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Abstract   

Effective adoption of online platforms for teaching, learning, and skill development is 

essential to both academic institutions and workplaces. Adoption of online learning has been 

abruptly accelerated by COVID-19 pandemic, drawing attention to research on pedagogy and 

practice for effective online instruction. Moreover, online learning requires a multitude of skills 

and resources spanning from learning management platforms to interactive assessment tools, 

combined with multimedia content, presenting challenges to many instructors and organizations.  

This study focuses on ways that learning sciences and visual learning analytics can be used to 

design, and to improve, online workforce training in advanced manufacturing. University faculty 

and industry experts, educational researchers, and specialists in data analysis and visualization 

collaborated to study the performance of a cohort of 900 professionals enrolled in an online 

training course focused on additive manufacturing The course was offered through MIT xPRO, 

MIT Open Learning’s professional learning organization, and hosted in a dedicated instance of 

the massive open online course (MOOC) edX platform. This study combines learning objective 

analysis and visual learning analytics to examine the relationships among learning trajectories, 

engagement, and performance. The results demonstrate how visual learning analytics can be used 

for targeted course modification, and interpretation of learner engagement and performance, such 

as by more direct mapping of assessments to learning objectives, and to expected and actual time 

needed to complete each segment of the course. The study also emphasizes broader strategies for 

course designers and instructors to align course assignments, learning objectives, and assessment 

measures with learner needs and interests, and argues for a synchronized data infrastructure to 

facilitate effective just-in-time learning and continuous improvement of online courses. 
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Introduction  

Effective adoption of online platforms for teaching, learning, and skill development is 

essential to both academic institutions and workplaces. Adoption of online learning has been 

abruptly accelerated by COVID-19 pandemic, drawing attention to research on pedagogy and 

practice for effective online instruction. Meanwhile, educators and trainers are woefully 

underprepared for the needs of designing for this space, especially for challenging content areas, 

such as those with specific physical environment needs. What is needed are more systemic 

approaches to scaffold high-quality online learning outcomes, grounded in the science of how 

people learn [1] and how to design for online skill development.  

Some of the most challenging content areas to adapt concern those requiring hands-on 

elements and/or three-dimensional visualizations, including Computer-Aided Design (CAD), 

robotics, and additive manufacturing. These topics also encompass critical future skills for 

manufacturing and related industries [2], resulting in federal and local government initiatives that 

coordinate long-term solutions for higher education institutions and companies to face this 

upskilling challenge [3, 4]. The collective growth of automation and data-driven manufacturing 

infrastructure foreshadows a disruptive challenge to production processes and human machine 

interaction and indicates a transformation concerning the future of work. This sociotechnical-

networked production system will demand emergent skills for production engineers and more 

flexibility in the production workforce. As production systems shift to intelligent cognitive 

agents embedded in the flow of work, all aspects of work will be affected; culture, work 

methods, organization and spans of control, data systems, division of labor, management 
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practices, and communities must adapt. This disruption impacts human labor, employment and 

professional competencies (e.g., artificial intelligence and machine learning for robotics, 

intelligent cognitive assistants) will require a new model for collaboration and human-machine 

cooperation [5]. 

The emergence of these new technologies, such as additive manufacturing, and their 

convergence with other elements within complex manufacturing systems, results in an 

information gap between employers, employees, and educational institutions. As these 

technologies mature, the knowledge gap between emergent digital manufacturing and data 

analytic skills needed by industry grow further apart. Even though employers presumably know 

which skills they value in an employee, it is challenging for workers themselves and educational 

institutions to match the pace of change required to meet industry needs [3]. In recent years, 

online learning platforms and massive open online courses (MOOCs) have become pervasive for 

workforce training due to the flexibility in time and location as well as the capability of learning 

analytics to support the analysis, visualization, communication, and management of learning 

processes [6, 7]. Additionally, online courses and brief topical certificates reduce costs regarding 

physical materials, spaces, and allow for economics of scale, one certificate can teach critical 

competencies to thousands of learners. MOOCs promote (a)synchronous learning in which 

learners are able to follow their own paths to learn the content with sequences of learning 

modules that enable learners to advance personalized learning [8].  

Educational data mining (EDM) and learning analytics (LA) as a set of emerging 

practices have been used to examine learners’ trajectories, activities, proficiencies and provide 

useful information for instructors to understand employees’ learning [9]. While these EDM and 

LA practices and approaches are used commonly in educational settings, few studies examine 
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how they are applied in workplace settings [8]. To bridge this gap, various fields have seen an 

emerging trend where companies and educational institutions work collaboratively to develop 

courses to meet specific stakeholder goals. While these efforts are laudable, they typically do not 

benefit from the latest understandings from the learning sciences and do not use data 

visualization to scale high-quality learning outcomes to the gamut of online skills development 

offerings required by rapidly accelerating S&T developments.    

This study illustrates the potential of applying learning design to a course focused on 

upskilling of employees of a large aerospace manufacturer, offered via MIT xPRO’s edX 

platform. The MIT xPRO Additive Manufacturing (AM) Certificate represents a new credential 

that blends industry expertise with traditional academic learning. The collaboration between 

industry and academic partners in this effort was designed to find a nexus between the learning 

sciences and engineering education research, uncovering how to improve workplace learning 

outcomes through the scientific process of exploration, discovery, confirmation, and 

dissemination. The certificate case studies were created with industry experts and industry TAs 

were enlisted to provide feedback throughout the learning process. The goal of this research is to 

contextualize evaluation metrics by taking into consideration learner actions, course 

characteristics, and stakeholder goals. Study results include data collection instruments and an 

evaluation method that makes sense of diverse forms of learner data for action-oriented decisions 

to support learning and institutional goals, for improvement of the AM course and guidance of 

online learning initiatives more broadly.  

