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ABSTRACT
The human body is made up of about 37 trillion cells (adults). Each

cell has its own unique role and is affected by its neighboring cells

and environment. The NIH Human BioMolecular Atlas Program

(HuBMAP) aims at developing a 3D atlas of human body consisting

of organs, vessels, tissues to singe cells with all 3D spatially regis-

tered in a single 3D human atlas using tissues obtained from normal

individuals across a wide range of ages. A critical step of building

the atlas is to register 3D tissue blocks in real-time to the right

location of a human organ, which itself consists of complex 3D sub-

structures. The complexity of the 3D organ model, e.g., 35 meshes

for a typical kidney, poses a significant computational challenge

for the registration. In this paper, we propose a comprehensive

framework TICKET (TIssue bloCK rEgisTration) to support tissue

block registration for 3D human atlas, including (1) 3D mesh pre-

processing, (2) spatial queries on intersection relationship and (3)

intersection volume computation between organs and tissue blocks.

To minimize search space and computation cost, we develop multi-

level indexing at both the anatomical structure level and mesh level,

and utilize OpenMP for parallel computing. Considering cuboid

based shape of the tissue block, we propose an efficient voxelization-

based method to estimate the intersection volume. Our experiments

demonstrate that the proposed framework is efficient and practical.

TICKET is being integrated into the HuBMAP CCF registration

portal [1].
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1 INTRODUCTION
With the significant development of tissue imaging technologies[2]

[3] [4] [5], enormous amounts of information about our human

body are now being produced at both cellular and subcellar levels.

The human body, which consists of more than 70 organs and 37

trillion cells, can be viewed as a special atlas. Every organ and

every cell have corresponding coordinates. The Human BioMolecu-

lar Atlas Program (HuBMAP) [6] of National Institutes of Health

is a national initiative to develop an open, global framework for

comprehensively mapping of the human body at cellular resolution,

in particular, generating foundational 3D tissue atlases of human

body, to better understand how the healthy human body works

and what changes during aging or disease. A Human Body Com-

mon Coordinate Framework [7], encompassing 3D organization of

whole organs and thousands of anatomical structures, are being

built by HuBMAP, where the organs and the anatomical structures

are represented in mesh based 3D models [8].

By collecting 3D tissue blocks from human body, a vast amount

of spatial information (cells and biomarkers) will be derived from

various tissue imaging technologies on the tissues (2D and 3D).

https://doi.org/10.1145/3557917.3567618
https://doi.org/10.1145/3557917.3567618
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3557917.3567618&domain=pdf&date_stamp=2022-11-03
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Figure 1: Tissue block registration. The hilum of kidney, renal column and renal pyramid are anatomical structures inside the kidney,

which may collide with the tissue block.

An essential component of HuBMAP is tissue block registration

[9] (Figure 1), a critical step to enable organ experts to register

tissue data to the atlas. It will also help researchers to explore tissue

data in a spatially and semantically explicit manner. In order to

explore and analyze the inner structures inside the tissue block, 3D

computational geometry and spatial data management play a major

role for exploring spatial relationships, e.g. anatomical structures

that are colliding with the tissue block, as well as quantitative

measurements, e.g. volume of each anatomical structure contained

in the tissue block. However, there are several challenges we need

to address:

Complex 3D Structures: 3D anatomical structures have diverse

shapes. Some are in regular shapes while others may have complex

structures such as the lung (Figure 2a), kidney (Figure 2b) and brain

(Figure 2c). Although the minimal bounding box (MBB) is one of

practical approaches to simplify complicated models, MBB is not

effective to represent such complex 3D objects for spatial queries.

A new indexing method for primitives of 3D models is necessary to

reduce the query complexity. Besides, the hierarchical organization

of human body demands a multi-level indexing approach.

Varying Mesh Quality of 3D models: 3D models of organs

come from different sources such as Allen Brain Atlas [10], the Hu-

man Tumor Atlas [11], HuBMAP [6], the Kidney PrecisionMedicine

Project [12] and so on. The mesh quality varies due to different

purposes of the projects and varying requirements. For example,

visualization oriented 3D organ models are targeted to visualization

only, and may have limitations for spatial processing and queries.

