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Abstract

This paper analyzes the impact of air transport connectivity and accessibility on scientific

collaboration. Numerous studies demonstrated that the likelihood of collaboration declines

with increase in distance between potential collaborators. These works commonly use sim-

ple measures of physical distance rather than actual flight capacity and frequency. Our

study addresses this limitation by focusing on the relationship between flight availability and

the number of scientific co-publications. Furthermore, we distinguish two components of

flight availability: (1) direct and indirect air connections between airports; and (2) distance to

the nearest airport from cities and towns where authors of scientific articles have their pro-

fessional affiliations. Based on Zero-inflated Negative Binomial Regression, we provide evi-

dence that greater flight availability is associated with more frequent scientific collaboration.

More flight connections (connectivity) and proximity of airport (accessibility) increase the

expected number of coauthored scientific papers. Moreover, direct flights and flights with

one transfer are more valuable for intensifying scientific cooperation than travels involving

more connecting flights. Further, analysis of four organizational sub-datasets—Arizona

State University, Indiana University Bloomington, Indiana University-Purdue University Indi-

anapolis, and University of Michigan—shows that the relationship between airline transport

availability and scientific collaboration is not uniform, but is associated with the research pro-

file of an institution and the characteristics of the airport that serves this institution.

Introduction and prior work

Despite the proclaimed “death of distance” [1, 2], geography is of constant importance for sci-

entific collaboration [3–5]. Numerous studies demonstrated that the likelihood of collabora-

tion declines with growing distance between prospective collaborators. This effect is observed

both at the micro level of buildings or campuses, as well as at the macro level of collaboration

networks among cities, regions, and countries.

At the micro level, Allen [6] showed in the 1970s that the frequency of communication

between individuals in science and engineering organizations drops exponentially with the
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growing distance between their offices. Subsequent research revealed that collaboration is

more likely not only between closely sited or collocated individuals [7, 8] but also between

those whose daily paths cross frequently or largely overlap [9, 10].

At the macro level—where distance is measured in kilometers rather than meters—a large

body of evidence indicates the negative impact of spatial separation on research collaboration:

the greater the distance, the lower the likelihood of collaboration. Furthermore, geographical

distance not only decreases the likelihood of any collaboration, but also reduces the intensity

of collaboration, as measured by the number of co-publications, co-patents, and collaborative

projects [11–13]. The relationship between distance and collaboration is frequently analyzed

in the framework of the general gravity model [14–26]. The gravity model is conceptually

based on Isaac Newton’s law of gravitation [27–29]. It says that the gravitational force between

two objects is proportional to their masses and inversely proportional to the square of the dis-

tance between them. The model assumes that not only the distance between collaborating

units matters, but also their “masses” should be taken into account. Here “mass” refers to

research capacity of the collaborating units, typically measured by research and development

employment or expenditures, as well as by accumulated research outputs: stocks of funded

projects, publications, and patents. The gravity model applied to scientific collaboration clearly

shows that the probability and intensity of research collaboration are negatively related to the

geographic distance which separates the units in question and are positively affected by their

accumulated research potential [20–26].

The detrimental effect of geographical distance on the likelihood of research collaboration

remains significant even when controlling for important features of collaborating units, type

of collaborative relations, and the context in which collaboration occurs. Previous studies con-

trolled for scientific quality, most frequently measured via citations [30–32], differences in

cooperation patterns accross various fields of science [33–36], type of research [37], and the

type of collaboration data used in the analysis, such as co-publications, co-patents, and collab-

orative projects [38, 39]. Prior work has also considered different types of non-spatial proximi-

ties, including cognitive, cultural, economic, institutional, organizational, social, and

technological [40–44].

The rise in research collaboration manifests itself not only in the growing number of co-

authors per paper (and co-inventors per patent), but also in the increasing co-authorship

among authors whose institutional affiliations were in different countries. Between 1990 and

2011, the percentage of internationally co-authored papers indexed in the Science Citation

Index increased from 10.1% to 24.6% [45]. Co-authorship is particularly intense between

authors affiliated with the largest research centers, which serve as major hubs in the global sci-

entific cooperation network [46, 47]. At the same time, researchers are increasingly collaborat-

ing across greater distances. Between 1980 and 2009 the mean collaboration distance per

publication raised from 334 to 1,553 kilometers [48].

The distance between collaborating units in spatial scientometrics studies is usually mea-

sured as geographical distance along the surface of the earth (“as the crow flies”), between

points which are defined by geographical coordinates: latitude and longitude [49]. The actual

accessibility is taken into account surprisingly rarely in empirical studies of scientific collabo-

ration. To our best knowledge, only following empirical works considered actual transport

accessibility as a covariate of scientific collaboration. Andersson and Ejermo [50] included

road travel time in their case study of Swedish patent co-authorship network. Ejermo and

Karlsson [51] studied road and air travel time impact on co-patenting in Sweden. Frenken and

colleagues [52] analyzed the relationship between the number of co-publications and road

travel time at regional level in the Netherlands. Ma, Fang, Pang, and Li [53] hypothesized that

high-speed railway accessibility can be one of the factors explaining the intensity of scientific
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cooperation between Chinese cities. Later, the hypothesis was supported with evidence from

instrumental variable regression study designed by Dong, Zheng, and Kahn [54]. Furthermore,

Hoekman, Frenken, and Tijssen [21] argued that European regions with a major international

airport are more likely to develop intensive international scientific collaboration. Against this

background, the study of Catalini, Fons-Rosen, and Gaulé [55] stands out as the authors used

a quasi-experimental design (natural experiment) to examine the impact of introducing a new,

low fare, air route on the probability of scientific cooperation. Their analysis focuses on 890

faculty members in chemistry departments of research-intensive US universities in the period

from 1991 to 2012. The results show that the introduction of new routes significantly increases

the likelihood of collaboration among US chemistry scholars. The greatest impact is observed

in the case of early career scholars, who usually have fewer resources than established profes-

sors do, and therefore cheaper flights may be more important to them.

Our study extends prior work by analyzing the relationship between scientific collaboration

and worldwide air transport availability. We distinguish two components of flight availability:

(1) direct and indirect air connections between airports (connectivity), and (2) distance to the

nearest airport (accessibility) from cities and towns where scientific articles are affiliated. We

test the hypothesis that better air transport connectivity and accessibility—ceteris paribus—is

positively associated with scientific collaboration. Furthermore, we hypothesize that the rela-

tion depends on research capacity and profile of a given university and the flight network of an

airport that serves the university. To check if such heterogeneity exists, we based our analysis

on a non-random sample of four purposively selected universities and their matching airports;

or more precisely: four co-authorship networks of four universities and flight networks of air-

ports that are the default airports for researchers working at these universities.