Background  

MOOCs and Workforce Training  
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Even outside of pandemic times with stay-at-home orders, many companies value, 

purchase, and promote online education and upskilling. Professional development and workplace 

training have offered targeted educational experiences and just-in-time resources for years [3]. 

While traditional Instructor Led Training (ILT)  is considered costly and has certain limitations 

in terms of scaling company expertise, web-based training is seen as a more cost-efficient 

alternative as it offers selectable study times, self-paced instruction, and doesn’t require the use 

of physical spaces [10].  

As an example of online training, Massive Open Online Courses (MOOCs) are a form of 

online learning designed for unlimited participation and open access via the internet. MOOCs are 

traditionally developed by universities and other educational providers in an effort to support 

lifelong network learning as well as create open, participatory, and distributed learning spaces 

[11]. In addition to the hosting of asynchronous course materials, such as filmed lectures and 

readings, MOOCs often provide interactive elements in the form of user forums and online tools 

that offer instant assessment feedback to students. 

The emergence of MOOCs has evoked a new wave of research and expands the frontier 

of digital and online learning [12]. Particularly, the implementation of micro-credentials as a 

certification of skills attained through MOOCs has captured the interest of universities and 

workplaces as they provide ways to measure the experiences of continuing education students, 

nontraditional learners, or employees rising through ranks within an organization [13]. 

One of the leading MOOC providers is edX, a nonprofit education provider hosting 

online courses from universities around the world across a range of disciplines. Courses run on 

the edX open-source software platform often involve multiple module types (e.g., html, video, or 

discussion forum). Courses hosted on the edX platform are organized into chapters, each 



 
{PAGE} 

involving a sequence of videos, content pages, and customizable modules, including problem 

questions, open assessments, interactive visualizations, or discussions; this structure was retained 

for the MIT xPRO additive manufacturing course. Specifically, MIT xPRO courses are offered 

with fixed enrollment periods. More broadly, many edX learning experiences, of which MIT 

xPRO’s offerings are a subset, combine to create their own form of micro-credentials (e.g., 

MicroMasters® programs). 

Like many online course providers, the MIT xPRO organization is interested in 

supporting research on online pedagogy and learning. However, most existing research on 

MOOC pedagogy and learning are limited to academic fields, particularly in higher education 

[14]. Given the lack of empirical evidence to understand how MOOCs are used in industry and 

corporate training, this study aims to expand the body of research on the implementation of 

MOOCs in engineering workforce training by examining how engineers learn the topic of 

additive manufacturing in an online course offered through MIT xPRO’s implementation of the 

edX platform.  

New Digital Fabrication Technologies 

The introduction and adoption of interconnected digital systems are changing the nature 

of work across industries and within organizational roles. Consequently, traditional educational 

paradigms must evolve and scale the instruction of emergent workforce competencies, both in 

terms of their time requirements and content alignment with key learning objectives. Moreover, 

advances in fields such as artificial intelligence (AI) and robotics are making it increasingly 

possible for machines to perform not only physical but also cognitive tasks currently performed 

by humans. This will result in relationships where humans and machines work collaboratively, 

rather than in a command-and-control relationship, suggesting both the opportunity for new 
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working modes and the impetus for novel instructional methods to meet these new requirements. 

These trends are reflective of broader changes occurring in society around the exchange and 

acceleration of knowledge, including information enabled through or by AI and machine 

learning (ML).  

In manufacturing and engineering industries, several key technologies that will impact 

the workforces’ knowledge development and learning needs. These include: robotics and 

automation; industrial internet of things and advanced sensing; digital twins (corresponding data 

packages for each design and part); cyber security for production systems; augmented and virtual 

reality, e.g. for inspection tasks; and additive manufacturing (AM) technologies; among others 

(e.g.,  [15-17]). Taken in total, these technologies are posed to transform the design and 

capabilities of complex manufacturing systems, enabling greater operational flexibility (in the 

forms of reconfigurable production assets) and strategic flexibility (in the form of granular, data-

driven business intelligence). In exchange, companies must commit significant resources towards 

system integration and human capital development, and therefore it will be ever more important 

to develop the skills of working individuals to engage in creative knowledge work and make 

sense of increasing complexity as these technologies mature and intersect. 

One important example of technology-driven organizational change is the case of 

additive manufacturing (AM), which is alternatively known as 3D printing. The AM industry has 

grown rapidly in recent years, and the global AM market for machines and services alone has 

grown rapidly. In 2019, the industry was sized at US$9.79 billion and is buoyed by aggressive 

growth; the 30-year compound annual growth rate (CAGR) is measured at 26.9%, with a growth 

rate of 33.5% in 2018 well-above the historical mean [18]. Importantly, the use of AM has 

expanded from rapid prototyping, where it has been used since at least the early 1980’s, to 
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manufacturing applications, including for volume production of end-use aerospace and medical 

components. AM is considered a revolutionary technology that has will change the design and 

production approaches of manufacturing firms [19]. Compared to traditional manufacturing 

processes such as casting or machining, AM is unique in that it does not required part-specific 

production tooling and thereby enables greater design flexibility, resulting in possible advantages 

in shape-optimization, time-to-market, waste reduction, assembly and supply-chain 

consolidation, and more [20].  