For instance, there are models with non-manifold edges [13] and

holes, even though smoothness and other post-processing tech-

niques will make the models "look" smooth and perfect. For sci-

entific computing purposes, 3D models for anatomic structures

must be spatially compliant to ensure accurate calculation of spa-

tial relationships and measurements. However, it is inevitable to

lose vertices or edges due to the occlusion, reflectance or raw data

preprocessing, rendering holes in the surface and non-manifold

meshes [14]. For example, the mesh in Figure 3a is divided into

two parts, i.e., the renal pyramid and the renal papilla, according to

biological functionalities and structures. The holes are automati-

cally generated since the surface is not closed any more due to the

division of the mesh in Figure 3b. Therefore, a hole filling algorithm

needs to be applied to the 3D organ models as Figure 3 shows in

advance to guarantee the precision of tissue block registration.

High Computation Complexity: 3D spatial queries involve

computationally intensive geometric operations for quantitative

measurements and identifications of spatial relationships. While

a traditional minimal bounding box approach can filter out the

candidates dissatisfying the constraints of spatial queries in the

filter stage, the refinement stage still cost too much computation

when examining the candidates with respect to their exact geome-

try to generate the exact solutions [15] [16]. Due to the complex

structures of 3D objects, the refinement stage could dominate the

spatial query cost. Moreover, queries which require quantitative

computations such as intersection volume of objects, have much

higher complexity than normal query types.

The above challenges demand a practical and efficient framework

that can normalize meshes, exploit indexing techniques suitable for
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(a) 3D model of lung (b) 3D model of kidney (c) 3D model of brain

Figure 2: Complex 3D structures

(a) Origin models (b) Separate structures before hole filling (c) After filling holes

Figure 3: Example of mesh-preprocessing: hole filling

complex objects, reduce computational complexity, and mitigate

potential I/O cost to tackle the task of 3D tissue block registration.

Our main contributions are summarized as follows:

• We propose a comprehensive framework TICKET for tis-

sue block registration including three steps: (1) Pre-process

meshes such as remeshing non-manifold meshes and fill-

ing the holes to produce watertight meshes, (2) identify the

anatomical structures that are collided with the tissue block,

and (3) compute the volume of each anatomical structure

contained in the tissue block, if intersected.

• We introduce multi-level spatial indexing at the anatomical

structure level and mesh level, which improves query perfor-

mance compared with the traditional filter-refine paradigm

[17]. We take an in-memory approach for data management

to mitigate I/O cost and reduce latency. Besides, we provide a

spatial query http service for tissue block registration, which
can be invoked on-demand when users upload the tissue

blocks.

• We develop an efficient voxelization-based method to esti-

mate the intersection volume between the tissue block and

the organ considering the regular cuboid shape of the tis-

sue block. We utilize parallel programming to accelerate the

volume computation.

The rest of the paper is organized as follows. We first introduce

the background in Section 2. The framework of tissue block regis-

tration is demonstrated in Section 3. Next, we introduce multi-level
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spatial indexing in Section 4. Section 5 presents the voxelization-

based method to estimate the intersection volume as well as the

parallel computing scheme to accelerate the volume computation.

The performance of the framework is evaluated in Section 6. The

on-demand spatial query service of tissue block registration is in-

troduced in section 7 followed by conclusion.

2 BACKGROUND
2.1 Mesh Pre-processing
Mesh pre-processing is a fundamental step of 3D data acquisition.

Poor quality meshes may cause errors in spatial queries or lead

inaccuracy intersection volume computation. There are some typi-

cal mesh pre-processing techniques such as mesh self-intersection

checking, remeshing and hole filling. Self-intersection checking is

intuitive and easy to implement while hole filling is much more

subjective and semantic.

