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A biomedical open knowledge network harnesses the power
of AI to understand deep human biology
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Abstract
Knowledge representation and reasoning (KR&R) has been successfully imple-
mented in many fields to enable computers to solve complex problems with AI
methods. However, its application to biomedicine has been lagging in part due to
the daunting complexity of molecular and cellular pathways that govern human
physiology and pathology. In this article, we describe concrete uses of Scalable
PrecisiOn Medicine Knowledge Engine (SPOKE), an open knowledge network
that connects curated information from thirty-seven specialized and human-
curated databases into a single property graph, with 3 million nodes and 15 mil-
lion edges to date. Applications discussed in this article include drug discovery,
COVID-19 research and chronic disease diagnosis, and management.
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BACKGROUND

Advanced machine learning (ML) has successfully been
deployed for a wide range of applications. However,
such ML has seen far less success in “semantically rich
domains” such as biomedical sciences, where specifica-
tion of knowledge is more abstract and fluid than that
in other hard sciences. According to Herbert Simon,
one of the founding fathers of AI, these unique domains
typically lack mechanistic rules, and the complexity of the
heterogeneous and deep human domain expertise cannot
be statistically aggregated (Simon 1970). Big Data must
be converted into Big Knowledge if we are to harness
the data revolution and knowledge representation and
reasoning (KR&R) represents a timely and exciting avenue
to achieve this goal. KR&R, a field of AI, includes work
that strives to emulate human learning by creating a cog-
nitive network of semantically related concepts on which
context and previous experience determine the emergence
of knowledge (Croitoru et al. 2018). Early efforts to develop
advanced data management systems included EBI’s SRS
server (Zdobnov et al. 2002) and Kleisli (Chung and Wong
1999) somewhat anticipating the data (and information)
deluge that would follow in subsequent years, and clearly
highlighting the need for additional efforts to address this
need.
Health care costs make up almost one-fifth of the

entire US GDP and affect every US citizen. The oppor-
tunity – indeed, the imperative – to tap into the wisdom
latent in Big Data can no longer be overlooked. The
“one-size-fits-all” approach is a major reason for patient
treatment failures and costs. However, the biomedical
public data and factual knowledge repositories are phys-
ically, technically, and thematically compartmentalized,
posing a significant challenge when attempting to con-
nect the dots across the domains of specialization in
biomedicine.
Under the aegis of an NSF Convergence Accelerator

award (Track A), we have developed concrete applications
for our biomedical open knowledge network (OKN),
named the Scalable PrecisiOn Medicine Knowledge
Engine (SPOKE) following the hypothesis that connecting
relevant information will enable the emergence of knowl-
edge, and facilitate solutions to otherwise unattainable
insights in understanding diseases, discovering drugs,
and proactively improving personal health. Finally, by
studying how human experts use SPOKE, we take a
step toward a next generation of AI based on big knowl-
edge, stepping beyond deep learning on data (Langley
2000).

GRAPH CONSTRUCTION AND CONTENT

SPOKE is a property graph containing more than 3
million nodes (of twenty-one types) and more than 15
million edges (of fifty-five types) (A detailed description
of SPOKE architecture is in preparation at the time
of this writing and will be published elsewhere). The
OKN has so far integrated 37 data sources, listed at
https://spoke.ucsf.edu/data-tools. Much of this data is
composed of genomic associations with disease, chemical
compounds and their binding targets, and metabolic
reactions from select bacterial organisms of relevance to
human health. Also, included are perturbagen-gene, food-
chemical, and protein–celltype relationships (Figure 1).
Several of the key concepts are mapped to biomedical
ontologies (including disease, molecular pathways, and
taxonomy among others) to provide an organizational
framework and facilitate user navigation. All ontologies
in SPOKE were incorporated from NCBO’s BioPortal
repository, which contains more than 900 controlled
vocabularies spanning various aspects of biomedicine
(Martinez-Romero et al. 2017; Noy et al. 2009). SPOKE
also uses ontologies to mark up the datasets coming into
the knowledge graph for consistent linking. SPOKE also
strives to align with Biolink, a biomedical semantic stan-
dard currently being established by the NIH/NCATS
Biomedical Translator Consortium (Consortium
2019).
As a stated aim of our present NSF-CA proposal, over

time we will continue to grow SPOKE by the integration of
hundreds of data sources in the public domain including
those from EPA, CDC, DHSS, and the FDA.
Of note, to enhance its relevance to human health,