Given AM’s recent introduction to volume production contexts, most engineers and 

manufacturing workers were not exposed to, or trained with, the principles or execution of AM 

during their formal education. It is likewise challenging and time consuming for universities to 

construct new degree programs and commensurate curriculum in AM [21]. Additionally, the use 

of AM as a forming process does not necessarily change the typical considerations when 

designing a given component. Rather, AM is a new approach to forming a part to fulfill a pre-

established function, and the convergence of “gray-hair” industry- or application-specific 

knowledge with AM-specific knowledge is necessary for the technology to be best utilized in 

manufacturing environments. Finally, the nascency of AM in many production use-cases, 

coupled with the rapid growth of industrial interest, has resulted in an industry prone to rapid 

changes in technological capabilities and demonstrated use-cases. Therefore, professional 

training in AM is a key enabler to accelerate the learning process to meet the current needs and 

demand in the workforce. High-quality courses and instruction in AM are needed to fulfill this 

requirement for training skilled employees. In this study, the aerospace company worked with 

faculty, learning scientists, and instructional designers to develop an online Additive 
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Manufacturing course that can be iterated upon to keep pace with rapidly changing industry 

needs, both in content and in structure.  

Learning Objectives and Cognitive Load  

One of the important starting points when iteratively designing a course with the learning 

sciences in mind (Barab & Squire, 2004) is to begin by articulating desired learning objectives 

[22] and backward-designing [23] course activities and assessments to more closely map student 

activity toward achieving and assessing those objectives. Learning objectives are goals that 

target specific knowledge, skills, and dispositions taught in specific sections of a course [22]. 

The revised Bloom’s taxonomy (see Table 1), a hierarchical model used to classify educational 

learning objectives into levels of complexity and specificity, is commonly used by instructors to 

design and develop their own learning objectives across a range of subjects [24]. The taxonomy 

differentiates between cognitive skill levels, emphasizing the hierarchical relationships from 

lower levels (less complex, less specific) to higher levels (more complex, more specific). These 

cognitive skill levels are ordered into six categories: 1. Remember, 2. Understand, 3. Apply, 4. 

Analyze, 5. Evaluate, and 6. Create. These levels are adapted by educators as an instructional 

tool to design and develop learning objectives [24]. By identifying these processes as operative 

nouns and verbs of a given learning outcome, instructors are able to develop an assessment to 

evaluate specific learning constructs and skills. In ideal learning environments, learning 

objectives include higher levels of cognitive skills for learners to lead to deeper learning and 

knowledge transfer to a variety of contexts [22].  

Relatedly, Cognitive Load Theory provides educators and instructors a way to develop 

instructional procedures by keeping in mind “aspects of human cognitive architecture that are 

relevant to instruction along with the instructional consequences that flow from the architecture” 
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[25] (p.6). This theory explains that learning is a serial process of information from working 

memory to long-term memory. Central to Cognitive Load Theory is the idea that ideal learning 

occurs when instructors effectively guide learners from lower cognitive level activities (e.g., 

remember factual knowledge) to higher cognitive level activities (e.g., create new knowledge).   

Table 1. The Revised Bloom’s Taxonomy [24]. 

Cognitive Skill Level  Description  

1. Remember Retrieve relevant knowledge from long-term memory.  

2. Understand  Construct meaning from instructional messages, including oral, written, 

and graphic communication.  

3. Apply Carry out or use a procedure in a given situation. 

4. Analyze Break material into constituent parts and determine how parts relate to 

one another and to an overall structure or purpose.  

5. Evaluate  Make judgments based on criteria and standards.  

6. Create  Put elements together to form a coherent or functional whole; re-organize 

elements into a new pattern or structure.  

  

To understand the cognitive load levels of the MIT xPRO AM course, this study applied 

the revised Bloom’s taxonomy to analyze the course content and assessments. Each learning 

activity and assessment was associated (“tagged”) with categories from Bloom's taxonomy and 

cross-referenced with analyses of the course’s desired learning objectives. Ideally, each learning 
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objective should be supported by a gradual progression through the process category hierarchy of 

the Revised Bloom’s Taxonomy, where each objective was taught by first introducing the learner 

to low-cognitive-load tasks and increasing over the length of the course in terms of complexity 

and cognitive sophistication. This paper advances this work to offer strategies to visualize and 

compare this ideal with how learning objectives were implemented in the course. 

Visual Learning Analytics  

To ascertain the mechanisms of student performance in the course, a range of learning 

analytics (LA) methods were employed. LA approaches are widely applied to understanding 

learning in online and web-based learning [26, 27]. Learning analytics is an interdisciplinary 

field which includes the fields of artificial intelligence (AI), statistical analysis, data mining, 

learning sciences, and machine learning [28, 29]. In learning sciences, learning analytics offers 

various approaches to analyze and interpret learners’ data, such as statistics and visualization, 

data mining, prediction, clustering, and relationship mining regarding the applications and 

purposes of learning [30]. The implementation of LA provides effective information from a 

volume of learners in a given population over time to identify learning patterns or learner 

trajectories.  