Due to the differences of data representation, there are two cat-

egories of current hole filling algorithms [14]: point cloud-based

methods andmesh-basedmethods. Point cloud-basedmethods were

developed in earlier years, while mesh-based methods gain more

attention and play an important role with the rapid development

of computer graphics. Typical workflow of hole filling algorithms

can be summarized in two steps: hole boundaries should be first

detected and then holes are filled by generating new meshes. In

particular, mesh-based hole filling algorithms are divided into two

categories: volume-based algorithms and surface-based algorithms

according to the data used in the phase of filling holes. In most

cases, the simple triangulation algorithms work well to triangulate

the polygonal hole regions, especially for the flat and disk-like holes

without intense changes to the hole topology and geometry. For

large holes that are too complex to fill using triangulation, various

hole filling algorithms are proposed [18] [19] [20] [21]. In this paper,

we adopt the hole filling algorithm [20] to fill all the problematic

holes.

2.2 Spatial Indexing
Each human organ consists of a set of anatomical structures (AS).

For example, a kidney has renal pyramids, renal papilla, outer cor-

tex, a total of 35 ASs. A brain contains more than 200 anatomical

structures. The organ consisting of multiple ASs is represented by

a 3D model, typically using a mesh based representation, using for-

mats such as Graphics Language Transmission Format (e.g., GLB)

[22] or Object File Format (OFF) [23] . A typical kidney may be

represented by 35 mesh surfaces. To register a human tissue block

to an organ, proper indexing is needed for such complex 3D models

to minimize the search space and geometric computations. The key

principle of the spatial indexing is to divide the search space into

regions. There are two common types of space decomposition [24]:

• Regular decomposition, also known as space driven index,

divides the space in a regular manner independent of the

distribution of the objects (i.e., indirectly related to the ob-

jects in the space). Objects are mapped to the cells according

to some geometric criteria. The most common methods are

Quad Tree [25] and cell-based Hashing [26].

• Object Directed Decomposition is also known as data

driven index. The division of the index space is determined

directly by objects. The space is divided by one of or a com-

bination of the following properties: coordinates of data

points, the extents, the bounding box or the spatial objects.

The most common examples are K-D tree [27], BSP-tree [28]

and R-tree [29]. Although K-D tree and BSP-tree are easier

to implement, the deletion and insertion of them are non-

trivial while R-tree is designed for dynamic changing data

and support deletion and insertion.

Traditional filter-refine paradigm with single spatial index built

on MBBs of objects is not suitable for complex objects because the

geometric computation during the refinement stage will dominate

the spatial query cost. Therefore, building index on primitives (ver-

tices, edges and faces of meshes) can greatly reduce the complexity.

3 OVERVIEW
3.1 Framework of the Tissue Block Registration
We aim to develop a comprehensive framework for tissue block

registration, which supports mesh pre-processing, spatial queries

on intersection relationship and intersection volume computation.

We present the overall framework for the tissue block registration

in Figure 4. Initial 3D mesh data is stored in disks in object file

format (OFF). We first check whether the meshes are 2-manifold

or not. If not, the medical illustrators of HuBMAP will remesh the

non-manifold meshes manually. The meshes with holes are then

pre-processed by the hole filling algorithm [20]. After the hole

filling, the generated patches can be refined and faired [30]. Each

individual mesh of anatomical structures will be loaded and stored

in memory. We also create a hash map to store the meshes, where

the key is the organ name and the value is a list of the meshes of

the anatomical structures of the organ for an easy search. Next,

an anatomical structure level index will be generated according to

the MBBs of the anatomical structures for each organ, and a mesh

level index is built for the mesh of every anatomical structure. In

addition, different from traditional intersection volume computa-

tion based on Boolean Operations [31] on meshes, we propose a

voxelization-based method to estimate the intersection volume be-

tween the tissue block and the anatomical structure. To accelerate

the intersection volume computation, we exploit parallel program-

ming framework OpenMP to check whether each voxel of the tissue

block is inside the polygon mesh of the anatomical structure in

parallel.

4 MULTI-LEVEL SPATIAL INDEXING
4.1 Anatomical Structure Level Indexing
Figure 1 demonstrates an organ with internal anatomical structures.

Different anatomical structures contain different tissue types and

cells, with different functionalities. To fast locate the right positions

in the organ for the tissue block registration, we build an anatomi-

cal structure level index according to the MBBs of the anatomical

structures. An R-tree is constructed on the MBBs of the anatom-

ical structures to achieve the dynamic insertion and deletion of

the anatomical structures as Figure 5a presents. If cell models are

provided in the future, we can further build spatial index on cells

[32] based on cell types and spatial distirbution patterns. Therefore,
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Figure 4: Framework of 3D tissue block registration

from macro level to micro level, we build multi-level spatial indexes

according to the hierarchical organisation of our human body.

