). The 
first senolytics were described in 2015 (ref. 20). Since then, dozens of 
senotherapeutics have been described, including natural products21,22, 
repurposed drugs6,23, peptides24, proteolysis-targeted chimeras25 and 
chimeric antigen receptor T cells26.

Received: 24 May 2022

Accepted: 28 October 2022

Published online: 20 December 2022

 Check for updates

*A list of authors and their affiliations appears at the end of the paper.   e-mail: patty.lee203@gmail.com

http://www.nature.com/nataging
https://doi.org/10.1038/s43587-022-00326-5
http://crossmark.crossref.org/dialog/?doi=10.1038/s43587-022-00326-5&domain=pdf
mailto:patty.lee203@gmail.com


Nature Aging | Volume 2 | December 2022 | 1090–1100 1091

Perspective https://doi.org/10.1038/s43587-022-00326-5

or eliminate SnCs will be necessary for confirming SnC identity in 
healthy tissues.

A key product of SenNet will be multimodal atlases mapping these 
rare cells in human and mouse organs. Ancillary, albeit impactful, 
anticipated products will be new technologies to detect, quantify and 
trace SnCs, as well as biomarkers of SnCs that facilitate translation of 
senotherapeutics and diagnostics of the numerous chronic diseases in 
which SnCs have a causal role. To achieve this ambitious goal, several 
key deliverables are defined for the consortium (see section below). 
The goal of this Perspective is to define the rationale for SenNet, the 
approach of the consortium and the anticipated products.

Establishment of SenNet
Key impetuses for aspiring to map SnCs in human tissues are: (1) emerg-
ing roles for SnCs in maintaining tissue homeostasis and healing; (2) 
extensive evidence implicating SnCs in numerous, common age-related 
diseases, geriatric syndromes and frailty; (3) the advent of a relatively 
new class of drugs termed senotherapeutics with broad potential appli-
cations to improve human health once refined to more-specific SnC 
targets; and (4) recent advances in single-cell technologies that enable 
human tissue mapping efforts at unprecedented resolution, making 
the mapping of SnCs feasible.

To date, human SnCs have largely been characterized in vitro. 
This research revealed that SnC features depend on the cell type, 
senescence inducer, temporal dynamics and physiological context. 
This vast heterogeneity makes it challenging to identify and canon-
ize SnC biomarkers. Thus, no single laboratory, research award or 
approach can comprehensively define cellular senescence. Yet, this 
is urgently needed if we are to harness knowledge of SnCs to benefit 
human health. The tissues, diseases and conditions that affect SnCs 
during aging and other physiological processes support the need for 
a community-wide scientific effort. The National Institutes of Health 
(NIH) Common Fund is a unique and exciting space at NIH specifically 
designed to address large challenges and opportunities that are of 
high priority for the entire NIH (all 27 institutes, centers and offices) 
and biomedical community.

The NIH Common Fund has rapidly mobilized new single-cell 
and spatial technologies to tackle other large, multidisciplinary and 

Senolytics have proven efficacious in preclinical models of frailty, 
cardiovascular disease, kidney disease, diabetes, osteoarthritis, osteo-
porosis, hepatic and pulmonary fibrosis, steatosis, obesity, depression, 
mortality due to betacoronavirus infection and Alzheimer’s disease27,28. 
There are numerous ongoing clinical trials testing senolytics in age-
related diseases and geriatric syndromes, including frailty, idiopathic 
pulmonary fibrosis, Alzheimer’s disease, chronic kidney disease, osteo-
porosis and coronavirus disease 2019. Preliminary data suggest that 
the senolytic cocktail dasatinib plus quercetin is safe in humans and 
reduces SnC burden29,30. In mice, a short course of senolytics, admin-
istered intermittently, is sufficient to improve multiple measures of 
physical fitness, even if administered late in life31, highlighting the 
immense potential impact of senotherapeutics on human health and 
healthcare costs.