It should be underlined that the purpose of this analysis is not to examine the full set of fac-

tors affecting collaboration in science, such as specialization and the division of scientific

labor, growing interdisciplinarity, exorbitant costs and complexity of big science, personal

characteristics and preferences, academic mobility, collaboration-focused science policy, or

long-term inter-organizational relationships, among others. These topics have been compre-

hensively covered in numerous publications; see, for example, a classical study by Katz and

Martin [56] and recent comprehensive reviews of the topic [5, 57–59]. Instead, we aim to

answer one question: does better air transport connectivity between potential collaborators

constitute a statistically significant factor that increases the probability of collaboration as mea-

sured by the number of co-authored papers. We apply regression based cross-sectional analysis

to examine how the differences in air transport availability and accessibility correlate with the

number of co-authored papers while controlling for the known critical factors influencing col-

laborative behavior at the aggregated spatial level, i.e., geographic distance and accumulated

scientific capacity (as in prior works mentioned above).

The remainder of the paper is organized as follows. The next section introduces our empiri-

cal strategy, sample section, variables and descriptive statistics. Subsequently, we present our

approach to model the relation between the number of co-authored papers and air transport

availability. We then discuss findings. The paper concludes with discussion and conclusions.

Supporting information includes detailed information on data sources and data processing

procedures, as well as information needed to replicate the results of this study.

Empirical strategy and descriptive statistics

In this analysis we employ the ego network approach, i.e., we analyze spatial relations between

a focal node—“ego”—(in our case: a university’s geolocation) and the nodes to whom the ego

is related—“alters”—(in this case other cities and towns listed as affiliations by co-authors).
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Although our analysis would be possible based on a single ego network, we opted for having

four ego networks. This tactic allows, on the one hand, to increase the statistical power of the

analysis, and on the other, to identify possible heterogeneities in particular cases. We purpose-

fully selected four universities that share some characteristics and vary in others. To ensure

comparability of the analyzed cases, we assumed that the egos would be selected from the pool

of comprehensive research-intensive public universities in the U.S. The central selection crite-

rion was the possibility of the unambiguous assignment of a university to a single airport that

can be considered as a “default” option for air travel for scholars affiliated with the university.

For this reason, we disqualified universities localized in metropolitan areas served by two or

more major airports with commercial flights (such as New York, Chicago, Bay Area, etc.). In

the next step, we considered airports with different levels of air network development and in

consequence various levels of passenger traffic. On this basis, we selected four university-air-

port pairs. The final analytic sample comprised of Arizona State University at Tempe (ASU),

Indiana University Bloomington (IUB), Indiana University-Purdue University Indianapolis

(IUPUI) and the University of Michigan at Ann Arbor (UMICH) (only the main campuses

were included in the study). UMICH is served by Detroit Metropolitan Airport (DTW) and

ASU by Phoenix Sky Harbor International Airport (PHX). Both DTW and PHX are important

hubs. According to Federal Aviation Administration data, PHX was the 11th US airport in

terms of the number of passengers in 2016 (including 3.1% of passengers that used PHX’s

reliever airport Phoenix–Mesa Gateway Airport), while DTW took 18th position. IUB and

IUPUI constitute a special case. The two campuses are served by the same airport, Indianapolis

International Airport (IND). IND is an airport with considerably less passenger traffic than

PHX and DTW. In 2016, it was 46th U.S. airport in terms of the number of passengers. As a

result of the selection procedure, our research sample is composed of arguably comparable

universities unambiguously assigned to default commercial airports which somewhat differ in

the roles they play in the U.S. air transport network. Our selection procedure, does introduce

some undesirable properties; as with any non-random sampling research, the results presented

in what follows cannot be interpreted as describing any population beyond our sample. For

this reason, we treat this exercise as a case study. However, in future studies the methods used

in this paper could be applied to a larger set of institutions, possibly the entire set of all research

active institutions—given data availability.

Each of the four constructed ego-networks is multidimensional, which means that an ego

and its alters are related by more than one type of relation. In this study, the key relations are

the co-authorship of scientific papers, air transport connections, as well as the geographic dis-

tance between an ego and its alters. In addition to variables that characterize links, our

dataset also includes variables that characterize nodes (both egos and alters): number of

research papers published in a given node (“scientific mass”), and the distance from a given

node to its default airport.

The number of co-authored papers is the dependent variable in this study. Co-authorship

were identified on the basis of the co-occurrence of author affiliations in articles published in

years 2008–2013 and indexed in the Web of Science database. We employed the full counting

method, i.e. each co-authored paper is counted as one for a given ego-alter relation, regardless of

the number of authors, organizations, geo-locations or countries involved [60]. The advantage of

this approach—as compared to fractional counting—is the intuitive interpretation of results, as

well as the possibility of using well-established statistical models for event counts data [61].

The dependent variable is measured for each of four institutions—ASU, IUB, IUPUI, and

UMICH—as the number of co-authored papers between the given campus and various geo-

graphical units across the globe (henceforth called as ‘destinations’). To ensure coherence and

international comparability geo-locations are merged into 2,245 town/city/metropolitan/
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regional entities, such as European NUTS2 regions and US Metropolitan Statistical Areas (see

Fig 1). For each of four selected universities a separate egocentric co-authorship network was

constructed. In consequence, we obtained four ego-networks, in which an ego was ASU, IUB,

IUPUI or UMICH, and alters (destinations) were spatial units from around the world (for the

details on data sources and data processing, please refer to the S1 File).

To measure air transport availability we employed a number of variables grouped into two

categories: commercial air transport connectivity and transport accessibility to the nearest air-

port. The accessibility variable is measured as the geographical distance from the center (cen-

troid) of a destination to its nearest airport with commercial flights. To account for

connectivity, we tested three approaches. The most straightforward variable is a ‘Minimum

number of stops to reach destination’. This factor variable is based on a minimum number of

connecting flights needed to travel from ego’s nearest airport to the airport nearest to the cen-

troid of destination geographical unit. It is measured up to 4 connecting flights (or 3 stops)

and takes values: 0 (for direct flights), 1, 2, or 3. Second measure ‘LinesXstop’ takes into

account number of flights between ego and destination airports. ‘Lines0stop’ accounts for

direct flights only. ‘Lines1stop’ measures direct and indirect flights up to one stop (i.e., up to

two connecting flights). ‘Lines2stop’ considers direct and indirect flights up to two stops, while

‘Lines3stop’ adds connections requiring 3 stops. To take into account the preference for flights

with fewer transfers, weights are applied: 1 for direct flights, 0.5 for one stop connections, 0.33

for two stop, and 0.25 for three stops. ‘SeatsXstop’ variable is constructed in a similar way, but

it also takes into account number of seats available on direct and connecting flights. The use of

concurrent connectivity variables aims to better understand the relationship between air trans-

port and scientific collaboration. Three questions are particularly interesting in this case. First,

are direct connections more important than connecting flights? Second, are indirect flights

with fewer stops more important than those with more stops? Third, does the passenger capac-

ity (number of available seats) matter?

