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Many universities invest substantial resources in the design, deployment, and mainte-
nance of campus-based cyberinfrastructure (CI). To justify the expense, it is important 
that university administrators and others understand and communicate the value of 
these internal investments in terms of scholarly impact. This paper introduces two 
visualizations and their usage in the Value Analytics (VA) module for Open XD metrics 
on demand (XDMoD), which enable analysis of external grant funding income, scholarly 
publications, and collaboration networks. The VA module was developed by Indiana 
University’s (IU) Research Technologies division, Pervasive Technology Institute, and the 
CI for Network Science Center (CNS), in conjunction with the University at Buffalo’s 
Center for Computational Research. It provides diverse visualizations of measures of 
information technology (IT) usage, external funding, and publications in support of IT 
strategic decision-making. This paper details the data, analysis workflows, and visual 
mappings used in two VA visualizations that aim to communicate the value of differ-
ent IT usage in terms of NSF and NIH funding, resulting publications, and associated 
research collaborations. To illustrate the feasibility of measuring IT values on research, 
we measured its financial and academic impact from the period between 2012 and 
2017 for IU. The financial return on investment (ROI) is measured in terms of IU funding, 
totaling $339,013,365 for 885 NIH and NSF projects associated with IT usage, and 
the academic ROI constitutes 968 publications associated with 83 of these NSF and 
NIH awards. In addition, the results show that Medical Specialties, Brain Research, 
and Infectious Diseases are the top three scientific disciplines ranked by the number of 
publications during the given time period.

Keywords: information visualization, scientometrics, impact analysis, grant income, return on investment, value 
analytics, high-performance computing
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inTrODUcTiOn

Access to high-performance computing (HPC) systems and 
advanced cyberinfrastructure (CI) generally is critical to advance 
research in many scholarly fields. Over the last 30 years, super-
computing has expanded from a few monolithic and extremely 
fast computing systems into a comprehensive “set of organiza-
tional practices, technical infrastructure and social norms that 
collectively provide for the smooth operation of research and 
education work at a distance” (Towns et  al., 2014). This new 
form of CI (Stewart et al., 2017) is also used by a large number 
of researchers, scholars, and artists and is more complicated, 
including HPC, storage systems, networks, and visualization 
systems. This requires a new suite of metrics that can help dif-
ferent stakeholders better understand the value of research CI.  
In addition to job- and system-performance monitoring, metrics 
now available and needed to understand system usage and value 
include usage modality [e.g., central processing unit (CPU) 
usage per group or person, number of users, and wait time].  
All of these metrics are essential to better understand “why 
users do what they do and how they leverage multiple types and 
instances of CI resources” (Katz et al., 2011). In recent years, there 
has also been growing interest in measuring the impact of CI 
on scientific research and publication outcome (e.g., Madhavan 
et al., 2014, Knepper and Börner, 2016, Fulton et al., 2017). Such 
insights are particularly relevant for campus CI that requires 
significant investment and long-term strategic and financial 
planning. Visualizations help communicate the value of CI to 
diverse stakeholders ranging from domain experts to academic 
deans to financial administrators.

Currently, several CI frameworks enable on-demand render-
ing of impact metrics (e.g., funding, publications, and citations) 
that result from using HPC resources. While most monitoring 
tools for HPC are traditionally “largely passive and local in nature” 
(Furlani et  al., 2013a,b), these new frameworks, such as Deep 
Insight Anytime, Anywhere (DIA2) (Madhavan et  al., 2014), 
and Extreme Science and Engineering Discovery Environment 
(XSEDE) Metrics on Demand (XDMoD VA) (Fulton et  al., 
2017), are open source, customizable systems with “increased 
functionality, an improved interface, and high-level charting and 
analytical tools” (Palmer et al., 2015). DIA2 is a web-based visual 
analytics system aiming to assess research funding portfolios 
(Madhavan et al., 2014). Open XD metrics on demand (XDMoD) 
is one of the most widely used software systems in the US and 
is currently employed by more than 200 institutions to evaluate 
their HPC usage (Palmer et al., 2015; Fulton et al., 2017). The tool 
has been developed as an open source software for “metrics, basic 
accounting, and visualization of CPU and storage usage” at the 
Center for Computational Research of the University at Buffalo 
(Palmer et al., 2015).

Open XDMoD value analytics (VA) adds a VA module to 
Open XDMoD. The two visualizations presented in this paper 
contribute to XDMoD VA functionality as follows:

 1. financial and intellectual analytics: analyze grant income and 
publications by researchers who use information technology 
(IT) and relate that income to use of local IT systems.