Despite this promise of SnCs as a therapeutic target, there is sparse 
information about the identity and features of SnCs in human tis-
sues. Little is known about where and when SnCs arise in humans or 
the extent of SnC and SASP heterogeneity in vivo. Such knowledge 
could guide therapeutic and organ-specific targeting of SnCs. Clearly, 
there is a compelling need to develop tools to map and identify human 
SnCs with spatial and temporal resolution. To address this need, the 
SenNet Consortium was created in 2021. The goal of SenNet is to 
functionally characterize the heterogeneity of SnCs in 18 tissues from 
healthy humans across lifespan at the single-cell resolution, using mice  
and other models and perturbations for validation. The scientific 
foundation for this approach is that aging is thought to begin at con-
ception32. Furthermore, SnCs accumulate with chronological age even 
in the absence of a disease33. Thus, characterizing SnCs across healthy 
lifespan informs geroscience, the study of fundamental biology of 
aging enabling identification of therapeutic targets for new inter-
ventions that could simultaneously prevent, attenuate and/or delay 
multiple age-related diseases, for which old age is by far the greatest  
risk factor34. This approach will also facilitate the discrimination of 
SnCs that are physiological versus pathological (that is, required for 
establishing or reattaining tissue homeostasis versus driving or exac-
erbating disease), while informing future studies of the specific role 
of SnCs in individual diseases. The approach comes with risks, as there 
are no reference or control samples. Hence, perturbations that drive 
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complex biomedical challenges, creating new platforms and tools 
for the broad scientific community that have tremendous potential 
to advance human health. The NIH Common Fund is managed by 
the Office of Strategic Coordination within the Division of Program 
Coordination, Planning and Strategic Coordination Office of the NIH 
Director. Common Fund programs must address emerging scientific 
opportunities and pressing challenges in biomedical research that 
are transformative, catalytic, synergistic, cross-cutting and unique. 
Examples of these initiatives include the Human Biomolecular Atlas 
Program35, and Somatic Cell Genomic Editing36, 4D Nucleome37 and 
the Genotype-Tissue Expression project38.

In 2021, the NIH Common Fund launched the SenNet program to 
catalyze the development of a framework for mapping SnCs and their 
SASP at single-cell resolution in healthy human tissues across develop-
ment through physiological aging. This comprehensive blueprint for 
characterizing and mapping SnCs was initiated through several NIH-
sponsored workshops engaging internal and external experts working 
across numerous disciplines. Participants concluded that there is a 
critical need to develop novel tools and technologies to identify SnCs 
in vivo and to harmonize data and SnC definitions across laboratories. 
Model systems and perturbations to validate characteristics of SnCs 
discovered in tissues were also deemed critical39. For example, mice 
enable genetic and pharmacologic manipulations of SnCs (production  
and elimination) as well as longitudinal assessments as organisms 
chronologically age. In the fall of 2022, SenNet incorporated mecha-
nisms to also establish a murine atlas of SnCs to help to inform the 
human atlas.

The initial 5-year investment of about $190 million was awarded to 
eight tissue mapping centers (TMCs), seven technology development 
and application (TDA) sites and one consortium organization and data 
coordinating center (CODCC; housed across five sites) to integrate the 
data developed by the consortium (Fig. 1). The murine effort added five 
additional TMCs and five TDA sites. SenNet is purposely designed to 
have a single CODCC to harmonize and integrate efforts from all sites 
and awardees to create atlases of SnCs that capture information about 
the evolution of senescence in space and time (four-dimensional (4D) 
atlases) across the human life course. Eighteen tissues are currently 
covered by SenNet (Fig. 2).

TMCs are responsible for all aspects of data generation from tissue 
collection and analysis to data integration and interpretation. We antici-
pate that TMCs will acquire and integrate imaging and omics data to 
benchmark, standardize and validate SnC maps at single-cell resolution 
for their assigned tissues. The TDA sites are responsible for development 
of innovative, new approaches and tools necessary to deeply phenotype 
SnCs in human tissues and model systems. Examples include multi-
omics characterization of the 4D nucleome in SnCs, high-throughput 
quantification of telomere-associated foci, and in vivo detection of SnCs 
via positron emission tomography imaging. Once developed, these new 
technologies are expected to be applied broadly and collaboratively 
across multiple tissues by the TMCs. The CODCC will collect, store and 
curate all data and metadata generated by the TMCs and TDA sites. The 
CODCC is responsible for generating the computational models, and 
final atlas products as well as the tools to visualize and disseminate the 
data as a resource for the broad scientific community