Fig 1. Merged cities and metro areas under this study. �Colours represent countries.

https://doi.org/10.1371/journal.pone.0238360.g001
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Three control variables are used in this study. ‘Geographical distance’ between an ego-insti-

tution and a destination is measured along the surface of the earth. The literature suggests that

geographical distance alone explains some variation in scientific collaborations. However, we

hypothesize that models accounting simultaneously for geographical distance and flights avail-

ability variables will fit the data better. The second control variable is the ‘Number of papers at

destination’. This variable can be seen as the equivalent of a mass term in the gravity model

approach. We assume that probability and intensity of collaboration between ego and destina-

tion depend primarily on the scientific capacity of a destination. Collaboration with city,

region, or country that have virtually no research activities is improbable. While collaboration

with global knowledge hubs, e.g. Oxford, Paris, or Tokyo, can be intensive, despite the geo-

graphical distance. The third control variable is a ‘Disciplinary similarity’ measured as the

cosine coefficient expressed in percentages [62] and based on papers’ classification into 13

broad disciplines as defined in [63] and [32]. It measures the degree of disciplinary similarity

between the collaborating places. ‘Disciplinary similarity’ ranges between 0 (completely differ-

ent disciplinary structure) and 1 (identical disciplinary structure). Greater disciplinary similar-

ity usually goes in hand with more collaboration [12, 64].

Our full dataset of 8,980 observations (units of analysis) consists of four institutional sub-

datasets, each comprising 2,245 observations (see Tables 1 and 2). An observation is defined as

a multidimensional link (co-authorships, geographical distance, air links, etc.) between univer-

sity campus in question—one of the four ego-institutions—and one of 2,245 geographical enti-

ties around the world that have at least one paper affiliated as identified by Mazloumian et al.

[32]. The number of co-authored papers between ego-institution and defined geographical

entities—the dependent variable in this study—ranges from 0 to 3433, with the mean value of

the variable equal to 15.4 (in the period of 2008–2013). It means that the four analyzed institu-

tions co-authored on average 15.4 papers per possible relationship between the institution and

one of the defined geographical units. In this regard, UMICH stands out from the other three

universities. Its average number of papers co-authored with researchers affiliated with institu-

tions located in other spatial units around the world equals 34.6, while for other institutions it

lays in the range from 8.2 to 9.9.

The geographical distance between the four ego-institutions and their collaborators varies

from 20.4 to 11,171 miles. Mean geographical distance between all possible dyads (between

Table 1. Descriptive statistics–Full dataset.

Variable Observations Mean Std. Dev. Min Max

Number of co-authored papers 8980 15.4 89.5 0 3433

Geographical distance (mi) 8980 4232.3 2669.4 20.4 11171

Number of papers at destination 8980 5373.3 13866 1 201693

Disciplinary similarity 8980 63.8 25.9 0.6 99.8

Distance to airport at destination (mi) 8980 24.8 25.4 0.4 327

lines0stop 8980 0.1 0.7 0 15

lines1stop 8980 3.8 6 0 55

lines2stop 8980 18 16.8 0 127

lines3stop 8980 114.6 91.6 0 822

seats0stop 8980 24.1 128.5 0 2016

seats1stop 8980 623 1049.3 0 8523

seats2stop 8980 3071.3 3002.3 0 21249

seats3stop 8980 95361.2 153682.8 0 1535855

Min. number of stops to destination 8980 1.5 0.7 0 4

https://doi.org/10.1371/journal.pone.0238360.t001
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Table 2. Descriptive statistics–Institutional sub-datasets.

Variable Observations Mean Std. Dev. Min Max

ASU

Number of co-authored papers 2245 9.9 40.8 0 793

Geographical distance (mi) 2245 4762.6 2619.2 82.9 10934

Number of papers at destination 2245 5375.3 13875.2 1 201693

Disciplinary similarity 2245 70.3 20.6 13.3 98.3

Distance to airport at destination (mi) 2245 24.8 25.4 0.4 327

Lines0stop 2245 0.3 1 0 15

Lines1stop 2245 4.4 7.3 0 55

Lines2stop 2245 20.6 19.4 0 127

Lines3stop 2245 131.7 104.7 0 822

Seats0stop 2245 42.4 185.7 0 2016

Seats1stop 2245 759.1 1300.9 0 8523

Seats2stop 2245 3653.5 3495.3 0 21249

Seats3stop 2245 127024.4 182298.8 0 1521228

Min. number of stops to destination 2245 1.4 0.7 0 4

IUB�

Number of co-authored papers 2245 8.2 30.6 0 469

Geographical distance (mi) 2245 4085.3 2684.7 20.4 11075

Number of papers at destination 2245 5380.2 13879.6 1 201693

Disciplinary similarity 2245 68.1 18.6 8.3 97.3

Distance to airport at destination (mi) 2245 24.8 25.4 0.4 327

Lines0stop 2245 0 0.4 0 9

Lines1stop 2245 2.8 4.8 0 37

Lines2stop 2245 15 14.1 0 95

Lines3stop 2245 95.7 76.6 0 648

Seats0stop 2245 6.3 49.7 0 1115

Seats1stop 2245 419.4 737.2 0 4937

Seats2stop 2245 2375.4 2253.6 0 13831

Seats3stop 2245 60251.8 120158.7 0 1105416

Min. number of stops to destination 2245 1.6 0.7 0 4

IUPUI�

Number of co-authored papers 2245 9.1 44.6 0 822

Geographical distance (mi) 2245 4080.4 2683.5 40.5 11095

Number of papers at destination 2245 5375.8 13875.8 1 201693

Disciplinary similarity 2245 51.3 31.3 0.6 99.8

Distance to airport at destination (mi) 2245 24.8 25.4 0.4 327

Lines0stop 2245 0 0.4 0 9

Lines1stop 2245 2.8 4.8 0 37

Lines2stop 2245 15 14.1 0 95

Lines3stop 2245 95.7 76.6 0 648

Seats0stop 2245 6.3 49.7 0 1115

Seats1stop 2245 419.4 737.2 0 4937

Seats2stop 2245 2375.4 2253.6 0 13831

Seats3stop 2245 60251.8 120158.7 0 1105416

Min. number of stops to destination 2245 1.6 0.7 0 4

UMICH

Number of co-authored papers 2245 34.6 164.2 0 3433

(Continued)
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one of the four ego-institutions and all other possible collaborators in their network) is 4,232

miles. To put this number in context, recall that the distance between New York City and Los