 2. co-PI collaboration networks: analyze research collaborations 
by researchers that use local IT systems.

In this paper, we detail both types of visual analytics for 
XDMoD VA and demonstrate how they can help understand 
the IT impact on academic research. Specifically, we describe 
the data and visual analytics workflows used for the Funding 
and Publication Impact and the Co-PI Collaboration Network 
visualizations. The Funding and Publication Impact visualiza-
tion uses a Sankey graph to interlink IT usage with funding 
and publication output. The Co-PI Collaboration Network uses 
NSF and NIH funding data to extract and depict Co-PI col-
laboration networks together with listings of scholars ranked 
by the total amount of grants. Both types of visualizations are 
interactive, supporting overview first, zoom and panning, and 
details on demand (Shneiderman, 1996). The visualizations 
are rendered using the web visualization framework (WVF) 
developed by CNS at Indiana University’s (IU) that allows 
for an effective, highly customizable rendering of interactive 
visualizations.

The remainder of the paper is organized as follows: Section 
“Related Work” discusses prior work on analyzing and visualizing 
the impact of IT resources, particularly on scholarly output. In 
Section “Data Acquisition and Preparation,” we outline the data 
we used, as well as the preprocessing methods needed to render 
that data useful. Section “Methods” discusses the general meth-
ods applied to render data into visual insights. Section “Results” 
details the results of using the data and methods to render the 
Funding and Publication Impact and Co-PI Collaboration Network 
visualizations. Key insights and planned developments are dis-
cussed in Section “Discussion and Outlook.”

relaTeD WOrK

In recent years, there has been growing interest in measuring 
the impact of HPC on scientific research and publication out-
come. Advanced CI resources require significant investment, 
particularly when implemented at the campus level, and insights 
about the value of such investments in financial and intellectual 
terms are essential for the strategic and financial planning of 
academic institutions (Fulton et al., 2017). A number of stud-
ies have examined the relationship between these values and 
CI resources usage. Three studies can be regarded as a start-
ing point for introducing HPC user metrics: namely, Li et  al. 
(2005), Iosup et al. (2006), and Lee et al. (2006). In addition to 
traditional metrics (e.g., job size, system utilization), these stud-
ies included user and group characteristics to analyze system 
performance. Hart (2011) extended this idea and highlighted 
the importance of usage and submission patterns to understand 
users and their behavior across HPC resources. Knepper (2011) 
further investigated the relation between users, their HPC usage 
behavior, and their field of science. Particularly, his study exam-
ined PIs, their network affiliation, and the scientific field and 
allocation size of their research projects from 2003 to 2011 using 
TeraGrid, a national (US) computing scientific infrastructure. 
The results revealed that PIs constituted 23% (3,334) of the total 
TeraGrid project users (14,474) and that molecular biosciences 
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and chemistry are the two scientific fields with the highest 
number of projects involving TeraGrid usage, 2,292 and 1,828, 
respectively. Similarly, Furlani et  al. (2012, 2013a,b) observed 
that molecular biosciences recently joined physics at the top 
of the list of sciences with the greatest CPU usage of Extreme 
Science and Engineering Discovery Environment (XSEDE), 
a virtual system providing digital resources and computing 
services (Towns et al., 2014). In addition, Furlani’s longitudinal 
study demonstrated a substantial increase in the number of PIs 
using XSEDE from ~500 in 2005 to ~1,600 in 2011. The authors 
noted, however, that often a project PI did not personally utilize 
the XSEDE resources, assigning computing tasks to graduate 
students or postdocs.

Other research focuses on various metrics for measuring 
academic performance with respect to HPC usage. Apon et al. 
(2010) suggest measuring the HPC investment in terms of 
“competitiveness,” presented as a ranking system. Ranks are 
calculated using the Top 500 HPC list that reports on the fastest 
500 computers in the world. An institution’s rank is based on 
their investments in HPC according to the Top 500 HPC list. 
In their study, academic performance was characterized by 
publication counts and funding awards. Their funding showed 
that “consistent investments in HPC at even modest levels are 
strongly correlated to research competiveness.” Apon et  al.’s 
study also presented statistical evidence that NSF research 
funding and publication counts are good predictors of academic 
competitiveness. Subsequently, Knepper and Börner (2016) at 
the relationship between the CPU usage of XSEDE resources 
utilized by PIs and publication records. In addition, they mapped 
fields of science into HPC resources, creating a bipartite network. 
The results demonstrated that among the 27 top fields, physics, 
chemistry, astronomy, material research, and meteorology/
climate modeling utilized XSEDE resources the most. They also 
observed that the type of HPC resources plays an important role, 
as some systems link to almost all fields of science (e.g., NICS 
Kraken), whereas others serve only a small number of fields.