4.2 Mesh Level Indexing
For complex structures, traditional filter-refine paradigm suffers

from geometric computation in the refinement stage, because the

simplified MBBs cannot filter out most unqualified candidates, such

as a tissue block outside but near the vessel. Therefore, the mesh-

level index built on the primitives (faces) of the complicated struc-

ture is necessary as Figure 5b. As the resolution of 3D models

becomes higher, a mesh-level spatial index can greatly reduce the

complexity of spatial queries from 𝑂 (𝑁 ) to 𝑂 (log𝑁 ) where 𝑁 is

the number of primitives. Therefore, we build a BSP-tree, also called

AABB-tree on the primitives for every static mesh of the anatomical

structures.

5 VOXELIZATION-BASED INTERSECTION
VOLUME COMPUTATION

The traditional way to compute the intersection volume between

two polygon meshes is through Mesh Boolean Operations [31],

which consists of two steps: the first step is to compute the mesh

intersection of the two polygon meshes. The volume of the intersec-

tion mesh is computed next. However, the complexity of Boolean

Operations is very high. One of the improvements of Boolean Oper-

ations is to use Constructive Solid Geometry (CSG) [33]. Triangle-

triangle intersections need to be computed in advance in CSG,

which is very time-consuming.

In this paper, we propose an efficient voxelization-based method

supporting different resolution of voxelization to estimate the in-

tersection volume. Furthermore, we use the parallel programming

framework OpenMP tomake the full use of themulti-core processor,

which is widely used in modern computers.

5.1 Tissue Representation Transformation
Tissue blocks provided by HuBMAP are described with size, rota-

tion, translation, and scaling parameters, which are not the standard

mesh representation by vertices, edges and faces. Therefore, we

need to recover the mesh from the parametric representation.

Assuming a tissue block is described as:

{𝑑𝑥 , 𝑑𝑦, 𝑑𝑧 , 𝑟𝑥 , 𝑟𝑦, 𝑟𝑧 , 𝑡𝑥 , 𝑡𝑦, 𝑡𝑧 }

where 𝑑𝑥 , 𝑑𝑦, 𝑑𝑧 are the lengths of the tissue block in x,y,z dimen-

sions respectively, 𝑟𝑥 , 𝑟𝑦, 𝑟𝑧 are the rotation angles and 𝑡𝑥 , 𝑡𝑦, 𝑡𝑧 are

the translations. The initial center of the tissue block is the origin

and the default rotation order is 𝑥𝑦𝑧 as specified by HuBMAP. Since

it is the Euler angle system rather than the fixed angle system that

is adopted during rotation by HuBMAP, the rotation order should

be adjusted to 𝑧𝑦𝑥 instead. Hence, the rotation matrix with the

rotation angles 𝑟𝑥 , 𝑟𝑦, 𝑟𝑧 can be written as:

𝑅 = 𝑅𝑥𝑅𝑦𝑅𝑧 (1)

where

𝑅𝑥 =
©«

1 0 0

0 cos(𝑟𝑥 ) sin(𝑟𝑥 )
0 − sin(𝑟𝑥 ) cos(𝑟𝑥 )

ª®¬ . (2)
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(a) Anatomical structure level indexing (b) Mesh level indexing

Figure 5: Multi-level spatial indexing

𝑅𝑦 =
©«

cos(𝑟𝑦) 0 sin(𝑟𝑦)
0 1 0

− sin(𝑟𝑦) 0 cos(𝑟𝑦)
ª®¬ . (3)

𝑅𝑧 =
©«

cos(𝑟𝑧) sin(𝑟𝑧) 0

− sin(𝑟𝑧) cos(𝑟𝑧) 0

0 0 1

ª®¬ . (4)

Any point 𝑝 = (𝑝𝑥 , 𝑝𝑦, 𝑝𝑧)𝑇 inside or on the boundary of the

initial tissue block, i.e.,

𝑝𝑥 ∈ [−
𝑑𝑥

2

,
𝑑𝑥

2

], (5)

