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NETWORK VISUALIZATION LITERACY: TASK, CONTEXT, AND LAYOUT 

 

Information visualization as a practice is becoming increasingly global, being conducted 

by and distributed to increasingly diverse stakeholder groups.  Visualizations are being viewed in 

casual contexts and for a variety of purposes. The use of network visualizations has likewise 

increased in recent years, in part because network visualizations have properties that are 

applicable to datasets ranging from academic journal and patent citations to molecular 

interactions to the movement of refugees across national borders. 

Unlike charts based on numerical or categorical axes, common network visualizations 

operate under a set of rules that are largely unexplained to the users of the diagrams. For 

example, unlike axis-based charts, there is no stable reference system across node-link diagrams.  

The same dataset can produce many visualizations that look very different from each other, 

depending on the choice of layout algorithm, rotation, data thresholding, etc.  

Research on the skills required to interpret network visualizations and the prevalence of 

those skills have typically been small in scale – limited to a small group of users or a limited set 

of visualization design choices. With the broadening of the audiences for visualizations and the 

dissemination of more sophisticated visualization types, a detailed examination of the typical 

skills of a novice viewer of network visualizations is crucial to the development of appropriate 

and successful visualizations. 

This dissertation advances our understanding of network visualization literacy by 

studying performance of both novices and experts in network science on a variety of network 

analysis tasks and datasets using a variety of visualization designs. The empirical results will 
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provide a baseline for understanding network visualization usage and will offer advice to 

visualization designers on the design features that best support particular tasks.  
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II. INTRODUCTION  

Information visualization as a practice is becoming increasingly global, being conducted 

by and distributed to increasingly diverse stakeholder groups.  Visualizations are being viewed in 

casual contexts and for a variety of purposes (Harrison, Yang, Franconeri, & Chang, 2014; 

Sprague & Tory, 2012). The use of network visualizations has likewise increased in recent years, 

as is suggested by their appearance in everything from general software applications (e.g., 

Google Fusion Tables (Google Help Center, 2015)) to mainstream social media (e.g., Facebook 

network visualization applications like Friend Wheel (Fletcher, 2007) and Netvizz (Rieder, 

2015)). Network visualizations have properties that are applicable to many datasets of interest, 

ranging from academic journal and patent citations to molecular interactions to the movement of 

refugees across national borders. 

Unlike charts based on numerical or categorical axes, node-link diagrams operate under a 

set of rules that are largely unexplained to the users of the diagrams. For example, while node-

link diagrams do share with other types of charts the ability to encode variables using size, shape, 

color, texture, etc., there is no stable reference system across node-link diagrams.  The layout of 

the diagram can be rotated without distorting the visualization, though the resulting diagrams 

may look very different.  Furthermore, the absolute positions of the elements are less important 

than the relative distances between them, which are typically calculated based on link 

occurrences and weights – both of which may be removed from the final visualization. 

Simplification from the multidimensional space of edge weights to a two-dimensional (or 

perhaps three-dimensional) space can be accomplished using many different techniques and can 

yield very different visualizations for the same dataset. Moreover, a complete catalog of the 
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conventions employed by the typical node-link diagram does not exist, and the logic behind the 

diagram is not included in typical primary or secondary school curricula. 

Users of any information visualization form may engage in a variety of tasks, including 

both low-level tasks like data foraging and high-level tasks like problem solving and composing 

(Card, Mackinlay, & Shneiderman, 1999), but the success of user interactions with visualizations 

is dependent on a variety of factors.  Research on the skills required to interpret network 

visualizations and the prevalence of those skills is still in its early phases. Small-scale studies of 

these or related visualizations have investigated the specific structural properties of network data 

(Novick & Hurley, 2001), the graph design aesthetics that are most likely to improve 

performance on quantitative interpretation tasks (Bennett, Ryall, Spalteholz, & Gooch, 2007), or 

metaphoric devices of the diagrams (Fabrikant, Montello, Ruocco, & Middleton, 2004). 

Typical evaluations of network visualizations, however, are often designed to evaluate a 

limited set of visualization properties with a homogeneous user sample. With the broadening of 

the audiences for visualizations and the dissemination of more sophisticated visualization types, 

a detailed examination of the typical skills of a novice viewer of network visualizations is crucial 

to the development of appropriate and successful visualizations. 

There is thus a gap in the information visualization literature that complicates our 

attempts to understand and predict how users from various backgrounds and levels of 

visualization expertise will react to network visualizations – in particular, the commonly used 

node-link diagram that represents networks as nodes and links and determines position based on 

presence and weight of edges.  The proposed study of network visualization interpretation will 

attempt to fill this gap by studying both novices and experts in network science and by collecting 

quantitative data about the participants’ interpretations and recognitions of network 
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visualizations. The empirical results will guide future studies of specific interpretation strategies, 

design strategies, and instruction strategies by providing designers and visualizers with a better 

sense of the extent of abilities in potential audience communities and the types of visualization 

design choices that improve or detract from performance on various interpretation tasks. 
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III. LITERATURE REVIEW 

This literature review will address the major theoretical and methodological concerns 

surrounding the interpretation of graphics – specifically network visualizations.  Interpretation is 

being used here as an umbrella term to encompass various strategies and processes employed by 

the user while interacting with and making sense of visualizations.  (See the Glossary section for 

additional term definitions.)  The ability to read and understand different graphical forms is not 

only an important component of literacy in general but is also of particular interest to the 

producers of graphics, including members of the information visualization research community. 

Social scientists in a variety of fields have addressed aspects of this research 

problem.  This review will organize and synthesize relevant literature using the following 

conceptual divisions: literature that focuses on network data and visualizations; literature that 

focuses on tasks employed in visualization interpretation; and literature that focuses on the 

visualization user and his/her skills and traits. 

A. Visualizing Network Data 

Networks are used in a variety of fields to represent data that are comprised of nodes 

(entities) and edges (relationships between those entities). Networks can identify both the global 

structure of interactions between entities and the pathways across which processes can occur. 

Networks may reveal entities that serve as a “hub” or center of a cluster, as well as entities that 

serve as a “broker” or gatekeeper, tying two largely unconnected clusters together. Users may 

employ network visualizations to assess the connectedness of a relational dataset, identify the 

“backbone” pipelines through a network, or pinpoint the key agents within the structure. 

1. NETWORK DATA 
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The data sets that comprise networks are, in essence, simple lists of nodes and edges 

(though each can also have attributes, and the data can also undergo further processing).  Edges 

can have no direction (as when edges represent an associational relationship between nodes), or 

they can have directionality (where the relationship only exists in one direction – unidirectional – 

or where there is a reciprocal relationship – bidirectional).  Network data in general can be 

composed of edges or links between any two nodes; that is, in the most general form, there are 

no constraints placed on the number or types of edges that can be created in a network data set.  

This can be contrasted with hierarchical (tree) data sets, which are also composed of nodes and 

edges but which have special data constraints (i.e., edges are directed and acyclic, there is a 

single root node with no parents, and no node has more than one parent).  As another example of 

constraints placed on the data set itself, a particular data set may be bipartite (having exactly two 

sets of nodes and allowing only links between those two sets).  This is a special case of the 

general form of networks, however, and the constraints are neither inherent to all networks nor 

common enough to have been formally encoded into a particular network visualization type. 

There are many ways of generating data that can be visualized as a network.  In one 

process, a series of items (e.g., documents) are connected to each other by direct relationship 

(e.g., one document cites another, one person emails another person); in another, they might be 

connected to each other by similarity (e.g., two documents use language in a similar way).  In the 

former case, the presence of an edge is an indication that the relationship of interest exists, and 

an optional edge weight determines the extent or intensity of the relationship.  In the latter case, 

however, the determination of similarity between elements can be a complicated process 

combining multiple candidate measures of similarity. 



6 

For example, if two documents are being evaluated for similarity in terms of the language 

used in the documents, each document may become a row vector in a document-term matrix.  

Each term that appears in either document becomes a column in the matrix, and the number of 

times a document uses the term becomes the value for cell at the intersection of the document 

and term vectors.  To use this type of matrix to generate a network visualization, the many-

dimensional vectors must be compared and converted to a single similarity score that will 

become the weight of an edge between the two documents.  Determining the similarity between 

these two documents then becomes a dimensionality reduction problem – namely, reducing 

thousands of candidate measures of similarity to a single similarity score.  This calculation of 

edge weights in network datasets is outside the scope of this review. 

2. NETWORK ANALYSIS 

As with any data structure, many operations can be performed on network data.  At the 

lowest level, there are simple mathematical and statistical operations (e.g., counts, distributions) 

that can be applied to the nodes, the edges, or the attributes of both; these are the same operations 

that can be applied to any categorical or numerical data.  There are additional operations, 

however, that have been developed to analyze the structure of network data, ranging from 

descriptive statistics that take into account the attachment of edges to nodes (e.g., degree 

distributions) to structural or topological analyses that attempt to identify relevant properties of 

nodes or sets of nodes (e.g., betweenness centralities).  Increasingly, clustering algorithms are 

applied to network data to detect patterns or reduce complexity in the data, and the clustering 

assignments that are generated by these algorithms can be added as node properties and 

incorporated into the visualization. Most commonly, network data sets are summarized by the 

total number of nodes, the total number of edges, the diameter (length of the longest path), the 
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density (the number of edges over the total number possible), and the global clustering 

coefficient (Watts & Strogatz, 1998).  

3. NETWORK VISUALIZATIONS 

Network data can be generated and analyzed without being visualized, but the 

visualizations are often compelling and more easily understood than numbers that summarize 

network properties.  The simplest representation is an adjacency list, where each node is itemized 

and followed by a list of all of the other nodes with which that node shares a link (its neighbors). 

Large networks are more likely to be visualized as matrices or node-link diagrams and can be 

displayed using one or more of several organizing principles.  

A matrix visualization (Figure 1) is a tabular visualization where a node is represented by 

either a row or a column (or both) and a link is represented by a numerical value placed in the 

cell where a node row and a node column intersect.  For example, in a matrix visualization of a 

co-authorship network, a two-dimensional table is created where the same author names appear 

in the row and column headers. Numerical values representing the co-authorship activity of two 

authors will appear in the cell where the row of the first author and the column of the second 

intersect (as well as in the cell where the row of the second author and the column of the first 

intersect).  For a bipartite network data set, the nodes in the rows will be disjoint from the nodes 

in the columns.  Columns and rows can be ordered to group similar authors or to highlight visible 

patterns in the data values (Eliassi-Rad & Henderson, 2010). 

 

Figure 1. A matrix visualization of network data. 
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In contrast, node-link diagrams represent each author as a single point (some graphical 

icon or symbol), and the presence of a link is visualized by the addition of a line or curved edge 

between the nodes (Figure 2).  These components are often laid out such that smaller distances 

between nodes represent higher similarity (Figure 3), but nodes can also be arranged in a circular 

layout, perhaps in order of a certain property (e.g., degree), or against a separate reference 

system like a geospatial map or a science map. 

 

Figure 2. Node-link diagrams typically represent nodes as circles and links as straight or curved lines. 

 

 

Figure 3. A sample node-link diagram of a simple network, labeled with common network-related terminology. 
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As previously mentioned, a tree or a hierarchy is a special case of a network where 

certain conditions hold for the nodes and relationships.  Trees have several informationally 

equivalent visualization forms, but they are most commonly visualized either using special types 

of node-link diagrams (e.g., dendrograms) or using geometric shapes that are contained within 

each other to indicate the hierarchical relationships (e.g., treemaps). 

4. NODE-LINK DIAGRAM1 PROPERTIES 

Node-link diagrams are constructed by computational algorithms following specific rules 

for converting complex relational data into a two- (or sometimes three-) dimensional figure.  

When developing a visualization that represents network data, it is common to desire a layout 

that place nodes that are highly similar to each other much closer together than nodes that are 

dissimilar to each other.  This activates Gestalt laws of proximity (Healey & Enns, 2012) and has 

been found to be very powerful in reading and interpreting network visualizations (Fabrikant et 

al., 2004).  Take, for example, three nodes all connected to each other with weighted edges.  The 

placement of those nodes should be governed by an algorithm that finds the weights of the edges 

that connect those nodes and translates those weights (or some multiple of the inverse of the 

weights) into the distance between the nodes.  That way, the higher the weight is, the closer the 

nodes get. 

The conversion of the weighted edges between the nodes to a two-dimensional 

visualization, however, is another dimensionality reduction problem.  With three nodes that are 

all interconnected, it is easy enough for an algorithm to find an appropriate triangle to represent 

                                                

1 The focus here is on node-link diagrams that arrange nodes in reference to the presence and weights of 

edges, rather than by properties of the nodes (e.g., time, alphabetical by name, geographic location). 
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the relationships between all three of the nodes.  But once a fourth node is introduced, the 

weighted edges between the fourth node and the existing three nodes may conflict with the 

existing arrangement. For example, two nodes that were very far apart in the original 

arrangement may both be strongly connected to the new fourth node.  Thus, the conflicting 

weights between the various edges in a network represent a complex mathematical problem that 

can be addressed either in the data processing phase or in the layout phase of network 

visualization development (Börner, Chen, & Boyack, 2003). 

a) COMPUTING LAYOUT 

Various ways have been devised to compute node positions and edge aesthetics for the 

visualization of network data as node-link diagrams.  Dimensionality reduction techniques – 

mentioned above as a way to compute similarity between rows in a node attribute matrix – can 

also be used to reduce the complexity of the multi-dimensional space created by the edge 

weights of a network dataset. There are also separate graph-specific layout algorithms that iterate 

through node locations and try to optimize layouts based on presence and weight of edges or 

other graph aesthetic principles. 

(1) DIMENSIONALITY REDUCTION 

Dimensionality reduction can be used to detect important features within a high 

dimensional space and condense that information either into a single similarity score between 

every two nodes (producing a new network can then be subjected to other network layout 

algorithms) or directly into a two-dimensional projection of the high dimensional space.  

Dimensionality reduction can be applied either to representations of the network that contain 

only edge information or to matrices that include node attributes, with or without edge 

information. 
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Dimensionality reduction algorithms are often classified as either linear (e.g., Principle 

Components Analysis, Least Squares Mapping), or nonlinear (e.g., Multidimensional Scaling, 

Triangulation, K-Nearest Neighbors) (Siedlecki, Siedlecka, & Sklansky, 1988). These may be 

further distinguished by properties of the algorithm, such as whether the algorithm is 

discriminance based or topology preserving (König, 1998). What is common in these techniques 

is that the focus is on the preservation of as much of the original information as possible, or on 

the “accuracy” of the layout (though these algorithms can be optimized for certain types of 

topological information). These techniques in their native forms do not typically take into 

account whether the resulting layout includes overlapping nodes and edges, uneven node 

distributions, unequal edge lengths, lack of symmetry, etc.  Because these algorithms can be 

employed on note attribute matrices directly to create a two-dimensional spatialization of node 

positions, the resulting layouts may forego edge representations entirely, showing just the nodes 

in a method similar to a scatterplot. 

(2) NETWORK-SPECIFIC LAYOUTS 

Layouts that have been developed specifically for the layout of network data into node-

link diagrams can be deterministic (based on a node or edge attribute, like listing nodes 

alphabetically) or non-deterministic (placing nodes according to similarity and aesthetics, 

attempting to optimize for certain visualization properties).  Among non-deterministic layouts, 

the primary goal is to place nodes with similar connections near each other.  This is the 

embodiment of the distance-similarity metaphor (Fabrikant et al., 2004).  That overarching goal, 

however, leaves many open questions about what else can promote or inhibit appropriate 

visualization interpretation.  Layout algorithms have thus been developed to optimize for one or 

more of a series of graph aesthetic principles (Bennett et al., 2007), including: 
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• Global and local symmetry 

• Non-overlapping nodes 

• Minimized edge crossings 

• Edges of equal length 

• Evenly spaced nodes 

• Visual representation or emphasis of clusters (e.g., intra-cluster edges are shortened, inter-cluster 

edges are lengthened) 

• Space-filling algorithms 

• Node area awareness 

Consideration of task plays a role in the selection of an appropriate layout algorithm.  The 

different graph aesthetic principles vary in terms of the types of tasks they are best suited for.  

Recent evaluations of graph aesthetics and layout algorithms have been criticized for failing to 

take into account real-world tasks when conducting the evaluations (Gibson, Faith, & Vickers, 

2013). 

b) LOGICAL PROPERTIES OF NODE-LINK DIAGRAMS 

Typical layout algorithms for node-link diagrams exhibit certain logical2 properties. 

These are properties of the visualization type that are true regardless of the network dataset being 

visualized.  Because the computation of node and edge positions takes into account only relative 

information between nodes, the node positions have no natural reference system.  Nodes can be 

rotated or reflected in space without introducing (mathematical) distortion into the visualization.  

                                                

2 Here, logical properties are defined in contrast to structural or topology-based properties, which include 

network measures like node degree distribution and which are tied to the specific dataset being visualized.  See 

previous section on Network Analysis for more information. 
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On the other hand, studies of other visualization types – for example, pie charts (Ziemkiewicz & 

Kosara, 2010) – has shown that users can attach different meaning to a visualization depending 

on the location and orientation of certain visualization elements. 

Other logical properties of node-link diagrams include the distance-similarity metaphor 

and the primacy of node position over edge representation (insofar as edges may be selectively 

removed or bundled to reduce visual complexity). 

5. COMPARISONS BETWEEN NODE-LINK AND OTHER VISUALIZATIONS 

When a single data set can be represented in multiple ways, those representations are 

considered informationally equivalent (Larkin & Simon, 1987), though the equivalence of the 

information content displayed does not preclude different affordances within the representations.  

Because of these different affordances, informationally equivalent visualizations can still vary in 

how well suited to a particular data set or visualization task they are.   

A series of studies by Novick and colleagues focusing on node-link diagrams, matrices, 

and hierarchical (tree) visualizations (Novick, 2000, 2006; Novick, Hurley, & Francis, 1999) has 

identified a series a basic structural properties of these visualization types that may be 

differentially useful for various network-based data sets and analysis tasks.  The evolved list of 

structural properties (Novick, 2006) is as follows: 

1. Global structure: each visualization type has a global form or structure that distinguishes it from 

the other visualization types. 

2. Building block: the essential component of each visualization type also distinguishes the 

visualization types from each other. 

3. Number of sets: each visualization type is optimally suited for a certain number of sets of data 

points. 

4. Item/link constraints: whether or not the visualization type imposes constraints on the links that 
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can be created between the items is another distinguishing property of the visualization types. 

5. Item distinguishability: each visualization type is differentially suited to distinguishing between 

items, particularly by imposing an inherent order on items. 

6. Link type: each visualization type is differentially suited for displaying particular link types 

(associative/undirected, unidirectional, and/or bidirectional). 

7. Absence of a relation: each visualization type is differentially suited for displaying the absence 

of a relation.  

8. Linking relations: each visualization type is optimally suited for data sets where there are 

particular relations between incoming and outgoing links for each node; more specifically, this 

property distinguishes between diagrams optimized for general network data sets and those 

optimized for hierarchical data sets with internal constraints about the numbers of parent and 

child nodes each node can have.  

9. Path: each visualization type is differentially suited for display a chain of links, or a path through 

three or more nodes. 

10. Traversal: each visualization type is optimally suited for data sets where there are particular 

rules about the types of paths that are possible; more specifically, this distinguishes between 

network data sets, where any path is possible, and hierarchical data sets, where cycles or closed 

loops are forbidden. 

 

Each structural property can thus be used to match a visualization type with a particular 

data set or task.  This work occasionally conflates the visualization type with the data type, 

however, and generally fails to distinguish between network data and hierarchical data. That is, 

hierarchical visualizations are not informationally equivalent to network visualizations because 

network data cannot be represented by a hierarchical visualization type.  The type of data alone 

may thus be enough to determine the appropriateness of one of these visualization types, rather 
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than specific properties of a particular data set or the analysis task that needs to be optimized by 

the visualization type.  After removing the properties focused specifically on differentiating 

network and hierarchical data (5, 8, 10), there remain seven properties that can be used to match 

a particular network visualization type with a data set and an analysis task. 

The Novick et al. studies build on the notion of informational equivalence and test the 

match between diagram properties and data set/analysis task scenarios.  One example of a 

hypothesized relationship between the structural properties of network visualizations and a 

particular type of data set is the hypothesis that matrix visualizations are best matched with data 

that contain associative links, as opposed to directional.  For any data set with directional links, it 

is expected that the use of the matrix visualizations would reduce performance on data analysis 

tasks.  Likewise, if a data set has no inherent constraints on what items can be linked, then a 

node-link diagram should be a good match.  Other properties are more helpful at matching a 

visualization type to particular analysis tasks, which will be covered in more depth in a later 

section. Table 1 shows the compiled results of several studies, focusing on the two visualization 

types and seven properties relevant to general network data. 

Table 1. Structural properties of network visualizations, by type and diagnosticity.  
Bold text indicates high diagnosticity; light text indicates limited diagnosticity. (Novick, 2000, 2006) 

 
Matrix Node-Link 

Basic Structure of the Diagram 

Global structure Tabular Lack of structure 

Building block Cell Two linked nodes 

Number of sets Two One 

Item/link constraints Between sets 
(unclear) 

No constraints 

Details about Items and Links in the Diagram  

Link type Undirected Any type of 
directionality 
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Absence of a relation Best Worst 

Potential for Movement of Information Through the Diagram 

Path  Not visible Visible 
 

In the table above, black or dark gray cells indicate a stronger “applicability condition”, 

or a stronger relationship between the structural property and the diagram type.  Light gray cells 

indicate limited support for applicability of that structural property to that diagram type (i.e., the 

applicability condition was found to be nondiagnostic of that diagram).  The box with italic text 

had mixed results over the course of multiple studies that were difficult to summarize.  The 

results justify the use of node-link diagrams for data sets with any type of link, where any node 

can connect to any other node and where the absence of a relation does not need to be 

highlighted.  The results also emphasize that global data properties like the number of sets are 

not inherently spatialized by node-link diagrams.  An extension of this research may be to the 

exploration of the ability of users to transfer knowledge of diagrammatic structure from one 

node-link diagram to another; given the lack of a global structure for node-link diagrams, it is 

possible that this visualization type is harder to learn as an abstract form. 

The Novick et al. studies focus on selecting the general type of visualization, based on 

certain qualities of the data and tasks.  Other attributes of the data set that might constrain the 

selection of a visualization type are the size, density, clustering coefficient, and node property 

distributions of the network.  Ghoniem, Fekete, and Castagliola (2005) undertook a comparison 

of matrices and node-link diagrams, varying the size and densities of the sample data sets.  They 

found performance on all experimental tasks deteriorated for node-link diagrams as the size 

increased from 20 nodes to 50 nodes, and again between 50 nodes and 100 nodes.  Increases in 

density between 0.2 and 0.6 had mixed effects on task performance; some tasks are much harder 
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with high-density graphs, but others show no significant drop in accuracy as density increases.  

H. C. Purchase, Cohen, and James (1997) found that an increase in density of node-link diagrams 

relates to a decrease in accuracy on tasks dealing with the connectivity of a network. 

The match between a data set and a visualization type can be further optimized, however, 

by examining the affordances of different layout algorithms.  For example, a data set in which 

nodes tend to form tight and distinct clusters could be visualized using a matrix that had been 

sorted to group the clustering nodes together (Fekete, 2009), thereby matching a structural 

property of the data to a strong visual encoding (proximity).   

Node-link diagrams have an especially wide variety of layout algorithms that determine 

the position of nodes and the appearance or curvature of edges.  The most common layout 

algorithms, especially for small medium-sized networks, are algorithms that draw from physical 

analogies likes springs and forces, pushing and pulling the nodes into placed based on the 

presence of edges and further optimizing the layout with other desirable aesthetic properties like 

symmetry or a minimum of edge crossings (Börner et al., 2003; Brandes, 2001).  As with the 

differences between the broader visualization types, differences between node-link layout 

algorithms may offer better representations of certain features of different data sets (e.g., large 

vs. small networks, high density vs. low density networks). For example, Ghoniem et al. (2005) 

found that matrix representations outperform node-link diagrams over medium-sized networks 

(50 to 100 nodes) for a variety of network readability tasks, especially as density increased. 

6. DATA CONCRETENESS 

Beyond the selective use of visualization types and layout algorithms to best present a 

particular data set, other graphical features of the visualization can improve use of the display.  

The use of text in conjunction with graphics, for example, is a common practice and is often the 
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subject of research on cognitive load (see previous section). Consistent with prior research on 

multimodality and cognitive load, Wiedenbeck (1999) found that a combination of icons and text 

outperformed both the icon-only and the text-only conditions for novice users of an application 

interface. 

By contrast, however, Koutstaal et al. (2003) found that, as adults age, they become more 

likely to falsely recognize an abstract graphic when it is labeled than when it is left unlabeled.  

The theory advanced, called the semantic categorization account, suggests that in these cases 

“semantic category information truncates, precludes, or preempts further item-specific 

processing, even though the initial categorization is quite straightforward and effortless” 

(Koutstaal et al., 2003, p. 500).  In other words, for certain user groups, adding label information 

to an abstract graphic may complicate visual recognition at a later time because the semantic 

content presented with the visualization will preempt processing of the visualization’s spatial 

organization.  Put another way, “[t]he graph reader’s situational knowledge may interrupt her 

work on the cognitive, information-processing tasks performed in interpreting the graph” (Friel, 

Curcio, & Bright, 2001, p. 140). 

The implication of this finding is that cognitive load theory may have a complicated 

relationship with the concreteness of either the graphic or the accompanying text.  Adding 

concrete graphics or metaphors to an abstract concept is often expected to improve performance 

because it will activate a mental model and allow for transfer of previously learned interaction 

techniques.  For example, Rieber and Noah (2008) conducted a study to measure learning 

through use of an interactive tutorial on the relationship between acceleration and velocity.  

Within the study, the participants saw a simulation of an animated ball whose acceleration 

needed to be controlled by the participant.  Half of the participants received an additional 
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instruction, however, that directed them to think of the ball as rolling around on a table that could 

be tilted to control the movement of the ball.  The visual metaphor used to frame the data was 

related to increased success of the participants and “became an important ‘anchor’ when trying to 

articulate the motion of the ball” (ibid, p. 87). 

The presence of concrete stimuli, according to dual coding theory (Kounios & Holcomb, 

1994; Paivio, 1971), activates both imaginal and verbal systems, whereas abstract stimuli are 

processed by a single system.  The implication of this is that concrete stimuli are processed more 

easily, showing improvements in “recall, lexical decision, sentence comprehension, and sentence 

verification” (Kounios & Holcomb, 1994, p. 804). Clark, AbuSabha, Eye, and Achterberg (1999) 

developed brochures with increasingly concrete images and text and measured the retention of 

information by study participants.  Participants in the condition with both concrete images and 

concrete text did show improved recall, but only on the immediate post-test. The effect was not 

significant after a 30-day delay.   

Another series of studies compares concreteness to perceived credibility.  Al-Balushi 

(2011) tested participants’ evaluations of the trustworthiness (or credibility) of various scientific 

models.  The credibility of the model was found to be negatively related to the abstractness; as 

the models became more abstract, the participants reported lower credibility.  Credibility ratings 

were also negatively related to the age of the participants.  In a follow-up study, Al-Balushi 

(2013) associated these trust ratings to common tests of visual-spatial and visual-object skills.  