Angeles is about 2,450 miles. The high average geographical distance results for the fact that

many coauthors have institutional homes on other continents. UMICH has the lowest mean

geographical distance between it and collaborating institutions (4,001 miles), followed by

UIPUI and IUB (4,080 and 4,085 miles respectively), while ASU is characterized by the highest

geographical separation from its collaborators (4,763 miles). The juxtaposition of the number

of co-authored papers and the distance between co-authors’ affiliations reveals that collabora-

tion is not uniformly distributed across geographic space (see Fig 2). A pattern is evident

across all four institutions: A university substantial proportion of collaborations take place in

the range up to 2,000 miles, there are almost no collaborations in the 2,000 to 4,000 mile range,

then, from over 4,000 miles (over 5,000 miles in the case of ASU) collaborations are again evi-

dent. Comparing these distances to a map shows that the closest set of collaborations reflects

those in which the collaborator is within the continental U.S. or North America, the gap at

2,000 to 4,000 miles reflects the Atlantic and Pacific Oceans, and the range from 4,000 to 6,000

miles reflects mainly U.S.—European collaborations.

Descriptive statistics of ‘Number of papers at destination’ and ‘Distance to airport at desti-

nation’ are almost identical for the full dataset and each of institutional datasets. This is due to

the fact that each university has the same set of possible collaborators, except for itself—i.e.,

ASU ego network excludes ASU, IUB ego network excludes IUB, etc. The number of papers at

destination was as low as one (recall that only geographical entitles with at least one affiliated

paper were included in the dataset), and as high as almost 202 thousand (Boston metropolitan

area). The mean distance from collaborating destination to its nearest airport was about 25

miles. The longest distances to the nearest airport with scheduled flights occur in vast and

sparsely populated countries, such as Russia or Canada, and in emerging economies, mainly in

Africa and South America.

The values of air transport connectivity variables vary substantially among the four institu-

tional sub-datasets. Three airports that serve four considered campuses—note that IUB and

IUPUI are served by a single airport, IND, located on the outskirts of Indianapolis—differ

regarding the number of direct flights to collaborative destinations. Consequently, they also

Table 2. (Continued)

Variable Observations Mean Std. Dev. Min Max

Geographical distance (mi) 2245 4000.7 2619.9 30.4 11171

Number of papers at destination 2245 5361.7 13842.6 1 201693

Disciplinary similarity 2245 65.5 26.7 5.7 99.5

Distance to airport at destination (mi) 2245 24.8 25.4 0.4 327

Lines0stop 2245 0.2 0.8 0 9

Lines1stop 2245 5 6.5 0 50

Lines2stop 2245 21.4 18 0 122

Lines3stop 2245 135.2 97.1 0 805

Seats0stop 2245 41.3 159.4 0 1295

Seats1stop 2245 894.2 1204.7 0 8396

Seats2stop 2245 3880.8 3424.7 0 21114

Seats3stop 2245 133916.5 165648.9 0 1535855

Min. number of stops to destination 2245 1.2 0.7 0 4

� IUB and IUPUI are served by one airport, Indianapolis International Airport (IND), therefore they have the same values of air transport variables.

https://doi.org/10.1371/journal.pone.0238360.t002
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differ in the number of collaborating destinations that reachable by direct flights, as well as

flights with one, two or three stopovers/connections. UMICH is served by Detroit Metropoli-

tan Airport (DTW) and has a privileged position owing to the fact that scholars from Ann

Arbor can reach collaborators in 301 different collaborating destinations via direct flights.

Phoenix Sky Harbor International Airport (PHX) serves ASU and provides direct connections

to 218 destinations, whereas IND airport only provide 53 direct-flight-accessible destinations.

Furthermore, UMICH scholars can travel to more destinations using one-stop connecting

flights than scholars from other three universities. On the other hand, for ASU, IUB and

IUPUI researchers more destinations are available only via connecting flights with at least two

stops (see Table 3). As a result, air transport connectivity variables—‘LinesXstop’, ‘SeatsXstop’,

and ‘Minimum number of stops to destination’—have higher values for UMICH, than in the

case of ASU and, in particular, IUB and IUPUI (see Table 2).

Variables used in this study are not distributed normally (see figures presented in S1 File).

Most of variables is right-skewed. Our outcome variable, the number of co-authored papers, is

Fig 2. Co-authored papers distribution by geographic distance.

https://doi.org/10.1371/journal.pone.0238360.g002
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the extreme example: it is highly right-skewed with excessive number of zero-valued observa-

tions. Therefore, it is crucial to choose the right method to properly model this data.

Modeling approach

To model the impact of air transport availability on scientific collaboration we employed a

zero-inflated model—i.e., one that appropriately accommodates non-normally distributed

data with frequent zero-valued observations. This class of models initially developed by Mul-

lahy [65] and extended by Lambert [66] and Greene [67] is designed for event count data

where the dependent variable follows a zero-inflated probability distribution [68, 69] and has

been applied in numerous scientometrics studies [70–74]. Our analytic dataset fits the require-

ments for using these models perfectly—about 45% of the outcome variable equals zero. That

is, during the observed period, the four ego-institutions had no co-authorships with 45% local-

izations that are identified as having published at least one scientific paper (according to data

from 32). The zero-inflated model assumes that zero outcome can result from two different

processes. First, the absence of collaboration can be due to the lack of research capacities at the

destination. In this case, the expected outcome is zero. Second, if the destination has some

research capacities, it is then a count process. Zero outcome is still possible (e.g. due to differ-

ent research profiles), but numerous co-authorships are very likely.

Consequently, the zero-inflated model has two components: “inflate” part that accounts for

excess zeros (the equivalent of logit model) and a proper “count” part. In the count part, we

used three control variables—i.e. ‘Geographical distance’, ‘Number of papers at destination’,

and ‘Disciplinary similarity’—and independent variables for air transport connectivity and

accessibility. To construct inflate part we used a single predictor: ‘Number of papers at destina-

tion’. This decision is based on the assumption that the adequate critical mass of scientific

capacity determines the emergence of scientific collaboration, regardless of geographical dis-

tance and transport accessibility. To ensure robustness of the analysis, we tested several other

specifications that included other variables in the ’count’ part of the model. These additional

variables do not significantly change the values of the coefficients or the overall fit of the model

(see figures presented in S1 File). On this basis, we decided that the analysis would use a parsi-

monious specification of the ’count’ part of the model.