Mammary
tissue

Liver

Pancreas

Ovary
Placenta

Bone
marrow Colon

Adipose depots

Lymphoid tissue 
Thymus

Circulation
Heart

Cortex
Hippocampus
Spinal cord

Kidney

Lung

Skin

Joints
Musculoskeletal

Fig. 2 | Organs in which SnCs will be mapped by SenNet. Human tissues in which SnCs will be identified and characterized by the SenNet Consortium to produce 4D 
atlases of senescence across the lifespan of humans.
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It is expected that SenNet will interface with other cell mapping 
programs such as Human Bimolecular Atlas Program (HuBMAP), 
Human Cell Atlas (HCA) and the Kidney Precision Medicine Project 
(KPMP). HuBMAP is an NIH Common Fund Initiative to develop the 
resources and framework to map the >30 trillion cells that make up 
the human body using protein identifiers of cell lineage. HCA is using 
single-cell and spatial transcriptomics to create cell reference maps 
defining the position, function and characteristics of all cells in the 
human body. The KPMP is an initiative of the National Institute of  
Diabetes and Digestive and Kidney Diseases (NIDDK) aimed at using 
state-of-the-art and emerging technologies to characterize renal 
biopsies from participants with acute kidney injury or chronic kidney 
disease to enable personalized approaches to their treatment. Interfac-
ing with these existing (and future) cell mapping initiatives will save 
extra ordinary amounts of time and money (for example, using antigens  
and antibodies validated by HuBMAP to identify SnC lineage). It will  
also add immense value if datasets use common descriptors to  
define cell subsets and the datasets can be integrated (for example, 
information on renal SnCs can be integrated with KPMP data on  
diseased tissue to advance diagnostic and therapeutic approaches). 
Ideally, the atlases generated by SenNet can be ‘layered’ on top  
of atlases of cell types in organs in healthy and diseased tissues  
generated by other mapping programs. Hence, structurally, the  
SenNet CODCC is similar to and cross-pollinates other NIH-sponsored 
cell mapping initiatives.

Characterization of senescent cells
Currently, no SnC-specific biomarker exists. Hence, the first goal of 
SenNet is to explore and define SnC biology. To address this challenge, 
SenNet created a Biomarker Working Group, which is responsible for 
iteratively compiling lists of cell traits, RNAs, proteins, lipids and metab-
olites that may be used to identify SnCs. This will enable modeling and 
annotating SnC classes and possibly subclasses that are anticipated 
to be dictated by cell origin, senescence inducer, tissue environment 
and human age. The overall goal of the Biomarker Working Group is 
to curate a database of senescence-associated biomarkers. The short-
term goal is to generate a list of senescence-associated biomarkers 
currently used by members of the SenNet Consortium. The information 
collected will include cell type, the combinations in which biomarkers 
occur within a single cell, reagents used for detection (for example, 
antibodies or nucleic acid probes) and their compatibility with various 
experimental approaches and human tissues. The list is expected to 
evolve over time, with some markers being removed owing to lack of 
specificity or sensitivity, and others being added as our understand-
ing of the senescent phenotype improves. As data collection ramps 
up, artificial intelligence will undoubtedly be crucial for refining the 
biomarker list. Ultimately, the Biomarker Working Group will produce 
a compendium of senescence biomarkers at the tissue and cell-type 
level. Our prediction is that multiple overlapping, non-static signatures 
of SnCs will ultimately be identified that require detection and quanti-
fication of more than one type of biomolecule, making it challenging 
to detect SnCs by a single method.

The complexity of senescence entails kinetic alterations in 
almost all aspects of cell biology, from epigenetic remodeling40 to 
changes in the quantity and function of organelles41. In vitro studies of  
oncogene-induced senescence, replication-induced senescence and 
genotoxin-induced senescence revealed several, frequently generaliza-
ble characteristics of SnCs. To date, three main phenotypes characterize  
SnCs, with the caveat that they are context dependent. Generally, SnCs 
(1) enter an essentially permanent arrest of proliferation; (2) become 
relatively resistant to cell death; and (3) develop the SASP. Current 
biomarkers used to identify SnCs include increased expression of 
the cell cycle regulators p16INK4a (ref. 42) and p21CIP1 (ref. 43), increased 
lysosomal senescence-associated β-galactosidase activity44, decreased 
lamin B1 (ref. 45), increased secretion of HMGB1 (ref. 46) and several 