Individuals with high scores on the visual-object test rated scientific models as less credible, and 

the reverse was true for those with high scores on the visual-spatial test. “Based on the findings, 

it might be plausible to conclude that as the abstraction level for scientific models increases, such 

as for theoretical models which lack defined structure and known details, imaginative learners’ 
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difficulty to construct colorful and detailed mental images for natural entities and phenomena 

increases” (Al-Balushi, 2013, p. 707).  It is not yet clear what the relationship between this 

skepticism and analytic performance might be, but as perceived plausibility or “reasonableness” 

of the data (Friel et al., 2001, p. 140) is expected to interact with performance for statistical 

analysis, a lack of trust in the data source is likely to inhibit visualization analysis tasks. 

B. Visualization Interpretation Tasks 

Empirical research on the interpretation of visualizations is increasing as the field 

matures, though many studies that address interpretation do so under the auspices of evaluation.  

Visualization evaluation, or the validation of the design of a visualization based on some 

empirical or heuristic study, often focuses on changes that could be made to the design of a 

visualization to improve the performance of the visualization in one or more areas (e.g., system 

responsiveness, human readability).  When evaluation studies seek to validate the readability of a 

visualization, they attempt measure how well a user can read or interpret the visualization. 

How evaluation studies measure user performance is the subject of a workshop entitled 

“BEyond time and errors: novel evaLuation methods for Information Visualization (BELIV),” 

which is held every two years at the annual IEEE VIS conference.  An early focus on 

quantitative measures of visualization interpretation, inspired by psychological aptitude studies 

and framed as evaluations of visualizations, is beginning to broaden to a more nuanced 

understanding of how users interact with static and interactive visualizations.  Recent reviews 

have quantified the nature of visualization evaluation and how commonly different types of 

evaluation techniques are employed in the field. 

Lam, Bertini, Isenberg, Plaisant, and Carpendale (2012) review studies in canonical 

information visualization publication venues to categorize evaluation approaches that have been 
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used in the field.  The review identifies seven “scenarios” of visualization evaluation (Table 2), 

grouped by those that focus on “understanding data analysis” (typically a focus on the user, goal, 

or context) and those that focus on “understanding visualizations” (typically a focus on how 

changes in the design of a visualization influence user performance or experience).  The 

evaluation approaches uncovered in the information visualization literature are heavily weighted 

toward those used in work environments or by users whose goals are to conduct a work-related 

task (data analysis or learning).   

Table 2. Seven scenarios of visualization evaluations (Lam et al., 2012). 

Understanding data analysis: 
1. Understanding environments and work practices 

(UWP) 
2. Evaluating visual data analysis and reasoning (VDAR) 
3. Evaluating communication through visualization (CTV) 
4. Evaluating collaborative data analysis (CDA) 
 
Understanding visualizations: 
5. Evaluating user performance (UP) 
6. Evaluating user experience (UE) 
7. Evaluating visualization algorithms (VA) 

 

The visualization scenarios from Lam et al. (2012) that most closely address research 

questions about visualization interpretation come from each of the higher-level categories – 

evaluating users and context and evaluating visualizations.  From the former category, scenario 

number 3 (“evaluating communication through visualization (CTV)”) covers studies that attempt 

to describe or validate the success of visualizations that are meant to support learning or that 

operate as casual information displays.  This scenario is relevant because its focus is both on 

visualizations that are not expected to be used for intensive data exploration or analysis and also 

because it explicitly addresses casual information visualization contexts.  The review finds that 

studies under this scenario often use controlled experiments to test learning outcomes, as well as 

observations or interviews to identify learning strategies or tasks. 
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The second scenario of interest, from the category of scenarios that focuses on 

visualizations themselves, is scenario number 5 (“evaluating user performance (UP)”).  In these 

studies, visualization designs are varied and evaluated using objective user performance metrics 

to identify the design that yields the highest performance.  These studies are largely conducted 

with controlled experiments, not unlike the previously mentioned studies that use learning 

outcomes in an experimental setting to evaluate communicative visualizations.  Less commonly, 

these studies can also study logs from interactive visualization systems to identify user 

performance metrics in a way that increases ecological validity. 

Controlled experiments are commonly used for each of these scenarios. The identification 

of the performance tasks for such studies, however, is still in flux in the information visualization 

community; there are pressures to move away from measuring response time and errors (Bertini, 

Plaisant, & Santucci, 2007).  Even identifying tasks that can be completed accurately and that are 

relevant for the visualization type and users in question is far from trivial.   

1. TASKS TAXONOMIES FOR EVALUATION OF INFORMATION VISUALIZATIONS 

The selection of tasks for visualization evaluation or interpretation studies can be highly 

specific to the type of visualization and the data domain or application area. Recent literacy 

studies (Boy, Rensink, Bertini, & Fekete, 2014) have begun to test user performance on generic 

chart types, but these studies have confirmed the difficulty of designing generalizable 

visualization literacy tasks.  This review will explore both broad task taxonomies that summarize 

common uses of visualizations and specific tasks developed for evaluating network 

visualizations. 

Task taxonomies are used in visualization evaluation to measure the ability of the 

visualization to facilitate a user’s (or designer’s) desired tasks.  One of the most comprehensive 
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collections of potential (high-level) interaction tasks comes from Card et al. (1999).  The 

“knowledge crystallization task model” (Table 3) is a model specifically designed to describe 

information seeking behavior that utilizes a visual interface; the model is thus well suited to 

organize interactions with graphics. The model highlights the importance of an individual’s goals 

and task environment when attempting to interpret a visualization.  “Knowledge crystallization 

involves getting insight about data relative to some task” (ibid, p. 11). 

Table 3. Knowledge crystallization task model (Card et al., 1999). 

Forage for data Search for schema  Instantiate schema Problem-solve 
 

Author, decide, 
or act 

• Overview 
• Zoom 
• Filter 
• Details-on-

demand 
• Browse  
• Search query 

• Reorder 
• Cluster 
• Average 
• Promote 
• Detect 

pattern 
• Abstract 

• Instantiate 
 

• Read fact 
• Read 

comparison 
• Read pattern 
• Manipulate 
• Create 
• Delete 

• Extract 
• Compose 

 

The model is itself spatialized such that the five categories of task are arranged both as a 

cyclical process and as having linked relations to several of the other tasks.  Note that the three 

reading subtasks under “problem-solve” are derived from Bertin’s (2010) map reading levels, 

adding specificity to the types of tasks that could be evaluated for a given visualizations. This 

high level of task analysis includes references to the context to the graphic reading process, such 

as the possible outcome of decision-making.   

The evaluative power of this model, however, lies primarily with the later phases of 

knowledge crystallization.  The Information Visualization design process attempts to incorporate 

understandings of the early phases of visual search, feature detection, and schema instantiation, 

but evaluation of visualization systems are seldom able (or motivated) to capture processes at 

these levels beyond testing the usability of foraging functions.  Instead, the success of a 
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visualization is often measured by the efficiency/accuracy of users undertaking later stages of the 

knowledge crystallization model.  (Note, however, that for users with limited experience with the 

data being visualized as well as the form of the visualization, even the starting “task” bubble may 

be a mystery.) 

The knowledge crystallization model has considerable overlap with the Börner (2015) 

model of basic task types: categorize/cluster, order/rank/sort, distributions (also outliers, gaps), 

comparisons, trends (process and time), geospatial, compositions (also of text), 

correlations/relationships. Börner’s tasks (also referred to as “insight needs”) are compiled from 

many task taxonomies and tools and cover several levels of the knowledge crystallization model. 

For example, ordering and ranking falls under the “search for schema” level of Table 3, while 

analyzing trends might extend all the way to the “problem-solve” level. In other ways, Börner’s 

taxonomy breaks from the knowledge crystallization model, in that Börner’s model is less a 

model of an information-seeking process than a model of the different charts that might be 

employed for different general tasks. In the tradition of other “chart chooser” taxonomies, Börner 

presents these tasks as basic insight needs (or analysis objectives) that can be supported by 

certain types of visualizations. While also useful as a compilation of high-level analysis tasks, it 

covers slightly different ground from the knowledge crystallization model, and it is less detailed. 

As comprehensive as the knowledge crystallization model is, however, there is room for 

expansion within some task categories and, even, some subtasks.  Hornbæk and Hertzum (2011), 

for example, conducted a meta-analysis of the use of the term “overview” in information 

visualization and identified five major task categories: monitoring, navigating, exploring, 

understanding, and planning.  While “understanding” and “planning” may be broad enough to 

constitute a different level of analysis from “overview” (or perhaps could be reclassified as 
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“problem-solving” in this model), distinctions between monitoring, navigating, and exploring 

may well improve upon the knowledge crystallization task model for the purposes of studying 

visualization interpretation.  Navigating, again, is thought to be a relatively independent visual 

skill from visual-object and visual-spatial skills like vividness and rotation (Newcombe, Uttal, & 

Sauter, 2013), and the tacit suggestion that a user navigates to an end goal (as opposed to open-

ended “exploring”) suggests that it belongs under “problem-solving” instead of under “foraging.” 

The area of search tasks is another where many taxonomies compete.  Rasmussen (1995) 

adapts a library model of information retrieval search tasks to the field of GIS and comes up with 

five types of search: formal attribute search (for a known item or area), analytical search (a 

problem-solving strategy), search by analogy (building on prior experience), empirical strategy 

(expert search using shortcuts), and browsing strategy (to meet an ambiguous information need).  

The knowledge crystallization model takes account of browsing, formal search, and 

schematization, but making the relationship between the various search types more explicit and 

connecting them to use of shortcuts and other problem-solving strategies could strengthen the 

model. 

A taxonomy of purposes for Geographic Information Systems (GIS) extends the model in 

another direction.  The Geography Education Standards Project (Bednarz et al., 1994) lists three 

major tasks for GIS: inventory and/or monitoring, spatial analysis, and modeling (p.256).  The 

ability to extend analysis of spatialized data to make predictions is not captured by the 

knowledge crystallization model but could easily be added to the final task category. Table 4 

below summarizes the extended model. 
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Table 4. Extended knowledge crystallization task model. 

Forage for data 
 

Search for schema  
(search by analogy, 
empirical strategy) 

Instantiate schema 
 

Problem-solve 
 

Author, decide, 
or act 

• Overview 
• Monitor 
• Explore 
• Zoom 
• Filter 
• Details-on-

demand 
• Browse 

(browsing 
strategy) 

• Search query 
(formal 
attribute 
search) 

• Reorder 
• Cluster 
• Average 
• Promote 
• Detect 

pattern 
• Abstract 

• Instantiate 
 

• Read fact 
• Read 

comparison 
• Read pattern 
• Manipulate 
• Create 
• Delete 
• Understand 
• Plan 
• Navigate 
• Analytical 

search 

• Extract 
• Compose 
• Predict 

 

 

Each of these high-level task categories are, in fact, the result of combinations of lower 

level component tasks than can themselves be used as the focus of evaluations.  Downs and 

DeSouza (2006) attempt an exhaustive list of component tasks of spatial thinking, including 

encoding processes, relational operations, spatial transformations, and functional inferences 

(Table 5), all of which can be used in the comprehension of the world itself or of spatial 

representations (diagrammatic or mental).  The component tasks are ordered by increasing 

difficulty.  Because Downs and DeSouza (2006) do not differentiate between visual-object and 

visual-spatial abilities, a proposed association between each item to one (or both) of those 

categories is also included in Table 5.  

This typology includes items (e.g., distinguishing figures from ground, mental rotation) 

that are so fundamental to visual abilities that they are used to measure either visual-object or 

visual-spatial abilities and to validate the associated cognitive style dimension.  The component 

tasks and processes listed in Table 5 are easily related to both observable cognitive processes and   
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Table 5. Component tasks and processes of spatial thinking, coded for relationship to object and spatial abilities. 

Component Tasks Processes Object vs. Spatial 
encoding processes  distinguishing figures from ground object 

recognizing patterns, both outline shapes and 
internal configurations 

object, spatial 

evaluating size spatial 
discerning texture object 
recognizing color object 
determining other attributes object, spatial 

relational operations 
 

determining orientation spatial 
determining location spatial 
assessing distance spatial 
comparing size object 
comparing color object 
comparing shape object 
comparing texture object 
comparing location spatial 
comparing direction spatial 
comparing other attributes object, spatial 

spatial transformations changing perspective (reference frame) spatial 
changing orientation (mental rotation) spatial 
transforming shapes object 
changing size object 
moving wholes spatial 
reconfiguring parts object, spatial 
zooming in or out object 
enacting navigating? 
panning object 

 

specific graphic forms and problem areas, rendering them a logical bridge between what is 

known about human capabilities and the larger patterns of behavior connected to graphics.  They 

help to concretize discussions of both cognitive processes and user interactions with spatial 

representations (diagrammatic or mental). 

Important component tasks may be lacking from the above typology, however.  Larkin 

and Simon (1987) claim that individuals and computers alike can run programs over 

representations (sentential or diagrammatic) and that these programs utilize search, recognition, 

and inference operations.  The authors’ formulation of “search” for diagrams is a very localized 

process of selection, testing structures within the diagram for the satisfaction of certain 
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conditions.  “Recognition”, in this context, is less a process of object identification than it is a 

process of discovery, of finding distinctive properties of the data based on qualities of the 

representation.  An example the authors give is the recognition of local maxima in a data set, 

which is likely to be greatly facilitated by diagrammatic representation over sentential 

representation.  “Inference operations” refers to the detection of meaningful visual patterns that 

can be done by experts; this program type thus connects tasks to the functional knowledge 

experts are known to have about a domain-specific visualization as discussed in the previous 

section.  Furthermore, functional understanding of diagrams is thought to relate to visual-spatial 

skills (Blazhenkova & Kozhevnikov, 2009). 

Larkin and Simon’s formulation thus includes search (or selecting elements that meet 

desired conditions) as a fundamental process of interacting with spatialized representations.  

There is evidence that considerable selection from visual stimuli happens pre-attentively, 

including types of selection that make use of learned constructs (Arnheim, 1969; Dake, 2007; 

MacEachren, 2004; Santas & Eaker, 2009).  MacEachren’s feature identification model (2004) 

uses as its foundation the premise that humans make sense of the world by “matching present 

situations against a collection of patterns (or schemata) representing past experience and 

‘knowledge’” (p. 362).  Selection can also be active, of course, and it can operate at different 

levels of task composition, as discussed previously. 

While the process typology makes reference to the use of mental representations by 

outlining the processes that encode phenomena into a representation, other researchers have 

made more explicit reference to mental representations when discussing visual processing.  

Mayer and Moreno (2003), for example, note the effects of maintaining or holding mental 

representations in working memory on cognitive load in multimedia learning environments.  



29 

Likewise, Blazhenkova and Kozhevnikov (2010) employ a theory of mental imagery that, while 

similar to the process typology in the inclusion of generation, inspection, and transformation (of 

mental imagery) processes, also includes maintenance as a component of visual processing.  

“Maintenance of a representation” may have been neglected in the typology for reasons similar 

to those that may have motivation the exclusion of “selection”; both are fundamental to visual 

processing, but both are also more likely to be seen as automatic and immutable.  On the 

contrary, studies have found that not only do individuals vary in their abilities to perform these 

processes, but the processes can also be enacted using variable amounts of attention and control 

(Blazhenkova & Kozhevnikov, 2010; Mayer & Moreno, 2003).   

Another potential gap in the spatial thinking typology involves the coverage of visual-

object processes.  Blazhenkova’s (2010) study of the qualitative differences between visual-

object and visual-spatial processing highlights at least one area of sparseness in the process 

typology: object transformations.  In addition to zooming and panning, which were assigned to 

the visual-object dimension because object visualizers were found to have greater abilities for 

controlled inspection of their representations, the study ascribed to object visualizers the 

transformations of pictorial visual properties (e.g., vividness, shape, color).   

Sendova and Grkovska (2005) have identified several components of abstract art that are 

relevant for comprehension, including character and composition of objects (i.e., clustering, 

overlapping, isolation, balance, relationship between size, shape and color), main categories of 

objects, hierarchies of visual objects (i.e., using component objects to build compound objects, 

and so forth up through a hierarchy), and functional associations (e.g., objects occurring in 

combination).  In order to properly include visual-object processes in our process typology, the 

interpretation of these visual components that is done by visual-object experts needs to be 
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decomposed into the specific visual processes that are employed.  Because the focus of the 

original process typology was on spatial thinking, the typology is likely to have overlooked 

several relevant visual-object processes.  For now, it is important to note that “functional 

inference operations” likely has a visual-object corollary that could be called “compositional 

inference operations.” 

As described in the knowledge crystallization model, these component tasks, undertaken 

at various levels of analysis, can then be combined in relation to a user’s goal to undertake a 

high-level task.   A final, composite taxonomy for both task component processes and goal-

oriented tasks (Table 6) covers the broad catalog of possibilities for user interaction with 

graphics.  

For each item in the above typology, the process is described without reference to the 

subject of the process – the level of analysis, by another light.  Bertin’s (2010) map reading 

levels suggest that operations performed on graphics can have as their subject either individual 

elements of the graphic, groups of elements, or the graphic as a whole.  In terms of network 

diagrams, this means that various graphic interpretation tasks can be applied to individual nodes 

and links, small groups of nodes and links, or the full network. 

2. TASKS FOR PERFORMANCE ASSESSMENTS OF NETWORK DIAGRAMS 

The previous section summarized the use of task taxonomies to describe human behavior 

when using and interpreting visualizations. Recent abstract task taxonomies have undertaken the 

difficult work of condensing user-visualization interactions into generic models of visualization 

use (Brehmer & Munzner, 2013; Lee, Plaisant, Parr, Fekete, & Henry, 2006; Pretorius, Purchase, 

& Stasko, 2014). Brehmer and Munzner (2013) create a comprehensive generic typology that 

encompasses the “why”, “how”, and “what” of visualization interaction.  Other taxonomies   
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Table 6. Extended component tasks and processes of spatial thinking,  
coded for relationship to object and spatial abilities. 

Component Tasks Processes Object vs. Spatial 
encoding processes  distinguishing figures from ground object 

recognizing patterns, both outline shapes 
and internal configurations 

object, spatial 

evaluating size spatial 
discerning texture object 
recognizing color object 
determining other attributes object, spatial 
maintaining mental representations in 
working memory 

object 

relational operations 
 

determining orientation spatial 
determining location spatial 
assessing distance spatial 
comparing size object 
comparing color object 
comparing shape object 
comparing texture object 
comparing location, composition object, spatial 
comparing direction spatial 
comparing other attributes object, spatial 
recognizing distinctive properties object, spatial 
making expert inferences object, spatial 

spatial transformations changing perspective (reference frame) spatial 
changing orientation (mental rotation) spatial 
transforming shapes, sizes, colors, etc. object 
moving wholes spatial 
reconfiguring parts object, spatial 
zooming in or out object 
enacting navigating? 
panning object 

 

complement this work by offering insight into the unique features of network visualizations. Lee 

et al. (2006) contribute categories of tasks distinctive to networks (e.g., topology-based tasks) as 

well as clarifications of generic task categories for networks (e.g., path-specific tasks).  

Pretorius, Purchase, and Stasko (2014) conceive of a network analysis task as a process 

that moves from selecting an entity to selecting a property and finally to performing an analytical 

activity. This process model includes network-specific definitions of entities, properties, and 

analytic activities. Their final proposed set of analytical activities include operational tasks 

(creating and configuring a visualization), analytical tasks (identify, determine, relocate, and 
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compare), and cognitive tasks (high-level, uncertain, “insight generation” tasks, i.e., “judgment 

calls”).  They further propose that certain combinations of entities, properties, and tasks generate 

meaningful groups of tasks: topology- or structure-based tasks, attribute-based tasks, browsing 

tasks, and overview or estimation tasks. 

These visualization task taxonomies have been developed and used by visualization 

system designers to anticipate the general needs of their users and to help evaluators categorize 

types of observed user behavior. Generally, these taxonomies are used in qualitative studies to 

analyze and interpret user behavior with a new system. Abstract task taxonomies that have been 

designed to be general enough to code a wide range of behaviors, however, are not prescriptive; 

they are not specific enough to guide the development of tasks for quantitative evaluations.   

Rather than theorizing about the full range of possible tasks that can be undertaken when 

using a visualization, evaluating visualization literacy requires the selection of a set of tasks that 

are based on real-world visualization usage. The gold standard for developing tasks for 

quantitative evaluations of visualizations is thus to work with a specific user population in great 

depth and to compile typical tasks performed over the course of the users’ analysis work. Again, 

however, these studies are costly, require the experts’ willingness to participate in a lengthy 

study, and are only appropriate if the tool is being designed for a fairly well-defined user 

community.  

One area of visualization research that is in great need of more standardized quantitative 

performance tasks is network visualization. Network visualizations have been made more 

accessible to a more diverse community by the development of easier-to-use tools like Gephi, 

Cytoscape, and Palladio. Network visualizations also appeal to individuals from a wide number 

of academic disciplines (and industry segments), making it difficult to identify a group of 
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individuals to study for candidate network visualization tasks. Efforts to evaluate either specific 

network visualization systems or network visualization literacy in general may require a list of 

quantitative tasks that is general enough to account for use across disciplines and tools. 

Despite the growing popularity of network visualizations both within and outside of 

academia, there are still large gaps in our understanding of the use of these visualizations. While 

there are many studies evaluating specific network visualization tools and layout algorithms, no 

widespread study of network visualization users has been conducted to collect empirical data on 

common analysis tasks that can be supported by network visualizations.  

Another approach to developing tasks for network visualization literacy studies is to 

gather tasks used in previous network visualization evaluations. Several performance 

assessments3 have been conducted on network visualizations, testing a variety of tasks at each 

possible level of analysis. In contrast to attempts by task taxonomies to survey the full range of 

user interaction, many user studies of network visualizations or layout algorithms employ a very 

small number of specific tasks. Furthermore, while these studies often explain their choice of 

network data – typically, they limit the number of nodes and density of the graphs to avoid the 

dreaded “hairball” visualization – there is typically little to no explanation of their choice of 

specific tasks. It is unclear if these tasks have been selected because they are important to a 

                                                

3 We focus here on performance assessments designed to detect individual differences or to compare 

different affordances of larger visualization categories.  Studies to evaluate specific layout algorithms – e.g., those 

testing the importance of edge-crossing and symmetry (H. C. Purchase et al., 1997) – or to evaluate the similarity-

distance metaphor used by most node-link diagrams (e.g., Fabrikant et al., 2004) are excluded when the tasks 

developed are overly specific and unlikely to be relevant for popular use of network visualizations. 
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specified group of users, but there has been some criticism (Gibson et al., 2013) that network 

visualization evaluation tasks often do not take into account real-world analysis settings. 

Table 7 summarizes six studies that include network interpretation tasks that can be 

applied to the exploration of individual differences in network interpretation.  The studies have 

been described by the participants recruited and the materials used to create the visualizations: 

size and density of networks, real-world versus generated. Three of the papers include tasks 

focused on individual elements, whereas tasks related to groups of elements appear in almost all 

of the papers reviewed.  One study, describing the development of a tool for browsing the 

properties of many networks at once (Freire, Plaisant, Shneiderman, & Golbeck, 2010), provides 

a range of global properties that can also be converted into detection tasks. 

The six individual element tasks are proposed by three papers.  The approach taken by 

Ghoniem et al. (2005) actually organizes tasks into three categories: basic characteristics of 

vertices, basic characteristics of paths, and basic characteristics of subgraphs. (As a “path” in this 

instance is a combination of links and nodes, those tasks appear with the subgraph tasks in the 

second level of analysis.) The tasks developed to focus on individual elements were: find the 

most connected node, find a node given its label, and find a link between two specified nodes. R. 

e. Keller, C. M. Eckert, and P. J. Clarkson (2006) asked users to: select a node, select a link, 

count the number of incoming links to one node, and count the number of outgoing links from 

one node. Finally, Henry and Fekete (2007b) focus on the following tasks in their evaluation: 

find the actors with the highest number of relations and find a cut point (i.e. an actor linking two 

sub-graphs).  There is agreement on the importance of being able to identify individual nodes, 

either by name or by an important property like high degree or betweenness centrality. 
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At the next level of analysis, there are seven relevant tasks coming from five separate 

studies. H. C. Purchase et al. (1997) are the primary group to include tasks at this level of 

analysis that relate to structural holes, a concept that deals with clustering and that is difficult to 

highlight if there is not a single node that connects two subgraphs. Purchase et al. ask users about 

the minimum number of nodes and edges that must be removed to disconnect two given nodes in 

the graph.  Henry and Fekete (2007b) approach the idea of clusters by asking users to identify the 

largest set of actors all connected to each other. The other tasks focus on finding common 

neighbors between two given nodes (Ghoniem et al., 2005; Henry & Fekete, 2007b; R. e. Keller 

et al., 2006) and finding paths between nodes (Ghoniem et al., 2005; Henry & Fekete, 2007b; 

Holten, Isenberg, van Wijk, & Fekete, 2011; R. e. Keller et al., 2006; H. C. Purchase et al., 

1997). 

As mentioned, most of the global graph tasks are derived from options in the ManyNets 

network browser tool (Freire et al., 2010). The ManyNets tool allows for the comparison of up to 

thousands of networks by summarizing network properties in a tabular format.  The network 

properties available within this tool may be considered a proxy for the tasks network analysts 

might undertake.  According to the authors, “[t]ypical columns include link count, degree 

distribution, or clustering coefficient” (ibid, p. 213). Other network topology column options 

include vertex count, edge-vertex ratio, component count, component sizes, duplicate edge 

count, edge density, in/out degree, average distances, and diameter.  One other study (Ghoniem 

et al., 2005) does include global tasks – namely, total number of nodes and links  

The lack of global graph tasks in typical performance studies mirrors a criticism lobbied 

by Pretorius et al. (2014) at Lee et al. (2006) – that the Lee et al. network task taxonomy is node-

centric.  Existing evaluations of network visualizations tend to be node- and cluster-centric, but 
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no survey of network visualization users exists to confirm that this bias is based on real-world 

usage of network visualizations. 

While tasks that involve identifying individual elements may not favor those with visual-

spatial skills over visual-object skills, the detection of chains of nodes or nodes with particular 

structural properties may tap into functional assessments that are more readily made by those 

who have developed skills in functional inferences, rather than inferences based on visual 

properties.  Likewise, those with developed visual-spatial skills may be more comfortable with 

tasks that involve mentally transforming the structure of a network by removing nodes or edges. 

This review of tasks used within network visualization evaluation studies shows a large 

gap for global network tasks. It also suggests a solution to the gap by including network 

measures or calculations that are commonly included in network analysis or visualization 

software. Indeed, many of the node- and cluster-centric tasks are also common calculations that 

can be undertaken in network analysis software – for example, the degree of a particular node or 

the largest complete cluster. Other tasks, especially at the cluster level, focus on the redundancy 

of connections – finding shortest paths between two nodes, determining how difficult it is to 

disconnect two nodes. These tasks suggest an emphasis on research areas related to diffusion 

across a network – how easily information (or contagion) can move through a network, and how 

robust the network is to link or node removal. 

By applying generic task taxonomies to the tasks employed in network visualization 

evaluations, we can establish the characteristics of tasks typically selected for network 

visualization evaluations. For example, identifying a node by name or label would be a fairly 

simple “forage for data” task in the extended knowledge crystallization task model (Table 4), 

involving processes like “distinguishing figures from ground” (Table 6). A task like counting the 
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number of edges that need to be removed to disconnect two nodes, however, requires more 

sophisticated analysis – a series of steps including locating the two nodes (foraging for data), 

tracing the edges from the nodes to identify all possible paths between them (search for schema, 

instantiate schema), and analyze the paths to determine the exact edges that combine to ensure 

that the nodes remain connected (problem-solve). This analysis requires many different visual 

processes (Table 6), including those from each of the three component task categories (encoding 

processes, relational processes, and spatial transformations).  