To account for expected curvilinearity, additional quadratic terms have been used in the

case of four variables: ‘Geographical distance’, ‘Number of papers at destination’, ‘LinesXstop’,

and ‘SeatsXstop’. We assume that the impact of enumerated variables on scientific collabora-

tion is not uniformed across their possible values. In particular, the impact can be more pro-

nounced at low values and gradually less distinct at high values (diminishing returns pattern).

For example, we can expect that the difference between one and two direct flights between the

same two cities should have substantial impact on the likelihood of research collaboration,

while the difference between 11 and 12 direct flights can have less pronounced effect.

There is a lot of debate about the exponent characterizing the distance decay in the gravity

model [75]. Using a quadratic term can not only be arbitrary but also lead to model

Table 3. Destinations reachable with direct and connecting flights from airports serving four studied universities.

Airport Direct 1 stop 2 stops 3 stops Total

Detroit (DTW) 301 1255 658 31 2245

Indianapolis (IND) 53 894 1134 164 2245

Phoenix (PHX) 218 913 1042 72 2245

DTW serves UMICH, IND serves IUPUI and IUB, while ASU is served by PHX (the data for PHX includes ist reliever airport Phoenix–Mesa Gateway Airport).

https://doi.org/10.1371/journal.pone.0238360.t003
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misspecifications. Therefore, various values of the exponent used to model geographical dis-

tance were tested. Exponent values from 1.1 to 3, in increments of 0.1, were applied (for the

details please refer to the S1 File). The result of exercise showed that different variants of the

exponent do not translate into significant differences in the degree of the fit of the model. The

extreme values of AIC and BIC differ in a negligible way. Coefficients of key variables, i.e.,

those measuring air transport connectivity and accessibility, are stable across compared mod-

els. Given the lack of substantial differences in the results generated by tested specifications, it

was decided to use exponent 2 (‘Geographical distance squared’) in the main analyzes. This

solution ensures consistency of the specifications presented in the article (squared terms used

in other variables).

Because air transport makes little sense for very short distances and research scholars typi-

cally do not use private jets to get to nearby institutions, we excluded observations in which

geodistance variable was less than 100 miles. The exclusion is specifically reasonable in the

case of our research sample because the area within a 100-mile radius of three out four purpo-

sively selected ego-institutions (ASU, IUB, and IUPUI) was clearly within the catchment area

of a single airport [76]. Thus in these cases, it was not possible to travel between an ego and its

alters by scheduled commercial flights. UMICH constitutes a slightly different example. In the

area within a 100-mile radius from UMICH’s campus in Ann Arbor there are also other air-

ports with scheduled commercial flights apart from Detroit Metropolitan Airport. These are

namely airports in Lansing, Flint, Kalamazoo, and Toledo. However, we assumed that it is very

unlikely that travelers from Ann Arbor would opt for flying from DTW to one of those cites as

air travel is less attractive than road transport, both in terms of cost and time (taking into

account time needed to reach the airport in Detroit, located circa 25 miles from Ann Arbor,

check-in and security, and than the time needed for living the airport and reaching the jour-

ney’s end). In total, 55 observations were omitted, of which 4 for ASU, 23 for IUB, 22 for

IUPUI, and 24 for UMICH. As a result, a restricted dataset used as a basis for estimations con-

sisted of 8,925 observations, multidimensional links (co-authorships, geographical distance,

air links, etc.) between four universities and theirs possible research collaborators. Sub-datasets

for individual universities were as follows: ASU—2,241 observations, IUB—2,222, IUPUI—

2,223, and UMICH—2,221.

We used Zero-inflated Negative Binomial Regression (ZINBR) model implemented in

STATA [77]. However, we tested other models for count data: Poisson (PRM), Zero-Inflated

Poisson (ZIP), and Negative Binomial Regression Model (NBRM). The results of estimation

strongly suggest that ZINBR fits our data significantly better than PRM, ZIP, and NBRM.

The results section of the paper presents model specifications grouped into four tables.

Specifications differ in terms of employed independent variables, as well as observations taken

into account. Models from (1) to (14) are based on the full dataset, while models (15)-(34) are

based on institutional sub-datasets. Model (1) is a reference model that includes only control

variables and any of the air transport variables. Other models include various configurations

of air transport accessibility and connectivity variables. The comparison of complete and

restricted specifications allows for insights into complex relationships between scientific col-

laboration, air transportation, and geographic separation.

Results

Table 4 presents estimation results of models with air transport connectivity and accessi-

bility (models 6–9), as well as models without airport accessibility variable (2)-(5), com-

pared to the reference model that does not include any transport variables (1). As

expected, the basic model (1) with no air transport availability variables does significantly

PLOS ONE The impact of air transport availability on research collaboration

PLOS ONE | https://doi.org/10.1371/journal.pone.0238360 September 4, 2020 11 / 25

https://doi.org/10.1371/journal.pone.0238360


worse than all other models with transport variables included. This is evidenced by the

fact that model (1) has the highest values of Akaike Information Criterion (AIC) and

Bayesian information criterion (BIC). The difference in AIC and BIC between the model

(1) and the second worst specification, model (2), highly exceeds 10 and can, therefore, be

considered significant [78, 79]. The addition of air connectivity variables (models 2–5)

noticeably improves the fit of the model (significant decrease in both AIC and BIC). More-

over, enriching the model with a variable describing the accessibility of the nearest airport

(models 6–9) improves the fit even more. Consequently, models combining air transport

connectivity and accessibility (6)-(9) perform significantly better than specifications com-

prising only connectivity variables (1)-(5). These results plainly indicate that not only the

physical distance influences the intensity of scientific collaboration, but also, the actual

transport accessibility plays a significant role.

Not only the existence of flight connection matters, but also its passenger capacity. Taking

into account the number of available seats improves model’s fit as measured by AIC and BIC.

Table 4. Research collaboration and air transport connectivity and accessibility.