Newby et  al. (2014) discussed various forms of “return on 
investment” in studies of research CI. Their discussion included 
a number of different types of value derived from investment in 
advanced CI, including scientific value, workforce development, 
economic value, and innovation. More recent work has adopted 
the financial definition of return on investment (ROI): “a ratio 
that relates income generated … to the resources (or asset base) 
used to produce that income,” calculated typically as “income 
or some other measure of return on investment.” Values greater 
than 1.0 indicate that return is greater than investment (Kinney 
and Raiborn, 2011). One of the challenges in measuring ROI in 
financial terms is that returns may take decades to materialize in 
some disciplines (Stewart et al., 2015). Recently, two studies have 
applied ROI metrics to study the impact of HPC usage at Indiana 
University. Thota et al. (2016) compared the annual cost of operat-
ing IU’s Big Red II supercomputer with the funds brought into the 
university by the researchers that used Big Red II. The expected 
annual average cost for Big Red II is around $15 million dollars. 
Thota et al. found that for the year 2013, the total grant income 
to IU by PIs or Co-PIs who make use of this supercomputer was 
more than double the amount of the cost ($39.8 million). This 

is suggestive (although not conclusive) of a favorable financial 
ROI—only suggestive because the analysis of Thota et  al. was 
not able to take into account how critical use of the Big Red II 
supercomputer was to the grants awarded to users of that sys-
tem. Similarly suggestive, Fulton et al. (2017) showed a positive 
correlation between an increase in HPC usage and IU’s award 
funding over a period of years. Stewart et al. (2015) analyzed the 
ROI for XSEDE (the eXtreme Science and Engineering Discovery 
Environment) and argued that the ROI of federal investment in 
this resource was greater than 1.

DaTa acQUisiTiOn anD PreParaTiOn

Four data sources are used to analyze and visualize the impact of 
internal IT usage on external funding, associated publications, 
and collaboration networks: IT usage data for faculty, staff, and 
students working at an institution; IU award database; NIH and 
NSF award data for the same institution together with publica-
tions that list these awards in the acknowledgments. These 
datasets, as well as their matching, cleaning, and preparation 
for visualization, are detailed subsequently. The overall process 
is illustrated in Figure  1. Please note that all public data and 
all code is available online at http://cns.iu.edu/2017-Value-
Analytics.html.

iT Usage Data
XD metrics on demand HPC resource usage log data is used to 
extract IT usage information. Among others, the logs contain five 
elements: IT system type, IT system name, units used (CPU hours 
for computing and Gigabytes for storage), user name, first name, 
and last name of IT user. An IT system consists of two types, 
namely storage and compute node, and several systems within 
each type.

From January 2012 to October 2017, there were two major 
storage and six computing systems utilized by (co-)PIs for NSF 
and NIH grants at Indiana University.

Storage
 1. Scholarly data archive,
 2. Data Capacitator 2

Computing
 1. Big Red, a supercomputer,
 2. Big Red II, a supercomputer,
 3. Karst, a cluster for serial jobs,
 4. Mason, designed for data-intensive, HPC tasks (Thota  

et al., 2016),
 5. Quarry, a computing cluster, and
 6. Carbonate, designed for data-intensive computing, particu-

larly for genome and phylogenic software.

Among computing systems, Big Red was decommissioned in 
2013 and replaced by Big Red II, Quarry was decommissioned 
in January 2015, and Carbonate became available in July 2017 to 
replace Mason, scheduled to retire on January 1, 2018.

High-performance computing log files do not differentiate 
between a group and a single user account. Using unique IT user 
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Table 2 | Summary of high-performance computing storage usage at Indiana 
University’s by individual users (January 2012–October 2017).