True network visualization literacy likely does include a mixture of simple and complex 

analysis tasks. Literacy may, indeed, extend past areas where tasks can be considered to have a 

correct answer. In the context of language use, literacy includes not only morphology and 

grammar but also semantics, or the potentially hidden messages that compositions of text are 

trying to communicate. Literacy encapsulates processes not simply of decoding but also of 

evaluating style, detecting nuance, and critically examining authority and intention. While in 

network visualization evaluation studies it has been useful to focus on tasks that have a correct 

answer because it enables researchers to judge performance based on accuracy, there may also be 

opportunities to pose tasks that require non-numeric interpretation skills. In such cases, 

collecting responses alone may not be sufficient. Differences in responses would be better 

explored by also capturing the analysis processes employed by the user, which typically requires 

qualitative data collection methods. 

Conversely, there may also be tasks for which even computational answers vary. One of 

the clearest examples of this may be tasks related to detecting clusters in networks. As discussed 

in a previous section on computing network layouts, the process of compressing the 

multidimensional space of edge connections and weights for visualization in two or three 
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dimensions requires a loss of fidelity and compromises to the accuracy of the visualization. 

Similarly, algorithms created to analyze connections between nodes to create some sort of cluster 

assignment have different properties and biases, often resulting in very different clustering 

patterns within the same network. Some algorithms depend on a random seed to begin, which 

can then influence how the cluster assignment converges. Other methods for determining clusters 

require a user-determined number of target clusters, thus making the cluster assignment 

dependent on the number of clusters chosen. These algorithms are designed either to optimize a 

particular feature (e.g., computation time, consistent cluster size) or perhaps to mimic or predict 

some real-world phenomenon. Different clustering algorithms offer researchers variety in the 

tools available to try to understand network data, and like any set of tools for complex analysis 

work, must be evaluated in the context of the needs of the tool wielder and the properties of the 

network. Any literacy tasks related to complex interpretation or analysis like cluster assignment 

should be aware of the variations of computational methods. It may instead be more interesting 

to use the variety of available clustering algorithms to establish which clustering method best 

aligns with the typical approach by users. 

C. Differences Between Users 

The subject of how visualizations and graphics in general can be understood by their 

viewers draws on theories from many fields of research. This review focuses on a set of 

interrelated constructs and viewer traits that contribute to (or interfere with) a viewer’s ability to 

analyze a particular data visualization. The review covers spatial thinking skills, cognitive styles, 

mental models, and cognitive load in its discussion of theoretical constructs related to 

visualization interpretation. The review also addresses how these cognitive processes vary by 

age, sex, and disciplinary background – the most common demographic characteristics studied in 
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relation to graphic comprehension. Together, the constructs and traits contribute to a diverse and 

nuanced understanding of the viewers of data visualizations and suggest new opportunities for 

visualization evaluation research. 

1. USER SKILLS 

Graphic comprehension is at its heart a process of sense making. Low-level perceptual 

processes interact with higher-level attentional, associative, and interpretational processes to 

influence what people see and understand. The following section omits the cognitive processes 

with broader applicability and focuses instead on a series of specific constructs developed and 

tested to explain some component of graphic comprehension. Research on spatial and visual 

skills helps to categorize independent sets of skills necessary for different types of visualization 

interpretation tasks, from mental rotation of objects to maintaining vivid imagery. Mental models 

research applies across those spatial skills to describe how individuals interacting with an 

expectable external system gain experience and expertise, which they use to guide future 

interactions. Finally, cognitive load theory addresses the context surrounding the visualization 

system, building of the individual’s experiences to predict what sorts of modes of 

communication are likely to be helpful or confusing. 

a) GAINING DOMAIN EXPERTISE 

The development of this expertise in a particular spatial thinking task represents another 

potential focus area for research on graphic comprehension. As is true for other cognitive 

processes, the primary mechanism by which individuals gain expertise in graphic comprehension 

is by repeated practice of the skills. This expertise results in several differences between novice 

users of data visualizations and expert user. Firstly, experts more easily interpret functional 

information in visual representations, beyond the simple spatial structures that are identified by 
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novices. “While a novice can understand the spatial structure of a bicycle pump or heart from a 

diagram, only those with some expertise can grasp the functional and causal relations among the 

parts” (Downs & DeSouza, 2006, p. 102). Another suggested difference between novices and 

experts is that the overlearning of particular tasks or stimuli will reduce cognitive load in those or 

related tasks by allowing automatic process of portions of the task or stimuli (Downs & 

DeSouza, 2006). (Cognitive load will be addressed more specifically in a later section.)   

Experts also gain knowledge of meaningful (domain-specific) patterns in stimuli, 

allowing them to chunk perceptual information and solve problems more effectively. Research 

on visual perception suggests that expert interpretation of visual input in domains like chess is 

characterized by sophisticated chunking of elements (Chase & Simon, 1973; Gobet & Simon, 

1998); novices may fail to see structural patterns in large visual arrangements. Relatedly, novices 

may react more strongly to visual elements that have strong pre-attentive or Gestalt properties 

(Healey & Enns, 2012), such as areas of high contrast or density.  

One proposed description of the process of gaining domain expertise is the development 

of mental models. As a theoretical construct describing cognitive processes related to the 

simulation or prediction of external mechanisms (Howard, 1995; Hutchins, 2002; Johnson-Laird, 

1983; Mantovani, 1996; Norman, 1983; Payne, 2003; Rumelhart, 1984), mental models are 

widely studied by researchers in many fields, including psychology, cognitive science, human-

computer interaction, and information visualization. As such, the mental models construct has 

undergone redefinition and reification for many decades by these various communities. Recent 

literature commonly identifies two camps of mental models researchers: those who approach 

mental models “literally” and those who approach them “figuratively” (Rips, 1986).  
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A literal approach to mental models uses the term to refer to the structure of the mental 

model, or how representations are actually constructed and stored, and is epitomized by the early 

work of Johnson-Laird (1983). “A mental model is the representation of a limited area of reality 

in a format which permits the internal simulation of external processes, so that conclusions can 

be drawn and predictions made” (Molitor, Ballstaedt, & Mandl, 1989, p. 10). This literal mental 

model might also be called an internal representation (Liu & Stasko, 2010) and is hypothesized 

to be a detailed representation, analogous to some real-world system or object, held in working 

memory and serving as an input to mental operations or simulations.  

The construct of mental models has been adapted from this foundational psychology 

literature to the Human-Computer Interaction (HCI) and visualization domains in an attempt 

better to understand how individuals structure interactions with systems that have semantic 

organization and, often, dynamic components (Payne, 2003). A secondary, more “figurative” 

definition of mental models thus emerged and took hold in HCI and similar fields. The 

alternative use of mental models is a more simplified theory of how a system (whether it be 

mechanical, behavioral, social, etc.) is organized or will react to perturbations. This definition is 

less concerned with the structure of mental representations but instead focuses on the content of 

the representations, emphasizing “the role that world knowledge or domain-specific knowledge 

plays in cognitive activities like problem solving or comprehension” (Rips, 1986, p. 259).  

Instead of presuming the existence of detailed mental representations, figurative mental 

models research tends to treat mental models as a set of assumptions about the components and 

organization of a system that guide the strategies a user uses to approach interactions with the 

system. The construct presumes that users, rather than being able to store and operate on a 

detailed representation of a specific system, have a sort of sketch of how the system is organized 
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that is based both on interactions with previous systems and on feedback from the current 

system. This sketch influences (but does not necessarily solely determines) the strategies a user 

adopts when working with or interpreting the system.  

This transition from literal to figurative mirrors a similar transition in the history of 

Artificial Intelligence research, where early assumptions about literal representation, or “image-

like replicas” (Ekbia, 2008, p. 24) also gave way to logicist approaches assuming figurative, 

“word-like” (ibid) representations. The transition also responds to criticisms of the literal 

approach, which suffers from empirical studies that suggest that individuals find it very difficult 

to run mental simulations that accurately predict the outcome of external mechanistic processes 

(Rips, 1986). Because of the tight coupling between HCI and visualization research, the 

remainder of this discussion will focus on the figurative approach to mental models. 

Norman’s (1983) summary of the figurative mental models research in HCI introduces 

helpful terms for the ensuing discussion. Norman describes users’ mental models as often 

inaccurate, and he relates how these inaccuracies can prompt either inefficient or at times 

incorrect responses to an interactive system. He also defines conceptual model, which is an 

expert’s mental model that can be used as a benchmark for how the user’s mental model should 

be structured, and system image, which encapsulates the interface, feedback, and documentation 

available to guide the user toward an appropriate mental model. 

Mental models research is compelling for interaction and visualization researchers for a 

variety of reasons, including the need to explain and predict problematic interactions and the 

goal of improving system design to better reflect the needs and expectations of users. It has 

intuitive strength in that researchers are able to see patterns of interaction strategies across 

systems and can associate erroneous strategies with erroneous assumptions about the system. 
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Because the construct can be summarized as the expectations people hold for interactions, mental 

models also have logical connections to empirical findings showing that expectations based on 

prior experience affect not only conscious decision-making behavior but also low-level 

perceptual processes (Mantovani, 1996; Rumelhart, 1984).  

Researchers take two predominant approaches to operationalizing mental models. One 

category of empirical research uses open-ended questions to elicit from users verbal or pictorial 

representations of thought processes, which are then coded by experts as associated with a 

particular mental model. Another category of empirical research uses expert assessments of 

possible mental models as the inspiration for closed-ended questions, and user performance in 

terms of accuracy, response time, or recall is interpreted as indicative of a particular mental 

model. 

The operationalizations developed and adopted in an attempt to capture the user’s mental 

models themselves typically involve open-ended questions that ask users to describe either their 

problem-solving strategies for particular tasks or their organizational schemes for tasks or 

conceptual areas. Interview-based or talk aloud procedures are often employed to gather these 

data (e.g., Tullio, Dey, Chalecki, & Fogarty, 2007), but verbal representations may also be 

collected in written form (e.g., Greene & Azevedo, 2007). A recent trend toward graphical 

representations (Carpenter et al., 2008) and sketches (e.g., Denham, 1993; Kerr, 1990; Qian, 

2011; Rieh, Yang, Yakel, & Markey, 2010; Zhang, 2008) attempts to address concerns that users 

may have difficulty verbalizing their own problem-solving strategies. After either verbal or 

graphical representations are collected from users, domain experts can code the representations 

as indicative of different mental models that may be more or less appropriate for the task.  
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The other major approach to mental models research involves instruments with closed-

ended questions that have been designed to differentiate between different mental models in a 

particular domain. An example of a domain that has been very active in mental models research 

is the study of computer programming, and the mental models of novice programmers are 

frequently tested using accuracy/success rate on closed-ended questions (e.g., Dehnadi, Bornat, 

& Adams, 2009; Götschi, 2003; Kahney, 1983; Ma, 2007). A related technique involves the 

logging of a user’s actions (including timing and errors or inefficiencies) while using an 

interactive system (e.g., Waern, 1990). In addition to typical measures of accuracy and reaction 

time, closed-ended questions can be used after a delay to measure recall of model-related 

information (Coulson, Shayo, Olfman, & Rohm, 2003). 

Either open- or closed-ended instruments that measure mental models can be 

incorporated into larger research design to test different phenomena. For example, measures can 

be employed in a within-subjects, pre-test/post-test research design to measure changes in mental 

models over time. Another technique designed to improve mental models is to test the interaction 

between different types of instructional or priming materials and measures of mental models 

(e.g., Fein, Olson, & Olson, 1993; Ziemkiewicz & Kosara, 2008). A final manipulation that can 

be made to the research design to extend mental models research is to test both a learned task and 

a slight variation of that task to measure the transfer of a learned mental model to new domain 

(e.g., Clegg, Gardner, Williams, & Kolodner, 2006). 

As powerfully intuitive as the construct is, however, there are two criticisms of mental 

models that bear review for visualization research. The first addresses flaws in the 

operationalizations described above. The second relates to the goal of applying mental models 

research to the design of interactive systems. 
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The first criticism of mental models questions whether the construct is actually being 

tested by current studies or if, instead, other theoretical constructs might better explain the results 

of these studies. For example, there are alternative theories of cognition, including propositions, 

networks, and production rules, that have been proposed and studied by psychologists for many 

decades and that each offer explanations of the empirical findings of (especially “literal”) mental 

models research (Nardi & Zarmer, 1990; Rips, 1986). Many of the criticisms levied at literal 

mental models are doubly true for the figurative approach to mental models, however. The HCI 

community addressing mental models is even more likely to conflate success of performance 

with the existence of an identified mental model and not take into account propositional or 

production-rule explanations. Other similar criticisms relate to specific methodologies, such as 

the need to take into account differences of skill in verbalizing (Zhang, 2008). 

The second relevant criticism of mental models has to do with the application of mental 

models research to the design of interfaces or visualizations. A common motivation for mental 

models research is the idea that knowing the users’ existing mental models (particularly for a 

work task) allows a designer to correctly construct a system or visualization to best suit the 

user’s needs. As Young (1981) suggests, “the appropriateness of a design is to be judged in terms 

of the match (i.e. mapping) between the Task and the Actions needed to perform it” (p. 72), a 

sentiment which focuses the work of designing an interface on identifying the users’ primary 

tasks and then matching those tasks to actions that need to be taken in such a way as to optimize 

the interaction for those primary tasks. Norman (1983) despairs for perfect mental models, but he 

does nonetheless admonish designers to “develop systems and instructional materials that aid 

users to develop more coherent, useable mental models” (p.14), highlighting the role of the 

system image in the development and activation of an appropriate mental model. 



48 

A criticism of this approach appears in Nardi and Zarmer (1990): 

To see the interface as a mechanism for translating thoughts is to completely miss the 
interaction between the user and the user interface, and the way in which the user 
interface itself can stimulate and initiate cognitive activity. Like other cognitive 
artifacts…a good user interface helps to organize and direct cognition - it is not a passive 
receptacle for thoughts emanating from an internal model, but plays an active role in the 
problem solving process. (Nardi & Zarmer, 1990, p. 5) 

This reminder from Nardi and Zarmer of the co-construction of activity urges designers 

of systems to avoid expecting “noiseless” transmission of information, perfect comprehension of 

interfaces. The data visualization is only one component of a larger problem solving process. 

Espousing a design agenda that presumes that noiseless transmission of information is possible 

risks trivializing both the role of the artifact and the agency of the user, which may prevent 

designers from benefiting from what is understood about the complexity of the socio-technical 

environment. 

The construct of mental models, as a description of how a user stores information about 

and interprets environmental stimuli, has been studied in relation to both information 

visualization and interaction (e.g., Liu & Stasko, 2010; Nardi & Zarmer, 1990). The full system 

of graphic comprehension, however, includes not only the skills and expertise of the user as they 

relate to a particular graphic, but also the context in which the user encounters the graphic. 

b) GRAPHICS IN CONTEXT 

Certain temporary states – the context in which individuals attempt to make sense of 

graphics – may also have an impact on the ability to comprehend graphics. Many studies use the 

concept of cognitive load to identify conditions under which users will experience impairments 

to their ability to effectively process stimuli or complete operations. Cognitive load becomes 

particularly relevant to graphic perception when dealing with graphics in multimodal 

environments (Huang, Eades, & Hong, 2009; Mayer, 2002, 2011a; Mayer, Heiser, & Lonn, 
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2001; Mayer & Moreno, 1998, 2003; Moreno & Mayer, 1999; Pastore, 2009). Research on 

cognitive load addresses the cognitive mechanisms that regulate executive function and working 

memory. 

Cognitive load theory is often applied to multimodal instructional environments in an 

attempt to understand how additional modes of communication (e.g., adding visuals to text) 

improve or impede comprehension of the instructional content (Mayer, 2002; Mayer et al., 2001; 

Mayer & Moreno, 1998, 2003; Moreno & Mayer, 1999; Pastore, 2009). Cognitive load can 

affect three types of cognitive processing in multimodal instructional environments (Mayer & 

Moreno, 2003). Cognitive load during essential processing happens when the load is caused by 

making sense of the presented material. Cognitive load can also occur during incidental 

processing, when a cognitive process that is not essential but is primed by the learning task 

increases the load on the learner. Finally, cognitive load can be the result of representational 

holding, or “cognitive processes aimed at holding a mental representation in working memory 

over a period of time” (Mayer & Moreno, 2003, p. 45). 

Mayer and colleagues have identified many situations that increased cognitive load and 

have proposed solutions to situations that may result in the various categories of cognitive load 

(Mayer & Moreno, 2003). For example, essential processing demands have been hypothesized to 

result in increased cognitive load if a learner is being asked to process both text and visual 

information, which both employ visuospatial working memory during the organization phase of 

cognition (ibid). The proposed method of reducing cognitive load for this situation is to transfer 

verbal information to the audio channel – with or without moderate time compression (Pastore, 

2009) – resulting in improved performance on the instructional task (Mayer, 2002; Mayer & 

Moreno, 1998, 2003; Moreno & Mayer, 1999). Other situations of increased cognitive load 
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include: situations where the pace of instructional content exceeds the learner’s pace for 

selecting, organizing, and integrating the content fully (i.e., essential processing demands in both 

visual and audio channels exceed capacity); situations where instructional material includes 

superfluous, high-arousal information (i.e., incidental processing competes with essential 

processing to exceed capacity); situations where instructional materials are designed in a 

confusing way, either by including redundant information or by misaligning visual content 

(where, again, incidental processing is competing with essential processing); and situations 

where working memory in one or both channels is being used to maintain some mental 

representation and is unable to meet the essential processing demands of the instructional task 

(Mayer & Moreno, 2003). For many of these types of cognitive load, suggested solutions involve 

redesigning the instructional materials, but several are also reduced when learners gain additional 

experience in certain types of processing (ibid). 

Regardless of the presence of multiple modes of communication, users have more 

generally been found to have less success completing spatial tasks in situations of low 

automaticity (Downs & DeSouza, 2006). Automaticity is a response to overlearning; when a 

stimulus is encountered repeatedly, associated materials are recalled more automatically than 

those of novel stimuli. In terms of spatial thinking, an automatically-processed spatial 

visualization type (e.g., a bar chart) may successfully accompany the learning of new content 

because it does not increase cognitive load (i.e., it does not tax working memory). On the other 

hand, “[i]f the content and form of the map or graph are relatively unfamiliar, then too much 

working memory capacity is required to process both the unfamiliar form and the intended 

content of the representation” (Downs & DeSouza, 2006, p. 97), and the visualization type may 

inhibit learning. 
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c) VISUAL SKILLS AND DISCIPLINARY TRAINING 

A major theoretical area related to graphic comprehension is that of spatial thinking. 

Research within the field of spatial thinking forms a foundation upon which graphic perception 

can be structured. The visual encodings and reference systems used by graphics and diagrams to 

represent data in a manner that can be interpreted depends heavily on the skills developed during 

interactions with the visible world around us. Spatial thinking as a construct incorporates many 

other, related concepts, including spatial literacy, spatial intelligence, mental maps, etc. Research 

on spatial thinking describes the general types of spatial reasoning competencies people can 

acquire as they develop (e.g., spatial perception, mental rotation) and provides a broader 

framework within which more specified theories of graphic perception can be placed. 

Spatial thinking, though foundational to a variety of interpretive tasks, is not an 

undifferentiated pool of tasks and abilities. Linn and Petersen (1985) conducted a meta-analysis 

of spatial ability research and identified the following three categories of spatial ability: spatial 

perception, mental rotation, and spatial visualization. Spatial perception relates to the orientation 

of an individual’s body in physical space. Mental rotation is the ability to manipulate two- or 

three-dimensional objects in mental space, correctly associating one view of the object with a 

view of the object after it has been rotated along one or more axes. Spatial visualization is a 

name for a variety of spatial ability tasks that require “multistep manipulations of spatially 

presented information” (Linn & Petersen, 1985, p. 1484). Spatial visualization can be thought of 

as a form of problem solving, and as is typical of problem solving, a correct solution can often be 

found via multiple methods (Downs & DeSouza, 2006); in the case of spatial visualization, tasks 

may incorporate spatial perception or mental rotation processes, among others. 

Skills in the various types of spatial thinking have been found to vary across individuals, 

however, helping us to further explore the relative independence of these skills. One attempt to 
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identify independent spatial thinking skills comes from the literature on intellectual and cognitive 

styles. Though empirical evidence in its support is sparse, there is a commonly-held belief that 

learners have differing intellectual styles and that matching a learner’s intellectual style to 

different teaching strategies will improve learning outcomes (Mayer, 2011b; Newcombe & 

Stieff, 2012) Within the umbrella term of intellectual styles there are the related terms of 

cognitive, learning, and thinking styles (Evans & Cools, 2011) Of particular interest to the study 

of graphic comprehension is the body of research on cognitive styles, which are often seen as 

more fixed and stable modes of processing within an individual than learning and thinking styles 

(ibid). 

Within the cognitive styles literature is a long-standing discussion of visuospatial 

processing. Factor analysis of tests of both general intelligence and specific types of intelligences 

has identified powerful visual components to intelligence that emerge in response to visuospatial 

questions included in those tests (Blazhenkova & Kozhevnikov, 2010). Early acknowledgments 

of spatial intelligence and a visuospatial cognitive style postulated a bipolar interaction between 

verbal abilities and visual abilities (Blazhenkova, Becker, & Kozhevnikov, 2011; Blazhenkova & 

Kozhevnikov, 2009), but further elucidation of the nature of spatial intelligence and its relation 

to identified cognitive processes suggests that there are actually (at least) three, largely-

independent dimensions to this cognitive style: verbal, visual-object, and visual-spatial 

(Blajenkova, Kozhevnikov, & Motes, 2006; Blazhenkova et al., 2011; Blazhenkova & 

Kozhevnikov, 2009, 2010; Kozhevnikov, Blazhenkova, & Becker, 2010; Kozhevnikov, Hegarty, 

& Mayer, 2002; Kozhevnikov, Kosslyn, & Shephard, 2005). This three-dimension model is 

known as the object-spatial-verbal (OSV) cognitive style model. 
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Many of the tasks and tests related to spatial thinking (e.g., mental rotation, paper folding 

tests) have been strongly associated with the visual-spatial dimension of the object-spatial-verbal 

(OSV) cognitive style model. Skills that are specifically visual-spatial include processing images 

sequentially and representing images schematically and in terms of object locations and spatial 

relationships (Blazhenkova & Kozhevnikov, 2009). Visual-object skills, however, had largely 

been ignored by intelligence tests and cognitive style researchers until the recent body of work 

by Kozhevnikov, Blazhenkova, and colleagues (Blazhenkova & Kozhevnikov, 2010). Visual-

object skills include processing images holistically and maintaining vivid imagery with little 

conscious effort (ibid). Evidence suggests that visual-object tasks and functions are processed by 

a separate cognitive system than those associated with visual-spatial tasks (Kozhevnikov et al., 

2010).  

The independence of visual-object and visual-spatial skills, however, may not be the only 

notable distinction in spatial thinking skills. Another proposed independence separates visual-

spatial skills like mental rotation and other “intraobject” skills from navigation, perspective 

taking, and other “interobject” skills (Newcombe et al., 2013). This additional division is 

supported by behavioral, linguistic, functional, and neurological evidence (ibid). While 

navigation has been largely absent from studies of individual differences, extensive theory in the 

development of navigation skills may soon lead to appropriate measures of these skills, enabling 

the further differentiation of visual-object, intraobject, and interobject components of spatial 

thinking. 

Relevant for the study of visualization interpretation is an understanding of the tradeoff 

between the various spatial thinking systems. In the earlier bipolar verbal-visual model, it was 

assumed that increasing skills on the visual dimension of the cognitive style would diminish 
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skills on the verbal dimension. The structure of the OSV cognitive style model presented verbal, 

visual-object, and visual-spatial skills as largely independent, allowing for the possibility that 

individuals can, in fact, have high (or low) achievement in all three types of intelligence at the 

same time. During the development of the self-report instrument that measures OSV cognitive 

style abilities – the Object-Spatial Imagery and Verbal Questionnaire (OSIVQ) – the researchers 

found that, among a sample of 625 college students and professionals, about 11% scored above 

average on all three dimensions and about 10% scored below average on all three dimensions 

(Blazhenkova & Kozhevnikov, 2009). The independence of these dimensions is consistent with 

findings that, just as mental rotation has been seen to improve with practice among those with 

initially low performance on this task (Lohman & Nichols, 1990), performance on one or more 

of the spatial thinking dimensions may be improved with training and experience (Newcombe & 

Stieff, 2012). 

Many studies of the OSV cognitive style model and of particular visual skills have 

exploited expectations that certain visual skills are strongly associated to particular academic 

disciplines (Blazhenkova & Kozhevnikov, 2010; Burnett & Lane, 1980; Isaac & Marks, 1994).  

Training in sciences, arts, and even physiological fields relates to differences in graphic 

perception skills and has been used to identify experts in certain tasks related to data 

visualization and visual analytics. The causality of the relationship between visual skills and 

training in certain disciplines is not yet clear; it may be that early development of certain skills 

influences the pursuit of related disciplines, that the choice of discipline puts an individual 

through training that improves certain skills, or that some more complicated interaction between 

skills and training occurs. The early onset of both visual skills and individual differences in 
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performance suggests that success with certain spatial skills may precede a related interest in 

science, technology, engineering, and mathematics (STEM) careers (Newcombe et al., 2013). 

Traditional mental rotation studies identified a link between that spatial reasoning task 

and individuals with training in mathematics and sciences. Less attention, however, has been 

paid to the visual skills that are well developed by individuals with training in visual arts and 

design (i.e., visual-object skills). These two groups of disciplines with known relations to visual 

abilities were thus used for ecological validity testing for the OSV model (Blazhenkova & 

Kozhevnikov, 2010). As expected, visual-spatial abilities were shown to be highly developed in 

individuals with training in sciences and mathematics. Additionally, after two years of college 

instruction, these abilities also improved to a greater degree among this population than among 

students with other specializations (Burnett & Lane, 1980). Visual-object abilities have 

conversely been shown to be highly developed in individuals pursuing visual arts and design 

(Blajenkova et al., 2006; Blazhenkova & Kozhevnikov, 2009, 2010). High vividness of imagery 

has likewise been found in physical education students, elite athletes, air traffic controllers, and 

pilots (Isaac & Marks, 1994). Furthermore, disciplinary specializations are found to exhibit 

stronger interactions with visual-object and visual-spatial abilities than gender (Blajenkova et al., 

2006; Blazhenkova & Kozhevnikov, 2009, 2010). The regular use of disciplinary background as 

a way of identifying experts in particular visual skills suggests that disciplinary background may 

serve as a proxy for assessments of these skills. 

2. INDIVIDUAL TRAITS 

Each of the constructs described above can be explored in connected with additional 

traits of individuals. Empirical evidence of systematic – but not intractable – differences allow us 

to make some predictions about how different groups of viewers may vary on comprehension 

measures. More than that, however, the study of the relationships between traits and cognitive 
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processes provides us with additional resources for overcoming these differences and improving 

visualization interpretation for all groups of viewers. 

a) AGE 

Age is one of the most frequently studied traits that interact with graphic perception 

(Blazhenkova et al., 2011; Kirsch & Jungeblut, 1986; Kozhevnikov et al., 2010; Lohman & 

Nichols, 1990). The interaction between age and visual skills is somewhat conflated with 

specific experiences in particular domains. As individuals age, they experience different types of 

stimuli and training situations at varying times and in varying contexts, but some generalities and 

regularities can be described to summarize the types of expertise individuals typically develop 

over time. 