Instructors recognize the potential in using LA to personalize learning, inform practical 

experiences, and provide self-regulated learning opportunities. Particularly, the application of 

LA creates different views of learner activity data which instructors can use to track learners’ 

performance and styles, training outcomes and histories, and community of practice participation 

[21]. Building on the approaches of LA, visualization methods help instructors to understand and 

optimize student learning as well as inform their iterative decision-making processes in online 

learning [31]. 
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While LA is an effective tool for instructors to make sense of diverse student data, it can 

also directly benefit the learners who are given the tools to quantify and analyze their own 

performance. Building on the implementation of LA in MOOCs, visual learning analytics is a 

discipline aiming to assistant learners to interpret complex user data. Visual LA is defined as 

“the science of analytical reasoning facilitated by interactive visual interfaces” (p.4) [32], which 

integrates areas of user interaction, data science, and visual representation. It provides interactive 

visualizations to help users in sense and decision-making processes in learning. Because it 

bridges the connections between users and their data, instructors, administrators, and users 

themselves can deal with data-related tasks more efficiently and effectively [33]. Although visual 

analytics tools have been employed successfully in studying users’ data in MOOC platforms 

(e.g., exploring learning paths or progress) [34, 35], improving instructional design [36, 37] and 

understanding peer collaboration [38], there is a lack of studies that “employ sophisticated 

visualizations and engage deeply with educational theories” [33] (p.1). 

This study applies a visual learning analytics approach [8, 39, 40] to extend the focus of 

learning analytics and apply visualization techniques to examine teaching and learning in 

workforce training via analysis of the aforementioned AM course. Using systematized data 

structures and visual learning analytic dashboard designs, we link learning objectives analysis, 

learner trajectories, engagement, and performance in order to examine the efficiency of learning 

and to provide suggestions to course designers and instructors in online courses. Beginning with 

a central research question which aims to assess how visual learning analytics may be deployed 

to support instructors in online course design, we examined the following questions:   

a. To what extent is engagement with course content related to overall student performance 

in the course? 
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b. To what extent do the course learning assessment measures map onto the learning 

objectives? 

c. What is the relationship between time spent, student performance, and the identified 

learning objectives?  

d. To what extent does the Bloom’s Taxonomy analysis reveal areas to iteratively improve 

in subsequent course design? 

 
Method 

A nine-week online Additive Manufacturing course was developed in 2018 for the MIT 

xPRO edX platform, via collaboration between experts in AM and employers in industry. See 

Appendix A for a high-level overview of the course that outlines the topics of lessons, expected 

completion time, and course schedule. This study focuses on weeks one to six because in weeks 

seven to nine, employees used a 3D CAD modeling design platform that generates proprietary 

data exclusively and little information exists on the course site regarding learning activities and 

performance for these three weeks. 

Participants  

The course enrolled a total of 930 individuals in engineering and manufacturing-related 

roles, all employed by a single, major aerospace company.  Participants had a range of work 

experience (ranging from little professional experience to more than 15 years) and educational 

backgrounds (ranging from a high-school degree or equivalent to PhD). The demographic 

information was gathered from an entrance survey required for all participants who took the 

course. Pre-assessment was required for all participants before taking the course. 

Data and Analysis 
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Before the 2018 deployment of the course, the company engaged in a two-prong 

approach to evaluating the course: by enlisting a group of employee beta-testers that reviewed a 

beta-release of the course as a professional development opportunity and provide learner 

feedback to the course team; and with a group of learning scientists and data visualization 

experts to look closely at employees’ learning outcomes, engagement, and trajectories within the 

course. The objective was to analyze a range of data related to course deployment and usage to 

identify areas of success (or areas to improve) within the training. 

MIT xPRO data 

Data from an MIT xPRO course comprises a (1) course database, which captures course 

structure, (2) learner demographics and performance data; and (3) daily event logs. All 

three data types are briefly described here; details can be found in the edX documentation [28]. 

MIT xPRO course database. Course Structure. The hierarchical structure of learning 

modules exists in JSON format. Modules can be of different types such as html, problem, video, 

or discussion. The five-level JSON tree hierarchy and associated sequence of learning modules, 

together with a one-dimensional base map of course modules, is organized linearly from 

beginning (left) to end (right) according to instructor design. The root node provides course 

metadata; the second level corresponds to course chapters that outline the major groupings of 

content; the third and fourth levels represent learning modules; and the fifth level nodes are 

course content blocks (e.g., videos, html pages, problems, assessments, etc.). Module identifiers 

from various levels of the course structure are linked to the course clickstream event logs (see 

Data Types and Descriptions) through a variety of references specific to the type of module and 

action recorded.  
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Learner Demographic and Performance Data. Learner data, captured in a SQL database, 

includes learner-generated artifacts, system and social interactions, and learning outcomes. 

Among others, the data captures first and last learning module states, final course grade, 

certificate status, discussion forum posts, and team data. Discussion activity for the course was 

supported via a native discussion forum endemic to MIT xPRO’s edX installation but cannot be 

linked to other activity data and hence is not used in this study. 

MIT xPRO event logs. Event Logs. Learners’ interactions (along with course 

developers’ and instructors’ interactions) in a course are emitted as browser and mobile events, 

and the learning management system’s responses to user interactions are emitted as server 

events. Both are available in real-time as streaming JSON (ndjson) records. Logs of learner 

activity are captured daily for each MIT xPRO course. The logs for the AM course contain 

events associated with content knowledge (videos and html-text modules), graded problems 

(e.g., multiple choice or select-all-that-apply problems), and open response assessments (see 

supplemental materials for details).  