Data capacitator 2 scholarly data archive Total gigabytes Users

252 1,687 114,893 1,939

Table 1 | Summary of high-performance computing jobs at Indiana University’s by individual users (January 2012 to October 2017).

big red carbonate Mason Quarry Karst big red ii Total central processing unit hours Users

119 134 635 699 1,298 1,311 65,495,233,153 4,197

FigUre 1 | Data sources, data linkage, data preparation for XD metrics on demand value analytics visualizations.
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names and the fields with last and first names, 1,187 instances 
of group accounts were identified and removed. The log files 
were then filtered by the year > 2012-01-01 with the storage and 
computer resources > 0. Tables 1 and 2 provide a summary of IT 
resource usage at IU from January 2012 to October 2017 with a 
total of 65,495,233,153 CPU job hours run, 114,893 GB stored, 
and 4,112 unique users active.

internal iU award Database
Indiana University’s internal grant data are generated from 
Kuali Financial Services. This database imports user ID, the 
name of award agency, grant ID, and total amount. For this 
paper, the following query was specified: (a) the start date is 
2012-01-01 and (b) the grant amount is greater than 0. Out of 
the total of 28,965 awards between 2012-01-01 and 2018-01-01, 
597 grants are from NSF and 2,677 grants are from NIH agen-
cies. The number of unique (co-)PI users are 425 for NSF and 
690 for NIH.

nih grant and Publication Data
NIH grant award numbers and linkages to publications that cite 
award numbers can be downloaded in bulk using ExPORTER 
Data Catalog1 or as a data extract using Research Portfolio Online 
Reporting Tools (RePORTER).2 The NIH data provides access to 
both intramural and extramural NIH-funded research projects 
from the past 25 years and publications since 1980 (NIH, 2017). 
For this study, we have used the RePORTER; however, our meth-
odology is applicable to ExPORTER. When extracting data from 
the ExPORTER, NIH files are downloaded separately for each 
year and then merged, whereas the RePORTER output is already 
merged. The RePORTER query form also allows for generating 
data by means of query elements, such as keywords, organization 
names, publications, and others. By combining these elements, 
the user is able to create highly customized searches of this NIH 
funding database. In order to obtain the grant total and the 
number of publications for XDMoD, the following query filters 
were applied: project year (2012–2017), organizations listed in 
the NIH lookup (IU Bloomington, IU South Bend, and IUPUI), 
state (Indiana), and publication year (2012–2017), as illustrated 
in Figure  2. The Agency/Institute/Center field is kept with its 
default set to “admin,” and subprojects are set to be excluded.

1 https://exporter.nih.gov/ExPORTER_Catalog.aspx.
2 https://projectreporter.nih.gov/reporter.cfm.
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FigUre 2 | NIH RePORTER online search query.
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The query was run on August 22, 2017, 9:00  a.m. EST, and 
the query results were exported in CSV format with relevant 
fields: namely, Project Number, Contact PI/Project Leader, Other 
PI or Project Leader(s), FY Total Cost by IC, and Funding IC. 
Publication data were exported with the following fields: Core 
Project Number, ISSN, Journal, PMID, PUB Year, and Title. The 
results comprised 933 grants and 9,838 unique publications that 
acknowledge funding by these grants.

nsF grant and Publication
NSF grants and associated publications were downloaded using 
the NSF Award Search Web API.3 The API supports highly cus-
tomized queries. For this project, a query was run on October 31, 
2017, 2:00 p.m. EST, using the following filters:

 (1) awardeeName = “Indiana University,”
 (2) startDateStart = 01/01/2012, and
 (3) printFields  =  id, publication Research, agency, startDate, 

exp Date, fundProgramName,title,piFirstName,piLastName, 
estimatedTotalAmt,coPDPI,primaryProgram, awardeeCity, 
awardeeName.4

The results comprised 565 unique awards and 245 unique 
publications. Data were retrieved in JSON format and converted 
to a CSV format.

3 https://www.nsf.gov/developer/.
4 http://api.nsf.gov/services/v1/awards.json?awardeeName=%22Indiana+Universi
ty%22&offset=26&startDateStart=01/01/2012&printFields=id,publicationResear
ch,agency,startDate,expDate,fundProgramName,title,piFirstName,piLastName,es
timatedTotalAmt,coPDPI,primaryProgram,awardeeCity,awardeeName.

Data Preparation
NIH Award–Publication Linkage
NIH grants and NIH publications are linked via the project 
number. An additional preprocessing step is required for this 
linkage. The project number from the grant file is given in a 
14-digit format (e.g., 1R01HS022681-01), whereas the publica-
tion file is assigned an 11-digit format (e.g., R01HS022681). 
Combining these two files results in 2,046 unique publication 
records linked to 293 grants (11-digit format). Funding and 
Publication Impact data then consist of IT resources, funding 
agencies, publications, journals, and grant total, merged by 
(co-)PI and project number. The Co-PI Collaboration Network 
includes the names of PIs and Co-PIs, grant funding total, and 
the number of grants awarded.