𝑝𝑦 ∈ [−
𝑑𝑦

2

,
𝑑𝑦

2

], (6)

𝑝𝑧 ∈ [−
𝑑𝑧

2

,
𝑑𝑧

2

] (7)

can be transformed by applying the affine transformation: 𝑝′ =
𝑅𝑝 + 𝑇 where 𝑇 = (𝑡𝑥 , 𝑡𝑦, 𝑡𝑧)𝑇 , 𝑅 = 𝑅𝑥𝑅𝑦𝑅𝑧 . Note that the edges

and faces relations, the size of the tissue block are not changed due

to the affine invariance. Through the above affine transformation,

it becomes fairly simple to construct the standard mesh given the

initial coordinates of vertices of the tissue block, the rotation matrix

and the translation vector.

5.2 Voxelization
A voxel represents a regular grid in 3D space similar to a pixel

in a 2D image. Traditionally, voxelization is applied to 3D models

in fixed axes directions. Due to regular cuboid shape of the tissue

block, we always voxelize the oriented tissue block in its coordinate

system along three different diagonal directions. For each voxel, we

test whether the center of the voxel lies inside a certain anatomical

structure. The estimated intersection volume can be calculated

through the volume sum of the voxels whose center are inside the

anatomical structure. Via this approach, the complicated volume

computation problem is reduced to a point location test, which

saves the computational cost greatly.

Point location test is a very classic problem in computational

geometry and the current implementation is based on the number

of triangles intersected by a ray with the query point as the source.

If the number of triangles intersected is odd, the point is inside

the polyhedron. Besides, the AABB tree constructed on each mesh

can accelerate the point location queries because the ray casting

is an intersection problem essentially. The reuse of AABB trees

significantly reduces the overhead. To make the full advantage

of multi-core processors, we implement the voxelization-based

volume computation in parallel using OpenMP. In addition, to avoid

memory overflow, we process the voxelization and point location

test on the fly rather than store all the voxels in the memory.

Although the complexity of point location query is 𝑂 (log𝑁 ),
a higher resolution voxelization requires more computational re-

sources. We define the resolution coefficient 𝑘 as the number of

voxels in one unit in one dimension, which indicates a tissue block

is divided into𝑘𝑑𝑥×𝑘𝑑𝑦×𝑘𝑑𝑧 voxels. We assume that the lowest res-

olution is 𝑘 = 1 in which the tissue block is divided into 𝑑𝑥 ×𝑑𝑦 ×𝑑𝑧
voxels. Since 𝑑𝑥 , 𝑑𝑦, 𝑑𝑧 are integers defined by HuBMAP, we can
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ignore the "partial" voxel problem. The voxelization-based intersec-

tion volume computation algorithm is summarized in Algorithm

1.

Algorithm 1 Parallel computing for voxelization-based volume

computation

Input: tissue block 𝑡 , anatomical structure 𝑆

Output: the intersection volume between the tissue block and

the anatomical structure

Initialize: sum← 0

# pragma omp parallel for collapse(3) reduction(+:sum)
for 𝑖 from 1 to 𝑘𝑑𝑥 do

for 𝑗 from 1 to 𝑘𝑑𝑦 do
for 𝑘 from 1 to 𝑘𝑑𝑧 do

compute the center 𝑐 of the voxel located in (𝑖, 𝑗, 𝑘)
if 𝑐 is inside 𝑆 then

sum + = 1

end if
end for

end for
end for

return 𝑑𝑥𝑑𝑦𝑑𝑧sum/𝑘3

6 EXPERIMENTAL RESULTS
All the tests are conducted on a compute node with a 24-core CPU

(AMD Ryzen Threadripper 3960 at 3.8GHz). The node comes with

128GB memory(DDR4 3200) and 2TB SSD (NVMe M.2 PCI-Express

3.0). The OS is Ubuntu 20.04.4 with 5.4.0-124 kernel.

We conduct these tests over the official HuBMAP 3D reference

organ models [8] and tissue block dataset [34], which contains 68

tissue blocks registered in kidneys.