Learning Objectives: Coding and Analysis 

Learning modules were qualitatively coded with a total of 31 learning objectives (LOs) to 

examine if these LOs and associated AM skills were well aligned with the course content. 

Learning objectives include both the acquisition of knowledge and the application of that 

knowledge in the form of discrete skills. For the purposes of this paper, each LO was assumed to 

be equally important relative to one-another and therefore, in an ideal course deployment which 

matches this assumption, would receive equal and sufficient attention in instruction and 

assessment. In the future, one could assign differential weighting to LOs deemed more central to 

the objectives of the course versus those which are peripheral or less significant. The LOs were 
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originally articulated by the course instructors and were later refined by the learning sciences 

research team. Analyses included tagging the 983 course activities (including videos, readings, 

and course assignments) with one or more of the 31 learning objectives and skills of the course. 

The goal of this qualitative coding was to visualize and analyze the relationships among the 

content of course modules, assignments, and learner performance.  

Several learning objectives were covered during each week of the course and throughout 

each learning module. Each of learning modules was coded for up to three of the most pertinent 

LOs within the activity. This allowed for the course designers to more granularly look at course 

outcomes to better understand whether students were (un)able to demonstrate a particular 

learning objective due to inadequate course materials or insufficient time within the course spent 

on that learning objective (see S1 Supporting Information).  

Cognitive Load: Coding and Analysis 

For the purposes of examining how increasing complexity within the course related to 

learners’ cognitive load and outcomes, a second set of codes was applied to the learning modules 

following the revised Bloom’s Taxonomy [24]. Table 1 illustrates the six categories. Each course 

activity (e.g., a video, assignment or page) was qualitatively identified as one of the six 

categories according to the revised Bloom’s Taxonomy. Additionally, the frequency and 

percentage count of each category within the taxonomy were calculated to demonstrate the 

distribution of cognitive load by course week.  

The application of Bloom’s-informed codes enabled instructors to evaluate whether they 

considered cognitive load in the sequence of course activities and time spent. In short, this 

framing would advise that (a) we would see a full range of activities integrated into the course 

design, and (b) we would expect early units in the course to engage in less-challenging process 
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categories and would build toward more higher-level tasks from a cognitive load perspective. 

Ultimately, the results of the qualitative coding were visualized to cross-compare student’s dwell 

times and grade performance against the course’s learning objectives (Figs 1 & 2). Data 

processing and visual analysis was completed using R statistical software and packages. The 

purpose of the analyses was to examine if the content of the course modules and assignments 

were well designed to evaluate employees’ learning which can be reflected in their performance. 

Student learning objective dwell time statistics are calculated using student event logs 

that were processed using the MIT xPRO learning analytics pipeline [8]. Processed student event 

logs include content module identifiers and dwell time calculations based on the temporal 

differences between student activities, where periods of time over 10 minutes are considered 

breaks in strings of activities. Individual student event logs are joined to content modules and 

learning objective codes and then aggregated to count the number of events and sum dwell time 

associated with each learning objective. 

To evaluate student performance for the course’s stated LOs, this study relies on course 

subsection grades calculated by the MIT xPRO system for each student. Subsection grades are 

captured under sequential modules from a given course chapter, and include a student’s 

identifier, points earned by a student and the points possible for a sequence of content modules. 

Sequential modules without points associated with content were removed from the data set. 

These data were then aggregated by learning objective and student identifiers to calculate the 

total points associated with a learning objective, the total points and percentage earned by a 

student for a learning objective.  
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Results 

To understand how the instructional design supported employees’ learning, the study examined 

the learning modules with cognitive load analysis, and then applied visual analytics and 

qualitative coding to investigate the relationships between learning objectives, performance, and 

engagement.   

Engagement in Course Content 

Overall, our analyses confirm that time spent (i.e., engagement) was positively correlated 

to student performance (r =.56, p < .01, n = 930). While this is not surprising, it is an important 

measure to run at the end of any course to ensure that students, regardless of background 

knowledge, can perform well if they invest an adequate amount of time in the course.  

Examining the intersection of student performance, assessment measures, and intended 

learning outcomes yielded additional insights into how students engaged with the content. 

Taking a closer look at the amount of time spent on each learning objective (which might not 

necessarily have a 1:1 correspondence with a particular activity or assessment) has two primary 

benefits. First, by providing visual learning data analytics dashboards, where instructors can look 

at average time spent by learning objective, this analysis helps to establish where students are 

spending their time in the course content, as well as establish more accurate estimations of time 

toward completion of each module. Second, the visual LA can clarify the amount of time it 

should take for students to accomplish a specified learning objective or task. 

Fig 1 presents the time students spent on each learning objective. This view makes salient 

how much time proportionately is dedicated to a learning objective, either in terms of time each 

student spent to complete a task, or how much extra time is dedicated in terms of learning 

activities to particular learning objectives. When we compare time spent per learning objective 
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against student assessment outcomes by learning objective (Fig 2), we see that generally 

everyone scored high in the first set of learning objectives, which also required a small amount 

of time to complete.  

 

Fig. 1 Engagement Time by Learning Objective. 

Fig 2 illustrates the relationships between the learning outcomes and learning objectives. 

The learning objectives are numbered, and color coded by learning objective groups, see Fig 3 

for an alignment of six weeks and learning objectives. 
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Fig 2. Box plot of percentage grades for all students on learning objectives covered. 