SPOKE focuses on experimentally determined informa-
tion. Thus, computational predictions and literature cura-
tion are not currently prioritized in SPOKE.
Some of the specific areas in which this NSF award

focuses include:
Proteins, by domain and including their three-

dimensional shapes – to answer questions such as
potential targets of a drug that cause side effects, or how
can an existing drug be repurposed for new indications, or
whether a protein target involved in a specific disease is
suitable for drug discovery (that is, druggable).
Drug discovery capabilities, such as adverse drug

effects, drug–drug interactions, over a billion small-
molecule compounds that are readily available by
make-on-demand vendors and interactions between drugs
and proteins – a rich source of information for drug
repurposing.

https://spoke.ucsf.edu/data-tools
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F IGURE 1 Scalable PrecisiOn Medicine Knowledge Engine (SPOKE) metagraph. Nodes denote biological concepts and links show how
data is related and connected in the graph

Geospatial measurement data, to bring in socio-
demographic, economic, and environmental factors in
health and disease.
Users can interact with the data remotely and build

applications powered by the graph either interactively via
Cypher queries or programmatically via one of the REST
Application Programming Interfaces (APIs).

Scientific evaluation and stress-testing of
the biomedical OKN

As of this writing, the network structure and balance of
SPOKE has been characterized and preserved via a series
of computationally intense graph-theoretical “knowledge
mining” methods, including shortest path algorithm func-
tion, motif discoveries, and metabolic cycle discovery.

Scientific validation – the road ahead

In order for SPOKE to be the basis of further scientific
inquiry or new products, a series of “stress-tests” sim-
ulating real-world utility need to be conducted. While

anecdotal accounts of successful drug discovery guided by
smaller knowledge networks reveal the potential utility
of biomedical OKNs, the very concept of biomedical
OKNs still must be subject to a systematic, scientific
evaluation (Zhou et al. 2020). As SPOKE continues to
grow, evaluation will take place both at the structure
level of the knowledge network as well as by bench-
marking specific queries and use cases against medical
reality.

Empirical relationships between graph node
concepts and paths

In addition to the generic graph-theoretical analysis (for
example, centrality, degree, and others), we tested the util-
ity of the specific node content using empirical data. For
a set S of N concepts represented by nodes in SPOKE (for
example, “blood glucose,” “gene variant X,” and “protein
Y”), we asked whether their values measured in real life
exhibits a statistical relationship to a particular structure of
the subgraph in SPOKE spanned by these nodes in S. In the
simplest case of sets ofN= 2 nodes we ask: “Are two blood
metabolites observed to be highly correlated in a cohort, on
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F IGURE 2 Mapping paths in Scalable PrecisiOn Medicine Knowledge Engine (SPOKE) to empirical observations in patients

average connected by a shorter path in the graph than any
random pair of nodes?” (Figure 2).
To address this question, we took advantage of a recent

wellness study that collects “multiomics” data in a cohort
108 healthy individuals, in which thousands of omics-data
points (genomics, blood proteomics, metabolomics, and
clinical phenotype) were measured (Price et al. 2017). In
this study, thousands of blood analytes (abundance of cir-
culating proteins or metabolites) were measured for each
individual. In total, 8888 pairs of these variableswere found
to be correlated with high statistical significance (r2 > 0.9)
(Price et al. 2017). We next mapped these correlated pro-
teins or metabolites onto nodes in the SPOKE OKN and
found that, remarkably, theywere connected by a path that
was significantly shorter than that connecting two random
nodes of the same type (Figure 3). This result offers the first
empirical evidence that the graph structure of the SPOKE
network that was computationally assembled from diverse
biomedical medical databases preserves meaningful infor-
mation about mechanistic pathways that traverse various
domains, most of them never explicitly mentioned in the
literature.
Based on our preliminary data, we argue that SPOKE

use-cases themselves serve as stress tests; we illustrate
some such AI applications below.