NSF Award–Publication Linkage
For each award, the NSF API data retrieve publications in the form 
of a list, which is then split into three fields: authors, publication 
title, and publication journal. PIs’ first and last name fields were 
merged, yielding 318 authors, 565 awards, and 245 publications. 
Among these awards, 55 awards are associated with publications, 
and 48 (co-)PIs are associated with these 55 awards.

IT User–IU Award Linkage
Information technology user–IU award linkage between IT usage 
data and IU award data were performed using user IDs. Next, IU 
awards were linked to NIH and NSF award-publication linkages 
via project numbers. The result is a table that links 61 IT users 
to the very same number of (co-)PIs with 83 project awards, and 
968 associated publications based on the unique PMID identifier 
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Table 4 | Number of publication per discipline associated with the NIH and NSF 
awards.

Discipline number of publications

Medical specialties 252
Unclassified 245
Brain research 107
Infectious diseases 82
Health professionals 78
Biotechnology 59
Chemistry 44
Multidisciplinary 33
Social sciences 30
Biology 23
Math and physics 7
Chemical, mechanical, and civil engineering 5
Electrical engineering and computer science 2
Earth sciences 1

Total 968

Table 3 | NIH ICs and NSF funding grants with IU (co-)PIs that use IT 
resources.

Funding agencies number of 
funding awards

number of 
publications

sum of FY total 
cost by ic in $

NIH-NIGMS 14 156 4,057,619
NIH-NHLBI 6 183 2,655,533
NIH-NIAMS 6 116 1,992,701
NIH-NIAAA 9 61 1,523,761
NIH-NIMH 6 37 1,423,969
NIH-NCI 7 97 1,338,995
NIH-NEI 3 33 1,057,979
NIH-NIAID 2 10 730,446
NIH-NIDDK 3 9 674,441
NIH-OD 2 2 606,848
NIH-NIA 4 49 587,810
NIH-NIBIB 1 NA 500,696
NIH-NLM 3 86 364,995
NIH-NICHD 1 56 332,956
NIH-NCCIH 1 18 299,149
NIH-NIDA 1 5 154,000
NIH-NHGRI 1 1 5,000
NIH Total 70 919 18,306,898
NSF 13 49 2,709,157

Total 83 968 21,016,055
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in the case of NIH award or the unique publication title for NSF 
awards, as the NSF API data do not provide publication-unique 
identifiers. As a result of this merge, the Funding and Publication 
Impact data include IT resources, funding agencies, publications, 
journals, and grant total, merged by PI and project number. The 
total number of awards associated with IT resources is 657 for 
NIH and 228 for NSF awards, totaling $339,013,365. It should 
be noted that our main objective is to measure both financial 
and academic impacts. We have excluded the IU awards without 
publications and the awards for which the (co-)PI did not use IT 
resources. As a result, the number of awards and their publica-
tions is lower than the total number of IU awards, thus totaling $ 
21,016,055 for 83 NSF and NIH awards.

Data Aggregation
Data aggregation was performed to determine the number of 
users per IT resource, the total award amount per NIH Institute 
or Center (IC), and the total number of publications per discipline 
of science. Table 3 exhibits the total NIH and NSF award amount 
per IT storage and IT resource for unique project IDs. NIH ICs 
identify which Center for Scientific Review reviewed the grant 
application for a funding decision (NIH, 2017). In contrast, NSF 
API does not provide such a field. Table 3 shows the list of NIH 
IC and NSF together with the number of awards, publications, 
and total award amount for the IU dataset.

Publication records were aggregated using the UCSD map of 
science (Börner et al., 2012), a classification system that assigns 
each journal to one or more subdisciplines of science that are 
further aggregated into 13 disciplines of science (e.g., mathemat-
ics or biology).5 It should be noted that some journal names 
retrieved from NIH and NSF vary considerably from the UCSD 
classification system; several preprocessing steps are necessary, 

5 http://cns.iu.edu/2012-UCSDMap.html.

such as lowering cases and normalizing punctuation. There were 
245 cases where publication records did not match the UCSD 
map of science dictionary, and 33 publications were associated 
with more than one discipline with the same relative association 
proportion. For these publications, we created two additional 
categories, “Unclassified” and “Multidisciplinary.” As a result, 
each publication is associated with one of the 13 disciplines of 
science. The number of publications per discipline is given in 
Table 4.