Comparing these results in the visualization dashboard suggests several things to a course 

instructor: first, the LO1 learning objectives group may be relatively easy to achieve in a short 

period of time, and so less time could be allotted to that course content. Second, students coming 

into the course may be already familiar with these objectives, so this unit could be modified to 

better account for the background of the learners. For example, effective pre-assessment could be 

used a selection tool to differentiate student populations which require this material as a pre-

requisite to more advanced material from those populations which may bypass or “test-out” of 

the requirement. Alternatively, content could be modified based on learner demographics and 

background to better suit gaps within existing knowledge. These dashboards are intended to have 

instructors ask questions of their course based on time spent and outcomes achieved to make 

changes that best fit the needs of employees and businesses.  
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In addition, oftentimes, instructors (as was the case in this particular course) are asked to 

state the amount of time it would take to complete each unit, often relying on rough estimates the 

instructor thinks it should take to complete a task. Frequently, this can lead to student frustration 

when a particular unit is disproportionately heavy in terms of time commitment. Instead of 

instructors estimating these numbers, the visualizations show the actual amount of time spent--

retrieved from the data logs. Instructors can use this information to consider how activities can 

be shifted between modules to create more balanced workloads, or in the design of narrowly 

tailored learning objectives. In Fig 1, LO2.1 is associated with significantly more time-spent than 

LO2.2 and those thereafter; suggesting that, for the purposes of analysis and iteration, the 

objective, LO2.1, may be more effectively divided into a series of discrete objectives for 

purposes of instruction and assessing learning. 

Furthermore, analyzing overall distribution of student performance within each LO and 

longitudinally can yield additional insights. For instance, for instances where certain LOs 

produce very low scores, instructors can look for correlation between performance and time 

spent. If more time spent on a LO leads to a low score, instructors can infer that students are 

putting forth effort, but the course content could be improved in future iterations. 

Learning Objectives and Assessment Mapping 

By mapping LOs to student performance, instructors are able to determine areas where 

students may have consistently struggled, thereby identifying areas to inform future iterations. 

The visualization in Fig 2, which aligns LOs by assessment measure, reveals that some desired 

learning objectives lacked a corresponding assessment measure to test whether that objective was 

achieved through course participation. In other cases, there may be too many measures to 

quantify a particular objective, to the assessment detriment of other objectives of the course. 
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Fig 3. Relationship between course modules (left) and learning objectives (right). 
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In Fig 3, each discrete content element within a given module or week (e.g., chapters, 

pages, and the content within them - videos, html, problems, and so forth) were aggregated into a 

top-level categorization shown by the monochromatic circles on the left. On the right, each circle 

corresponds to an LO. The mapping between these two illustrates the relationship between 

course construction and attention given to each LO. In week 1, the number of modules was 

average and equally covered each LO in the week (see Fig 3). In week 2 and week 3, the 

emphases of LOs were not evenly distributed across the corresponding modules. Particularly, LO 

2.2 and 2.5 were highly emphasized in week 2; LO 3.2 and 3.3 were highly emphasized in week 

3. Week 4 and 5 had the highest number of modules across the course, and some of the content 

was connected back to the LOs for week 2. The content of modules in week 6 was addressed 

evenly across LOs in the week. This is not entirely unexpected; the course was intentionally 

designed to scaffold the presentation of concepts and principles which, at first glance, appear 

disconnected and unrelated (e.g. teaching the use of an advanced design software tool versus 

using cost-calculation methods to estimate component cost). As the course progresses, these 

disconnected principles are gradually re-introduced through their relationships on other concepts 

and principles in the course. Arguably, this design choice illustrates a limitation of the current 

study methodology, since the study assumes that LOs are canonically presented linearly and 

ought to be assigned equal attention, and thus the AM course’s construction was misaligned. 

Conversely, this nuance elevates an important point in the use of visual LAs for course 

optimization, insofar as the evaluation of a courses’ approach must be designed in lock-step with 

course design to generate actionable, context-dependent recommendations.  

Another way to view this visualization is to interrogate areas where students collectively 

score low. Cases such as these might suggest that there is a misalignment between assessment 
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measure and learning outcome, especially when students are shown to spend a good amount of 

time on content teaching that objective. An example, seen in Figs 1 and 2, is where students 

struggled with LO group 2, though students spent a disproportionately large amount of time on 

activities teaching those particular objectives. Again, however, this may equally reflect the 

significance of designing narrowly-tailored learning objectives; in Fig 3, the LO2 group is 

associated both with Week 2 material and material located within a “Supplementary Knowledge 

Base.” The “Supplemental” material is a series of optional, ungraded content comprising many 

hours of rigorous technical instruction; the amount of content is a multiple of that presented in 

Week 2, and it is also the most technically advanced and challenging material in the course. The 

“Supplemental” section is also associated with the LO4 group, which received the second-most 

attention of any LO grouping behind the LO2 group (Fig 2), lending credibility to this 

hypothesis. 

Moreover, the LO2 category in this example is practically multiplicative; each LO within 

the LO2 cluster is associated seven times with an individual AM process. An LO written to say, 

for example, “Understand the mechanical properties of parts produced by additive 

manufacturing,” is actually applied to each of seven AM processes addressed within the LO2 

cluster, and thus could be authored more precisely seven unique times for each LO in the 

following syntax: “Understand the mechanical properties of parts produced for process 1 (2, 

3, …).” In this case, the convenience of writing broad, truncated LOs trades-off directly with the 

utility of visual LAs to provide course insights, and therefore reinforces the necessity to align 

retrospective evaluation methods up-front with course design. 