Network visualization

A complex knowledge network like SPOKE can be visu-
alized through the Neighborhood Explorer (NE) Tool
(Huang, Morris, and Branzini 2017) to support interac-
tive exploration by experts and citizen scientists in support

of knowledge exploration (for example, to support basic
research), optimization (for example, to resolve data prob-
lems), and communication (for example, to better inform
patients and physicians).
While standard network visualizations of large real-

world networks often resemble “hairballs” that provide lit-
tle actionable insight, these interactive, multilevel SPOKE
visualizations compute and display clusters of related
nodes and backbones between major nodes at each level
of detail (Saket et al. 2014). These additional visualiza-
tions (now under construction) resemble geospatial maps
at midfidelity resolutions (Figure 4) with continents of
similar nodes and real paths (backbones) for each level,
similar to geographic maps that show real cities and real
roads at every level of detail.

Knowledge graph analysis

For the contemporary biomedical researcher, in need of
accessing vast amounts of trusted information, SPOKE
provides theNE (Figure 5). For example, ClinicalTrials.gov
links diseases with drugs; the GWAS Catalog contains
genetic associations for thousands of phenotypes and dis-
eases; and ChEMBL contains binding information of phar-
macological compounds to their protein targets. However,
if an investigator seeks to identify all existing (approved
and nonapproved) drugs that target proteins encoded by
genes containing SNPs associated with a given disease (to
repurpose drugs for rare genetic disease, for instance), this
will involve cumbersome manual search in a number of
pertinent databases separately. Furthermore, serial queries
for a group of diseases or drugswould require repeated and
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F IGURE 3 Analysis of blood proteomics and metabolomic data in healthy participants shows that pairs of blood analytes (protein or
metabolite levels in circulation) that are correlated are connected by on average a shorter path in the Scalable PrecisiOn Medicine Knowledge
Engine (SPOKE) graph than any pairs of randomly chosen nodes

F IGURE 4 Initial rendering of a subgraph of Scalable PrecisiOn Medicine Knowledge Engine (SPOKE) using a multi-level, map-like
network visualization. Diseases are denoted in the top layer and they cluster by symptom and genetic similarity. The inset shows how
additional details appear when zooming over an area (for example, zooming on immune system disease uncovers more details about
additional diseases that belong to that category)
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F IGURE 5 A view of the Scalable PrecisiOn Medicine Knowledge Engine (SPOKE) neighborhood explorer. The top panel shows the
controls that allow a user to select nodes/edges for expansion as well as other key parameters. The bottom panel shows an example of the
graph neighbors of the SARS-CoV-2 spike protein (light blue), which includes three human proteins (green) and the genes encoding them
(blue). One such protein (ACE2_HUMAN) has edges connecting it to three compounds (two of them approved and one -ORE-100- in
experimental phase)

complicated programmatic queries in various databases
and assembling the results. NE solves this need. In the
future, a robust, well-supported commercial product, pow-
ered by SPOKE, with a superior UI and performance, will
enable investigators to perform smart queries and return
actionable information, either for hypothesis generation or
to inform concrete experimental approaches.

FROMKNOWLEDGE TO INSIGHTS:
AI APPLICATIONS

We envision a vast and integrated knowledge network con-
necting up to hundreds of millions of biomedical facts,
with potential utility in a broad diversity of practical appli-
cations for specialists and informed general public alike. Its



52 AI MAGAZINE

F IGURE 6 Scalable PrecisiOn Medicine Knowledge Engine (SPOKE)-enabled reconstruction of the hypothesis that dexamethasone
might help recovery of patients with COVID-19. Multiple sources of evidence were required to formulate this scenario without human
intervention

value is best harnessed by apps that are designed to extract
useful information (for example, mine the OKN) for spe-
cific applications.
SPOKE was used to predict a possible treatment to