Finally, all aggregated data and linkage tables were converted 
to JSON format as required by the visualization plugin in the 
XDMoD VA portal. The conversion script is available at http://
cns.iu.edu/2017-Value-Analytics.html. The JSON format 
specification for the Funding and Publication Impact and Co-PI 
Collaboration Network visualizations is illustrated in Figures  3 
and 4.

MeThODs

collaboration network extraction
The Co-PI Collaboration Network was extracted from NIH 
grant data as described in Section 3. Co-PIs were calculated by 
first matching the IU grant database’s “Agency Award Number” 
to the NIH “Core Project Number,” and then splitting the NIH 
“Other PI or Project Leader(s)” field by semicolon and counting 
the number of grants and total grants for each co-author pair to 
compute the weight for collaboration edges. For NSF, the Co-PI 
information was extracted from the field “coPDPI,” which also 
includes Co-PI’s IDs. These IDs were removed and the field was 
split by comma.

sankey graphs and Force network  
layout in WVF
Sankey Graphs
Sankey graphs show the magnitude of flow between nodes in 
a network as well as the relationship between flows and their 
transformation (Riehmann et  al., 2017). For the Funding and 

http://www.frontiersin.org/research-metrics-and-analytics/
http://www.frontiersin.org
http://www.frontiersin.org/research-metrics-and-analytics/archive
http://cns.iu.edu/2012-UCSDMap.html
http://cns.iu.edu/2017-Value-Analytics.html
http://cns.iu.edu/2017-Value-Analytics.html


FigUre 4 | JSON data schema for the Co-PI Collaboration Network 
visualization plugin.

FigUre 3 | JSON data schema for the Funding and Publication Impact 
visualization plugin.

7

Scrivner et al. XDMoD VA

Frontiers in Research Metrics and Analytics | www.frontiersin.org January 2018 | Volume 2 | Article 10

Publication Impact graph, we used the D3 Sankey API.6 It reads 
input nodes and weighted links and computes positions using 
the Gauss–Seidel iterative method (Barrett et  al., 1994). First, 
the horizontal position of the left-most nodes is computed; then, 
nodes further on right are positioned while minimizing link 
distance. After all the nodes are positioned, a reverse pass is made 
from right-to-left, and overlapping nodes are moved to minimize 
collision. The entire process is repeated several times to optimize 
the layout.

The final visualization features three types of nodes, namely 
IT resources on left, funding (e.g., NIH institutes and NSF) in 
middle, and publication disciplines on right. The height of a bar, 
or node, is proportional to the maximum of the weighted sum 
of incoming links and the weighted sum of outgoing links. The 
nodes are placed in ascending order by their heights.

Force-Directed Graphs
Force-directed graphs are used to display the relationship 
between objects by calculating the position of each node based 
on their shared edges. The D3 force-directed graph7 applies three 
primary forces upon the nodes: namely, the sum of all forces, 
a force between two linked nodes, and a central force using 
the layout algorithm by Dwyer et al. (2006). The WVF applies 
linkStrength as a parameter to calculate node positions and it 
is constant for all nodes.8 In the Co-PI Collaboration Network 
visualization, the nodes are Co-PIs and edges represent their 
research collaborations. Node size corresponds to the number 
of grants and node color denotes the total funding amount 
in US dollars per PI. Edge thickness indicates the number of 
coauthored grants.

The WVF
The WVF was used to build both visualizations.9 WVF is a highly 
configurable packaging of several industry-standard web libraries 
(Angular, D3, HeadJS, Bootstrap, and many others) that allows 

6 https://bost.ocks.org/mike/sankey/.
7 https://bl.ocks.org/mbostock/4062045.
8 https://github.com/d3/d3-3.x-api-reference/blob/master/Force-Layout.md.
9 https://github.com/cns-iu/wvf.

its users to quickly build visualization applications. Existing 
WVF visualizations support rendering interactive horizontal 
bar graphs, geospatial maps, network graphs, bimodal graphs, 
science maps, and others. The WVF provides lightweight in-
browser aggregation and analysis, but it relies on web services or 
external data sources to provide primary analyses. Applications 
built using WVF plugins allow each visualization within a page 
to use data from and interact with other visualization plugin 
elements, but through loosely coupled data connections. This 
allows for both the visualization elements and the aggregation 
and filtering methods to be replaced or removed without affect-
ing other elements.

resUlTs

This section explains how the data and methods discussed 
above are applied to IU institutional data and what insights 
were gained. Specifically, we describe the Funding and 
Publication Impact and Co-PI Collaboration Network visuali-
zations, as well as the portal that supports easy access to both. 

http://www.frontiersin.org/research-metrics-and-analytics/
http://www.frontiersin.org
http://www.frontiersin.org/research-metrics-and-analytics/archive
https://bost.ocks.org/mike/sankey/
https://bl.ocks.org/mbostock/4062045
https://github.com/d3/d3-3.x-api-reference/blob/master/Force-Layout.md
https://github.com/cns-iu/wvf
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The visualizations aim to help stakeholders understand the 
financial ROI measured in terms of total acquired funding and 
academic ROI measured by publications associated with these 
awards.