As shown in the Fig 2, not all objectives were assessed, while some objectives possessing 

a disproportionate amount of assessment. The learning objectives on which students consistently 
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scored high or low indicate the lack of corresponding assessment measures which efficiently 

evaluate the course content. For instance, the results of learning objective 2 (LO2) (blue bar in 

Fig 2) showed that the course content might not well align with the assessments in week 2, as 

both passing and not-passing employee groups showed low achievement on most of the learning 

objectives in that week. To extend the analysis further, for the two lowest-scoring LOs within 

LO2, LO2.2 and LO2.5, significant instruction towards these LOs is located within the 

“Supplemental” material for the course. This helps explain both why these LOs commanded 

significant time, insofar as they were associated with greater amounts of instructional content, 

and why student outcomes were comparatively low, insofar as these LOs were associated with 

limited grading during required modules and no graded assessments during supplemental 

modules.  

Taking these LOs as an example, the results allow instructors to know where and when 

students got hung up on the course content or assessment, and provide initial insights for course 

designers to revise and modify the learning modules and objectives. In this case, a next revision 

of the course may include demarcating LO2 into several learning objective categories, where 

those taught and assessed during required content are differentiated from those primarily taught 

and assessed via supplemental content. This differentiation may also occur within each LO to 

better map objectives against lecture material, rather than aggregating individualized LOs into 

broader categories (as was done with LO2), to clarify the practical implications of analysis and 

design more effective, targeted assessments. 

In short, this result may indicate that the assessment measure may be misaligned with 

how the concept was taught, or it could also mean that those course materials were insufficient to 

address those goals. It is important to underscore that these visualizations are designed to 
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empower the instructor to make sense of this data and to look more closely at their students and 

materials to ascertain why these outcomes were reached. This should be a normal part of course 

development cycles. Those in the learning sciences would routinely think about and toggle 

between these understandings in high-quality curriculum design, while instructors may not 

generally be equipped to think about course design and learning objectives in this manner. 

Therefore, it is hoped that these visualizations help examine and improve the alignment between 

clear learning objectives, high-quality course materials, and high-quality assessment measures so 

all learning objectives are met. 

Cognitive Load Results 

For each week of the course, materials were tagged with process categories drawn from 

the revised Bloom’s taxonomy [24], depicted above in Table 2 and visualized in Fig 4. Fig 4 

reveals how time spent and the types of processes engaged were analyzed for each week of the 

course. Cross-referencing Fig 4 against the learning objectives depicted in Figs 1-3 indicates 

which learning objectives were taught using a robust range of process categories, versus others 

that were assessed using primarily lower-level processing.  

As shown in Fig 4, the process of comprehension/understanding was heavily emphasized 

from week 1 to week 6. Conversely, higher cognitive load processes (i.e., applying, analyzing, 

evaluating, and creating) were not introduced until weeks 7-8. Most of the assessment in weeks 

1-6 focused on the first and second levels of the revised 

 Bloom’s taxonomy. Visualized in this way, instructors can revisit their assessment 

means to introduce a fuller range of activity earlier in the course, or to produce a more gradual 

complexity of the assessment means over time. This analysis helps us to further determine which 

weeks of the course were given a range of high-level processing, and whether increasing 
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complexity was asked of the learner over the span of the course. Importantly, Weeks 7-8 are 

comprised of a two-week long “case study” assignment; they do not include instructional 

materials but rather are spent completing an assignment. Unfortunately, due to aforementioned 

reasons relating to data fidelity, these weeks are not addressed in Figs 1-3.   

 

Fig 4. Cognitive Load Results of Additive Manufacturing Course.  

From this figure, it is evident that while the course did scaffold tasks of increasing 

complexity over the course’s duration, this scaffolding occurred linearly across LOs (each LO 

cluster corresponds to an associated week, identified by the same numbering scheme; i.e., LO1 

corresponds to Week 1 of the program) rather than within a given LO cluster, with some 

exception to LO6. A future course may instead structure tasks and assessments of increasing 

complexity within a given module to ensure that students “climb” the taxonomy for each LO 

grouping, rather than only in subsequent LOs. Practically, instructors may implement this 

proposed approach by evaluating their assessments within each LO, as it may be possible to 

transition assignments that are aligned with lower levels of the revised Bloom’s taxonomy to 

higher levels through careful design of required student activities with modification. 
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Importantly, the analysis elucidated via Fig 4 weights each data point equally; in other 

words, a multiple-choice question aimed at assessing understanding (which may take several 

minutes to complete) is treated equally as an open-response question aimed at requiring synthesis 

or analysis (which may take an hour or longer to complete). It is therefore possible that certain 

cognitive loads are under- or over-represented in the figure. Future work may instead assign 

time-associated weighting criteria to each data point to clarify identified discrepancies between 

idealized course construction and actual course construction for the purposes of improvement. 

However, in the minimum case, this data is still useful as one would expect to see a distribution 

of activities (irrespective of their frequency) across Bloom’s taxonomy, which was not evident 

for each LO and week evaluated. 