Basic visual skills are acquired gradually over the course of development. The onset of 

visual-spatial skills like mental rotation likely happens as early as the age of 4 to 5 years, and 

with appropriate training and testing may be undertaken by much younger infants (Newcombe et 

al., 2013). Such skills have been shown to increase rapidly from ages 10 to 14 (Blazhenkova et 

al., 2011) – though the increase is perhaps limited to students interested in science (Kozhevnikov 

et al., 2010) – and to improve rapidly with practice (Lohman & Nichols, 1990). Visual-object 

and verbal abilities have been found to increase sharply in early childhood and either remain 

stable or continue to increase slightly with age (Blazhenkova et al., 2011). Especially relevant for 

research on the visual skills of adults, however, is the finding that skills may decline without 

maintenance. Performance on visual-spatial tasks has been found to begin declining as early as 

age 16 (Blazhenkova et al., 2011).  

Related to the effects of age are the effects of education, regardless of any disciplinary 

specialization. An early attempt by the National Assessment of Education Progress to catalog 
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literacy skills of young adults from ages 21 to 25 (Kirsch & Jungeblut, 1986) includes a type of 

literacy called “document literacy” – “the knowledge and skills required to locate and use 

information contained in job applications or payroll forms, bus schedules, maps, tables, indexes, 

and so forth” (p. 4). The document literacy tasks from the assessment instrument exhibit varying 

levels of difficulty, based on the number of features or categories of information required by the 

task or included as distractors in the document.  

While at least 96% of all groups – varied by number of years of education – achieved 

document literacy at the lowest level (involving tasks like signing one’s name on the social 

security card), proficiency dropped rapidly for shorter-duration education groups as complexity 

increases. For tasks like locating data in a table and on a street map using two features, only 84% 

of all participants achieved proficiency, including only 31.5% of participants with zero to eight 

years of education and 83.4% of high school graduates. Increasing the number of features and 

the differences between question and document phrases, only 50% of high school graduates 

achieved proficiency at the next level of complexity. Less than 11% of high school graduates 

successfully completed the most complex task involving a match of six features to a bus 

schedule.  

Skills in reading documents of all kinds, including those with spatial information 

displays, tend to increase over the course of aging and education to early adulthood, at least, but 

proficiency levels can vary dramatically depending on task complexity or other individual 

factors. As discussed in the earlier section on categories of visual and spatial skills, disparities in 

performance across individuals at different ages can often be reduced with appropriate training 

and testing (Newcombe & Stieff, 2012). Knowing the typical skill levels for particular age 
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groups, however, may lead to improved design of visualizations, assessment materials, or 

instructional texts. 

b) SEX 

Differences across sexes have been identified in studies relating to many spatial thinking 

tasks. Though discussion of the mechanisms behind sex differences is outside the scope of this 

review, it has often been shown that these differences may be reduced to insignificance with 

training and practice in the skills of concern, suggesting that the differences are not biological in 

nature (Newcombe & Stieff, 2012). Without additional training, however, the following skills are 

regularly found to interact with the sex of the participant. Male participants tend to perform 

better on spatial perception and visual-spatial tasks – especially those involving mental rotation 

(Vandenberg & Kuse, 1978). Female participants, however, have been found to perform better 

on visual-object tasks and tasks that involve memory for spatial location (Blajenkova et al., 

2006; Blazhenkova et al., 2011; Blazhenkova & Kozhevnikov, 2009, 2010; Ward, Newcombe, & 

Overton, 1986). Different strategies may also exist without affecting performance. For example, 

women more frequently make reference to landmarks, whereas men more frequently use cardinal 

directions (Ward et al., 1986). Studies typically do not find an interaction between sex and verbal 

abilities (Blazhenkova et al., 2011; Blazhenkova & Kozhevnikov, 2009, 2010). 
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IV. RESEARCH QUESTIONS 

This dissertation will address the following broad research questions: 

1. What network analysis tasks are appropriate for testing network visualization 

interpretation across user expertise levels? 

2. How do differences in network science expertise relate to differences in performance on 

quantitative measures of network visualization interpretation? 

3. How do different layout algorithms and design properties relate to differences in 

performance on quantitative measures of network visualization and interpretation? 

4. Are certain measures that can be read from network visualizations easier to discern than 

others, regardless of network science expertise? 

 

These questions emerged from the review of relevant literature as gaps in our 

understanding of network visualizations and their users.  Most assessments of network 

visualizations focus on the validation of novel layout algorithms against current standards, and 

these studies often focus on expert user groups.  This practice disregards the increasing 

prominence of network visualizations in popular media outlets and, thus, the importance of 

understanding how novices interpret visualizations. 

Studies that do include novice users are increasingly likely to focus on the choices 

novices make when asked to generate a network layout manually.  While the results of these 

studies certainly speak to the layout properties that are more salient or aesthetically pleasing to 

novice users, these studies have not yet been extended to see if those layout properties match 

well (or poorly) with common tasks required for network analysis. 



60 

Finally, novice users may be asked to participate in studies of basic network 

interpretation, such as studies on the distance-similarity metaphor, studies on the appropriate 

choice of visualization for a particular data analysis task, or studies on small changes in the 

design of a layout algorithm.  Like manual layout generation studies, studies on the appropriate 

choice of visualization for a particular task help us understand the native abilities and preferences 

of novice users, but do not take into account the limitations novices users experience when 

encountering a visualization “in the wild.” Users are not likely to be able to change the 

visualization layout in these types of situations.  An approach that better simulates real-world 

experiences, where novice users encounter visualizations they have little ability to adjust, will 

give us new insights into the extent of their abilities to perform common analysis tasks with 

those visualizations. 

Furthermore, there is a significant gap in the literature as regards the types of tasks 

chosen for network visualization validation studies.  The majority of studies test only a small 

number of tasks, and it is often unclear how and why these tasks were selected.  The tasks 

commonly used may bear little resemblance to the tasks deemed important by network 

visualization experts, as a systematic assessment of such practices by experts has not yet been 

undertaken. 

The research questions thus frame a series of studies where novice users are compared to 

expert users, where common layout algorithms with known properties are compared to each 

other, and where tasks are selected to best align with the types of analysis tasks considered most 

important by network science experts.  Answers to these questions will greatly improve our 

ability to make recommendations for designers of network visualizations, in order to produce 
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visualizations that are well aligned to the intended audience and the tasks they are likely to want 

to undertake.  

The primary research interest – testing differences skills in interpreting node-link 

diagrams between novices and experts – will be addressed with a series of interrelated studies 

(Table 8).  An opinion survey will establish priorities and preferences of active network science 

researchers. Then, three separate experimental studies will focus on assessing the ability of 

novice and expert users to read structural or logical properties of network data from node-link 

diagrams. These studies will combine to arrive at a holistic understanding of network 

visualization literacy, which has previously been studied with limited tasks and limited network 

variations. 

Table 8. Overview of studies. 

 

  

 
Study 1: 
Gathering Tasks 

Study 2a: 
Graphic Design  
and Phrasing 

Study 2b: 
Layout and  
Expertise 

Task What tasks are really 
used by Network 
Science experts? 

Does different phrasing 
improve performance? 

 

Data 
 

Do different data properties improve 
performance? 

Chart 
 

Do certain graphic 
choices improve 
performance? 

Do certain layouts 
improve performance? 

User 
  

Does prior experience 
improve performance? 
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V. OPINION SURVEY OF NETWORK SCIENCE RESEARCHERS 

This study collected real-world network analysis task data from a broad community of 

potential network visualization users to guide empirically-founded network visualization 

performance studies. The study identifies a population of likely network visualization users and 

presents them with a list of likely network visualization analysis tasks in an attempt to improve 

the development of quantitative evaluation tasks for network visualizations. Not only do the 

results suggest a list of widely used network analysis tasks for designers of network visualization 

performance studies, but the study also offers a scalable technique for gathering empirical data 

from a broad user base. 

A. Research Questions 

This study will address the following research question: 

What network analysis tasks are appropriate for testing network visualization 
interpretation across user expertise levels? 

B. Study Design 

1. GATHERING DATA ON REAL-WORLD TASKS 

Gathering data on the types of analysis tasks undertaken by network visualization users 

requires balancing many trade-offs. While a study using interviews or focus groups can produce 

high-quality, detailed, and fully-contextualized data, the resources required to conduct such a 

study necessarily limit the number of users who can be studied. A survey-based study can scale 

to a larger number of users, but the type of data gathered is much more superficial. In order to 

gather data that may be helpful to a wide audience of network visualization evaluators, this study 

prioritized the ability to reach a larger population over the ability to gather detailed behavioral 

data. 
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Collecting data via survey requires careful attention to question phrasing, timing, fatigue, 

incentive structures, etc. Asking participants to report on their own activities can result in data 

biased by failures in the participants’ memories, especially when those activities are performed 

infrequently. This study takes advantage of a community likely to be using network 

visualizations regularly – network science researchers. 

2. CANDIDATE TASK SELECTION 

In order to prevent participant fatigue that can result from an extremely long and/or 

complicated questionnaire, it was necessary to identify a comprehensive but manageable list of 

candidate analysis tasks that users could be asked about (Table 9). These tasks were chosen to 

have broad coverage of different network entities (nodes, links, clusters, full graph), in order to 

establish whether the existing bias in task selection is reflective of the common tasks of those 

who conduct network science research.    

Some tasks used for previous studies include standard network measures (e.g., “click on 

the highest degree node”, “about how many nodes are this graph?”). Others include tasks that 

may be important for some types of analysis but that aren’t typically encoded in software 

programs (e.g., “count the number of common neighbors between nodes A and B”). Some of 

these tasks make more sense for small, sparse networks than for larger networks where a user 

might have to rely on the computer to do these calculations. 

As network science often uses specialized software, rather than generalized statistical 

applications, this study uses network analysis software as a proxy for the types of tasks most 

commonly employed in network science research. Most of the specialized tools in use have been 

designed specifically by network science researchers to fill a need in their own research, and it is 

likely that students of network science will end up familiar with the measures that appear in the 
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Table 9. Final tasks chosen for the survey. 

 

software they were trained to use. Additionally, the goal of this research is to help identify tasks 

that can be used in future network visualization evaluations. Using common network measures 

helps the evaluator produce a reliable answer for any accuracy assessments. The 17 networks 

measures included in the survey (Table 9) were thus selected by combining the list of tasks 

generated from a literature review of network visualization user studies with additional measures 

available in popular network analysis software, reducing the total by selecting those that appear 

most frequently.  

3. POTENTIAL PARTICIPANT IDENTIFICATION 

The next step in the design of this study was to identify a community of potential users of 

network visualizations and recruit a sample of the population to participate in the study.  As the 

goal of the study is to reduce the list of candidate network measures to those that are most 

relevant to the work of network visualization users, the population of interest was identified as 

verified or potential network visualization users. As the community of network visualization 

Level Candidate task 

Element (node) 

1. Closeness Centrality 
2. Eigenvector Centrality 
3. Node Betweenness Centrality 
4. Node Degree 

Element (link) 5. Link Betweenness Centrality 
6. Loops 

Small groups 
7. Component Size 
8. Modularity 
9. Number of Components 

Full network 

10. Average Degree 
11. Average Path Length 
12. Average Shortest Path 
13. Clustering Coefficient 
14. Density 
15. Diameter 
16. Number of Links 
17. Number of Nodes 
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users is large and amorphous, this study focuses on network science researchers, who comprise a 

population where network visualization use is likely.  

To identify potential participants from the network science community, it is necessary to 

decide what counts as network science expertise.  Network science is a broad community 

spanning many disciplines, but each discipline may engage with network science in a different 

way.  In the humanities, networks are often exploratory and descriptive, and individuals 

employing network visualization may never conduct a rigorous computational analysis to 

describe the network structure, look for significant clustering, compare one network dataset to 

another, etc.  Fields like biology and chemistry may employ network analysis, but their network 

data (for example, molecular interaction data) have properties that are very different from other 

types of network data, which may result in more isolation of this community from others within 

network science.   

The following list includes examples of selection criteria that could be considered for 

identifying individuals with network science expertise. 

1. Authoring or co-authoring a paper that includes network science/network analysis 
2. Completing a course on network science/network analysis 
3. Teaching a course on network science/network analysis 
4. Being a member of a listserv known to focus specifically on network science/network analysis 
5. Posting to a listserv known to focus specifically on network science/network analysis 
6. Being a member of a professional organization known to focus specifically on network 

science/network analysis 
7. Attending a conference known to focus specifically on network science/network analysis 
8. Authoring or co-authoring a paper that is published in a journal or conference known to focus 

specifically on network science/network analysis 
9. Obtaining a grant to conduct a study involving network science/network analysis 

 

Ideally, the study would employ a random sample of members of the network science 

community. To conduct a true random sample, there must be a comprehensive sampling frame 

(a list of every member of community) to which randomization can be applied.  For example, in 
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national opinion surveys where the population of interest may be the entire adult population of 

the country, a telephone directory has historically been considered to be a comprehensive 

directory from which a random sample can be selected. For the network science community, 

none of the above-mentioned criteria yield a comprehensive sampling frame that is readily 

available for use by researchers. 

Even if the population is limited to a few known and more easily defined sub-

communities of the network science community, the ability to conduct a true random sample is 

quite limited. For example, two large and relatively stable communities, social network analysis 

(SNA) researchers and network scientists from physics, are both likely to conduct 

computational analyses of network data, and both communities seem to be a likely place to find 

researchers who employ network visualization.  The two sub-communities, however, may focus 

on very different scales of networks, publish in different venues, attend different conferences, 

and even use different terminology. The refinement of the population to these sub-communities 

would simplify inclusion criteria somewhat, but neither community is formalized to the point 

that an active, comprehensive directory is publically available, and creating such a directory 

would be very challenging. 

Without a comprehensive sampling frame, here are two primary options for identifying 

study participants: creating some sort of limited, non-comprehensive directory and using random 

sampling on this directory, or proceeding with a convenience sample (a non-random sample, 

typically involving an open invitation sent via social media or email listservs) and 

acknowledging that the results will not be generalizable to the whole population, while possibly 

introducing some sort of validation and randomization to try to improve on the generalizability. 
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a) METHOD 1: COMPILE A LIMITED DIRECTORY OF NETWORK SCIENCE RESEARCHERS AND 

EMPLOY A RANDOM SAMPLE OF THAT DIRECTORY 

Using any one of the nine criteria listed above to catalog names of experts would be 

complex and time consuming. Even focusing on the SNA and physics communities mentioned 

above, there are no existing lists of students of courses in these communities.  Course instructors 

might be slightly easier to find, but it would still be a very labor-intensive process of searching 

every institution in the country (or internationally) for a course that ran sometime recently and 

that involved some amount of network analysis content – an amount that would also need to be 

determined.  There is at least one active listserv known to focus on network science – SOCNET, 

described below – but not every member of the listserv will have network science expertise, and 

the listserv is more likely to be drawing from SNA than from other network science 

communities. Selecting people who post to the listserv would make it easier to compile a 

directory, but it would bias the population toward more experienced researchers and, likely, 

toward male researchers. 

The SNA community also has a professional organization – the International Network of 

Social Network Analysis (INSNA) – but no public directory of the members of this organization 

exists.  There are large conferences that serve both communities – Sunbelt and NetSci – but 

again, no public directory of the attendees of these conferences exists.  Using grant awardees as a 

proxy for the full network science community is the criterion most likely to bias the sample – 

only a small percentage of the network science community is likely to obtain grants to work on 

network science research, and those grants will be biased toward certain types of disciplines and 

certain types of research (especially high stakes fields like biomedical research). 

Paper authorship is a more promising option, if this criterion is considered appropriate for 

selection of network science expertise.  Concerns with this criterion include the uncertainty about 
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whether every author on a paper that involves network analysis can be assumed to have network 

analysis expertise, as well as the general complexity of obtaining and cleaning authorship data 

from either conferences or journals.  While SNA has several journals that focus specifically on 

network analysis, a comparable set of journals would be difficult to find for physicists who 

regularly employ network science.  Likewise, journals may be too restrictive to find a broad set 

of individuals with network science experience.  Using authorship at Sunbelt and NetSci would 

still bias the directory toward more established researchers, but the bar would presumably be 

lower for a conference publication than for a journal publication.  

While the recent programs for NetSci have been difficult to locate, looking for attendees 

who have saved programs from, say, the previous five conferences would likely be possible.  

Extracting, cleaning, compiling, and then sampling the names of authors from these conferences, 

however, would not be a trivial process and would still run the risk of making errors with 

disambiguation and locating current contact information, selecting people who are no longer 

active in the network science community, etc.  Even with a perfect list of the researchers 

publishing at these conferences in the past five years, the list would still be an incomplete 

representation of these research communities and biased toward certain fields, certain types of 

network science research, and fairly high levels of expertise.  Even using the best directory 

compiled with these methods, it would be difficult to claim complete generalizability from the 

expert results to the full network science research community, much less the full network 

visualization user community.  
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b) METHOD 2: CONDUCTING A CONVENIENCE SAMPLE OF NETWORK SCIENCE RESEARCHERS 

AND TESTING WHETHER THEY MEET SELECTION CRITERIA 

Using a convenience sample (i.e., sending a broad invitation to a known but biased sub-

population) offers a more realistic solution.  Employing survey questions to test whether the 

individuals meet the selection criteria can help filter out individuals who are not considered 

members of the community, but it is necessary to be clear in the analysis that the results cannot 

be generalized to the full community.  

The following steps represent best practices for such a convenience sample: 

1. decide on specific selection criteria that will define the community of interest 
2. locate a population (or several) where there is a large chance of meeting the criteria 
3. employ convenience sampling (sending open invitations or invitations to specific but non-

randomly-sampled individuals) within that population, acknowledging that it will limit the 
generalizability of the results 

4. use questions in the data collection instrument that verify that participants meet the selection 
criteria 

5. use additional questions in the data collection instrument that ask about factors expected to 
influence response, beyond population membership (e.g., demographics) 

6. add randomization where possible 
 

Especially with the rise of internet-based scholarly communities, a convenience sample is 

a typical solution when trying to access an expert population where the community borders are 

not well defined.  While the results of a convenience sample cannot claim to describe the entire 

network science population, the results may yet improve our understanding of some of the work 

being done within the community. For the purpose of this study, which is working toward 

identifying which network analysis measures are more appropriate for use in a quantitative 

evaluation of network visualizations, the lack of generalizability is not a high risk to the use of 

this method, especially if the responses to the study show some consistency across the study 

participants.  
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The SOCNET listserv, maintained by INSNA, was selected as a population where it was 

likely that most individuals on the listserv could be considered network science researchers.  The 

listserv certainly includes individuals who are not members of INSNA, but the topic of the 

listserv is quite tightly connected to network science.  It is likely that most members of the 

listserv consider themselves network science researchers, and it is hoped that some subset of 

those are regular users of network visualizations.  Historically, this listserv has stronger ties to 

certain disciplines (Sociology, Business), so the sampling frame will certainly underrepresent 

network science research in other fields (e.g., Physics).  However, information about participant 

discipline can be collected to be used as an independent variable.  Additional questions can also 

establish the participant’s degree of expertise in network analysis and visualization, as both a 

consumer and producer of research.   

4. DESIGN OF THE QUESTIONNAIRE 

The primary purpose of the questionnaire was to gather data from network visualization 

users to establish a reduced list of commonly employed tasks that can then be used for network 

visualization evaluation. One criterion for task inclusion in the questionnaire has already been 

discussed: is the task likely to be relevant to network science research? Another criterion was 

included in the questionnaire to further increase ecological validity: is it likely that the task can 

realistically be accomplished using a network visualization?  Both components are necessary for 

a task to be a good fit for a network visualization evaluation study. 

Survey participants were thus asked to evaluate both the importance of those network 

measures to their research (“importance”) and also the likelihood that the participant would be 

able to estimate the network measure from a node-link diagram (“estimability”).  For the 

visualization estimation questions, the 17 measures were divided into three categories (full 
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network properties, node properties, and link properties) to further reduce fatigue and allow for 

slight changes in the instructions. 

In addition to questions that asked participants to evaluate the candidate network tasks on 

importance and estimability, the survey included demographic and background questions, 

questions about the nature of the participant’s research (including both network analysis and 

network visualization), and questions about challenges in network visualization.  For precise 

question phrasing, see the full survey instrument in the appendix. Whenever possible, 

participants were given multiple choice questions or four- or five-point Likert scales, to prevent 

participant fatigue and to facilitate data analysis. The supplemental questions enable further 

analysis to see if network task selection varies based on the population’s academic discipline, 

nature of research, or preferred toolset. 

The survey employed two branching mechanisms.  In the first, participants who answered 

“None” to both questions about their experience consuming and producing network science 

research were determined to be ineligible for the study and were taken to the end of the survey.  

In the second branch, participants who answered “Not well at all” to questions that asked if their 

research addresses network analysis and network visualization were also determined to be 

ineligible and were taken to the end of the survey. A final display logic mechanism made sure 

that participants who answered “Never” when asked how often they produce network 

visualizations were not asked the visualization-specific questions about tool and layout algorithm 

usage. 

The questionnaire was developed on Qualtrics and distributed openly to the SOCNET 

listserv, which had 2754 subscribers as of March 26, 2015.  The survey was open for 3 weeks, 

and listserv subscribers received a single reminder a week before the survey closed.  Sixty 
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surveys were collected at the end of the survey period, though nine surveys were incomplete4 to 

the point that their answers were excluded from the final analysis of task ratings. The final 

analysis therefore includes responses from 51 participants. All analysis was conducted with R.  

C. Results 

1. EDUCATION AND SUBJECT MATTER EXPERTISE 

The 51 participants retained for analysis represent a broad range of disciplines, but the 

most frequently reported academic fields were Sociology (n=10) and Business (n=7), with 

Computer sciences and Communication studies tied for third place (n=4).  The participants had 

overwhelmingly completed graduate degrees, and most (n=30) had already completed a doctoral 

degree. 

Over 75% of the participants (39 out of 51) considered themselves to have “a lot” of 

experience consuming network science research.  While there were concerns that using the 

SOCNET listserv to recruit participants might inadvertently lead to the inclusion of individuals 

who do not actively work in network science, over 84% of the participants (43 out of 51) listed at 

least some experience as a producer of network science research. The data also indicate that, 

while only some participants (22) at least somewhat address network visualization in their 

research, all participants chose one of the upper two options for addressing network analysis in 

their research. The participants do seem to be active in the field of network science, 

predominantly on the analysis side rather than the visualization side. 

                                                

4 These nine participants skipped eight or more of the 34 questions in the section where they were asked to 

rate network measures for importance or estimability. 
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Figure 4. Comparing the participants based on primary academic field and highest degree completed. 

 

Figure 5. Describing the participants based on experience as consumer and producer of network science research, focus of network 
science research (analysis vs. visualization), and frequency of visualization production. 

  



74 

2. EVALUATION OF NETWORK MEASURES 

The results of the survey suggest that basic node and network properties, like the node 

degree and the link density, are commonly seen as important (Figure 6). For node degree, 46 out 

of 51 participants (or 90%) responded with “Very Important” or “Somewhat Important.” 

Measures of node centrality (i.e., node betweenness centrality, node closeness centrality) also 

rate highly on importance, as do the number of components in a network and the network 

clustering coefficient. 

 

Figure 6. Responses to questions on importance and estimability of network analysis measures, sorted by the number of participants who 
rated the measure as either somewhat important or very important. 

For estimation of measures from node-link diagrams, results are more mixed. The 

measure most commonly rated likely to be estimable was the number of connected components, 

but only 39 of the 51 participants (or 76%) felt that it was at least somewhat likely they could 
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estimate this measure. Other measures participants felt some confidence about estimating from a 

node-link diagram include the number of nodes, component size distribution, and node degree. 

Because network measures vary in their rankings across Importance and Estimability, some way 

of combining the responses to these two questions is required to select a reduced set of network 

measures for network visualization evaluation. 

Figure 7 synthesizes the responses for both the importance of a measure and how likely it 

is to be estimable from a node-link diagram. The x-axis shows the number of participants who 

rated the measure both as Somewhat or Very Important (e.g., positive on Importance) and also as 

Somewhat or Very Likely to be estimable (e.g., positive on Estimable). The y-axis shows the 

number of participants who rated the measure negatively (Somewhat or Very) for both 

Importance and Estimability. A reference line at 45 degrees shows the measures that are more 

positive than they are negative (or vice versa). 

The nine measures that fall on the “high” or positive side of the reference line (Table 10) 

represent a large but manageable number of tasks for an evaluation study and include coverage 

of all of Bertin’s reading levels (i.e., element, cluster, and graph). The inclusion of “modularity,” 

however, is perhaps questionable; a large number of measures are clustered just over the 

negative side of the reference line, and modularity is closer to this cluster than to the other 

positive measures. Neither of the candidate link measures (loops, link betweenness centrality) 

was rated highly on importance or estimability, suggesting that link-related tasks are not a high 

priority within this group of participants.  
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Figure 7. Network measures by positivity and negativity, as related to importance and estimability. 

 

Table 10. Top nine measures, based on number of participants rating the measure high on both importance and estimability. 

Measure Name Bertin Level Number of Participants 
Rating the Measure 

Node Betweenness Centrality Element (Node) 51 
Node Degree Element (Node) 51 
Component Size Cluster 50 
Modularity Cluster 50 
Number of Components Cluster 51 
Average Degree Full Network 51 
Density Full Network 51 
Number of Links Full Network 51 
Number of Nodes Full Network 50 
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3. TESTING FOR VARIATION IN SUBGROUPS 

Recruiting participants from a diverse population like listserv subscribers and obtaining 

results from such a low percentage of the population calls into question the generalizability of 

the results. As the study cannot be said to be a representative description even of the SOCNET 

listserv, much less the network science community, additional analyses were conducted to look 

for clusters of participants who had similar patterns in their answers to the importance and 

estimability questions, in order to determine whether the ranking of the measures across all 

participants was strongly influenced by a particular academic discipline or type of network 

science research. 

To identify subgroups of participants who shared similar opinions about the network 

measures, the entire dataset has also been analyzed with Multiple Correspondence Analysis 

(MCA) and Multiple Factor Analysis (MFA). These methods identify patterns within a dataset 

that contains both numeric and categorical variables. Like Principal Components Analysis 

(which applies only to numeric variables), these techniques can reduce many variables to a series 

of dimensions or latent variables that reduce some of the variability within the dataset. How well 

each participant is described by the different dimensions helps cluster the participants into 

subgroups. Finally, the MCA and MFA results show whether secondary variables, like the 

participants’ ages or academic fields, correlate with the latent variables and, thus, help explain 

the subgroups with real-world participant characteristics. 

The data were analyzed using seven MCA and MFA models, each with slightly different 

settings for data imputation and groups of supplemental variables. After each model was 
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complete, the individual participants were clustered into four5 clusters. Cluster assignments for 

all but a single participant were consistent across all seven models; two models with imputed 

data switched this participant to a different but nearby cluster. In the final analysis, this 

participant has been included in the cluster that was assigned by the majority of the models. 