markers of genotoxic stress including senescence-associated DNA 
damage foci of γH2AX and 53BP1, telomere-associated or telomere 
dysfunction-induced foci characterized by DNA damage response foci 
at telomeres47, senescence-associated heterochromatic foci character-
ized by colocalization of dense DAPI staining and modified histones, 
and senescence-associated distensions of satellite DNA characterized 
by CENP-B foci at centromeres. Ideally, an endpoint associated with 
each of the three main phenotypes should be measured to determine 
if a cell is senescent. Relying on a single endpoint is fraught with error. 
For example, high senescence-associated β-galactosidase activity is 
detected in cultured confluent fibroblasts48,49 and certain activated 
macrophages50,51, whereas p16INK4a and p21CIP1 expression can be induced 
in a reversible manner under certain physiological contexts50–54.

In addition to the above SnC biomarkers, activation of LINE-1 ret-
rotransposable elements55,56, cytoplasmic chromatin fragments57 and 
mitochondrial DNA58 are detected in SnCs. Numerous other molecules 
are attributed to SnCs or the SASP. However, in the absence of cross-
validation with established SnC biomarkers at single-cell resolution 
and validation with appropriate perturbations provoking or target-
ing SnCs, these molecules are only potential biomarkers of SnCs. As 
more cell types and physiological contexts are studied, a universal 
senescence-specific marker may never emerge. Regardless, deep char-
acterization and localization of SnCs in vivo will advance options for 
diagnosis and treatment of multiple diseases of old age. Internal and 
external collaborations are an important part of SenNet to facilitate 
adaptation of emerging technologies and cross-validation. Hence, 
it is difficult to define the entire scope of features that will ultimately 
constitute SnC signatures.

Key challenges lie ahead. As stated, none of the current SnC bio-
markers are specific to SnCs, requiring multimodal measurement of 
multiple endpoints at the single-cell level just to identify SnCs1,59, let 
alone characterize them further. Most published studies rely on bulk 
tissue analysis or, if at single-cell resolution, implement one method 
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to measure one type of biomolecule. Neither approach is adequate to 
precisely identify SnCs in tissues, let alone their lineage, their unique 
characteristics and to predict their role in physiological aging. Mul-
tiple targeted and unbiased approaches are required (Fig. 3 and see 
Supplementary Information for method details) and integration of 
multi-omics data will be necessary to achieve the goals set forth by 
SenNet. Considerable value is added by comparing and contrasting 
characteristics of SnCs of similar or distinct lineages across tissues to 
discover common (for example, increased expression of a cell cycle 
inhibitor) and unique (for example, increased expression of a particular 
SASP protein) SnC features as potential biomarkers and molecular 
targets. This emphasizes the need for a trans-NIH effort and justifies 
the structure of SenNet (for example, multi-site, multi-platform, tech-
nology development, and a single-data integration site).

Senescent cell atlas
Creating a multiorgan 4D atlas of SnCs with healthy human aging will 
yield an important tool for investigating disease mechanisms relevant 
to the mission of most NIH institutes and centers. Currently, we have no 
knowledge as to whether different types of SnCs appear with advancing 
physiological age, and/or if SnC phenotypes evolve over time in vivo. 
Another possibility is that SnCs arise specifically because of acute tis-
sue injury or disease but immune clearance of SnCs declines with age, 
precipitating chronic disease. Indeed, preexisting SnCs impair host 
responses to tissue injury or infection5, thereby promoting disease in 
a feed-forward mechanism.

Single-cell technologies for imaging and deep phenotyping of 
SnCs have tremendous clinical and translational potential. Comple-
mentary, multimodal characterization of SnCs will not only deepen 
our understanding of senescence biology in health but also reveal  
the clinical significance of SnCs in cancer, fibrosis, metabolic disorders  
and diverse degenerative diseases. As bioinformatics approaches  
on multi-omics are evolving, it will be possible to integrate all epi-
genomics data with cellular composition for identification of SnC  
phenotypes. The SenNet Consortium is geared toward deconvo-
luting the cellular senescence phenotypes based on bioinformatic  
multi-omics approaches. Although the current goal of SenNet is  
the mapping of SnCs in ‘normal/healthy’ human and murine  
tissues to generate reference atlases of SnCs, we anticipate future 
efforts will leverage these data to study the role of SnCs in various 
human pathologies.