XDMoD Va Portal
The XDMoD portal is an interactive dashboard with an intui-
tive graphical interface to XDMoD metrics such as number of 
jobs, service units charged, CPUs used, or wait time (Furlani 
et  al., 2012). XDMoD metrics can be broken down by field of 
science, institution, job size, principal investigator, and resource. 
Academic metrics (e.g., publications, citations, and external 
funding) can be uploaded by users or incorporated by institu-
tions via Open XDMoD (Fulton et al., 2017). XDMoD VA adds 
new functionality by offering metrics on financial and scientific 
impact via visualization plugins, as illustrated in Figure 5. Key 
features of the VA interface include the ability to interact and 
drill-down, allowing users to access additional related informa-
tion simply by clicking inside edges and nodes or selecting the 
desired filters.

XDMoD Funding and Publication impact 
Visualization
The Funding and Publication Impact visualization allows users 
to interactively explore the relations between IT resource 
usage (on left in Figure 6), funding awards aggregated by NIH 
institute and NSF (in middle), and publications that cite this 
funding aggregated by scientific discipline (on right). Sankey 
graph links take users on an exploratory quest, moving from 
the IT resources via funding to papers published in diverse 
scientific disciplines.

In this interactive visualization, users are provided with 
various functionalities on demand, such as mouse-over and 
selection; a legend explaining color and size coding can be 
viewed on demand. For example, hovering over a particular 
node will cause that node and all links emanating from it to 
be highlighted, whereas hovering over a particular link will 
highlight that link with the color of the node from which the 
link originated, as illustrated in Figure 6. In this example, the 
user wishes to explore the connections between IT resource 
use, grant funding, and the number of publications in the 
field of Brain Research from Scientific Discipline (3). After 
hovering over one of the links connected to the Brain Research 
node from the Scientific Discipline category on the right, the 
common link will connect Brain Research publications with 
the funding agency from the Funding category (2) and IT 
Resources (1). Hovering over a link also brings up additional 
information relevant to the node (e.g., number of papers, here 
54). To explore other links and nodes, the user can simply 
double-click on them to reset. The example in Figure 6 also 
illustrates how the user may gain insights from the visual data. 
In particular, the user’s selection reveals that 54 out of 107 
papers in Brain Research acknowledge NIH-NLM funding and 
that the grants associated with these papers utilized Karst, as a 
computing IT resource.

Interpretation
The visualization shows that in 2012–2017, a total of 114,894 GB 
and 65,495,118,259 CPU hours were used by externally funded 
projects that had associated publications. The grant income 
to IU by PIs and Co-PIs which use IU HPC resources—for 
researchers who had both awards and publications during the 
period analyzed—is $21,016,055. A majority of this funding 
comes from NIH projects that total $18,306,898 (87%) with 
the top three ICs being NIH-NIGMS, NIH-NHLBI, and 
NIH-NIAMS. In terms of publications, IT resource usage, 
via grants, links to 968 publications. Brain Research, Medical 
Specialties, and Infectious Diseases have the largest number of 
publications.

XDMoD Va co-Pi network Visualization
The Co-PI Collaboration Network visualization is shown in 
Figure 7. It features a force-directed network layout on the left 
and a sorted horizontal bar graph on the right. Both visualiza-
tions are coupled so that hovering over an investigator in the 
network highlights that same investigator in the bar graph. 
The node size for each investigator indicates the number of 
grants received, while the node color indicates the total award 
amount; see legend in interactive visualization for details. If two 
investigators collaborated (i.e., their names are listed together 
on a grant), there exists an edge between them. The thickness 
of this edge represents the number of times they collaborated 
together. To see collaborations in the network, simply hover 
over the node of a particular investigator. This will highlight 
the selected investigator node and all emanating edges lead-
ing to other collaborator nodes in that investigator’s network. 
Similarly, hovering over a bar in the bar graph highlights all 
corresponding entries and renders other bars opaque for easy 
viewing of the selection. The range filter on the top (1) can be 
used to increase or decrease the number of node labels in the 
network visualization. The plus and minus buttons in the top 
left can be used to zoom in and out. During zooming, the legend 
is automatically updated to ensure that node values and edge 
thickness remain accurate.