reduce mortality of COVID-19 patients placed on mechan-
ical ventilation (Huang et al. 2020). We constructed a
chain of causation, a path in the SPOKE network that
connects the ACE2 protein, the cell surface protein used
by the SARS-CoV-2 virus to enter the host, to the use
of Dexamethasone (a corticosteroid). SPOKE exposed a
pharmacological connection that no literature or Google
searchwould have unearthed: through the analysis of gene
expression profiles, we discovered that mechanical tissue
stress caused by ventilation caused upregulation of ACE2
(Figure 6) and that dexamethasone suppresses the tissue
hormonemidkine (MK), that is critically involved in trans-
ducing mechanical stress to further upregulation of ACE2.
Therefore, there exists a vicious cycle: mechanical venti-
lation used to combat respiratory distress caused by the
virus would itself also facilitate the spread of the virus
in the lungs. These results suggest that administration of
corticosteroids, which was debated in the early days of
the pandemic, could improve outcome of severe (that is,
ventilated) COVID-19 cases. Indeed, clinical studies have
since reported that corticosteroids reduced the mortality
of ICU specifically for patients on ventilators by 30 per-
cent (Wu et al. 2020; Group et al. 2021). Here SPOKE,

allowing seamless search across domains of knowledge,
showed its unique power in “connecting the dots,” allevi-
ating the core problem of “database selection” in complex
disciplines with countless specialties.
Another example of “connecting dots” is provided by

integrating the role of bradykinin in COVID-19. Again, the
entry point for the virus is ACE2, which has a direct con-
nection to the bradykinin receptor BRKB2, and hence to
its protein BKRB1_HUMAN, which represents the inter-
section between endocrine and immune regulation sys-
tems. This triggers proteolysis of the KNG1_HUMAN pro-
tein, which gets cleaved into kininogen. Kininogen has
a large number of connections and effects, one of which
is bradykinins, which have a potent vasopressor activity
(Garvin et al. 2020). Thus, elevated bradykinin levels likely
cause increases in vascular dilation, vascular permeability,
and hypotension, all features observed in severe COVID-19
patients.

Repurposing pharmaceutical drugs

Pharmaceutical and biotechnology drug development
is an expensive endeavor, and some estimates put the
current cost of a new drug at $2.6 billion (DiMasi,
Grabowski, and Hansen 2016). Only one for every 20
products that enter phase I clinical trials ever becomes a
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commercialized product; fully 50 percent fail in the costly,
last stage of clinical trials – or fail to meet the proposed
clinical endpoints on a significant part of the patient
population.
SPOKE shows promise in repurposing existing drugs

or discovering new therapeutic applications for them.
Its predecessor, HetioNet, was stress-tested to find con-
crete examples of drug repurposing, in two retrospective
studies:

A. Bupropion, first approved for depression in 1985, was
approved for smoking cessation in 1997 (Harmey, Grif-
fin, and Kenny 2012). Predictions based on SPOKE
clearly highlight this new indication (Himmelstein
et al. 2017).

B. SPOKE evaluated the top 100 scoring compounds
for epilepsy seizure control, successfully classifying
seventy-seven compounds as antiictogenic (seizure
suppressing), eight as unknown (no established effect
on the seizure threshold), and fifteen as oricto-
genic (seizure generating). Notably, the predictions
contained twenty-three of the twenty-five disease-
modifying antiepileptics in PharmacotherapyDB v1.0
(Himmelstein et al. 2017).

The therapeutic effect at genomic, metabolomic, pro-
teomic, physiological, or toxicological level may help iden-
tify additional uses for an existing drug. SPOKE can also
determine ideal patient profiles and population targets for
new therapeutic drugs prior to entering late-stage clinical
trials.

Predicting new chemical biology from a
small molecule’s OKN neighborhood

In another planned application, we plan to encode a small
molecule’s OKN-derived biological context instead of its
raw chemical structure, into an “OKN fingerprint.” Such
small molecules are “drug-like compounds.” Similar struc-
tures have been observed to exhibit similar bioactivities
across a standardized panel of wet-lab assays, and this
phenomenon can be exploited to identify new drugs with
desired activities. Too little information exists to construct
experimentally derived fingerprints, and hence computa-
tional predictions of such fingerprints have been proposed
(Martin and Sullivan 2008).