 

Discussion  

This study examined the learning processes and outcomes of participants through an 

online course which focused on the topic of additive manufacturing. Based on the analyses of 

learning objectives, processes and outcomes, the results informed potential modifications of 

future course content and assessments. This process could be applied to courses on many other 

topics. MOOC platforms could integrate simple supporting workflows aimed to articulate 

learning objectives and tag them in the course assignments and assessment metrics. These 

components and functions of the platform could address the course design challenges listed 

above and improve the teaching and learning processes for future courses. Although the data and 

analyses were drawn from a single course, these provided a springboard to further the landscape 

in using LA across online courses and platforms and data structure for the purposes of adaptive 

assessment.  
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Further, visualizing employees’ performance by learning objectives illuminates where 

and when learners had challenges on course content and assessment. Examining the intersection 

of student performance, assessment measures, and intended learning outcomes yielded additional 

insight into the effectiveness of the training. In sum, five key points are emphasized to guide 

design of online courses.  

1. Start by defining course goals, objectives, and outcomes: Start by defining your 

expectations for what students learn in the course, rather than by detailing the content that 

your course will cover.  

a. Course goals: High-level items students should acquire during your course. Be as 

specific as you can and make sure that the goals define learning in ways that can 

be measured.  

b. Learning objectives: Write brief statements for each section of the course that 

describe what students will be expected to learn in order to proceed. Good 

learning objectives are meant to be broader learning goals targeting important 

knowledge, skills and dispositions taught in that section of the course. Be willing 

to revise learning objectives based on results if it seems there are too many 

measures to quantify a particular objective, to the assessment detriment of other 

objectives of the course. Researchers may also want to consider the hierarchical 

relationship between the LOs (if any), as well as relative weighting of the 

objectives that would have implication for time spent and frequency. As this study 

suggests, careful design of LOs in concert with design of LA evaluation during 

initial curriculum development may yield more practically useful information 

than if the two activities are performed asynchronously.  
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c. Outcomes: Statements of knowledge or skills students should acquire within a 

particular assignment. This is where you define the content your course will 

cover. Outcomes can be a comprehensive listing of discrete skills or bits of 

knowledge you teach at each point in the course. 

2.   Construct high-quality learning through research-driven instructional systems 

design: Upskilling is not the accumulation of individual knowledge but rather positioning 

the learner to create and apply collective and applied procedural knowledge. Courses 

should develop pathways where learners are tasked, wherever possible, to apply 

knowledge with a mix of expertise (e.g., aerospace engineers apply AM skills through 

design and manufacturing activities) thus deepening and evolving conceptual 

understandings within a relevant practical context [41, 42]. This is the basic path from 

novice to expert, and is especially relevant for the field of AM. 

3. Consider your student population: Understand the students who typically take the 

course in order to think about how your course will help this group of students build their 

knowledge and understanding of the topic. 

a. Level of preparation or interest: Full-time college students have more time and 

resources available to them than people who are working full time and taking a 

course for additional knowledge or certification, and may be working in their 

spare time such as during evenings or weekends. 

b. Amount of time for working on course content: Compare the time which students 

are expected to spend in the course and the actual time they spend. This can better 

help students to reflect their own learning trajectories and progress in specific 

content areas.  
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c. Level of skill and interest: Use surveys or exercises to identify students’ prior 

knowledge and interest areas. Use and build upon existing knowledge and 

interests which allows course materials to better focus to engage learners.  

4. Determine how you will evaluate learning: Assessment must go hand-in-hand with 

course goals and represent the revised Bloom’s taxonomy that you’ve outlined for the 

content. For example, if the goal is to improve problem-solving skills, the exam (as well as 

any assignments leading up to it) should contain questions that ask students to recall facts as 

well as specific problem-solving exercises. If one form of assessment dominates the 

activities throughout the course, be open to revising assignments in order to elevate them to 

higher order thinking as the course progresses (e.g., incorporating more opportunities for 

strategy formation, solution monitoring, and creativity to activate higher stages of the 

Bloom’s Taxonomy). 

5. Adapt and rework the course dynamically: Instructors should monitor student progress 

and make adaptations as needed. If you see that a large percentage of your students are not 

accessing resources, participating in your community of practice, or completing assignments 

in a timely manner, be prepared to make changes. Be willing to revise, and in some cases, 

abandon course practices and content based on feedback from learners and from learning 

analytics. In the case of the AM program, course instructors created a detailed exit survey 

which asked students to reflect on the duration, technical rigor, and constitution of each LO 

grouping as well as the overall course presentation. Fig 5 shows one such question, which 

asked students to evaluate a series of possible modifications to the program; students 

indicated strongly that the overall duration of the program should be increased, and that, due 

to the breadth of content addressed (a principle reinforced by the asymmetry of dwell-time 
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and student outcomes for certain LOs), more granular or modular course offerings should be 

presented in the future. These principles were adopted by instructors; the duration of the 

course was increased to 12 weeks (the most popular response to a separate question 

dedicated to overall course length), and additional modularization is planned. 

 

Fig 5. Exit Survey results to the question, “Which of the following options would you 

support as strong alternatives for changing the model of how the course was delivered? 

Select all that apply.” 

In summary, the process of upskilling employees in emerging technologies such as AM 

requires close collaboration of learning scientists, data scientists, security experts, learning 

platform developers, and industry to design and develop learning materials and environments 

which lead to measurable improvements in work performance. This study shows how learning 

sciences can improve the design and effectiveness of a large-scale online course delivered to a 

broad technical audience, and how performance can be assessed from analytics of learner 

engagement and performance. Particularly, the data structures and visualizations inform 

strategies for course instructors to improve alignment of course content, assessment measures, 

and learning objectives.  
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