First, we compare the loading time of the models and the time of

building multi-level spatial indexes for five organ models, namely

Kidney, Allen Brain, Lung, Heart and Small Intestine. From Figure

6, we can see that large models such as Allen Brain which contains

282 anatomical structures with total of 324,833 vertices and 656,268

faces, cost more time to load and build spatial indexes while small

models such as Small Intestine which contains 9 anatomical struc-

tures with total of 16998 vertices and 33524 faces, cost less time

to load and build spatial indexes. Besides, building spatial indexes

costs only half of the time of loading 3D models to the memory.

Next, we evaluate four different methods (brute force, only build-

ing index on MBBs of anatomical structures, only building spatial

index on primitives for each mesh, and building multi-level spatial

index both on MBBs of anatomical structures and primitives) of

the spatial query on intersection. Figure 7 shows the total query

time of all 68 tissue blocks of the spatial query on intersection

under four different methods. It is obvious that the spatial index

on MBBs of ASs, which follows the traditional filter-refine para-

digm, can greatly reduce the query time compared with the brute

force method. Another important fact is that the spatial index built

on primitives can further reduce the query time. We also test the

spatial intersection query using PostGIS, which is extremely slow.

Kidney Allen Brain Lung Heart Small Intestine
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Figure 6: Loading time and building indexes time of different
organs

Therefore, the multi-level spatial indexing can significantly improve

the performance compared with all other methods.
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Figure 7: Comparisons of different indexing methods

Moreover, we investigate the impact of parallel computing using

OpenMP on voxelization-based intersection volume computation

method. From Figure 8 we can conclude that the overhead of cache

and synchronization of parallel computing results in no improve-

ment in terms of the query performance when the resolution is

low. The number of parallel units increases when the resolution

increases. Therefore, the query can make full advantage of multi-

core processor, which greatly reduce the query time compared with

serial computation.

Finally, we demonstrate the accuracy of the proposed voxelization-

based intersection volume computation method. We use the rel-

ative error in most cases where the interaction volume exceeds

a threshold. Meanwhile, we use the absolute error instead when

the intersection volume is around 0. As Figure 9 shows, the error

rate decreases as the resolution increases. The error rate is below

0.01 when the resolution is greater than or equal to 8. The outlier

with 𝑘 = 2 may be caused by the irregular shape of the 3D models,
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which seems to have low error rate by accident. In conclusion, the

proposed intersection volume computation method achieves high

performance in terms of both efficiency and accuracy.
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7 ON-DEMAND SPATIAL QUERY SERVICE
In this section, we provide an on-demand spatial query http service
for the ease of use. Users can send a http request with the location

information of the tissue block including translation, rotation and

scaling parameters. The server will process the request accordingly,

with the following procedure (the workflow of the tissue registra-

tion is also summarized in Algorithm 2): first transform the rotation

angle-based representation of the tissue block to a mesh-based rep-

resentation. Next, the anatomical structures whose MBBs are not

overlapped with the MBBs of the tissue block are filtered out by

the anatomical structure level index. The exact intersected anatom-

ical structures with the tissue block are reported by using mesh

level spatial index. If intersected, we will compute the intersection

volume by proposed voxelization-based intersection volume com-

putation. Otherwise, we will return 0 immediately because they

have no intersection.

Algorithm 2 Workflow of tissue block registration

for each query for tissue block 𝑡 do:
transform from angle-based to mesh-based representation of

𝑡 ;

filter with anatomical structure level index;

query exact intersection with anatomical structures using

mesh level index.

if 𝑡 is intersected with certain anatomical structure then
compute the intersection volume using OpenMP specified

with resolution

end if
end for

8 CONCLUSION
We propose a comprehensive framework for 3D tissue block regis-

tration for human atlas. In particular, we build multi-level indexing

both on MBBs of anatomical structures and primitives of meshes. In

addition, we present a voxelization-based method for intersection

volume computation. Experimental results show that the frame-

work achieves high accuracy in real-time spatial queries. The 3D

registration framework is implemented as a service for HuBMAP,

and will be deployed in Amazon AWS platform for production use

in short term future.
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