Given the multiorgan and multimodal data generation envisioned, 
a structured, cross-team data management, organization and analysis 

plan is essential. The SenNet CODCC will manage data curation, inte-
gration, analysis, atlas creation and dissemination through the SenNet  
Data Portal (Fig. 4). These harmonization and integration efforts 
will be coordinated with the Common Fund Data Ecosystem to align  
SenNet for integration with data from other Common Fund programs. 
Uniformly processed molecular and cellular data will be integrated 
with the common coordinate framework (CCF) and will be the basis for 
construction of an atlas of SnCs. To facilitate uniform data processing 
and quality-control pipelines within CODCC, and reuse by other data 
consumers, CODCC will mandate data submission using common 
data formats that are aligned with CCF reference atlas construction. 
Examples are the use of Azimuth for cell-type annotation or validated 
organ mapping antibody panels (OMAP). Uniform processing pipelines 
will implement state-of-the-art algorithms for the analysis of imag-
ing, sequencing and multi-omics, which will generate standardized 
datasets that are spatially registered, segmented and annotated using 
CCF 'Anatomical Structures, Cell Types and Biomarkers’ (ASCT + B) 
terminology and hence linked to existing ontologies. Integrated and 
harmonized datasets will be made available through the data portal, 
along with the raw data.

The SenNet Data Portal will also integrate the CCF Registration 
User Interface (CCF RUI), CCF Explorer User Interface (CCF EUI) and 
the Vitessce framework in support of exploratory visualization of  
existing data across levels—from the whole body to single organs 
to molecular-level and cellular-level datasets and vice versa (Fig. 4). 
Clinical data will also be standardized and shared in an extension of 
the CODCC and CCF efforts and will be the basis for standardized 
implementation and association with electronic health record clinical 
data in the future.

The CCF consists of ontologies, libraries and computer-based and 
other training materials that support the efficient mapping, registra-
tion and exploration of clinically, semantically and spatially indexed 
human tissue data. SenNet will extend the HuBMAP CCF that consists 
of: (1) a CCF Specimen Ontology, which provides CCF-relevant demo-
graphic and clinical metadata about the specimen and donor (the 
‘who’); (2) a CCF Biological Structure Ontology, which describes ‘what’ 
part of the body a tissue sample came from; and (3) a CCF Spatial Ontol-
ogy, which indicates ‘where’ the tissue is in a three-dimensional (3D) 
reference system. In addition, the CCF defines a ‘registration process’ 
that makes it possible to annotate data and map it to the 3D reference 
system, as well as an ‘exploration process’, which facilitates query, 
analysis and visual examination of registered tissue data and predic-
tion of properties (for example, what cell types are commonly located 
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Fig. 4 | Overview of the visualization tools to be developed to enable 
exploration of the senescent cell atlases produced by SenNet. CCF 
exploration user interface (EUI) and Vitessce (a visual integration tool for 
exploring spatial single-cell datasets) will be integrated to enable seamless 
navigation across scales and queries of SenNet data. The CCF EUI enables 
registered tissue blocks from the registration user interface (RUI) to be explored 

spatially (via body browser in the left screenshot, center) and using ontology 
terms (via hierarchy in the left screenshot, on left) at anatomic scale. A click on 
a tissue dataset (left) leads to Vitessce (right), which supports the exploration 
of cellular and molecular scale distributions. EUI provides clinical and spatial 
context and ontology cross-links, while Vitessce supports details on demand at 
the molecular scale.
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in a specific anatomical structure or what antibodies should be used to 
identify a desired set of protein biomarkers) (Fig. 4).

The CCF also provides 3D representations of anatomy linked to 
ASCT + B tables60. Note that the CCF is semantically explicit (that is, 
terminology for anatomical structures, cell types and biomarkers  
link to existing ontologies, namely Uberon/Foundation Model of  
Anatomy, Cell Ontology (CL) and HUGO Gene Nomenclature Committee)  
as well as spatially explicit (for example, 3D reference organs are  
used for registration and exploration). In February 2022, there were 
ASCT + B tables for 25 organs and 50 associated 3D reference object 
sets (1–4 per organ, for example, 1 uterus but 4 kidneys to capture 
left–right and male–female versions), which represent the size, shape, 
position and spatial orientation of major anatomical structures in an 
organ-specific manner. The ASCT + B tables and associated spatial 
reference objects represent the human body in a simplified manner 
as a partonomy where each cell is part of an anatomical structure  
that is part of larger anatomical structures and ultimately makes up 
the entire body.