Dependent variable: Number of co-authored papers (1) (2) (3) (4) (5) (6) (7) (8) (9)

Count part

Geographical distance (thous mi) -0.364��� -0.315��� -0.247��� -0.271��� -0.292��� -0.292��� -0.218��� -0.246��� -0.269���

Geographical distance squared (thous mi) 0.019��� 0.015��� 0.011��� 0.013��� 0.015��� 0.012��� 0.008�� 0.010��� 0.012���

Number of papers at destination 0.116��� 0.112��� 0.107��� 0.106��� 0.105��� 0.106��� 0.100��� 0.098��� 0.098���

Number of papers at destination squared -0.000��� -0.000��� -0.000��� -0.000��� -0.000��� -0.000��� -0.000��� -0.000��� -0.000���

Disciplinary similarity 0.025��� 0.025��� 0.023��� 0.021��� 0.021��� 0.023��� 0.021��� 0.019��� 0.019���

Disciplinary similarity squared -0.000��� -0.000��� -0.000�� -0.000� -0.000� -0.000�� -0.000�� -0.000� -0.000�

lines0stop 0.298��� 0.334���

lines0stop squared -0.023��� -0.026���

lines1stop 0.073��� 0.078���

lines1stop squared -0.001��� -0.001���

lines2stop 0.028��� 0.029���

lines2stop squared -0.000��� -0.000���

lines3stop 0.005��� 0.005���

lines3stop squared -0.000��� -0.000���

Distance to airport at destination (mi) -0.011��� -0.012��� -0.012��� -0.012���

Constant 0.996��� 0.881��� 0.547��� 0.459��� 0.442��� 1.178��� 0.835��� 0.750��� 0.732���

Inflate part

Number of papers at destination -4.308��� -4.210��� -4.171��� -4.174��� -4.165��� -3.977��� -3.916��� -3.918��� -3.912���

Constant -0.107 -0.104 -0.126 -0.14 -0.145� -0.194�� -0.224�� -0.238�� -0.244��

Constant lnalpha 0.803��� 0.791��� 0.773��� 0.772��� 0.771��� 0.776��� 0.753��� 0.753��� 0.751���

Statistics

Observations 8925 8925 8925 8925 8925 8925 8925 8925 8925

AIC 40808.4 40762.0 40629.6 40613.0 40600.7 40617.8 40459.7 40446.8 40433.4

BIC 40879.3 40847.2 40714.8 40698.2 40685.9 40710.0 40551.9 40539.1 40525.7

Cox-Snell R2 0.478 0.499 0.488 0.489 0.490 0.489 0.498 0.499 0.499

Cragg-Uhler/Nagelkerke R2 0.480 0.502 0.491 0.492 0.493 0.492 0.501 0.501 0.502

Significance levels:

� p<0.05;

�� p<0.01;

��� p<0.001.

https://doi.org/10.1371/journal.pone.0238360.t004
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This is visible by comparing models based on simple connectivity variable, ‘LinesXstop’

(Table 4), and models based on seats-weighted connectivity variable, ‘SeatsXstop’ (Table 5). In

the case of specifications with direct connections (models 6 and 10), connections up to one

stop (models 7 and 11), and connections up to two stops (models 8 and 12), BIC and AIC sta-

tistics are in favor of seats-weighted connectivity variable. However, in the case of connections

up to three stops, non-weighted connectivity variable does better. This is probably because

connections requiring up to three changes are rare, so in their case, the most important thing

is the existence of a connection, not its capacity. Regardless, in the group of models presented

in Tables 4 and 5, model (12), involving seats-weighted connections up to two stops, has the

lowest AIC and BIC values, and therefore it can be preferred as best suited to the analyzed

data.

Based on AIC and BIC, we know which of the compared models has better performance.

However, these statistics do not allow assessing the overall fit of the model to the data. This

Table 5. Research collaboration and air transport–seats capacity.

Dependent variable: Number of co-authored papers (10) (11) (12) (13)

Count part

Geographical distance (thous mi) -0.292��� -0.262��� -0.285��� -0.301���

Geographical distance squared (thous mi) 0.012��� 0.011��� 0.012��� 0.013���

Number of papers at destination 0.106��� 0.100��� 0.098��� 0.101���

Number of papers at destination squared -0.000��� -0.000��� -0.000��� -0.000���

Disciplinary similarity 0.023��� 0.021��� 0.019��� 0.019���

Disciplinary similarity squared -0.000�� -0.000� -0.000� -0.000�

Seats0stop 2.631���

Seats0stop squared -1.602���

Seats1stop 0.465���

Seats1stop squared -0.045���

Seats2stop 0.182���

Seats2stop squared -0.006���

Seats3stop 0.003���

Seats3stop squared -0.000���

Distance to airport at destination (mi) -0.011��� -0.012��� -0.012��� -0.012���

Constant 1.181��� 0.970��� 0.877��� 1.086���

Inflate part

Number of papers at destination -3.967��� -3.925��� -3.926��� -3.994���

Constant -0.193�� -0.225�� -0.245�� -0.230��

Constant lnalpha 0.775��� 0.752��� 0.749��� 0.760���

Statistics

Observations 8925 8925 8925 8925

AIC 40613.5 40448.5 40415.0 40475.9

BIC 40705.8 40540.8 40507.2 40568.2

Cox-Snell R2 0.489 0.499 0.501 0.497

Cragg-Uhler/Nagelkerke R2 0.492 0.501 0.504 0.500

To ensure meaningful coefficients SeatsXstop variable is divided by 1000.

Significance levels:

� p<0.05;

�� p<0.01;

��� p<0.001.

https://doi.org/10.1371/journal.pone.0238360.t005
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task is complex for ZINBR models because one cannot use a simple r-square measure of fit

[80, 81]. Therefore, two pseudo r-square measures have been used: Cox-Snell pseudo r-square

and Cragg-Uhler/Nagelkerke pseudo r-square (as defined in 77). These measures are con-

structed in such a way that their interpretation is similar to r-square. On this basis, it can be

concluded that all the analyzed models have at least a satisfactory fit to the data. For models

based on the Cox-Snell full dataset, the pseudo r-square values range from 0.478 to 0.501, and

Cragg-Uhler/Nagelkerke the pseudo r-square values range from 0.480 to 0.504. In the case of

models based on institutional subsets, it is evident that the subset for UMICH has a slightly

better fit (psuedo r-squares in the range of 0.602–0.607) than subsets of the other three institu-

tions (psuedo r-squares in the range of 0.466–0.504). Furthermore, a prediction experiment

was performed to assess the fit of the models. For this purpose, the data set has been randomly

divided into two parts—a training set of 80% of observations and a test set of 20% of observa-

tions. The training set was passed through all the model specifications discussed in the article.