Interpretation
The visualization helps identify three key elements of the aca-
demic and financial impact: namely, the number of awards, their 
total dollar amount, and research collaborations. Collaborations 
are rendered as a network with nodes representing researchers 
and edges denoting their Co-PI relationships. Given the rather 
short time frame, there are many, relatively small collaboration 
clusters. Most links are thin, indicating a one-time collaboration; 
there are few instances of multiple collaborations denoted by 
a thicker edge between nodes. A slider (1) filters labels by the 
number of grants. The legend (4) provides additional insights on 
the number of grants, their total amount, and the number of co-
authored grants. The Total Amount column on the right (2) shows 
researchers sorted by total funding during the years 2012–2017. 
By selecting a (co-)PI bar (2), the collaboration network for that 
(co-)PI is highlighted (3).

http://www.frontiersin.org/research-metrics-and-analytics/
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FigUre 6 | XD metrics on demand value analytics Funding and Publication Impact Visualization, see interactive version at http://demo.cns.iu.edu/xdmod-p/ 
impact.html.

FigUre 5 | XD metrics on demand value analytics Portal, see interactive version at http://demo.cns.iu.edu/xdmod-p/portal.html.
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FigUre 7 | XD metrics on demand value analytics Co-PI Network Visualization, see interactive version at http://demo.cns.iu.edu/xdmod-p/co-pi.html.
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DiscUssiOn anD OUTlOOK

The work presented in this paper aims to help researchers, 
administrators, and funders understand and communicate the 
impact of campus CI investments on scholarly productivity in 
terms of funding intake, publication output, and scholarly net-
works. The visualizations enable academic institutions to better 
understand ROI on advanced CI for different types of research 
(e.g., as expressed by NIH ICs and disciplines of science). As part 
of the work, we demonstrated different methods for collecting 
and processing publicly available data from NIH and NSF official 
sites and from institutional production systems that advance the 
functionality of the XDMoD VA portal.

Expanding on the work by Knepper and Börner (2016), we 
primarily focused on the relationship between storage and 
computing resources utilized by (co-)PIs and associated fund-
ing and publication records. Grant income to the university by 
(co-)PIs who used IT resources during the period analyzed was 
$339,013,365 for 885 NIH and NSF projects and grant income 

from (co-)PIs who used IT resources and had both grant awards 
and publications was $21,016,055. A total of 968 publications 
were associated with 83 of these NSF and NIH awards. In addi-
tion, the results show that Brain Research, Medical Specialties, and 
Infectious Diseases are the top three scientific disciplines ranked 
by their publication records during the given time period. Note 
that only awards associated with publications and IT resources 
are displayed; and only funding from two agencies, namely NIH 
and NSF, is shown.

In the future, we plan to advance the presented work as follows:
•	 Institutions will be able to upload not only IT compute cycles 

and storage usage counts but also information on storage size 
and number of compute cycles to provide additional insights 
into usage patterns across scientific disciplines.

•	 Funding data will be automatically retrieved via NIH 
RePORTER and NSF APIs, reducing the amount of manual 
work involved. Both online resources can be queried period-
ically to update award and publication data. Data from other 
funding agencies might be added as well.

http://demo.cns.iu.edu/xdmod-p/co-pi.html
http://www.frontiersin.org/research-metrics-and-analytics/
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•	 Fuzzy matching algorithms will be implemented to increase 
the number of journals mapped to scientific disciplines. This 
will help reduce the number of publications designated as 
Unclassified.

As Fulton et al. (2017) state, “measuring intellectual outcomes 
is difficult, particularly since the results of intellectual accom-
plishments may take years or decades to be fully realized.” To 
evaluate data quality and data matching (e.g., by PI name), we are 
working on a comparison of data retrieved from NSF/NIH versus 
data available via IU’s Sponsored Research production databases. 
Results will help understand data issues and optimize matching 
algorithms. Understanding the value of investment in CI is chal-
lenging, as the impact of such investments has many dimensions, 
including intellectual contributions and financial impact. The 
XDMoD VA modules facilitate understanding of the role CI by 
analyzing a number of metrics and allowing visualization of the 
diverse ways in which they impact institutional planning and 
strategy as well as the development of human knowledge.
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