The SenNet CCF Atlas and SenNet CODCC Data Portal will serve 
as the ‘hub’ for data coordination and integration. Future extensions 
of the CCF will require integrating specimen ontology with clinical 
informatics and electronic health record-based clinical data to char-
acterize not only the state of the participant when the biospecimen 
was acquired, but also the evolution of the person over their entire 
lifetime. Furthermore, this may serve as an integration point for envi-
ronmental factors or cumulative drug exposures. Such examples may 
then be used to interpret an individual’s ‘health’ atlas using artificial 
intelligence platforms.

Challenges to creating a 4D SnC atlas include: (1) SnCs are rare in 
vivo; (2) spatial-omics is a nascent technology implying an additional 
burden of validation for ill-characterized cell types such as SnCs; (3) 
for any single SnC biomarker, it is not yet established whether changes 
in mRNA, protein or the epigenome (or a combination) best reflect a 
senescent state; (4) implementing a biomarker panel that includes 
a combination of proteins, nucleic acids, morphology markers and 
measure of enzymatic activity endpoints currently limits the ability 
to colocalize SnC biomarkers at single-cell resolution; (5) SnCs in dif-
ferent tissues will probably express common as well as tissue-specific 
patterns of senescence features; and (6) a lack of tools to confidently 
discriminate pathological versus physiological SnCs. In complex tis-
sues, both the physiological and pathological roles of SnCs may occur in 
close proximity (for example, chronic tissue damage foci with adjacent 
areas of tissue regeneration). To optimize senotherapeutics and mini-
mize side effects of this new class of drugs, one would like to distinguish 
between SnCs involved in these two processes and to do so using a 
biomarker measured in an easily accessed tissue or biofluid. This will 
require tissue mapping advances as well as biomarker discovery in 
human biofluids.

SenNet deliverables
To produce comprehensive and high-resolution atlases of SnCs, several 
key SenNet deliverables are anticipated (Fig. 5). First, production of 
extensive multi-omics and imaging datasets that functionally and spa-
tially identify and characterize SnCs at the single-cell level in 18 human 
tissues across the life course of humans. The datasets will be made 
readily accessible to the broad scientific community and searchable. 

Bone marrow 
and blood/pelvis

TMCs
Transcriptome

Lipidome
Proteome

Curated datasets

Generation, harmonization 
and integration

Human reference atlas design

Advance research improve 
human health

Skin

Spleen

Lung

Thymus
Brain

Lymph node

Heart

Kidney

Large intestine

Vasculature

Fig. 5 | Schematic of the SenNet Consortium goals. SnC atlas building requires a 
framework for layering data. Data generated by the TMCs and TDA sites are input 
into the CODCC along with associated metadata. The datasets are organized 
and de-identified (curation), then analyzed and integrated. The goal is to create 
an atlas and public database of curated data that can be searched, analyzed 
and visualized as 3D images of organs using unified annotations. High-quality 
experimental data are needed to create a human reference atlas. The evolving 
reference atlas supports data standardization and federation, making it possible 
to integrate data from different specimens, laboratories and assay types. The 
atlas characterizes the healthy human—from the whole body down to the single-