Then, based on the data from the test set, the predicted values of the outcome variable, i.e. the

number of co-authored papers, were calculated. In the next step, the predicted value of the out-

come variable was compared to the actual value from the test set. This was done using a simple

linear model (OLS) in which the left side of the equation is the actual number of co-authored

papers, and the right side of the equation is the number of co-authored papers predicted. The

use of OLS enables the calculation of r-square–a well-known and easy to interpret measure of

fit. The results of this exercise testify to the relatively good fit of the model to the data: the pre-

dicted values of the number of co-authored articles explain about half the variability of the

actual number of co-authored articles (for the details please refer to the S1 File).

Further analysis of the compared models reveals, firstly, that direct connections have a

stronger impact on the probability of scientific cooperation than flights requiring transfers—

see specifications (14)-(18) with dummy variables for direct and connecting flights presented

in Table 6. In the case of destinations that have no direct flight connection and requires mini-

mum one stop, the number of expected co-publication decreases by a factor of 0.5 as compared

to destinations that can be reached with a single flight (for a full dataset as specified by model

14). Secondly, the greater the number of transfers required, the weaker the effect on the depen-

dent variable. This is evidenced by the fact that the models with only direct flights—specifica-

tions (2), (6), and (10)—have the highest coefficient of air transport variable (Lines0stop and

Seats0Stop). In turn, models with up to one, two or three stops show decreasing values of air

transport coefficient (Lines1stop and Seats1stop, Lines2stop and Seats2stop, Lines3stop and

Seats3stop, respectively). This result is in line with expectations. Direct flights and those

requiring fewer transfers are more convenient for passengers than connections requiring

many stops. At the same time, not only air transport connectivity matters but also the distance

between the location of the co-authors and their nearest airport. The results of the estimation

confirm the common sense of expectations that the proximity of the airport is advantageous,

at least in the case of long-distance cooperation, which from time to time requires air travel.

The relationship between air connectivity and the number of co-authored papers is not lin-

ear. All the squared air connectivity variables are significant in specifications (1)-(13). Negative

coefficients of the quadratic terms suggest that at some point, the connectivity is so high that

its further increase (e.g. adding one more flight between given airports) has far less impact on

collaboration than the similar increase at low levels of the overall connectivity.

The number of scientific papers affiliated in potentially cooperating destinations serves two

functions in presented models: first, as specified in the inflate part, and second, as specified in

the count part. The count part can be interpreted similarly to standard maximum likelihood

models. Firstly, the increase in the number of articles at destination translates into reduction

in the likelihood of a complete absence of co-authored articles. In other words, an increase in
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the number of articles at destination decreases the likelihood that the variable ‘number of co-

authored articles’ will equal zero. Secondly, as the count part of the models shows, the more

articles in the cooperating destination, the higher the expected number of co-authored papers

between the ego and the destination. However, this relationship is more complex, as indicated

by the significant quadratic term for the number of articles at the destination. Negative coeffi-

cients of the quadratic term indicate the curvilinear shape of the relationship: as the number of

articles increases, its positive influence on the number of co-authored articles is flattening out.

In all presented models, geographical distance is negatively associated with research collabora-

tion. The higher the distance, the smaller the number of co-publications. Furthermore, the effect

is also curvilinear. In this case, positive coefficient of the squared variable suggests that the nega-

tive influence of physical distance on collaboration decreases gradually as the geographic separa-

tion increases. This can be interpreted as follows: the difference between, for example, 9,100 or

9,200 miles does not translate into a significant difference for the person considering a trip to

such a remote place. But the difference between 100 and 200 miles means, approximately, a two-

fold lengthening of the journey and thus, can be a significant factor influencing the decision.

The influence of geographical distance on the number of co-publications is modified by air

transport connectivity and accessibility, as well as by scientific capacity of collaborators. The

Table 6. Research collaboration and air transport–Direct and connecting flights.

Dependent variable: Full dataset ASU IUB IUPUI UMICH

Number of co-authored papers (14) (15) (16) (17) (18)

Count part

Geographical distance (thous mi) -0.143��� -0.449��� -0.256��� -0.407��� -0.104�

Geographical distance squared (thous mi) 0.002 0.025��� 0.013� 0.031��� -0.003

Number of papers at destination 0.102��� 0.104��� 0.102��� 0.087��� 0.132���

Number of papers at destination squared -0.000��� -0.000��� -0.000��� -0.000��� -0.001���

Disciplinary similarity 0.018��� 0.051��� -0.060��� 0.021�� 0.044���

Disciplinary similarity squared 0 -0.000��� 0.001��� 0 -0.000���

Minimum number of stops to reach destination (compared to direct flight):

1 stop -0.694��� -0.272� -0.374 -1.089��� -0.393���

2 stops -1.263��� -0.277 -0.824�� -1.309��� -0.594���

3 stops -1.554��� -1.246��� -1.107��� -1.296��� -0.462

Distance to airport at destination (mi) -0.012��� -0.011��� -0.010��� -0.009��� -0.013���

Constant 1.868��� 0.900� 3.643��� 2.146��� 1.229���

Inflate part

Number of papers at destination -4.025��� -3.560��� -4.882��� -2.073��� 0.034

Constant -0.218�� 0.001 0.718��� 0.364�� -25.309

Constant lnalpha 0.744��� 0.543��� 0.633��� 0.621��� 0.655���

Statistics

Observations 8907 2241 2222 2223 2221

AIC 40356.6 9478 8441.1 8061.3 13486.1

BIC 40455.9 9558 8521.0 8141.2 13566.0

Cox-Snell R2 0.501 0.500 0.471 0.479 0.602

Cragg-Uhler/Nagelkerke R2 0.504 0.504 0.477 0.485 0.602

Significance levels:

� p<0.05;

�� p<0.01;

��� p<0.001.

https://doi.org/10.1371/journal.pone.0238360.t006
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low number of papers at the destination, less than one thousand, usually translates into the low

number of co-publications, no matter the distance. On the other hand, for destinations that

accumulated high research capacity, the distance matters a lot. For example, in the case of des-

tinations with 30 thousand papers, the decrease in the distance from 4,000 to 1,000 miles raises

the expected number of co-publications twice, from circa 50 to 100. While the decrease from

10,000 to 7,000 miles (i.e., by the same number of miles, 3,000), raises the expected number of

co-publications by no more than ten papers. Similarly, for the low values of connectivity and

accessibility, the relation between geographical distance and expected number of co-authrships

is flatter than for high values of those variables. Furthermore, the distance matters significantly

more in the case of direct flights, than for connections requiring one, and in particular, two or

three transfers (see Fig 3). This is reasonable as direct flights are constrained by technical

capacities of aircrafts, as well as regulatory requirements, in particular limits for flight duty

periods for crew member’s [82].