The results of the models can be visualized by exploring two dimensions (or latent 

variables) at a time. By examining where individuals fall on different dimensions, how the 

different measured variables load onto the different dimensions, and which dimensions 

correspond best to cluster boundaries, we can begin to interpret the patterns uncovered in the 

modeling process. The model chosen for the remainder of this analysis is a Multiple Factor 

Analysis model using 12 groups of variables, two of which were the primary or active variable 

groups (the Importance and Estimability questions) and the rest of which were supplemental 

variable groups (including demographic data, questions about consumption and production of 

network analysis and network visualization research, and dummy variables that summarize sets 

of columns). 

Figure 8 below shows individual participants mapped onto the first two dimensions of the 

MFA model, colored by cluster.  The first cluster of three individuals is quite distinct from the 

other three clusters and measures low on the first dimension and very high on the second.  

Clusters two and three overlap quite a bit in both dimensions, but cluster four is higher on the  

                                                

5 The cut-off of four clusters was chosen based on visual inspection of the hierarchical clustering cut tree 

for the various models; four clusters was a stable cut point for most of the models (i.e., the length of the dendrogram 

between four and five clusters was consistently high across different models). 
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Figure 8. The association between each of the participants and the first and second dimensions of the model, colored by cluster 
assignment. 

first dimension than the other clusters and in-between clusters 1 and 2/3 on dimension 2.  These 

two dimensions seem to explain the cluster divisions fairly well. 

To understand what dimensions 1 and 2 are really detecting in the data, we can explore 

how the different measured variables load onto the same dimensions. Figure 9 shows the 

relationship between the dimensions and a series of variables that were created to summarize the 

participants’ answers to the Importance and Estimability questions.  The figure shows that the 

area of the scatterplot occupied by cluster 1 (the upper left quadrant) is associated with “Very 

High” answers to Importance and Estimability questions.  Cluster 1 thus includes individuals 

who rated many of the measures as both very important and very estimable.  The vector arrow 

for this group of variables extends almost to -1 along dimension 1 but not quite to .5 for 

dimension 2, which means it’s loading a bit more strongly on dimension 1 than 2. 
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Figure 9. The same cluster assignment bi-plot of the first dimensions, with the addition of vectors that show how certain groups of 
responses load on the dimensions. 

Looking at the other loadings, we see that the number of Very Low responses loads as 

strongly positive on dimension 1 and mildly positive on dimension 2.  The number of Somewhat 

High responses appears toward the center of the graph and is slightly negative for both 

dimensions.  The number of Somewhat Low responses loads as strongly negative on dimension 2 

and very slightly positive on dimension one.  Taken as a whole, this suggests that dimension 1 

represents the positivity/negativity of the response (high positivity on the left and high negativity 

on the right).  Dimension 2, on the other hand, seems to be differentiating between responses that 

are Somewhat Low and all other responses.  

To confirm these interpretations, the following figures explore the relationship of the first 

two dimensions with participants’ patterns of responses.  As Figure 10a shows, Dimension 1 has 

a strong correlation with the number of Very Low answers, especially after a transformation to 
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reduce the skew of the distribution. In Figure 10b, we see that a similar relationship holds 

between Dimension 2 and the number of Somewhat Low responses, though in this case the 

model does not fit the data as strongly. Dimension 1 also correlates with the number of Very 

High responses, and Dimension 2 also correlates with the total number of extreme responses 

(both Very High and Very Low) but these correlations were not as strong as those presented. The 

full distribution of responses by cluster is shown in Figure 11. 

 

Figure 10. How the first two dimensions of the model relates to the number of “Very Low” answers (a) and the number of “Somewhat 
Low” answers (b), respectively. 

No other variable, including academic discipline and level of education, describes the 

grouping of participants as strongly as the variables that summarize participant responses to the 

Importance and Estimability measures, but one demographic question – “How often do you 

produce visualizations?” – does have a slight correlation with the cluster assignments. Cluster 2 

especially includes very active producers of visualizations, and cluster 3 seems to have a strong 

influence from participants who semi-regularly produce visualizations. (Alternately, we could be 

seeing another symptom of the intensity patterns; cluster 2 may be more willing to say “Always” 

than cluster 3, which in general seems to eschew extreme responses.) Cluster 1, where a small 

group of users gave many strongly positive responses to Importance and Estimability questions,  
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Figure 11. The distribution of the responses to importance and estimability questions, faceted by cluster assignment. 

did not report themselves as prolific producers of visualizations. Cluster 4 had the highest 

proportion of people who reported “rarely” producing visualizations, and they also had the most 

extremely negative responses to Importance and Estimability questions. 

After generating cluster assignments for survey participants, the clusters were used to 

evaluate subgroup differences in network measure rankings. Would the top network measures 

selected be different if we asked each cluster separately?  In short, the answer is no. If we 

compare how the different clusters rank the measures, we do get some variation in the precise 

ranking of each measure, but all clusters agree on the top eight measures with a single exception 

of Average Degree, which only had three clusters that gave it an average rating below ten. 
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Figure 12. The responses to the question about the frequency with which the participant produces a visualization along with his/her 
network science research has a correlation to the cluster assignment. 

Table 11. Network measures ranked on positivity (i.e., the combined number of "somewhat high" and "very high" responses). 

Measure Name Avg. 
Rank 
Full 

Avg. 
Rank 
Cluster 1 

Avg. 
Rank 
Cluster 2 

Avg. 
Rank 
Cluster 3 

Avg. 
Rank 
Cluster 4 

# Clusters 
Rank < 
10 

Clusters 
Avg. 
Rank 

NodeDegree 2.5 8.5 4.25 2.25 3.5 4 4.625 
NumNodes 3.5 8.5 3.25 3.75 1.25 4 4.1875 
NumComponents 4.5 8.5 2.5 6.25 4.5 4 5.4375 
NumLinks 4.5 8.5 5 6.5 5 4 6.25 
Density 5.25 8.5 6 6.5 4.75 4 6.4375 
AvgDegree 5.25 8.5 6 3.75 10.5 3 7.1875 
ComponentSize 7.25 8.5 5.75 8.25 6.75 4 7.3125 
NodeBC 8 8.5 7.25 5.5 9.75 4 7.75 
Modularity 9.5 12.5 9.75 8.75 12.25 2 10.8125 
ClosenessCentrality 11 8.5 11.5 12.5 8.5 2 10.25 
AvgPathLength 11.25 8.5 12.25 10.75 11 1 10.625 
ClusteringCoeff 11.25 8.5 11.5 11.75 11.25 1 10.75 
AvgShortestPath 12.5 8.5 13.25 13.25 9 2 11 
Diameter 12.5 8.5 10.25 12.75 11.25 1 10.6875 
EigenvectorCentrality 13 8.5 12.75 11.75 13.25 1 11.5625 
LinkBC 14.5 8.5 15 13.75 15.25 1 13.125 
Loops 16.75 13 16.75 15 15.25 0 15 
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In the above table, “Avg. Rank Full” ignores clusters and averages the overall importance 

rank and the overall estimability rank across all participants. The average rank for each cluster 

averages the overall importance rank and the overall estimability rank within each cluster. 

(Cluster 1 has so few participants and such consistent responses that the rankings are tied for all 

but two measures.) The number of clusters that rank the measure less than 10 shows how much 

agreement there is across clusters on the top eight measures. Finallly, “Clusters Avg. Rank” 

averages the average rank for each cluster; this weights each cluster equally, unlike “Avg. Rank 

Full,” which weights each participant equally. 

The following eight measures (Table 12) had an average rank of less than ten6 in three or 

four of the clusters: number of nodes, degree of most connected node, number of 

components, number of links, graph density, average degree, component size, and node 

betweenness centrality. Modularity was on the borderline; the gap between modularity and 

node BC was large for all indicators of measure rank, so modularity has been excluded from the 

final list. These results also mirror the clustering pattern within the scatterplot (Figure 7), where 

modularity is separated from the larger group of high positivity measures and is closer to the 45-

degree reference line. 

  

                                                

6 The optimal number of tasks for an evaluation study could vary based on the purpose of the study.  In this 

instance, a set of eight or nine tasks was considered sufficient to represent a broad range of tasks but minimize the 

burden on future study participants. 
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Table 12. The eight final tasks selected based on the ranking and cluster analyses. 

Level Measure name  

Element (node) 1. Node degree (including in-degree and out-degree) 
2. Node betweenness centrality  

Small group 3. Number of unconnected components  
4. Component size distribution  

Full network 

5. Number of nodes  
6. Average degree or degree distribution  
7. Number of links  
8. Link density / (# current links/#possible links)  

D. Discussion 

A major gap in this study is the failure to collect information on the gender of the 

participants. It is possible and even likely that the participant pool over-represents male network 

science experts, and any conclusions based on this study will be biased in this way. While 

visualization literacy is likely to vary across gender, it is not clear that task selection would 

follow that pattern or that gender would drastically change the rankings of the measures. This 

study identified response intensity as having an impact on the ranking of the different measures, 

and it is certainly possible that gender interacts with response intensity, but the list of 

recommended tasks seems consistent even when response intensity differs. 

Sampling problems are a significant issue for any study that attempts to recruit from a 

diverse and amorphous population like the network science community. To be able to adjust the 

analysis to take into account undersampling of one group or another, it is necessary to know 

what the true proportion of certain demographic characteristics is in the full community. 

Information about the true proportion of genders or different academic disciplines in the network 

science community is not currently known, so it would not have been possible to weight the 

responses to account for under- and oversampling bias. More research is needed to understand 
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the true demographics of the network science community and incorporate appropriate weightings 

into the analysis of the survey responses, but that research is beyond the scope of this project. 

The omission of gender from data collection prohibits us from testing for the influence of 

gender, which is a factor that has been found to be related to differences in performance on 

spatial literacy tasks in previous studies. There may, however, be other individual differences 

that have been neglected in this and similar studies. The influence of race, ethnicity, or class was 

also not explored here, in part because those factors are seldom included in quantitative network 

evaluation user studies, but those factors may be more likely even than gender to influence a 

researcher’s assessments of measure importance. Network measures are different from other 

types of statistical approaches in that many are based in anthropologic traditions of social 

network analysis and are, thus, attempts to quantify real-world phenomena. Approaches like 

theories of centrality and structural holes were created to understand or explain patterns of 

human behavior, and as such their perceived value may be especially variable based on a 

researcher’s worldview or approach to social issues. Academic field was measured and explored, 

but academic field is much too coarse to identify real differences in research approach or 

personal value structures. Future studies would benefit from a more nuanced understanding of 

how different researchers approach social network analysis and how that influences their 

evaluation of task importance. 

E. Conclusion 

This study has generated a list of tasks based on an empirical analysis of the activities of 

a larger group of network science researchers than is typically available for an in-depth, 

qualitative study of expert visualization users. Though the final task list may include tasks that 

are not common for other subgroups in the network science research community (and omit tasks 
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that are common), the research advances the field of network visualization evaluation by 

showing some agreement on important and estimable network measures among expert network 

science researchers. The research also explores many of the difficulties of assessing research 

practices across a diverse field and suggests strategies for data collection and analysis to try to 

mitigate these difficulties. Finally, the survey instruments designed for the study can easily be 

repurposed to extend the work and target different groups of network science researchers in the 

future. 
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VI. PERFORMANCE STUDIES 

Using the eight network measures selected from the opinion study, a survey instrument 

was created to test how well individuals interpret numerical properties of network data from 

different kinds of network visualizations.  

This study (Appendix B) will focus on quantitative performance assessments of the eight 

structural tasks selected in the previous phase. Similar studies have been done in the past, but 

they often used very small and simple networks and only a few tasks. This study will use real-

world network data sets that include much larger networks than previous studies, it will test users 

on more tasks than previous studies, and the tasks being used have been chosen based on a 

survey of network science researchers.  This study will also vary design and context, which are 

not typically tested in network visualization literacy studies. 

A. Research Questions 

• Which network measures are hardest to assess from a network visualization?  Which are 

easiest? 

• How do network properties a (e.g., number of nodes, density) or its context (e.g., 

concrete vs. abstract question phrasing) affect the ability of users to interpret the 

visualization? 

• How differently do network science experts and novices perform when reading network 

visualizations? 

• What kinds of manipulations to network layout affect the overall ability of users to read 

the visualization? In what ways? 
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• How do the differing priorities of layout algorithms (e.g., a focus on revealing clusters) 

affect performance on specific network interpretation tasks (e.g., cluster detection)? 

B. Study Design 

The design of the study involves two main phases, each focusing on separate 

manipulations and populations. The general design of the common elements is outlined below, 

while details specific to each phase will be discussed in subsequent chapters. 

1. STUDY MANIPULATIONS 

In direct response to the research questions set forward, four major groups of 

manipulations were introduced into the study to investigate how design choices, data properties, 

and individual differences effect user performance. 

a) GRAPHIC AND CONTEXTUAL MANIPULATIONS 

One group of manipulations involved changing the graphic presentation and context of 

the visualizations. In this group, a “control” condition used node-link diagrams with a generic 

force-directed layout algorithm (GEM) and a grayscale color theme. Performance tasks based on 

the selected eight network measures were phrased using standard network terminology (e.g., 

“node”, “link”, “cluster”).  

“Data concreteness,” or the ability to call upon domain expertise to analyze a problem 

rather than to deal with abstract concepts, has been shown to improve performance. In a second 

condition – the “phrasing” condition – the questions were rephrased to use more informal 

terminology (e.g., “person”, “friendship connection”, “tightly-knit friend group”).  

It is well known that the specific stylistic design of visualizations influences not just the 

visual appeal of those visualizations but also, at times, how well those visualizations are attended 
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to, understood, and remembered.  In the third condition – the “size” condition – each node was 

increased in size by 150%. Apart from concerns about occlusion, little advice has been offered 

by network visualization researchers to guide the selection of node size.  This condition will test 

whether simply making the nodes uniformly larger has any impact on user performance. 

In the fourth condition – the “color” condition – the color of all nodes was changed from 

black to blue.7 This condition will test whether simply using a different color (in this case, blue) 

for the nodes has any impact on user performance. For both size and color conditions, the formal 

version of the question phrasing was used. 

b) LAYOUT ALGORITHM MANIPULATIONS 

Another group of manipulations focused on the layout algorithm used to arrange the 

nodes in the node-link diagram. Again here, the control condition used the Generalized 

Expectation Maximization (GEM) layout. A second condition used a deterministic layout 

algorithm – a circular layout8. A third condition used the Fruchterman-Reingold algorithm 

                                                

7 Network visualization often employ color- and size-coding to overlay additional attribute data onto the 

graph.  While a study that uses visualizations with variable color- and size-coding would help understand how users 

react to such encodings, the purpose of this study is to generate baseline data on how the presence/absence of color 

or the raw size of the nodes influences interpretation of the graph, without the added confound of variations in color 

or size. A future study could then, for example, compare baseline results against color variations that were congruent 

with the study task and color variations that were incongruent. 

8 Pretests showed that the original circular layout algorithm, which arranged nodes by decreasing degree, 

was placed at a significant disadvantage compared to the other layout algorithms because of its failure to locate 

nodes of the same cluster near each other. To avoid this confound, which would have been especially problematic 
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(Fruchterman & Reingold, 1991), which is notable for ensuring an even node distribution in 

space. A fourth condition used the OpenOrd algorithm (Martin, Brown, Klavans, & Boyack, 

2011), which emphasizes clusters.  

The GEM algorithm was applied as implemented in the GUESS Graph Exploration 

System (Adar, 2006) embedded in the Sci2 Tool (Sci2 Team, 2009), while all other layout 

algorithms were applied in Gephi (Bastian, Heymann, & Jacomy, 2009). The “noverlap” plugin 

(Jacomy, 2013) was employed for each layout condition to ensure every node was visible.  

c) DATASET MANIPULATIONS 

A third manipulation involved the datasets used for the visualizations. Interpretation of 

network visualizations can change drastically with the size of the network and the distribution of 

the edges.  Previous studies have found that many interpretations of node-link diagrams become 

difficult when the network includes over 100 nodes (Ghoniem et al., 2005), and there are also 

studies that suggest that some tasks increase in difficulty as the density increases (ibid).  In order 

to test the relationships between these changes and changes in user performance on common 

tasks, it will be necessary to vary these aspects and collect data on many network datasets. 

To enhance ecological validity, this study selected seven real-world networks from prior 

research by the author, including networks with as few as eight nodes and as many as 379. The 

numerical properties of these networks are included in Table 13. A thumbnail of each network 

visualized using the GEM layout algorithm is included in Figure 13. 

                                                

for cluster-related tasks, the networks were first clustered using Gephi’s modularity algorithm, and then the cluster 

assignment was used to arrange the nodes around the circle. 
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Table 13. Properties of the real-world networks used in this study. 

 

       
Figure 13. A visualization of each network layout, using the GEM layout. 

d) PARTICIPANT MANIPULATIONS 

Prior research suggests that prior training and disciplinary background can have a large 

influence on ability to interpret visualizations, but many previous studies of network 

visualization literacy have employed only an expert user community. The final manipulation was 

to recruit participants from two populations: one with limited exposure to network visualizations, 

and one with explicit training in network science or visualization. Amazon’s Mechanical Turk 

was used to recruit participants with limited experience with network visualizations, and Indiana 

University’s network science community was used to recruit individuals with explicit training in 

network science or visualization. 

2. STUDY PARAMETERS 

As described above, this study will employ a 2 x 6 x 7 factorial design – two levels of 

participant expertise (general population, training in network science) by six levels of datasets 

(varying in size and density) by seven visualization conditions (GEM layout, circular layout, 

Reference 
Number 

Reference Nodes Edges Average 
degree 

Density Experimental Block 

0 Zoss & Börner (2012) 8 14 3.5 0.5 Training 
1 Zoss & Börner (2012) 30 337 22.4667 0.7747 MTurk, IU NetSci 
3 Börner et al. (2010) 67 143 4.2687 0.0647 MTurk 
5 Börner & Zoss (2010) 184 246 2.6739 0.0146 MTurk 
7 Zoss (2012) 270 932 6.9037 0.0257 MTurk, IU NetSci 
8 Börner & Zoss (2010) 321 583 3.6323 0.0114 MTurk 
9 NetSci 2006 dataset 

(Sci2 Team, 2009) 
379 914 4.8232 0.0128 MTurk, IU NetSci 
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OpenOrd layout, Fruchterman-Reingold layout, informal phrasing, alternate node color, alternate 

node size). 

a) WITHIN- VERSUS BETWEEN-SUBJECTS FACTORS 

In any survey, manipulations like those mentioned above can be incorporated as either 

within- or between-subjects factors. In a within-subjects design, each participant completes all 

tasks, regardless of what level of the factor they fall under. For example, in the case of the 

manipulation where the phrasing of the question can be either formal or informal, a within-

subjects design would have each participant answer questions with both types of phrasing. This 

design is desirable because you need fewer participants to gain statistical power, and you also 

reduce variability between the levels of the factors by having the same sample of the population 

participate in all levels. 

With certain types of tasks, however, it is not possible to employ a within-subjects 

design. Tasks where one level would “contaminate” another level – that is, by overly influencing 

the participant’s response to questions within another level of the factor – are not appropriate for 

within-subjects designs. The phrasing factor is an example of a manipulation that has a high 

likelihood of contamination; if someone sees questions phrased informally, that phrasing will 

still be available to the participant when questions are phrased formally, and thus it will be 

impossible to say if a change in phrasing does result in differences in responses. 

In this study, the following manipulations are considered to have too high of a risk of 

contamination for a within-subjects design – phrasing, node color, node size, and layout 

algorithm. These factors will be between-subjects factors – no participant will see more than one 

level of each factor. Dataset and task will be treated as within-subjects factors; that is, each 
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participant will see multiple datasets and tasks. A participant’s baseline expertise in network 

science will be a between-subjects factor. 

b) NUMBER OF TASKS AND DATASETS 

Creating a study of manageable length for participants is essential to obtaining reliable 

data. A survey that is too long will increase the participant dropout rate or, worse, increase 

participant fatigue and reduce the quality of answers such that the data are unusable. For 

motivated participants, like paid workers on Amazon’s Mechanical Turk, a 30-minute survey 

should be within acceptable ranges. For an elite population like individuals with network science 

expertise, a time commitment of more than 15 minutes is likely to reduce participation rates 

significantly. To ensure a manageable survey length for both populations, the survey was 

designed to limit the number of datasets each participant saw to three of the six possible datasets. 

Each participant saw each of the eight tasks for all three datasets. 

c) NUMBER OF PARTICIPANTS 

The number of manipulations necessary to address the research questions increases the 

number of participants required to achieve statistical power. Statistical power calculations, 

however, are difficult for a descriptive study where no prior data has been collected. Calculating 

statistical power requires an estimate of the differences between the conditions, and no such 

estimates have been determined for many of the selected factors. In lieu of an explicit power 

calculation, a minimum of 50 participants per level was established for conditions where 

differences were expected to be small – namely, the phrasing, size, and color conditions. For the 

layout conditions and the differences between levels of network science experience, a smaller 

number of participants may be sufficient to reveal differences. 
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Because each participant only sees three datasets of the total six possible, two participants 

will be necessary to complete all possible datasets in one of the seven visualization design 

conditions. To obtain 50 participants per study condition, at least 700 participants were necessary 

from the Mechanical Turk participant pool. 

As recruiting 700 participants with network science experience was not practical, the 

number of conditions used for the expert audience was limited to the four layout conditions and 

to a subset of three datasets, which all expert participants saw. Even with this reduction, the 

likelihood of recruiting 200 individuals with network science experience to participate in the 

study is quite low. A target of 15 participants per condition, for a total of 60 expert participants, 

was set for this descriptive study. 

3. SURVEY INSTRUMENT 

The final component of the study design is the design of the survey instrument, or the 

actual survey distributed to participants. 

a) SURVEY SOFTWARE 

The first choice for the design of a survey instrument is whether the survey should be 

delivered electronically or on paper. While paper-based surveys are often easier for the user and 

can come across as more authoritative than electronic surveys, they place a high burden on the 

researcher for extracting the data into a digital format. Paper-based surveys are also more 

difficult and costly to distribute to a large group of participants; they must either be mailed to 

homes, which requires acquiring mailing addresses and incurring the expense of the mailing, or 

they must be distributed in person in a high-traffic location, often over multiple days and times.  

This research focuses on a series of research questions that require complicated 

manipulations of research instruments and participant group assignments. While recent 
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visualization literacy studies – e.g., (Boy et al., 2014) – have been able to collect data using 

custom and at times even open-source software (de Leeuw, 2015; Fekete & Boy, 2015; Harrison, 

2018), those systems are often difficult to repurpose for other studies, require a high level of 

technical expertise to build and test, and offer fewer features than more robust, enterprise 

systems. This study instead employed a web-based survey tool, Qualtrics, for the creation and 

dissemination of the survey instrument. Qualtrics is a secure environment for data collection, 

offers a variety of question types for gathering different kinds of data, offers sophisticated survey 

distribution options, and easily handles randomization and survey logic.  

b) QUESTION DESIGN 

The eight network measures selected from the opinion survey described in the previous 

chapter (listed again in Table 14) were operationalized as questions that could be included in an 

electronic survey and the accuracy of which could be measure systematically. Previous studies 

(Ghoniem et al., 2005; Helen C. Purchase, 2000) have used small enough networks that each 

node could be labeled, which simplified the design of experimental tasks by allowing 

participants to, e.g., report the label of the node with the highest degree. For networks of over a 

few dozen nodes, this becomes untenable. For larger networks, questions must be phrased such 

that a numerical answer can be provided, or the survey software must be able to register 

interactions with the visualizations (e.g., click events). The phrasing of each question9 was 

designed to be approachable for both low and high levels of network science expertise.   

                                                

9 The task about network density was removed from the final version of the survey, as will be discussed 

below. 
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Table 14. The eight final tasks selected based on the ranking and cluster analyses. 

 

To assess an individual’s ability to evaluate the degree of one or more nodes in the 

visualization, there is precedent for asking participants to locate the most connected node 

(Ghoniem et al., 2005; Henry & Fekete, 2007a) and to count the connections for a particular 

node (R. Keller, C. M. Eckert, & P. J. Clarkson, 2006). Without node labels, testing a 

participant’s understanding of node degree requires two questions: locate the most connected 

node and identify the number of links it has. In the Qualtrics application, a special question type 

can be used to gather click data on top of an inserted image, and this was used to allow 

participants to identify an individual node as the highest degree node. A standard text entry 

question was used to have the participant identify the number of links. 

While node betweenness centrality was identified by network scientists as both important 

to their research and estimable from a node-link diagram, the concept itself is highly specific to 

network science and may be difficult for inexperienced users to understand. The question related 

to node betweenness centrality was thus phrased to highlight the bridging qualities of nodes with 

high betweenness centrality. An image-click question type was used within Qualtrics. Because of 

the difficulty of identifying the precise node with the highest betweenness centrality, even for 

advanced network visualization users, participants were allowed to select up to five nodes that 

display high bridging qualities. 

Level Measure name  

Element (node) Node degree (including in-degree and out-degree) 
Node betweenness centrality  

Small group Number of unconnected components  
Component size distribution  

Full network 

Number of nodes  
Average degree or degree distribution  
Number of links  
Link density / (# current links/#possible links)  
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Measuring a participant’s ability to assess component or cluster information from a 

visualization is a controversial topic. Other studies (Etemadpour, 2013) have found that both 

node membership in a cluster and the number of clusters in a graph are difficult tasks for 

visualizations users. In fact, even determining the definitive number of clusters within a graph is 

problematic. The same algorithm may produce different numbers of clusters depending on slight 

differences in the random seed, and different cluster detection algorithms may produce wildly 

different results. Nonetheless, the number of clusters in a graph and the relative sizes of those 

clusters has been identified by experts as both important and estimable. While assessing accuracy 

for questions about cluster distribution and size may be especially difficult, the patterns of 

responses for different conditions and populations may still reveal interesting interpretation 

tendencies. 

In deference to the difficulty of this task, the question about the number of clusters 

explicitly asks about how many clusters the participants sees, rather than how many clusters 

exist. In addition, the participant was also asked to rate his/her confidence in this determination 

of the number of clusters. For the question that addresses cluster size distribution, the focus was 

placed on the largest cluster. Qualtrics does not offer the ability to denote an area of interest on 

an image, so the question was phrased to allow participants to indicate what percentage of the 

total nodes in the graph were contained within the largest cluster. This question employed a 

slider input control within the survey software, allowing participants simply to drag the slider 

between zero and 100 per cent. 

The questions regarding the numbers of nodes and links within the graph were phrased to 

indicate that participants should approximate the numbers, rather than counting nodes and links 
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meticulously. The question about average degree distribution asks participants to identify how 

many connections each node has, on average. 

Link density for the graph rated highly on importance and estimability, but the 

estimability of density varies greatly with different graph densities and different sizes of graphs.  

Studies have established that increasing the density between 20 and 60 per cent decreases task 

accuracy, but this effect has only been tested for networks of up to 100 nodes (Ghoniem et al., 

2005). Large networks of high density become especially difficult to read, and the distributions 

of those links around the network (which might be encapsulated by the clustering coefficient or 

modularity of the network) also greatly influences the readability of a visualization. 

Real-world networks can display all manner of network properties, from small graphs 

with low density to enormous, fully-complete graphs. The types of networks most appropriate 

for visualization, however, tend to be those that exhibit small world properties – small networks 

with distinct clusters and low density. Indeed, all of the candidate networks evaluated for this 

project had less than three per cent density for graphs with more than 150 nodes. To properly 

evaluate an individual’s ability to assess graph density, noticeable variation of this property 

would be essential. 