cell level; it can be compared across ages and diseases to understand differences, 
advance research and improve human health. Use case scenarios for different 
stakeholders (researchers, practitioners and students) guide atlas construction 
and usage but also experimental data acquisition and analysis. Of note, diversity 
in terms of human participant gender, race and socioeconomic status is 
emphasized in SenNet. However, these variables may impact SnC heterogeneity 
even further, meaning that, in the timeframe of the initial grants, statistically 
meaningful characterization of SnCs across diverse populations might not be 
achieved.
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Innovative visualization tools will be developed to maximize the value 
and accessibility of the data. Second, mapping rare and heterogeneous 
SnCs in human tissues will require the generation of new tools, tech-
nologies and computation modeling systems. Third, the data will yield 
biomarker panels that enable the identification of SnCs, define their 
secretome, and illustrate the common principles and heterogeneity 
of SnCs in the human body. Fourth, validation of SnC biomarkers will 
require establishing reliable approaches for perturbing SnCs (eliminat-
ing, modifying and removing SnCs). Finally, improved imaging tools 
will be needed to rigorously identify SnCs and their unique proper-
ties in vivo, with the aspirational goal of ultimately being able to do so 
longitudinally at the whole-organism level. The ability to detect SnCs 
noninvasively and longitudinally in people would substantially improve 
our ability to monitor the effects of injury, inflammation, carcinogen-
esis, autoimmunity and responsiveness to specific drugs or biologics, 
ultimately identifying those who may benefit from senotherapies.

A clear and comprehensive definition of SnCs in multiple organs 
will enable identification of molecular targets unique or enriched 
in SnCs that could form the basis of selective senotherapeutics to 
advance the treatment of senescence-related pathologies. Biomarkers 
will ideally be validated within and across tissues, ultimately enabling 
predictive modeling, optimizing SnC targeting and ensuring the safety 
and efficacy of senotherapeutics. A deeper, temporal understanding 
of SnCs with physiological aging will enable the development of thera-
pies that promote the beneficial effects of SnCs while suppressing or 
removing the deleterious effects.

The timelines for the development of these key deliverables are 
as follows. During year 1 (mid-2021 to mid-2022), the consortium will 
establish policies and guidelines to facilitate collaboration, harmoniza-
tion and rigor of SenNet activities. Working groups will be established 
to inform consortium-wide activities and facilitate interfacing with 
other cell mapping initiatives. These include working groups on policy, 
benchmarking, biomarkers, omics mapping, imaging, data submis-
sion, CCF, Common Fund data ecosystem integration, publication 
and outreach. The working groups reflect every aspect of the SenNet 
project pipeline from setting standards for high-quality data genera-
tion, annotation and integration in a standardized format, to data dis-
semination and visualization. In years 2–5 of the consortium (mid-2022 
to mid-2026), TMCs are expected to regularly generate large volumes 
of multi-omics and imaging data, and to develop two-dimensional  
maps of SnCs in human and mouse tissues. This will require collabo-
rations between TMCs, and with TDA sites, to validate detection 
tools and methods, and to determine the extent of variability in SnC  
abundance and features between tissues and individuals across the 
aging process. As data are generated, the CODCC will create a frame-
work for depositing and visualizing the data in four dimensions. It 
is expected that the CODCC will release datasets regularly for peer 
review, publication and sharing. As an example, the first release of 
data from HubMAP comprised data and metadata from de-identified 
donors for seven tissues. This included >300 datasets defining the 
tissue samples and data generated from them via microscopy, mass 
spectrometry, sequencing and other modalities. Future data releases 
are scheduled biannually.

Concluding remarks
SenNet’s vision is to identify and functionally characterize the het-
erogeneity of SnCs across numerous human tissues at single-cell 
resolution, from embryonic development through to physiological 
aging. Novel technologies and tools will be created and applied to the 
characterization of human SnCs. Perturbations and studies in mice will 
be used to validate new SnC biomarkers. Generating SnC atlases via a 
collaborative consortium, integrating the data through a single-data 
coordinating center, and harmonizing this effort with other cell map-
ping initiatives will amplify the value of SenNet. This NIH Common Fund 
effort will undoubtedly pave the way for exciting, new possibilities in 

understanding and therapeutically modulating senescence-associated 
human conditions.

Future perspectives
SenNet will serve as a unique and comprehensive resource to eluci-
date the heterogeneity of SnCs elicited in different cell types, by dif-
ferent drivers of senescence, anatomical location and human age. 
Ideally, novel biomarkers to identify SnCs and distinct signatures of 
disease-specific and beneficial SnCs will be discovered. The knowledge  
gained can be deployed to better understand the role of SnCs in health 
and disease, and to guide clinical translation of senotherapeutics. 
New biomarkers of SnCs are anticipated to be valuable for identify-
ing individuals at risk of disease, stratifying participants in interven-
tional studies, monitoring the response to senotherapeutics, evaluating  
therapeutic efficacy and ultimately optimizing and personalizing 
interventions.
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