Estimations based on institutional sub-datasets (Tables 6 and 7) show that relationship

between air transport connectivity and research collaboration is not homogeneous across the

four universities. Nevertheless, in each of the analyzed cases, air transport connectivity explains

Fig 3. Predicted number of collaborative papers at different values of selected independent variables. The estimations are based on model (12) in the case of

‘Papers at destination’, Searts2stop’, and ‘Distance to airport’. For ‘Minimum number of stops’ model 14 has been employed.

https://doi.org/10.1371/journal.pone.0238360.g003
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some significant part of the variation of co-publications. The differences relate primarily to the

importance of direct and connecting flights. The comparison of IUB and IUPUI is particularly

interesting. Both institutions are served by the same airport. Thus they have the same air trans-

port connectivity (However, it should be emphasized that IUB is located at a much greater dis-

tance to the Indianapolis airport than IUPUI). In the case of IUPUI, direct flights are the most

significant predictors of co-publications, both statistically and substantially. While for IUB the

availability of direct flights is not essential, but connections up to one and two stops matters

much more than for IUPUI—compare specifications (23)-(30). Such divergent patterns can be

possibly attributed to organization-specific research collaboration networks, related to the disci-

plinary composition of institutions. The biggest difference between IUPUI and IUB is that the

former hosts the School of Medicine, while the latter does not. This institutional specificity is

clearly visible in the disciplinary composition of research outputs. In the case of IUPUI, the

three top disciplines of articles published in years 2008–2013 are: medical specialties (35,9%),

health professionals (17,1%), and brain research (13,3%). For IUB the top tree disciplines are:

social sciences (21%), math & physics (15,3%), and brain research (8,6%). (The detailed infor-

mation on the disciplines of articles published by the case study institutions is provided in the

S1 File). Moreover, disciplinary similarity plays a different role for IBU than the other three

institutions. For these latter, the expected number of co-authored articles increases as disciplin-

ary similarity increases. For IUB, the expected number of co-authored articles is higher when

dyscylinary similarity is smaller. Here again, the explanation may be that IUB, not having a

medical school, is looking for complementarity in cooperation with institutions with developed

medical research. The observed heterogeneity suggest that the further research should scrutinize

institutional differences related to their disciplinary specializations.

Discussion and conclusions

The paper makes two contributions. First, we show that air transport availability is an important

factor for scientific collaboration, even when controlling for geographical distance and research

capacities of collaborators. Second, both air transport connectivity (direct and indirect air con-

nections between airports) and accessibility (distance to the nearest airport) are important cor-

relates of scientific collaboration. Presented estimation results provide evidence that more flight

connections and greater seat capacity correlates with the increased number of co-publications.

Also, proximity of airport at collaborating destination is positively related to the expected num-

ber of co-authored papers. Moreover, direct flights and flights with one transfer are more valu-

able for intensifying scientific collaboration than travels involving more connecting flights. One

additional direct flight rise the expected number of co-publications by a factor of 1.40, while

additional connection requiring up to two stops rises the number by a factor of 1.03. The results

of our study are in line with conclusions from broader research corpus highlighting the impor-

tance of air transport for the economic development of cities and regions [83]. In particular, the

availability of direct flights is seen as a significant predictor of a city’s fortunes [82].

Estimations based on four separate institutional sub-datasets show that the relationship

between transport accessibility and scientific cooperation is not uniform. For some institu-

tions—Indiana University-Purdue University Indianapolis in the first place—direct flights are

more valuable predictors of distant co-publications, while for other three institutions indirect

connections up to one or two stops better explain their collaboration patterns. This diversity

can be related to different research profiles of studied universities—however the phenomena

needs further investigation that goes beyond the scope of this study. Not only research organi-

zations differ in scientific specialization, but also scientific disciplines are spatially biased

regarding propensity to collaborate [37, 84]. For example, collaboration in experimental
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particle physics is far more spatially bound than collaboration in theoretical mathematics. This

organizational and disciplinary diversity shapes spatial patterns of collaboration, in a dynamic

coopetitive—i.e., simultaneously cooperative and competitive—processes [85].

Two limitations of the presented approach have to be underlined. First, the direction of the

relationship between air transport availability and research collaboration is ambiguous.

Increasing collaboration can be both the result and the cause of transport availability. Develop-

ment of collaborative relations between distant locations indeed rises the demand for trans-

port. However, based on the results of a quasi-experimental study by Catalini, Fons-Rosen and

Gaulé [55], we can expect that causal relation from transport connectivity to scientific collabo-

ration also happen. Moreover, the circular cumulative causation can be expected—more col-

laboration leads to higher transport demand and in result greater transport capacity, which in

turn induces more collaboration, and so forth. The second limitation is related to the dataset

used in this study. We focused on four non-randomly selected universities located in the US.

As such, our results cannot be extended to the entire population of universities/cities. In other

socio-economic and geographical contexts, the role of air transport can be different. For exam-

ple, in Europe, Japan, and increasingly in China, railway connectivity can be more critical than

air transport, at least up to some geographical distance.

Future studies might use the method presented here and apply it to the total set of all

research universities and their geolocations. Secondly, they might control for more covariates,

e.g., citation data, to capture other important factors such as the impact of research reputation

on collaboration. Thirdly, other modes and measures of research collaboration should be

examined, e.g., co-inventorship via patent or co-investigatorship via funding data. Fourth, dif-

ferent modes of transport should be incorporated: road and railroad connectivity between spa-

tial units in question, as well as various modes of access to airports. We expect that essential

insights can be gained by combining multimodal transport connectivity and multimodal

research collaborations, comparing and integrating co-publications, co-patenting, and collabo-

rative research projects. Fifth, subsequent studies of the discussed topic should employ experi-

mental or quasi-experimental research designs to establish robust causal claims [86].

In conclusion, it is worth emphasizing that the relationship between air transport availabil-

ity and scientific collaboration does not provide sufficient basis to formulate a straightforward

policy recommendation indicating that more flights are necessary to boost scientific collabora-

tion. The major concern is the adverse environmental impact of air travel [87], especially in

the context of the academic hypermobility culture [88]. Another, no less important, problem

relates to the financial and social burdens of academic travel that undermines diversity and

equity of research community across countries, organizations, and demographics [83, 89, 90].

Finally, the COVID-19 epidemic has highlighted the importance of ways of scientific exchange

that does not require travel and physical presence in one place. There are many urgent ques-

tions in this context. To what extent can virtual meetings and conferences replace travel and

personal meetings [91–93]? Under what conditions? What will be the impact of reducing aca-

demic mobility on the development of science [94]? How will these changes affect power and

prestige in the global science system [95, 96]?
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