Another complication involves the phrasing of the question. Density is a calculation – the 

number of links in a graph over the total possible links for that number of nodes. Determining the 

density of a graph from a visualization involves either a lot of experience matching visualizations 

with density values or imagining the same graph as it would be if it was fully complete and 

intuiting what percentage of links is present. Even for networks where the density varies a 

noticeable amount, the likelihood that individuals with limited network visualization experience 

will be able to perform this mental operation is quite low. This topic merits further study, but it 
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was determined through pretests that no single question10 would yield actionable data for 

assessing a participant’s understanding of network density. With the removal of the density task 

and the bifurcation of two of the other tasks, the final survey measured responses to nine 

questions (Table 15). 

c) SURVEY LOGIC 

Participants taking the survey would first see an introductory page with a brief 

description of the study and a link to a PDF of the IRB-approved Study Information Sheet. If a 

participant continued passed the introduction, they were then randomly placed into one of the 

available visualization conditions (i.e., the full seven conditions for workers on Amazon’s 

Mechanical Turk, but only the four layout conditions for members of the IU network science 

community). The survey was designed to have each condition presented evenly, to obtain 

approximately the same number of responses in each condition. 

Regardless of visualization condition, each participant underwent a training block that 

included a brief introduction to network terminology and visualization (see Appendix B). The 

training block used a small network dataset of eight nodes and 14 links, and it presented a subset 

of six of the possible nine experimental questions. For the alternate phrasing condition, the 

phrasing in the training block matched the informal phrasing in the experimental blocks. The  

                                                

10 A better design for this task may be to create simulated networks with varying densities, present 

two networks at a time, and ask participants to state how much denser one network is than the other. This is the 

task used in the classic visualization literacy studies by Cleveland and McGill (1984). A block of questions 

focused on a single task and using a comparative method with simulated data was determined to be out of 

scope for this study. 
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GEM, size, and color conditions all saw the same training block, with formal question phrasing, 

GEM layout, grayscale color, and the default node size. Each of the other layout conditions (i.e., 

circular, OpenOrd, Fruchterman-Reingold) had a custom training block where the same training 

network was laid out using the matching layout algorithm. 

The training block began with an introductory page describing a network visualization 

using the terms that would be used throughout the remainder of the block. It then asked the 

following questions, always in the same order: number of nodes, number of links, click on the 

highest degree node, number of clusters, largest cluster size, and click on high betweenness 

centrality nodes. After each question, the response was either explicitly graded or, in the case of 

questions where this was not possible11, the correct answer was provided as well as a rationale 

for the answer. In pretests, the question about the number of links in the network seemed 

especially difficult for participants, so a lengthy explanation was added to the training block, 

including a heuristic for calculating number of links from the number of nodes and the average 

degree of the nodes. At the end of the training block, participants saw a page that instructed them 

to answer the remaining questions as quickly and accurately as possible, but also to estimate 

numbers for large networks. 

After the training block, participants were randomly shown three of the available datasets 

for their group (i.e., six datasets for workers on Amazon’s Mechanical Turk, three datasets for 

members of the IU network science community). For each dataset, all nine experimental 

                                                

11 The two image click questions were unable to be graded in real time. While it is possible to set regions of 

interest in the images and receive a report of whether clicks occurred in those regions, those reports are only 

available under Qualtrics’ “legacy format” for data export. Within the active survey, the information about whether 

a region of interest was selected was unavailable for the question display logic that selected which answer to display. 
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questions were shown. For questions where a numerical response was expected, Qualtrics was 

setup to use data validation to ensure that the response was both numerical and larger than zero. 

The orders of both datasets and questions were randomized, and one question was shown at a 

time on the screen. No explicit break was included between experimental blocks, but participants 

were free to take breaks as desired during the survey. No formal time limit was placed on survey 

completion within Qualtrics12, though completion time for each question block was collected. 

Following the three experimental blocks, a final block of demographics questions 

gathered data about the participant’s age, gender, language, educational background, use of 

technology, and experience with data analysis, data visualization generally, and network 

visualization specifically. A final free-text field allowed participants to give general feedback on 

the survey. For workers on Mechanical Turk, an additional component of the survey – a 

randomized identifier – appeared at the end of the survey. This code was then entered in a field 

on Mechanical Turk to allow for validation of each worker’s completed survey. 

Apart from the questions explicitly asked to the participant, Qualtrics was also instructed 

to collect information about the participant’s operating system, browser, and screen resolution. 

Qualtrics also collected some limited timing information about the survey – the total duration of 

the survey, as well as the time taken on the training and experimental blocks. (Because of the 

question randomization, it was not possible to collect timing information for each question 

                                                

12 Workers on Amazon’s Mechanical Turk were given a time limit of three hours to complete the survey, but 

workers are highly motivated to complete work quickly, as they are paid a flat rate regardless of the amount of time 

the task takes. 
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separately.) Finally, Qualtrics was instructed to anonymize responses, which prevented Qualtrics 

from gathering any other identifying information like IP address and approximate location. 

d) VISUALIZATIONS 

Visualizations were created in network science software as described in the Layout 

Algorithm section above, after which they were exported to a vector file format. Graphic design 

adjustments like node and edge color and size were made using Adobe Illustrator. In this study, 

the baseline visualizations employed a simple, clean (shades of gray) design to avoid the 

confounding variables of color and size (Figure 14). The final size of the images was 729 pixels 

wide by 729 pixels high. The size of nodes (eight pixels in diameter for the normal size 

conditions, 12 pixels in diameter in the large node size conditions) was selected so that nodes do 

not overlap each other and also do not cover a significant percentage of any links.  Nodes were 

not labeled.  

  
Figure 14. A sample node-link diagram, styled in a clean, grayscale design. 
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VII. DESIGN CONDITIONS: HOW CONTEXT AND DESIGN INFLUENCE 

NOVICE INTERPRETATION  

In the first phase of this research study, we test how manipulations in the question 

phrasing, visualization design, dataset properties, and network measure relate to differences in 

the accuracy of participant responses. This phase of the study will test the following hypotheses: 

A. Hypotheses 

H1: Varying network properties: Performance on numerical assessments will decline as 

network size and density increase. 

H2:  Varying context: Performance on numerical assessments will be higher with the use of 

concrete (informal) phrasing than with abstract (formal) phrasing. 

H3: Varying design: Performance on numerical assessments will be reduced by larger node 

size and unaffected by using a different (i.e., non-black) dark color.  

H4: Varying task: Performance on research tasks that involve clusters will be lower than 

performance on node- or graph-based tasks. 

B. Methods 

1. PARTICIPANT RECRUITMENT 

To obtain a survey of a broader population than can be accomplished with recruitment in 

a university setting, the participants for the user performance assessments were recruited via 

Amazon’s Mechanical Turk13 (MTurk), a site that allows individuals to offer small amounts of 

                                                

13 http://www.mturk.com 
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monetary compensation to workers who complete simple Human Intelligence Tasks (HITs). 

While extensive information about the individuals will not be collected, the composition of the 

workers is expected to be more diverse than that of the members of university communities, a 

common pool of research study participants. Furthermore, the likelihood that workers on MTurk 

will have experience with network visualizations is expected to be low, a qualification that is 

important for establishing a difference between this population and that of individuals with 

explicit training in network science. 

2. PILOT TESTING 

Initial pilot tests were run with one training block, one experimental block, and one 

demographics block. In the first pilot test, nine participants were recruited. Total duration of 

survey varied from 5.92 minutes to 36.35 minutes, with a median of 8.8 minutes. Feedback 

indicated that the images were a bit small and that feedback during the training portion may not 

be working correctly. Several participants also commented that the survey was difficult but 

enjoyable. After a worker from MTurk completed the survey, the worker was assigned a 

“qualification,” which operates like an achievement or badge in the system. Future MTurk work 

requests can use such qualifications as a requirement or filter, and as a result it was possible to 

exclude anyone who already had the qualification from participating in any future pilots or 

experimental surveys. 

The visualizations were originally created at a size of 350 by 350 pixels, but after the first 

pilot test, the size was increased to 729 by 729 pixels. The contrast between node and edge color 

was also increased slightly by lightening the edge color, and a gray border was added around the 

black nodes in cases where there might be a slight overlap between the nodes. The second pilot 

test of nine participants yielded no further suggestions, but high error rates on the questions 
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about density and number of links prompted further changes. Completion time for the second 

pilot survey ranged from 6.67 minutes to 29.23 minutes, with a median of 10.78 minutes. 

For the third pilot test, the density question was removed entirely. In addition, a question 

about the number of links in a network with a detailed answer rationale was added to the training 

block. Completion time ranged from 5.03 minutes to 17.22 minutes, with a median of 9.58 

minutes. 

Based on the timing of the pilot tests, it was determined that the full survey instrument, 

with one training block, three experimental blocks, and one demographics block, may require 25 

to 30 minutes to complete. A review of other requests for workers on MTurk established that a 

compensation rate of $3.50 for such a period of time should be fair and appealing to workers.  

Recruitment text appears in Appendix C. 

3. FINAL DEPLOYMENT 

Following pilot testing, the final survey was deployed on MTurk. A test batch of nine 

participants verified that the final survey worked properly. After that, seven batches of 100 

participants each were recruited over a seven-day period. All 709 completed responses were 

approved and paid on MTurk, without any intervening attempt to validated the responses as 

having been given in good faith. Each participant in a single block was assigned a qualification 

to prevent repeat participation in future survey batches, and this qualification process was 

completed for each batch before another batch was released. 

A summary of the final participant counts for each dataset and condition is provided in 

Table 16 below. 
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Table 16. Final participant counts for each Dataset and Condition for the experimental conditions related to graphics. 

Dataset GEM (control) Informal phrasing Color Size 
1 46 54 52 52 
3 49 51 51 55 
5 49 51 52 52 
7 44 52 50 51 
8 50 52 51 49 
9 47 52 54 48 

 

4. DATA ANALYSIS 

Data analysis for this study has been organized following the TIER Protocol (Project 

TIER, 2016), which specifies a system for reproducible social science research. The analysis 

code has been written primarily with R (R Core Team, 2017), using the RStudio (RStudio Team, 

2016) development environment, Rmarkdown (Allaire et al., 2017) documents for literate 

programming, and a data processing workflow heavily influenced by the tidyverse (Wickham, 

2017) packages. 

a) DATA PROCESSING 

The data processing code is divided into three separate scripts. The first translates the 

positions of circles and lines from SVG versions of the experimental network visualizations into 

two CSV files, one for the nodes and one for the edges. The node positions can be used for 

lookup to match with the click data from the survey. The edge data can be used to generate 

network files in R and calculate all network properties. The node and edge positions must be 

calculated separately for each of the layout conditions, but all of the graphic design conditions 

have the same node and edge positions. 

The second data processing script uses the igraph (Csardi & Nepusz, 2006) R package to 

load the edge data, generate networks, and calculate network properties. Node-level properties 

(degree and betweenness centrality) are calculated for each node, as well as the rank of the node 
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on those properties within the network. The node-level properties are then joined back with the 

node position data and exported to a CSV file. The full node data is used to calculate for each 

network the degree of the highest degree node and the average degree of all nodes. Additional 

graph-level properties are calculated, including number of nodes, number of edges, and density. 

Clusters are calculated automatically in R using the “cluster_fast_greedy” algorithm 

(Nepusz & Csardi, 2015), based on Clauset, Newman, and Moore (2004). As previously 

discussed, clustering algorithms can produce wildly different results, so the number of clusters 

calculated here is useful reference point but should not be taken as a definitive correct answer. 

The clusters are used to determine number of clusters for the network and the number of nodes in 

the largest cluster. This cluster calculation also produces a modularity score, which “measures 

how good the [cluster assignment] is, or how separated are the different vertex types from each 

other” (Csardi, 2015). Graph-level properties are then exported to a separate CSV file. 

 The final data processing script cleans and grades the experimental responses. Data from 

all Qualtrics survey raw data files are ingested into R and combined into a single data frame, 

though each observation retains the name of the original data file it came from. This makes in 

possible, for example, to separate pilot data from experimental data and novice data from expert 

data. Responses from the training and experimental blocks were separated and then joined to the 

network property and node position data for grading. Demographics and other survey statistics 

(e.g., survey duration, dataset order, question order) are cleaned and rejoined to the response 

data. 

To connect the click responses to the node position lookup tables, each participant click 

was evaluated against each possible node position in the visualization. The candidate nodes were 
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filtered down to those within a 25-pixel radius14 of the click. Within those candidate nodes, the 

node with the highest degree or betweenness centrality was selected. In the event of a tie, the 

closest node was selected. 

One additional processing step involves the removal of participants with suspicious 

response patterns. The compensation structure on MTurk incentivizes workers to complete tasks 

as quickly as possible. Unfortunately, that means that workers will not always answer all 

questions in good faith. Because of the data validation controls that force users to enter 

numerical data, the most likely indicators of random data entry are extremely short survey 

duration times and extremely (and consistently) high error values. In this study, a user was 

omitted if they answered at least 20 of the 22 possible non-click training and experimental 

questions, were in the lowest 20% of the participants for total duration, and were also in the top 

20% of the participants for average error. This yielded 36 participants who were then omitted 

from the analysis. 

While the MTurk population was highly motivated to complete the full survey, there still 

may have been individuals who began the survey but didn’t complete it. To retain valid 

responses, even if the full survey was not completed, participants were excluded if they failed to 

complete a single dataset – specifically, if they provided fewer than eight responses (ignoring the 

question about cluster confidence). This criterion omitted another 19 participants. 

  

                                                

14 Twenty-five pixels about the width of three nodes in any direction for the normal node size condition, 

two nodes in any direction for the large node size condition. This corresponds to a 0.35” radius on a 72dpi screen 

and a 0.26” radius on a 96dpi screen. 
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b) OPERATIONALIZING ACCURACY 

While each of the numerical tasks has a correct answer, the likelihood of anyone 

responded with a perfectly correct answer on each task is incredibly low. Whatever measure of 

accuracy is used as the outcome variable for the analysis must be nuanced enough to differentiate 

between different sizes and types of errors. A good model from a general visualization literacy 

study is the “log absolute error” measure employed by Cleveland and McGill (1984), as well as 

Heer and Bostock (2010) in their replication of the original study. In these studies, accuracy is 

measured by subtracting the user response from the correct answer, taking the absolute value, 

adding a constant (in this case, 1/8), and taking the logarithm to base two. Cleveland and McGill 

(1984) offer the following justification of the measure. 

“A log scale seemed appropriate to measure relative error; we added 1/8 to prevent a 
distortion of the scale at the bottom end because the absolute errors in some cases got 
very close to zero. We used log base 2 because average relative errors tended to change 
by factors less than 10.” p. 540. 

The below analysis adapts this measure of accuracy. Firstly, we adjust the constant. 

When a response is correct, the difference between response and correct answer is zero. When 

you add 1/8 to zero and take the logarithm (to base 2), the result is -3, which is counter-intuitive 

for a measure of error. By changing the constant to 1, the log absolute error of a correct answer 

will instead be zero. 

Using log base 2 in the original Cleveland and McGill (1984) study yielded log absolute 

error values less than 3.5. The same was true for the replication (Heer & Bostock, 2010). For the 

chosen network visualization literacy tasks and datasets, however, the scale of the answers is 

much larger, which influences the scale of the error. It is not uncommon for an individual to 

guess that there are 10,000 links when there are only 1,000. Using log base 2 yields log absolute 

error values well over ten, though of course this varies by dataset and task. Changing to a log 
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base 10 better represents the wide spread of the responses and may be easier to interpret because 

powers of ten are easier to calculate than powers of 2.  

Even with the log transformation, however, accuracy can hardly be compared across 

datasets. The log absolute error begins with a raw difference between the response and the 

correct answer. This difference may well increase proportionately as the correct answer 

increases, and it would be preferable for an accuracy measure to take this natural increase into 

account. As a result, the final Log Absolute Error calculation first groups responses by 

Condition, Task, and Dataset and then normalizes the responses to a range between 0 and 1. 

After adding the constant (1) and taking the log to base 10, the Log Absolute Error (or simply 

LogError) is thus bounded between 0 and 0.30103. A summary of the LogError values for the 

graphics conditions is included in Figure 15. 

 

Figure 15. LogError distributions by task and dataset for the experimental conditions related to graphics. 
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While log absolute error can provide a measure of accuracy that works well for the 

responses to the numerical analysis tasks on the survey, the measure presents problems for the 

click response questions and the percentage slider. When participants click on an image to 

indicate, for example, the highest betweenness centrality node, the node they select does have a 

betweenness centrality value and, thus, a LogError value. Values for betweenness centrality, 

however, are the result of complex calculations and result in a huge range for the “correct” 

answer (from 0 to tens of thousands). When ranking nodes by BC value, a node of rank 2 could 

have half the BC value of a top-ranked node. To gauge the accuracy of the click tasks, we use the 

rank of the node in the particular measure of interest (or NodeRank). As ranks are positive 

integer values, they are modeled like count data using the negative binomial distribution, which 

is appropriate for data with high dispersion. 

The click data, as described in the data processing section, was analyzed to yield the best 

node match within a 25-pixel radius. For the node betweenness centrality task, however, 

participants were given the opportunity to select up to five nodes with high node betweenness 

centrality. The analysis includes only the single best attempt made out of all attempts. 

The final question type offered in the survey is a question about the percentage of the 

network that is included in the largest cluster. Participants respond using a slider that returns 

integer values between 0 and 100, inclusive. The boundedness of the responses results in a 

different pattern than the free-text numerical responses, so the percentage responses are 

converted to values between 0 and 1 and modeled with a zero-and-one-inflated beta distribution. 

A summary of the various accuracy measures is included in Table 17. 
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Table 17. Question phrasing and accuracy calculations for final network measures. 

 

  

Measure Name  Question Phrasing (Technical) Accuracy Calculation 
Degree of highest 
degree node 

Find the node with the most links. About 
how many links does it have? 

Log Absolute Error 

Position of highest 
degree node 

Click on the node with the most links.  
(Your last click will be the only click 
recorded.) 

Rank of Selected Node 
(using negative binomial) 

Position of high 
betweenness 
centrality nodes 

Find any nodes that bridge gaps between 
clusters, rather than being closely 
connected to a single cluster.  Click on 
each of those nodes.  (If you see a lot of 
these nodes, please choose at most five that 
seem to be clear examples.) 

Rank of Selected Node 
(using negative binomial) 

Number of clusters How many clusters do you see in this 
network? Please type the number below. 

Log Absolute Error 

Confidence in 
number of clusters 

If you were asked to estimate the number 
of clusters in this network, about how 
confident would you be in your estimation? 

Compare to Log Absolute Error 
for number of cluster response 

Size of largest cluster Find the largest cluster in the network, and 
look at the nodes in that cluster.  What 
percentage (approximately) of the total 
nodes in the network can be found in the 
largest cluster? 

Percentage 
(using beta distribution) 

Number of nodes  About how many total nodes are in this 
network? 

Log Absolute Error 

Average node degree About how many links does each node in 
this network have, on average? 

Log Absolute Error 

Number of links  About how many total links are in this 
network? 

Log Absolute Error 
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C. Results 

The design of this study includes both within- and between-subjects factors, making it 

necessary to use an analysis suitable for repeated measures. In addition, the various tasks 

measured in the study have very different response and error patterns. Rather than combining 

very tasks into a single model, each task is analyzed separately. Tasks where participants guessed 

a numerical answer to a question – e.g., the average node degree – were modeled by using a 

linear mixed model of the log absolute error calculation. Tasks where participants clicked nodes 

of interest were modeling by using a negative binomial distribution on the rank of the selected 

node. Tasks where participants used a slider to select a percentage value were modeled by using 

a zero-and-one-inflated beta distribution on the percentage selected. 

1. MODELING LOG ABSOLUTE ERROR 

To model the effects of visualization condition, dataset, demographics, and other factors 

on the log absolute error, including the random effects of the individual participants, a standard 

least squares model using a restricted maximum likelihood (REML) estimation was employed. 

Participant ID was indicated as a random effect to allow the intercept to vary with participant. 

Each numerical response task is analyzed separately because of the inherent differences between 

the tasks and the range of error patterns (Figure 16). For each task, models were fit separately to 

each collected or generated variable. Individual variables with significant fixed effects were then 

combined into a single model in an additive fashion, retaining those that remained significant 

after inclusion. Interactions were then added, and new models were checked against previous 

models to ensure a significant improvement after the addition. Final models were then 

summarized with estimated marginal means for each factor and interaction. 
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Figure 16. Distribution of LogError for numerical response tasks for the experimental conditions related to graphics. 

a) AVERAGE DEGREE 

For the average degree task, participants were asked to estimate the average degree of 

nodes in the network. The log absolute error values for this task are shown in Figure 17 below. 
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Figure 17. Distribution of LogError values for the Average Degree task for experimental conditions related to graphics. 

After testing all variables and pairwise interactions as fixed effects, the following model 

was found to have the best fit to the data, with two significant fixed effects: Underestimated 

(whether the participant’s responses were lower or higher than the correct answer) and the 

amount of time spent on a smart phone every day. 

LogError ~ Underestimated + Demo.dailytech_SmartPhone + (1 | Demo.ResponseID) 

This model, however, is quite poor (Figure 18). The R2 for this model is 0.084, and thus it 

has very little explanatory power. Combined with the relatively low values for log absolute error 

on this task, the evidence suggests that this task is relatively easy, regardless of changes in 

graphic design, question phrasing, size of network, participant educational attainment, etc. There 

may well be other predictors that could have been collected to explain more of the variation in 
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the responses here, but the most likely sources of variation have been tested here, with no 

significant effect on accuracy. 

 

Figure 18. Real LogError values vs. fitted values for the Average Degree task for the experimental conditions related to graphics. 

b) NUMBER OF CLUSTERS 

For the number of clusters task, participants were asked to estimate the number of 

clusters in the network. This is a controversial task, in that no canonical test for cluster patterns 

exists, so mathematical clustering algorithms may produce wildly different divisions of the graph 

into clusters. The LogError calculation for this task compares responses to the result of an 

algorithm published by Clauset, Newman, and Moore (2004) and implemented by igraph 

(Nepusz & Csardi, 2015), but accuracy is less important here than having benchmarks that 

change with the properties of the networks. 
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Figure 19. Distribution of LogError values for the Number of Clusters task for the experimental conditions related to graphics. 

The best fitting model for the number of clusters task is included below and show in 

Figure 20. While the model fit is still poor (R2 = 0.278), some of the fixed effects do show 

interesting patterns and are explored below. 

LogError ~ ConditionColor + Dataset + Overestimated + 
Stats.OperatingSystemNumClust + ConditionColor:Dataset + 
Overestimated:Stats.OperatingSystemNumClust + (1|Demo.ResponseID) 
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Figure 20. Real LogError values vs. fitted values for the Number of Clusters task for the experimental conditions related to graphics. 

(1) CONDITION COLOR 

The color of the nodes was manipulated in a single graphics condition, where all nodes 

were changed to a different color (blue). The other three graphics conditions (“control”, 

“phrasing”, and “size”) all used black nodes. Combining all of the black node conditions into a 

single group does have a predictive effect for LogError on the number of clusters task (p= 

1.07422e-08). 

The estimated marginal means for condition color show that black node conditions have a 

lower mean than the blue node condition, suggesting that adding color to the nodes actually 

increases the mean for LogError. There are many more observations for the black node 

conditions, resulting in a larger confidence interval for the blue node condition, but the effect is 

still quite strong. 
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Figure 21. Estimated Marginal Means for Node Color for the Number of Clusters task for the experimental conditions related to 
graphics. 

(2) DATASET 

Changes in dataset are also found to result in a change in estimated marginal mean 

LogError. As seen in Figure 22, the order of the datasets is not the order of increasing number of 

nodes. No significant differences are detected between datasets 1, 7, and 3, which all have lower 

LogError than datasets 8, 9, and 5 (Table 18). Dataset 5 has the highest emmean and is 

significantly higher than all other datasets except for dataset 9. Anecdotally, dataset 5 does seem 

to have an unclear clustering pattern – limited separation between clusters –while dataset 9 

potentially has too many visible clusters (Figure 23). 
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Figure 22. Estimated Marginal Means for Dataset for the Number of Clusters task for the experimental conditions related to graphics. 

Table 18. Compact letter display (CLD) of pairwise comparisons between datasets for the Number of Clusters task for the experimental 
conditions related to graphics. 

Dataset .group 
1 1 
7 1 
3 1 
8  2 
9  23 
5   3 

 

 

Figure 23. Visualizations of datasets 5 and 9, respectively, using the GEM layout. 
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(3) OVERESTIMATED 

Numerical responses have been analyzed to determine whether the participant under- or 

overestimated the correct value in their response. For the number of clusters task, the LogError 

value for responses that were overestimated are higher than those that were underestimated. This 

stands to reason, as underestimated responses always have a lower bound to the error – they can 

only be underestimated down to the value 1, whereas overestimation can be infinite. In the case 

of the number of clusters task, this effect was significant at the level of p= 1.006756e-32. 

 

Figure 24. Estimated Marginal Means for Overestimation for the Number of Clusters task for the experimental conditions related to 
graphics. 

(4) OPERATING SYSTEMS 

The survey tool gathered information about the browser in use by the survey participant. 

While logical groupings (for example, by general browser product) were not predictive of 

LogError, custom groupings of low and high error browsers did reach significance. The members 
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of the “low error” group were: "Android 6.0.1", "CrOS x86_64 9592.96.0", "Linux x86_64", 

"Ubuntu", "Windows NT 10.0", "Windows NT 5.1", "Windows NT 6.0", "Windows NT 6.1". 

The members of the “high error” group were: Android 4.4.2, Android 7.0, CrOS armv7l 

9592.96.0, CrOS x86_64 8350.68.0, CrOS x86_64 9901.35.0, iPhone, Macintosh, Windows NT 

6.2, Windows NT 6.3. The difference between these groups is significant (p= 8.658691e-06). 

 

Figure 25. Estimated Marginal Means for Operating Systems for the Number of Clusters task for the experimental conditions related to 
graphics. 

(5) NODE COLOR:DATASET 

It was previously noted that adding a blue node color had a negative impact on accuracy 

on the number of clusters task. The interaction between node color and dataset shows that this 

effect is different for different datasets. In the black node color group, almost all datasets 

perform comparably. Dataset 1 is significantly lower than the others, and dataset 5 is 
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significantly higher. By contrast, the blue node color condition results in significantly higher 

error for datasets 1, 8, and 9 (Table 20). 

 

Figure 26. Estimated Marginal Means for the interaction between Node Color and Dataset for the Number of Clusters task for the 
experimental conditions related to graphics. 

Table 19. Compact letter display (CLD) of pairwise comparisons between datasets, separated by node color, for the Number of Clusters 
task for the experimental conditions related to graphics. 

Node Color Blue Node Color Black 
Dataset .group Dataset .group 
7 1 1 1 
3 1 3  2 
1 12 7  2 
5  23 9  2 
8   34 8  2 
9    4 5   3 
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Table 20. Compact letter display (CLD) of pairwise comparisons between node colors, separated by dataset, for the Number of Clusters 
task for the experimental conditions related to graphics. 

(6) OVERESTIMATED:OPERATING SYSTEMS 

The pattern found in the different groups of operating systems is moderated by 

overestimations. The difference between the groups is only present for responses that were 

overestimations. Underestimations were comparable across operating systems. 

 

 

Figure 27. Estimated Marginal Means for the interaction between Operating System and Overestimation for the Number of Clusters 
task for the experimental conditions related to graphics. 