Delivering SPOKE to the clinician: BRIDGE

For clinicians to be able to ingest the ever-expanding vol-
umes and types of information available for their patients,

data and algorithms such as those enabled by SPOKEmust
be delivered in a clear, actionable format that is workflow
friendly and will enable them to respond adequately (and
in real-time) to complex scenarios to optimize patient out-
comes. BRIDGE is a platform that launches directly from
a patient’s chart in the electronic health record (EHR),
and assembles relevant clinical, laboratory, imaging, and
patient-generated data to visualize an individual’s trajec-
tory and support clinical discussions and decision-making.
Live since March 2019, it has supported a number of ongo-
ing clinical validation projects.
The SPOKE-BRIDGE integration (Figure 7), due to com-

plete in Fall 2022, will be thoroughly evaluated in the neu-
rosciences using a research roadmap evaluating both in-
clinic adoption, as well as near- and long-term key clinical
outcomes. The integration computes personalized biomed-
ical profiles by selecting variables from a patient’s clin-
ical record and propagating (embedding) them through
the entirety of the OKN (potentially billions of concepts)
to provide a deep description of the patient’s health sta-
tus. Such network embeddings operate by learning low-
rank vector representations of graph nodes and edges
that preserve the graph’s inherent structure. Embedding
variables from hundreds of thousands of EHR’s onto
SPOKE showed that new knowledge (that is, biomedi-
cal discoveries) can emerge from such a process (Nel-
son, Butte, and Baranzini 2019; Nelson et al. 2021). Simi-
lar approaches have been used to analyze knowledge net-
works from different domains where they showed superior
performance and accuracy compared to previous graph
exploratory approaches (Bordes et al. 2013; Mohamed
and Nováček 2019; Nickel, Tresp, and Kriegel 2011;
Yang et al. 2015).
Dimensionality reduction makes such a complex

biomedical profile useful and actionable for the clini-
cian, who is alerted only to relevant clinical processes,
medications, contraindications, or differential diagnostic
considerations that arise from the embeddings with
the OKN. The clinician queries whether their patient’s
biomedical profile is mathematically closer to one of their
multiple diagnostic considerations on their differential,
or leverages insights from other patients to predict which
medication is a more precise metabolic fit for that indi-
vidual. Other models are being constructed to identify
biologically similar individuals (using distance measures
for multifactor data at deep granularity) to surface undiag-
nosed conditions, as well as for critically important disease
progression predictions. This approach is also being used
to study the histories of patients formally diagnosed with a
complex neurological condition (for example, Parkinson’s
disease) to explore how far in advance this outcome could
have been predicted, and on the basis of which clinical
markers.
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F IGURE 7 Prototype of the potential applications of BRIDGE-SPOKE. (Left) Data from the patient’s EHR can be used as access points
to SPOKE to provide estimates of disorders the patient may be at risk for over a selected timeframe. (Middle) Through BRIDGE, the clinician
can select data points to submit to SPOKE, such as laboratory data or specific symptoms, to inform differential diagnosis. The results are
shown as a network of disease probabilities and risk factors giving insight into why SPOKE selected these disorders. (Right) For a specific
diagnosis, SPOKE could be used to identify which treatments are most likely to generate the desired outcomes, while informing about the
most likely side effects. SPOKE, Scalable PrecisiOn Medicine Knowledge Engine

SUMMARY

Knowledge is an emergent property of the interconnected
web of trusted information and known facts. To mine for
“unknown knowns,” wemust “connect the dots” from sev-
eral information sources. When heterogeneous networks
are connected at a massive scale, new knowledge can be
extracted as an emergent property of the network. Here,
the paradigm of knowledge networks – amply proven in
search – and KR&R are applied into biomedicine, a disci-
pline that, we argue, is inherently graph-theoretic.
Machine and deep learning models such as neural net-

works were traditionally “black boxes,” capable of deliver-
ing new data (predictions), but in and of themselves, no
new knowledge. This perceived limitation has hampered
their adoption in a range of chemical and biological con-
texts, under the sensible argument that a recommenda-
tion, prediction or prognosis a scientist or clinician cannot
understand will provide no guarantee of correctness in a
true discovery context. SPOKE enables the use of explana-
tory (that is, “clear box”)ML approaches with the ability to
predict biomedical outcomes in a biologically meaningful
manner. It has the potential to support a host of “explain-
able AI” techniques (see DARPA’s XAI program).
At the same time, it is important for this body of knowl-

edge to contain all the right data to create realistic and

equitable models that factor in the full diversity of popu-
lation and result in better health outcomes and treatments
for all members of society. We believe technology can help
change the current equation of designing for the “major-
ity,” and be a great leveler.
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