  

1 3 5 7 8 9 
Color .group Color .group Color .group Color .group Color .group Color .group 
Black 1 Black 1 Blue 1 Blue 1 Black 1 Black 1 
Blue  2 Blue 1 Black 1 Black 1 Blue  2 Blue  2 
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Table 21. Compact letter display (CLD) of pairwise comparisons between operating system groups, separated by overestimation, for the 
Number of Clusters task for the experimental conditions related to graphics. 

Overestimated Correct or Underestimated 
Operating Systems .group Operating Systems .group 
Low Error Group 1 Low Error Group 1 
High Error Group  2 High Error Group 1 

 

c) DEGREE OF HIGHEST DEGREE NODE 

One task in the survey asks participants to estimate the degree of the highest degree node. 

The distribution of LogError values for this task is included in Figure 28. Note that the 

distribution is less skewed than that of the average degree and number of clusters tasks, 

suggesting that this task is more difficult than the previous tasks (fewer people with extremely 

low LogError). 

 

Figure 28. Distribution of LogError values for the Degree of Highest Degree Node task for the experimental conditions related to 
graphics. 
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The model that has been fit to this data (Figure 29) has a slightly higher R2 value 

(0.3905217). The fixed effects are explored in more detail in the sections below. 

LogError ~ Condition + Dataset + Condition:Dataset + Dataset:Overestimated + 
DatasetOrder:Overestimated + (1 | Demo.ResponseID) 

 

 

Figure 29. Real LogError values vs. fitted values for the Degree of Highest Degree Node task for the experimental conditions related to 
graphics. 

(1) CONDITION 

For the degree of highest degree node task, the four conditions are split into two groups: 

color and phrasing versus control and size, with color and phrasing demonstrating a reduction in 

LogError. Unlike the number of clusters task, color seems to improve performance on the degree 

of highest degree node task. 
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Figure 30. Estimated Marginal Means for Condition for the Degree of Highest Degree Node task for the experimental conditions related 
to graphics. 

Table 22. Compact letter display (CLD) of pairwise comparisons between conditions for the Degree of Highest Degree Node task for the 
experimental conditions related to graphics. 

Condition .group 
Col 1 
Phr 1 
Siz  2 
Ctrl  2 

(2) DATASET 

For the degree of highest degree node task, the datasets form two groups: 1, 8, and 7 

versus 3, 9, and 5. Again, datasets 5 and 9 have high LogError, while 1 and 7 have relatively low 

LogError. 
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Figure 31. Estimated Marginal Means for Dataset for the Degree of Highest Degree Node task for the experimental conditions related to 
graphics. 

Table 23. Compact letter display (CLD) of pairwise comparisons between datasets for the Degree of Highest Degree Node task for the 
experimental conditions related to graphics. 

Dataset .group 
1 1 
8 1 
7 1 
3  2 
9  2 
5  2 

(3) CONDITION:DATASET 

The interaction between condition and dataset (Figure 32) exposes a large variety within 

the trends. No single condition seems to perform better for all datasets, and for some datasets 

there is quite a bit of variation across conditions. 
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Figure 32. Estimated Marginal Means for the interaction between Condition and Dataset for the Degree of Highest Degree Node task for 
the experimental conditions related to graphics. 

As shown in the CLDs for the group comparisons, dataset 5 (shown previously to be an 

especially high LogError dataset) also has high variation across conditions. The color condition 

seems to improve performance on this particular task, unlike on the number of clusters task. 

Dataset 7 also shows variation among the conditions, with only color and phrasing sharing a 

significance group. 

Table 24. Compact letter display (CLD) of pairwise comparisons between datasets, separated by condition, for the Degree of Highest 
Degree Node task for the experimental conditions related to graphics. 

Control Color Phrasing Size 
Dataset .group Dataset .group Dataset .group Dataset .group 
1 1 7 1 7 1 1 1 
8 12 5 12 8 12 8 1 
9  23 1  2 3  23 9 12 
3  23 8   3 1  23 3  2 
7   3 3   34 9   3 7   3 
5    4 9    4 5   3 5   3 
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Table 25. Compact letter display (CLD) of pairwise comparisons between conditions, separated by dataset, for the Degree of Highest 
Degree Node task for the experimental conditions related to graphics. 

1 3 5 7 8 9 
Cond .group Cond .group Cond .group Cond .group Cond .group Cond .group 
Ctrl 1 Phr 1 Col 1 Col 1 Siz 1 Siz 1 
Siz 1 Ctrl 12 Phr  2 Phr 1 Phr 1 Ctrl 12 
Col 12 Siz 12 Siz   3 Ctrl  2 Ctrl 1 Phr  23 
Phr  2 Col  2 Ctrl    4 Siz   3 Col  2 Col   3 

 

(4) DATASET:OVERESTIMATED 

The interaction between dataset and overestimation shows that overestimation is more 

egregious for the smaller datasets. Overestimation has a larger error for every dataset except for 

dataset 7. Within overestimation, datasets 3 and 5 are significantly worse than 1, 7, and 8, but the 

overestimation seems to rebound for dataset 9. Underestimation peaks for dataset 5 as well. 

 

Figure 33. Estimated Marginal Means for the interaction between Dataset and Overestimation for the Degree of Highest Degree Node 
task for the experimental conditions related to graphics. 
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Table 26. Compact letter display (CLD) of pairwise comparisons between datasets, separated by overestimation, for the Degree of 
Highest Degree Node task for the experimental conditions related to graphics. 

Overestimated Correct or 
Underestimated 

Dataset .group Dataset .group 
7 1 1 1 
8 1 3  2 
1 12 8  23 
9  23 9   34 
5   3 7    4 
3   3 5     5 

 

Table 27. Compact letter display (CLD) of pairwise comparisons between overestimation groups, separated by dataset, for the Degree of 
Highest Degree Node task for the experimental conditions related to graphics. 

1 3 5 
Overestimated .group Overestimated .group Overestimated .group 
Correct or 
Underestimated 

1 Correct or 
Underestimated 

1 Correct or 
Underestimated 

1 

Overestimated  2 Overestimated  2 Overestimated  2 
 

 

(5) DATASETORDER:OVERESTIMATED 

The interaction between dataset order and overestimation is due to the increasing error 

trend for overestimation. Overestimation, while always resulting in a higher error than 

underestimation, is lower for the first dataset than for the second and third datasets. 

Underestimation is not significantly different for any dataset order level. 

7 8 9 
Overestimated .group Overestimated .group Overestimated .group 
Overestimated 1 Correct or 

Underestimated 
1 Correct or 

Underestimated 
1 

Correct or 
Underestimated 

1 Overestimated  2 Overestimated  2 
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Figure 34. Estimated Marginal Means for the interaction between Dataset Order and Overestimation for the Degree of Highest Degree 
Node task for the experimental conditions related to graphics. 

Table 28. Compact letter display (CLD) of pairwise comparisons between dataset order values, separated by overestimation groups, for 
the Degree of Highest Degree Node task for the experimental conditions related to graphics. 

Overestimated Correct or Underestimated 
Dataset Order .group Dataset Order .group 
1 1 3 1 
2  2 1 1 
3  2 2 1 

 

d) NUMBER OF LINKS 

The number of links task was noted as an especially hard task during pretests. Consistent 

with this, the distribution of LogError for the number of links task (Figure 35) peaks at a much 

higher LogError value than the previous tasks. The full comparison of the LogError values 

across tasks, shown at the beginning of this section (Figure 16) shows that the median for the 

number of links tasks is the highest of all five LogError tasks. 
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Figure 35. Distribution of LogError values for the Number of Links task for the experimental conditions related to graphics. 

The model fit to this data, (Figure 36 and specific below), has an R2 value of 0.5958765. 

With only two main effects and an interaction, this model is also one of the simplest models used 

in this analysis. With an especially hard task like this, you might expect that prior experience 

with data analysis or visualization would influence results, but the only predictors retained in the 

model are the assigned condition, the dataset, and the interaction between them. 

LogError ~ Condition + Dataset + Condition:Dataset + (1 | Demo.ResponseID) 
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Figure 36. Real LogError values vs. fitted values for the Number of Links task for the experimental conditions related to graphics. 

 

(1) CONDITION 

Each condition is in a separate significance group for the number of links task. The 

easiest condition for this task, on average, is the Color condition, followed by Control and 

Phrasing. Size performs worst, which may suggest that the added occlusion of the large nodes 

makes it difficult to estimate the number of links.  
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Figure 37. Estimated Marginal Means for Condition for the Number of Links task for the experimental conditions related to graphics. 

Table 29. Compact letter display (CLD) of pairwise comparisons between conditions for the Number of Links task for the experimental 
conditions related to graphics. 

Condition .group 
Col 1 
Ctrl  2 
Phr   3 
Siz    4 

 

(2) DATASET 

For the number of links task, we see a reversal of fortune for dataset 5. In this task, 

datasets 5 and 1 outperform each of the other datasets, all of which are significantly different 

from each other. The worst dataset, 9, is also the largest in terms of number of nodes, though 

dataset 7 has more links. 
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Figure 38. Estimated Marginal Means for Dataset for the Number of Links task for the experimental conditions related to graphics. 

Table 30. Compact letter display (CLD) of pairwise comparisons between datasets for the Number of Links task for the experimental 
conditions related to graphics. 

Dataset .group 
5 1 
1 1 
3  2 
7   3 
8    4 
9     5 

 

(3) CONDITION:DATASET 

The interaction between condition and dataset shows a huge spike in error for dataset 7 

with the size condition. As previously mentioned, dataset 7 actually has more links than dataset 

9, though it has fewer nodes. Figure 39 shows the difference between the control and size 

conditions for this dataset. Perhaps the larger nodes change the visual weight of the nodes in  
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Figure 39. Estimated Marginal Means for the interaction between Condition and Dataset for the Number of Links task for the 
experimental conditions related to graphics. 

Table 31. Compact letter display (CLD) of pairwise comparisons between datasets, separated by condition, for the Number of Links task 
for the experimental conditions related to graphics. 

Control Color Phrasing Size 
Dataset .group Dataset .group Dataset .group Dataset .group 
1 1 5 1 7 1 1 1 
5 12 7 1 3  2 5 1 
3  23 1  2 5   3 8  2 
7   3 3  23 1   3 3  2 
9    4 8   34 8   3 9   3 
8     5 9    4 9    4 7    4 

 

Table 32. Compact letter display (CLD) of pairwise comparisons between conditions, separated by dataset, for the Number of Links task 
for the experimental conditions related to graphics. 

1 3 5 7 8 9 
Cond .group Cond .group Cond .group Cond .group Cond .group Cond .group 
Ctrl 1 Phr 1 Col 1 Col 1 Phr 1 Ctrl 1 
Siz 1 Ctrl 1 Siz  2 Phr 1 Siz 1 Col 1 
Col  2 Col 1 Ctrl  2 Ctrl  2 Col 1 Siz  2 
Phr   3 Siz  2 Phr   3 Siz   3 Ctrl  2 Phr  2 
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relation to the links, decreasing the impression of the quantity of links. It is not clear, however, 

why this effect would be so prominent for dataset 7 in particular. 

 

Figure 40. Two visualizations of dataset 7, for the control (left) and size (right) conditions. 

 

e) NUMBER OF NODES 

The number of nodes task, while not as difficult as number of links, is still harder than 

most of the other LogError tasks. The distribution of LogError for number of nodes is included 

below in Figure 41. 

The model used to describe the number of nodes task is specified below and displayed in 

Figure 42. The R2 value is 0.4285135. 

LogError ~ Condition + Dataset + QuestionOrderSc + UnderestDummy + 
Demo.acfieldGrouped + Condition:Dataset + Condition:UnderestDummy + (1 | 
Demo.ResponseID) 
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Figure 41. Distribution of LogError values for the Number of Nodes task for the experimental conditions related to graphics. 

 

Figure 42. Real LogError values vs. fitted values for the Number of Nodes task for the experimental conditions related to graphics. 



142 

(1) CONDITION 

For the number of nodes task, the color and phrasing conditions perform best. Size and 

control conditions are also grouped together. 

 

Figure 43. Estimated Marginal Means for Condition for the Number of Nodes task for the experimental conditions related to graphics. 

Table 33. Compact letter display (CLD) of pairwise comparisons between conditions for the Number of Nodes task for the experimental 
conditions related to graphics. 

Condition .group 
Col 1 
Phr 1 
Siz  2 
Ctrl  2 

 

(2) DATASET 

For the number of nodes task, dataset 1 has much lower error than the other datasets. 

Datasets 8 and 5 have especially high emmeans values. 
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Figure 44. Estimated Marginal Means for Dataset for the Number of Nodes task for the experimental conditions related to graphics. 

Table 34. Compact letter display (CLD) of pairwise comparisons between datasets for the Number of Nodes task for the experimental 
conditions related to graphics. 

Dataset .group 
1 1 
3  2 
7  2 
9   3 
8    4 
5    4 

 

(3) OVERALL QUESTION ORDER 

A variable generated by adding a sequential number to all rows in the dataset, this 

variable seems to have a downward trend compared to LogError. Even though the trend is slight, 

having a continuous covariate to include in a model, rather than simply having categorical 

predictors, can improve fit. 
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Figure 45. Relationship between the overall question order and the LogError values for the Number of Nodes task for the experimental 
conditions related to graphics. 

(4) UNDERESTIMATED 

Typically, the emmeans value for overestimated exceeds the value for underestimated. In 

this case, the reverse is true. While including correct answers with the overestimated group will 

naturally reduce the error (error is 0 for correct answers), correct answers are typically a small 

percentage of the total, and the trend remains even when correct values are not included. (In this 

task, fewer than 8% of responses are correct, and all of those are responses for datasets 1 and 3, 

where the networks are small enough to count individual nodes.) 
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Figure 46. Estimated Marginal Means for Overestimation for the Number of Nodes task for the experimental conditions related to 
graphics. 

(5) ACADEMIC FIELD 

In the survey, participants are given a list of 41 academic fields, grouped into six 

overarching categories (see Appendix A for full list). Combining the academic fields into their 

logical categories has predictive power for the number of nodes task. In particular, the 

Humanities group has significantly higher error than Life Sciences, Other, Social sciences, and 

Professional. While it is expected that individuals with training in the sciences may have 

developed skills that transfer well to network visualization interpretation, it is worth noting that 

the effect of these academic disciplines has not been found to be significant for other tasks. 
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Figure 47. Estimated Marginal Means for Academic Field for the Number of Nodes task for the experimental conditions related to 
graphics. 

Table 35. Compact letter display (CLD) of pairwise comparisons between academic field groups for the Number of Nodes task for the 
experimental conditions related to graphics. 

Academic Field .group 
Life sciences 1 
Other 1 
Social sciences 1 
Professional 1 
Skipped 12 
Formal sciences 12 
Humanities  2 

 

(6) CONDITION:DATASET 

The interaction between condition and dataset highlight a few interesting trends for the 

number of nodes task. Firstly, the color condition might be said to be the most evenly successful 

of the conditions. Not only did it have the lowest emmeans value when averaged across the other 

model parameters, but it also only has two different significant groups of datasets: 1, 7, and 3 
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versus 5, 9, and 8. The control condition starts as comparable to color and phrasing for datasets 

1, 3, and 5,, but for datasets 7, 8, and 9 it is consistently in the highest error group. The size 

condition performs in the worst group for many of the datasets, but it also has a fairly narrow 

range of variation compared to the other conditions. 

 

 

Figure 48. Estimated Marginal Means for the interaction between Condition and Dataset for the Number of Nodes task for the 
experimental conditions related to graphics. 

Table 36. Compact letter display (CLD) of pairwise comparisons between datasets, separated by condition, for the Number of Nodes task 
for the experimental conditions related to graphics. 

Control Color Phrasing Size 
Dataset .group Dataset .group Dataset .group Dataset .group 
1 1 1 1 1 1 1 1 
3  2 7 1 7 1 8 1 
9   3 3 1 9 12 3 12 
5   3 5  2 3  2 7 12 
7    4 9  2 8   3 5  23 
8    4 8  2 5   3 9   3 
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Table 37. Compact letter display (CLD) of pairwise comparisons between conditions, separated by dataset, for the Number of Nodes task 
for the experimental conditions related to graphics. 

1 3 5 7 8 9 
Cond .group Cond .group Cond .group Cond .group Cond .group Cond .group 
Ctrl 1 Col 1 Col 1 Col 1 Siz 1 Phr 1 
Col 1 Ctrl 12 Ctrl 12 Phr 1 Col 12 Col  2 
Phr 1 Phr  2 Siz  2 Siz  2 Phr  2 Ctrl  23 
Siz  2 Siz  2 Phr  2 Ctrl   3 Ctrl   3 Siz   3 

 

(7) CONDITION:UNDERESTIMATED 

The interaction between condition and underestimated offers additional detail on the 

unusual trend for overestimation. While overestimated is comparable to underestimated for color 

and phrasing conditions, the error due to overestimating is especially low for the size condition. 

With larger nodes, it seems that participants were much less likely to overestimate the quantity. 

With error for color being low across the board, it may be that a color with higher saturation, like 

the blue used, has some attention gains that assist with numerical estimation. 

 

Figure 49. Estimated Marginal Means for the interaction between Condition and Underestimation for the Number of Nodes task for the 
experimental conditions related to graphics. 
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Table 38. Compact letter display (CLD) of pairwise comparisons between conditions, separated by underestimation group, for the 
Number of Nodes task for the experimental conditions related to graphics. 

Underestimated Correct or Overestimated 
Cond .group Cond .group 
Col 1 Col 1 
Phr 1 Siz 12 
Ctrl  2 Phr 12 
Siz  2 Ctrl  2 

 

2. MODELING NODE RANK 

To measure accuracy for the two click tasks, node betweenness centrality and highest 

degree node, we model the rank of the selected node using a mixed model with a negative 

binomial distribution. 

a) NODE BETWEENNESS CENTRALITY 

For the node betweenness central (BC) task, the NodeRank distribution is shown in 

Figure 50. By far the most frequent rank selected is rank 1. 

The best model available for the data, listed below and visualized in Figure 51, only has 

an R2 value of 0.1738031. Details about the fixed effects are included below for context, but they 

only explain a small part of the variance in the data. 

NodeRank ~ Dataset + Stats.Q_TotalDuration + Demo.acfieldGrouped2 + 
Demo.expcreatenetvis + Stats.Q_TotalDuration:Demo.acfieldGrouped2 + 
(1|Demo.ResponseID) 
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Figure 50. Distribution of NodeRank values for the Node Betweenness Centrality task for the experimental conditions related to 
graphics. 

 

Figure 51. Real NodeRank values vs. fitted values for the Node Betweenness Centrality task for the experimental conditions related to 
graphics. 
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(1) DATASET 

The patterns for dataset for the BC task (Figure 52) show that dataset 1 has significantly 

lower error than the other datasets. The other datasets are fairly close, though there is a 

difference between dataset 5 and the group of datasets 3, 7, and 9.  

 

 

Figure 52. Estimated Marginal Means for Dataset for the Node Betweenness Centrality task for the experimental conditions related to 
graphics. 

Table 39. Compact letter display (CLD) of pairwise comparisons between datasets for the Node Betweenness Centrality task for the 
experimental conditions related to graphics. 

Dataset .group 
1 1 
5  2 
8  23 
3    3 
7    3 
9    3 
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Figure 53 summarizes the frequency of the ranks for each dataset. The quantity of 

possible ranks increases as the networks get larger, but there are also other patterns to be aware 

of. For example, datasets 3, 7, and 9 are all in the same significance group, and there are some 

possible similarities between the NodeRank patterns for those datasets. Dataset 3, for example, 

has a high spike for the final value of NodeRank, and datasets 7, 8, and 9 also seem to have high 

spikes at “distractor” NodeRanks. 

 

 

Figure 53. Distribution of NodeRank for the Node Betweenness Centrality task for the experimental conditions related to graphics, 
faceted by Dataset. Horizontal axes vary by Dataset. 
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Dataset 7 is an especially interesting case. While the data cleaning phase removes all but 

the best attempt at selecting a high BC node, the analysis of the full set of attempts shows that 

there is a common distractor node type that can trick network visualization users. In the full set 

of responses, dataset 7 has a large spike at rank 33, which represents all selected nodes that had a 

betweenness centrality score of zero. A BC score of zero indicates that none of the shortest paths 

through the network travel through that particular node. All of the network datasets used in this 

study include nodes with a BC value of zero, but dataset 7 has an unusually high number 

(84.1%). Two nodes with zero BC were especially deceptive – labeled A and B in Figure 54 

below. Node A was selected 84 times, but while it is placed between two clusters and thus does 

seem to have bridging properties, it connects two nodes that also have a direct connection. 

Referring to the formal definition of betweenness centrality, there will always be a shorter path 

by going around node A instead of through node A, so node A has a BC score of zero.  

This is a clear example of the problems with teaching a heuristic (“look for bridging 

nodes”) rather than the formal algorithm (“look for nodes that lie on many short paths through 

the network”). Node B, while only selected 21 times, suffers from a similar situation. The same 

holds true for dataset 3, where three separate zero-BC nodes account for 173 of the 826 total 

selections. Future studies should explore alternate training and question phrasing to explore 

whether these mistakes could be prevented. 



154 

 

Figure 54. A visualization of dataset 7 where two nodes have been highlighted. These nodes each form a triangle with two other nodes 
that are on shortest paths through the network, but because nodes A and B are positioned midway between clusters, they are mistaken 

for high betweenness centrality nodes. 

(2) ACADEMIC FIELD 

In a previous model, the data collected on academic field were grouped into their 

disciplinary categories. In this case, the groups were composed of low error and high error fields. 

The low error group includes: "Architecture and design", "Arts", "Business", "Earth sciences", 

"Information science", "Languages", "Library and museum studies", "Other", "Political science", 

and "Psychology". The high error group includes: "Anthropology", "Biology", "Chemistry", 

"Communication studies", "Computer sciences", "Economics", "Education", "Engineering", 

"History", "Journalism, media studies and communication", "Law", "Linguistics", "Literature",  
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Figure 55. Estimated Marginal Means for Academic Field for the Node Betweenness Centrality task for the experimental conditions 
related to graphics. 

"Mathematics", "Medicine", "Philosophy", "Physics", "Public administration", "Skipped", and 

"Sociology". The difference between these groups is significant at p=4.29e-05. 

(3) EXPERIENCE CREATING NETWORK VISUALIZATIONS 

Surprisingly, experience creating network visualizations is not a common predictor for 

network visualization tasks, but it is also uncommon for MTurk workers to report having such 

experience. In the case of the BC task, participants who listed having a lot of experience creating 

network visualizations actually had significantly higher error rates than individuals who reported 

lower amounts of experience. 
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Figure 56. Estimated Marginal Means for Experience Creating Network Visualizations for the Node Betweenness Centrality task for the 
experimental conditions related to graphics. 

Table 40. Compact letter display (CLD) of pairwise comparisons between levels of experience creating network visualizations for the 
Node Betweenness Centrality task for the experimental conditions related to graphics. 

Experience Creating 
Network Visualizations 

.group 

None 1 
A little 1 
Some 1 
A lot  2 

(4) TOTAL DURATION:ACADEMIC FIELD 

The interaction between academic field and the total duration of the survey suggests that 

in the high error group, taking additional time did reduce errors (or, alternately, that some of the 

high errors are the result of answering questions too quickly). The difference between the groups 

is significant at p= 0.027389. 
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Figure 57. The relationship between total study duration and NodeRank values for the Node Betweenness Centrality task for the 
experimental conditions related to graphics, faceted by Academic Field. 

b) HIGHEST DEGREE NODE 

The highest degree node task includes fewer NodeRank options than the BC task. The 

distribution of NodeRank values is shown in Figure 58. The model for this task, specified below 

and visualized in Figure 59, has an R2 of 0.3905217.  

NodeRank ~ Dataset + Demo.acfieldGrouped3 + Demo.dailytech_SmartPhone + (1 | 
Demo.ResponseID) 
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Figure 58. Distribution of NodeRank values for the Highest Degree Node task for the experimental conditions related to graphics. 

 

Figure 59. Real NodeRank values vs. fitted values for the Highest Degree Node task for the experimental conditions related to graphics. 
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(1) DATASET 

The six datasets group into sets of two for the highest degree node task. Datasets 8 and 5 

have the lowest LogError for clicking on the highest degree node. Both datasets have fairly clear 

high degree nodes. 

 

Figure 60. Estimated Marginal Means for Dataset for the Highest Degree Node task for the experimental conditions related to graphics. 

Table 41. Compact letter display (CLD) of pairwise comparisons between datasets for the Highest Degree Node task for the experimental 
conditions related to graphics. 

Dataset .group 
8 1 
5 1 
7  2 
1  2 
3   3 
9   3 
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(2) ACADEMIC FIELD 

For the high degree node task, academic fields were again grouped into a low and a high 

error group.  The lower error group contained: "Arts", "Business", "Computer sciences", 

"Economics", "Information science", Law", "Linguistics", "Medicine", "Other", "Political 

science", "Skipped", and "Sociology". The high error group contained: "Anthropology", 

"Architecture and design", "Biology", "Chemistry", "Communication studies", "Earth sciences", 

"Education", "Engineering", "History", "Journalism, media studies and communication", 

"Languages", "Library and museum studies", "Literature", "Mathematics", "Philosophy", 

"Physics", "Psychology", and "Public administration". The difference between these groups is 

significant at p= 0.0220. 

 

 

Figure 61. Estimated Marginal Means for Academic Field for the Highest Degree Node task for the experimental conditions related to 
graphics. 
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(3) DAILY SMART PHONE USE 

Finally, the responses for daily smart phone usage suggest that individuals with higher 

smart phone usage have higher error. This effect is significant at p = 0.0178. 

 

Figure 62. Relationship between Average Daily Time Using Smart Phone (in hours) and NodeRank values for the Highest Degree Node 
task for the experimental conditions related to graphics. 

3. MODELING PERCENTAGE 

The survey included a single task where responses were provided as a percentage: the 

percentage of nodes included in the largest cluster. The distribution of responses is shown below 

in Figure 63. Note the patterning where multiples of 5% are higher frequency than the 

surrounding values. The slider included multiples of 5% as subdivisions, making it easier or 

more desirable to select those values. 
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Figure 63. Distribution of Response values for the Percentage of Nodes in the Largest Cluster task for the experimental conditions 
related to graphics. 

The model for the response in percentage form, modeled by a zero-and-one-inflated beta 

distribution, is specified below and visualized in Figure 64. The model was built in a step-wise 

fashion and includes both a mu and a sigma formula. The R2 for this model is 0.7805144, but this 

power comes with fairly high complexity. The banding that can be seeing along the fitted 

dimension is the result of a lack of continuous predictors in the model. 

ResponsePct ~ Dataset + UnderestDummy + Demo.gender + Demo.lang + 
Demo.expreadnetvis + Stats.OperatingSystemWindows + Dataset:UnderestDummy + 
Demo.gender:Stats.OperatingSystemWindows + UnderestDummy:Demo.gender + 
UnderestDummy:Stats.OperatingSystemWindows, sigma.formula = ~Dataset + 
UnderestDummy 
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Figure 64. Real Response values vs. fitted values for the Percentage of Nodes in the Largest Cluster task for the experimental conditions 
related to graphics. 

(1) DATASET 

The pattern of fit for the various datasets is shown in Figure 65. Because this model 

focuses on the response and not the error, this analysis shows the average guesses for the various 

datasets. The error bars, indicating standard error for each dataset, show some measure of the 

regularity across responses. Looking at the images for the various datasets (Table 41), the 

network with the most uncertain clustering, dataset 5, does have the largest standard error. 

Conversely, the network that is almost fully complete, dataset 1, has both a high fit value and a 

tight standard error range. 
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Figure 65. Model fit for Dataset for the Percentage of Nodes in the Largest Cluster task for the experimental conditions related to 
graphics. 

Table 42. Thumbnail images of each dataset, visualized with the GEM layout. 

1 3 5 7 8 9 

      
 

(2) UNDERESTIMATED 

When modeling responses, it stands to reason that underestimated responses would fit to 

lower values and overestimated responses would fit to higher values. This is the pattern shown in 

Figure 66. 
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Figure 66. Model fit for Underestimation for the Percentage of Nodes in the Largest Cluster task for the experimental conditions related 
to graphics. 

(3) GENDER 

The patterns for gender suggest that female respondents are more likely to respond with 

low values and male respondents give higher responses. Individuals with non-binary gender have 

a much broad standard of error because of a much lower response rate, so their estimate should 

be interpreted carefully. 
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Figure 67. Model fit for Gender for the Percentage of Nodes in the Largest Cluster task for the experimental conditions related to 
graphics. 

(4) LANGUAGE 

A significant difference emerged between the two categories of response for primary 

language spoken at home (Figure 68). English, by far the majority language, was associated with 

smaller response values. Participants speaking Hindi at home tended to response with higher 

values. 
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Figure 68. Model fit for Primary Language Spoken at Home for the Percentage of Nodes in the Largest Cluster task for the experimental 
conditions related to graphics. 

(5) EXPERIENCE READING NETWORK VISUALIZATIONS 

Experience reading network visualizations offered a similar pattern to that found with 

experience creating network visualizations in an earlier model: individuals who report having a 

lot of experience reading network visualizations have a different response pattern from the rest of 

the categories. In this case, the response values for higher for this group than for the others. 
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Figure 69. Model fit for Experience Reading Network Visualizations for the Percentage of Nodes in the Largest Cluster task for the 
experimental conditions related to graphics. 

(6) OPERATING SYSTEMS 

In this model, operating systems were grouped by whether or not they were Windows 

operating systems. Windows operating systems tended to result in higher response values than 

the other category (Figure 70). 
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Figure 70. Model fit for Operating System for the Percentage of Nodes in the Largest Cluster task for the experimental conditions related 
to graphics. 

(7) DATASET:UNDERESTIMATED 

The interaction between dataset and underestimated reinforced the pattern seen earlier 

where dataset 1 yielded higher responses, but we also see that dataset five (listed at position 3 on 

the x-axis) has a much wider range between under- and overestimated than the other datasets. 
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Figure 71. Plot of the interaction between Dataset and Underestimated for the largest cluster task. The index positions on the x-axis 
correspond to datasets 1, 3, 5, 7, 8, and 9, respectively. 

(8) GENDER:OPERATING SYSTEMS 

The interaction between gender and operating systems (Figure 72) suggests that male 

participants using non-Windows operating systems respond with especially high values, 

compared to both female participants and also male participants using Windows operating 

systems. 
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Figure 72. Plot of the interaction between Gender and Operating Systems for the largest cluster task. The index positions 1 and 2 on the 
x-axis correspond to “Other” and “Windows” operating systems, respectively. 

(9) UNDERESTIMATED:GENDER 

While the difference between overestimated and underestimated are much larger than the 

differences between gender, we do see in Figure 73 a slight interaction where female participants 

tend to have more extreme responses than male participants (i.e., lower underestimates and 

higher overestimates). 
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Figure 73. Plot of the interaction between Gender and Underestimated for the largest cluster task. The index positions 1 and 2 on the x-
axis correspond to “Underestimated” and “Correct or Overestimated”, respectively. 

(10) UNDERESTIMATED:OPERATING SYSTEMS 

Individuals using Windows operating systems had slightly lower overestimates than 

participants using other operating systems. 
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Figure 74. Plot of the interaction between Gender and Underestimated for the largest cluster task. The index positions 1 and 2 on the x-
axis correspond to “Underestimated” and “Correct or Overestimated”, respectively. 

D. Discussion of Graphics Results 

Summarizing across the various tasks, we find little support for our original hypotheses. 

For H1, we expected network size and density to be strong predictors of performance. Scaling 

responses to a range from 0 to 1 before calculating LogError reduces some of the natural 

variability across datasets, and for most tasks we find that the effect of Dataset is significant but 

not consistently ordered (Table 43). For some tasks, there are small networks in the low error 

groups and larger networks in the high error groups, but the variation from task to task suggests 

that specific network properties interact more subtly with performance than previously expected. 
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Table 43. Summary of CLD tables for Dataset across accuracy analyses. 

 

 

Figure 75. An alluvial diagram showing the compiled CLD tables for Dataset across accuracy analyses. Datasets are each represented as 
a separate flow and color. Datasets that are in the same significance group for a particular tasks are connected with a black vertical bar. 

When a dataset flow branches, that indicates that the dataset belongs to multiple significance groups for that task. The significance 
groups with the lowest error are at the top of the diagram. 

Looking at Table 43, it appears that dataset 1 is consistently in the lowest significance 

group, except for the task for clicking the highest degree node. Dataset 9 also has a fairly 

consistent poor performance. It is in the worst performing group for all but one task (number of 

nodes). For many tasks, dataset 5 performs quite poorly, but it performs well on the hardest 

numerical task (number of links), as well as on the task for clicking the highest degree node. One 

way to interpret this result is to challenge the common concerns about visualizing networks over 

a particular threshold of number of nodes – often 100 or 150. We find evidence that even for the 

second-largest network, performance is still quite high on many types of tasks. 

For our second hypothesis (H2), we expected that the phrasing condition would 

outperform the other conditions for all tasks by offering participants a less abstract scenario in 

which to make judgments about network properties. In partial support for H2, we do see that the 

 AvgDeg NumClust DegHD NumLinks NumNodes BC ClickHD 
1 NS 1 1 1 1 1 2 
3 NS 1 2 2 2 3 3 
5 NS 3 2 1 4 2 1 
7 NS 1 1 3 2 3 2 
8 NS 2 1 4 4 23 1 
9 NS 23 2 5 3 3 3 
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phrasing condition was in the highest performing group for three out of the four tasks where 

condition reached significance (Table 44). On the other hand, for several tasks condition did not 

reach significance, so there is also some evidence that phrasing does not always improve 

performance.  

Table 44. Summary of CLD tables for Condition across accuracy analyses. 

 

 

Figure 76. An alluvial diagram showing the compiled CLD tables for Condition across accuracy analyses. The significance groups with 
the lowest error are at the top of the diagram. 

H3, also related to condition, states that color would have no effect, which the evidence 

does not support. Color was in the highest performing group for three out of the four tasks, and 

color is always significantly different from the control condition. Again, in these studies color 

was changed uniformly – all nodes were changed from black to a highly saturated shade of blue. 

One possible explanation for the beneficial influence of color relates to engagement – perhaps 

the use of blue reduces the monotony of the graphic and gives users more variety to explore. The 

low performance of color for the number of clusters task, however, is harder to explain. When 

looking at the interaction between color and dataset (Figure 26), we see that color underperforms 

 AvgDeg NumClust DegHD NumLinks NumNodes BC ClickHD 
Control NS 1 2 2 2 NS NS 
Color NS 2 1 1 1 NS NS 
Phrasing NS 1 1 3 1 NS NS 
Size NS 1 2 4 2 NS NS 
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on datasets 1, 8, and 9. Dataset 1 is extremely dense, and the links form a dark enough 

background that it is perhaps just slightly more difficult to see the blue nodes than the dark black 

nodes. For datasets 8 and 9, however, it is not clear why a change of color would impede 

judgments about the number of clusters but not judgments about the number of nodes, the 

number of links, or the degree of the highest degree node.  

H3 also states that size will decrease performance across the board, and we do find partial 

support for this claim in the tasks where condition is significant. Size was regularly in the lowest 

performing group. 

The final hypothesis, H4, claims that tasks involving clusters will have lower accuracy 

than other tasks. Examining the patterns of LogError for the numerical response questions 

(Figure 16), we find some evidence that the number of links tasks is the hardest task. Despite 

concerns that users have problems identifying the number of clusters in networks and that 

comparing responses to the result of a single clustering algorithm will artificially inflate the 

error, the LogError distribution for the number of clusters task is fairly highly skewed, 

suggesting that most responses had very low values of LogError. The other cluster task, 

evaluating the percentage of nodes in the largest cluster, is difficult to evaluate against the other 

tasks as the boundedness of the percentage data would highly influence the distribution of the 

error calculation. 

Overall, the study also found that many tasks were difficult to model with the data 

collected. Even the best-fitting models failed to explain much of the variation for several of the 

tasks, and for Average Degree the model had so little explanatory power that it was discarded. 

Though every attempt was made to identify factors that might influence performance – from 

expertise to demographics to display size – the response patterns simply did not relate well to the 
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data collected. Other factors that may be worth testing in future studies might include additional 

demographic variables (such as race or ethnicity), personality traits (e.g., narcissism, field 

independence), attitudes or beliefs (e.g., growth mindset), or general sensemaking strategy. This 

difficult modeling the results suggests that additional exploratory work is necessary to learn 

about how individuals approach reading network visualizations on a cognitive level – what 

processes and strategies do they employ to arrive at their numerical answers, and what factors 

may influence their success with those strategies.  

A final concern with the results presented here involves the volume of data collected. A 

large number of responses were collected to ensure statistical power for some of the more 

complex interactions (especially task by condition by dataset), and a large number of factors 

were tested as predictors to explore a large feature space and identify areas that may be fruitful 

for future research. Thus, the hope for this study was to minimize the chance of false negative 

results – results that state a predictor is not significant when it really is. The chance of a false 

positive result, however, is quite high with this type of data collection and analysis method. One 

method of controlling for errors related to multiple testing was employed – ANOVA tests to 

ensure the significance of individual predictors in the combined models and to calculate an 

overall significance of the model – but additional analysis may be warranted to further minimize 

the false discovery rate. Across different tasks within this study, we do see a fairly consistent 

influence of Condition, Dataset, and the interaction between them. The appearance of other small 

predictors, like Academic Field, may be harder to replicate with smaller samples.  
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VIII. LAYOUT CONDITIONS: HOW NOVICE AND EXPERT 

PERFORMANCE VARIES IN RELATION TO DIFFERENT LAYOUT 

ALGORITHMS 

Most previous studies that have tested user performance on network reading tasks have 

used a single community of participants – either all members of the general public or all 

members of a university community (with or without network expertise). This study will ensure 

that the same test instrument is completed by both novices and individuals with experience with 

network science. 

Additionally, while previous studies have varied layout algorithms to evaluate how 

different aesthetic properties of graphs influence performance on tasks, these studies often focus 

on symmetry, edge bending, or other specific edge design properties.  Seldom do they focus on 

the very large differences between algorithms that explicitly try to optimize for different tasks, 

and never have they been done with a wide range of tasks. This study will offer a more detailed 

investigation into the interaction between certain types of tasks and certain categories of layout 

algorithms. 

A. Hypotheses 

H5:  Network scientists will perform better than novices on numerical assessments tasks, even 

when layout changes. 

H6:  Different layouts will relate to performance improvements on certain tasks: 

a. Use of the OpenOrd layout, which prioritizes clustering, will relate to better performance 

on clustering tasks. 
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b. Use of the Fruchterman-Reingold layout, which prioritizes even node distribution, will 

relate to better performance on tasks that involve counting nodes, locating nodes, or 

assessing/comparing node properties. 

c. Use of the Circular layout will relate to decreased performance on all tasks. 

B. Methods 

1. PARTICIPANT RECRUITMENT 

In order to compare the performance of individuals with experience in network science 

and novices, a large group of network scientists was recruited from the Indiana University 

network science community. The newly founded Indiana University Network Science Institute 

(IUNI) comprises approximately 150 faculty affiliates from multiple IU campuses. Participation 

of elite populations like university faculty members in surveys can be quite low, so the sample 

population was increased to include graduate students that were affiliated with an IUNI faculty 

affiliate, enrolled in the Complex Networks and Systems (CNS) track of the IU Informatics PhD 

program, or had otherwise received training in network science. 

The IUNI website includes a list of all faculty affiliates, as well as additional research 

staff who work with the institute. This information was gathered and supplemented with publicly 

available contact information (campus address, phone number, and email address). The data 

gathering process also included a classification of presumed gender, which was established 

where possible by looking for biographies that included pronouns but was supplemented by 

examining given names and photographs. Presumed gender information was used only for 

attempts to make sure condition assignment was balanced for gender before survey invitations 

were released, as well as for information about the full population that could be used for 

weighting purposes in the event of a biased response rate. The survey instrument itself includes a 
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question about the participant’s gender, and the self-reported gender was used for the final data 

analysis. 

To collect data on graduate students with network science training, faculty websites were 

explored for lab members and advisees. Additionally, the list of current PhD students in the 

Informatics program at IU was explored for evidence of the chosen tracks of each student. Any 

students confirmed to be enrolled in the CNS track who was not already identified as the member 

of a IUNI faculty lab was added to the population. Exclusions were made for faculty on the 

research committee for the project and for any other individuals who had any in-depth 

knowledge of the project. 

The resulting directory of 231 individuals, finalized on October 2, 2017, included 168 

faculty and staff, 56 graduate students, and seven postdoctoral associates. Of these individuals, 

155 were affiliated with the Bloomington campus of Indiana University, and 83 were affiliated 

with Indiana University–Purdue University Indianapolis. This is an unusually large population of 

individuals with network science training, and a response rate of 26% would yield the desired 60 

completed surveys. 

Incentivizing participation for an elite community is more complicated than for a general 

population. Time is especially valuable for faculty members, and with such a large portion of the 

population to be comprised of faculty, it was especially important to design the study to 

maximize participation. The primary ways of increasing participation for a population like this 

are to reduce the time burden as much as possible, increase the authority of the invitation, 

provide adequate compensation for the individual’s time, and engage the individual’s interest in 

the study topic or methods. 
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Reducing the time burden is perhaps the most important action to take to increase 

participation. To reduce the number of individuals needed to achieve statistical power, the survey 

was already limited to a subset of conditions (the four conditions where layout algorithm is 

manipulated) and a subset of datasets (three of the six possible experimental datasets). Pilot tests 

(described below) indicated that individuals with some network science training should be able 

to complete the full survey (with one training block, three experimental blocks, and one 

demographic block) in about 15 minutes. This amount of time was determined to be adequately 

short, and any further reduction of the survey instrument would have either increased the number 

of participants needed or limited the utility of the research. The time burden was also decreased 

by using an electronic survey that gave participants flexibility in the time of day and day of week 

when they could participate, and the survey software was even able to give participants the 

ability to leave the survey and come back later if necessary15. 

Several measures were employed to increase the authority of the invitation. Firstly, the 

invitations to participate in the survey were distributed both through email (for all members of 

the population) and through a paper mailing that was sent to campus addresses (just for faculty). 

Faculty at IUPUI received their invitations through the U. S. Postal Service, while individuals at 

the Bloomington campus received their invitations through the campus mail. The invitations 

included an explicit mention of the researcher’s faculty advisor, Dr. Katy Börner, whose status in 

the community was expected to increase the prestige of the project. The survey was also 

                                                

15 When the survey was first distributed, this option was limited to a single week, and as a result, several 

surveys were closed out before a reminder email was sent to encourage individuals to complete the survey. Later, 

this option was lengthened to allow individuals to return to the survey any time before the end of the active period of 

the survey. 
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branding with IU graphics, to emphasize that the request was coming from a researcher who was 

part of the IU community. The survey itself, while hosted on Qualtrics, was accessed through a 

formal URL16 – http://netvislit.org – which was set to forward to the general Qualtrics survey 

URL. Finally, an additional announcement about the survey was distributed on official IUNI 

listservs by a member of the IUNI administration. 

 Appropriate compensation differs even among this elite population. While faculty are 

unlikely to be motivated by small amounts of money, graduate students may respond well both to 

monetary rewards and to incentives like free food. For graduate student participants, the 

compensation for the 15-minute study was set as a $10 Amazon Gift Card. In addition, three in-

person data collection sessions were scheduled on the Bloomington campus where graduate 

students could stop by, have free pizza, complete the survey electronically, and then receive their 

gift card immediately. 

 For faculty, staff, and postdoctoral participants, a further manipulation was introduced to 

see if an alternative compensation was more effective than a small monetary reward. While half 

of the faculty were offered the same $10 Amazon Gift Cards as the student participants, the other 

half were informed that a $10 donation to the Indiana University First Generation and Diversity 

Scholarship Fund would be made for each completed survey. Faculty and staff were randomly 

                                                

16 A long and complicated URL would have been a burden for participants to copy from a paper letter to a 

browser, but the lack of a personalized URL also made it difficult to keep track of who had completed the survey. 

The use of a randomized “researcher code” – a random 6-digit number – allowed participants to go to a general URL 

and still have a personalized experience. This was especially important because different participants received 

different compensation, and as a result, the Study Information Sheet at the beginning of the survey had to change 

from one person to the next. 
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assigned to the two compensation conditions, though the assignment also controlled for campus, 

postdoctoral status, and gender to avoid those possible confounds (Table 45). 

Table 45. Final recruitment counts for each combination of Campus, Postdoctoral Status, Presumed Gender, and Compensation 
Condition for the experimental conditions related to layout. Does not include graduate student recruitment. 

Campus Postdoctoral 
Status 

Presumed 
Gender 

Compensation Condition Grand Total 
Donation Gift Card 

IUB Faculty/Staff Female 11 10 21 
Male 37 37 74 

Postdoc Male 3 3 6 
IUPUI Faculty/Staff Female 9 10 19 

Male 27 27 54 
Postdoc Female 1 

 
1 

Grand Total 88 87 175 
 

Engaging the individual’s interest in the study or methods was accomplished through 

design of the recruitment materials and sharing of the research materials. The recruitment 

materials (Appendix C) were designed to impress upon those invited the importance of the study 

and the need for highly qualified individuals to participate. Another way of motivating the 

individuals to participate involved convincing them that the research would be making a 

contribution to the broader research community. The recruitment letter outlined plans to share 

the research results widely, first through a public presentation at Indiana University’s 

Bloomington campus, and later by sharing research data and analysis publicly on GitHub. It was 

hoped that the openness of the research would spark people’s interest; participants might be 

excited that they would have access to the results of their time and effort. 

The recruitment text included a note that allowed for a slight snowball sample. If the 

invited person knew of someone else with network science expertise, the third party was 

instructed to contact the research to receive an invitation. This resulted in an additional seven 

participants – four graduate students and three staff – all of whom were assigned to the Gift Card 

compensation condition. This increased the total invitations to 238. 
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2. PILOT TESTING 

The survey distributed to MTurk users was modified to reduce the conditions and 

datasets. It was then piloted during the spring semester of 2017 on a group of students enrolled in 

a graduate course on information visualization that includes a unit on network visualizations. For 

the pilot study, the compensation was a drawing for one of two $50 Amazon Gift Cards. 

Fourteen students completed the survey and entered the drawing for the gift cards. One other 

student completed a full experimental block and part of a second. The median duration of the 14 

students who completed the survey was 17.11 minutes. Responses confirmed that no significant 

changes were necessary.  

While recruiting individuals through courses worked well for a pilot study, the timing 

constraints of such recruitment and the need to access students through their professors made this 

method impractical for a large-scale study. Direct contact with the individuals in the survey 

population was essential to improve response rate. 

3. FINAL DEPLOYMENT 

The final survey invitations were delivered in a series of distributions. The paper mailing 

to faculty, staff, and postdocs went out the week of October 2, 2017, and a deadline of October 

31 was set for the survey. The first response was recorded on October 5. A direct email invitation 

went out to all individuals for the first time on October 10. A reminder was sent to all 

participants who had not yet completed the survey on October 16, and on this same day the 

formal announcement of the survey and public presentation was distributed by IUNI 

administration. An additional reminder went out on October 23. A separate, final reminder to 

graduate students about the three in-person survey sessions with free pizza was sent the day of 

the first session, October 26.  
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The emails were sent using the Qualtrics software so that the software could keep track of 

completions and schedule reminders for just those who had not yet finished the survey. To 

enable this functionality, the full contact list was imported into Qualtrics. This made it possible 

to merge metadata about the individual, including title, last name, and personalized survey code, 

into the email. The use of a contact list in Qualtrics also allowed for metadata to be connected to 

the responses of the survey participants. While the survey was anonymous and care was taken to 

make sure no identifying information was included in the survey responses, certain pieces of 

information like the assigned compensation condition were carried into the survey responses to 

facilitate analysis. 

In order to assess the success of the distribution, several indicators of contact failure were 

collected. The most common indicator of contact failure was the receipt of an “out of office” 

message in response to email invitations. For the initial mailing, ten such automatic replies were 

received. After the first reminder, nine automatic replies were received. Seven replies were 

received after the second and final reminder. Including individuals who sent multiple automatic 

replies, a total of 21 individuals were away from the office for some or all of the survey period. 

A second indicator of contact failure came in the form of returned letters. Eight letters 

were returned as being undeliverable. Two of these individuals also sent automatic replies to the 

email invitations, which yields a total of 27 individuals (11.69% of the 231 initially invited) who 

had some sort of contact failure. Of those 27 individuals, however, four were still able to 

complete the survey. 

The data collected from the pilot test were combined with the data collected from the 

IUNI affiliates. A summary of the final participant counts for each dataset and condition, 

included the data from the MTurk population, is provided in Table 46 below. 

Table 46. Final participant counts for each Expertise level, Dataset, and Condition for the experimental conditions related to layout. 
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Expertise Dataset GEM (control) Circular OpenOrd Fructherman-Reingold 
Amazon’s 
Mechanical Turk 

1 46 46 49 49 
7 44 44 48 51 
9 47 44 49 52 

Network Science 
Training 

1 23 19 22 17 
7 23 17 23 17 
9 22 19 23 16 

C. Results 

1. MODELING LOG ABSOLUTE ERROR 

As with phase one of the study, the design of this phase includes both within- and 

between-subjects factors. To model the effects of layout algorithm, dataset, and other factors on 

the log absolute error, including the random effects of the individual participants, a standard least 

squares model using a restricted maximum likelihood (REML) estimation was employed. 

Participant ID was indicated as a random effect. Tasks are modeled separately because of large 

differences between LogError values across tasks (Figure 77). Compared with the LogError 

patterns from the graphics conditions (Figure 16), the layout conditions have a smaller median 

and variance for the number of clusters task and a smaller median and variance for the number of 

links task. 
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Figure 77. Distribution of LogError for numerical response tasks for the experimental conditions related to layout. 

a) AVERAGE DEGREE 

The average degree task for the layout conditions has a comparably low LogError 

distribution to that of the graphics conditions. The best-fitting model, specified below and 

visualized in Figure 79, has an R2 value of 0.1016992 and is thus not a very powerful model of 

the data. The response patterns are not well explained by the collected variables, so we will omit 

the in-depth exploration for this model. 

LogError ~ Dataset + Underestimated + Demo.dailytech_Computer + 
Dataset:Demo.dailytech_Computer + Underestimated:Demo.dailytech_Computer +(1 | 
Demo.ResponseID) 
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Figure 78. Distribution of LogError values for the Average Degree task for the experimental conditions related to layout. 

 

Figure 79. Real LogError values vs. fitted values for the Average Degree task for the experimental conditions related to layout. 
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b) NUMBER OF CLUSTERS 

The number of clusters task for the layout conditions has a lower mean and variation for 

LogError than the graphics conditions.  Perhaps because of the extreme skew of the distribution 

(Figure 80), the best-fitting model is another with a low R2 value (0.1792627). The model 

specification is included below, as well as a visualization (Figure 81). 

 

 

Figure 80. Distribution of LogError values for the Number of Clusters task for the experimental conditions related to layout. 

LogError ~ Overestimated + Stats.OperatingSystem + Demo.age + Demo.expdataanal + 
Overestimated:Demo.age + (1 | Demo.ResponseID) 
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Figure 81. Real LogError values vs. fitted values for the Number of Clusters task for the experimental conditions related to layout. 

c) DEGREE OF HIGHEST DEGREE NODE 

The distribution of LogError for the degree of highest degree node tasks for layout 

conditions is included below (Figure 82). The best-fitting model17 of this task, included below in 

visualized in Figure 83, has an R2 value of 0.5746798. 

LogError ~ Condition + Dataset + Underestimated + Condition:Dataset + 
Condition:Underestimated + Dataset:Underestimated + (1|Demo.ResponseID) 

 

                                                

17 Note: Eight responses (out of a total of 806) with correct answers were omitted from the model because 

the low number of observations made it difficult to model across various combinations of predictors. 
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Figure 82. Distribution of LogError values for the Degree of Highest Degree Node task for the experimental conditions related to layout. 

 

Figure 83. Real LogError values vs. fitted values for the Degree of Highest Degree Node task for the experimental conditions related to 
layout. 
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(1) CONDITION 

For the graphics conditions, the circular layout seems to have the worst performance on 

the degree of highest degree node task. The other tasks have similar estimates, but the F-R 

algorithm may be slightly better than control and OpenOrd. 

 

 

Figure 84. Estimated Marginal Means for Condition for the Degree of Highest Degree Node task for the experimental conditions related 
to layout. 

Table 47. Compact letter display (CLD) of pairwise comparisons between conditions for the Degree of Highest Degree Node task for the 
experimental conditions related to layout. 

Condition .group 
Ord 1 
Ctrl 1 
Fru  2 
Cir   3 
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(2) DATASET 

The order of dataset performance is as expected – dataset 1 having better performance 

than datasets 7 and 9, which are not different from each other. 

 

Figure 85. Estimated Marginal Means for Dataset for the Degree of Highest Degree Node task for the experimental conditions related to 
layout. 

Table 48. Compact letter display (CLD) of pairwise comparisons between datasets for the Degree of Highest Degree Node task for the 
experimental conditions related to layout. 

Dataset .group 
1 1 
7  2 
9  2 

 

(3) UNDERESTIMATED 

The order of the groups for underestimation are as expected – underestimated answers 

have a lower error than overestimated answers (p = 0.00923). 
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Figure 86. Estimated Marginal Means for Underestimation for the Degree of Highest Degree Node task for the experimental conditions 
related to layout. 

(4) CONDITION:DATASET 

On the degree of highest degree node task, there is an interaction between condition and 

dataset. Within each layout algorithm condition, the ordering of the datasets shifts in a few 

unexpected ways. For the circular layout, dataset 7 is significantly worse than dataset 9. For the 

F-R layout, dataset 7 is significantly better than the other two datasets. Within each dataset, the 

ordering of layout algorithms also varies. For dataset 1, F-R significantly underperforms the 

other layouts. For dataset 7, control and then circular are significantly worse than the other two, 

with circular also being worse than control. For dataset 9, only the circular layout is outside of 

the top-performing group. 
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Figure 87. Estimated Marginal Means for the interaction between Condition and Dataset for the Degree of Highest Degree Node task for 
the experimental conditions related to layout. 

Table 49. Compact letter display (CLD) of pairwise comparisons between datasets, separated by condition, for the Degree of Highest 
Degree Node task for the experimental conditions related to layout. 

Control Circular Fruchterman-Reingold OpenOrd 
Dataset .group Dataset .group Dataset .group Dataset .group 
1 1 1 1 7 1 1 1 
9  2 9  2 1  2 7 1 
7  2 7   3 9  2 9  2 

 

Table 50.  Compact letter display (CLD) of pairwise comparisons between conditions, separated by dataset, for the Degree of Highest 
Degree Node task for the experimental conditions related to layout. 

1 7 9 
Cond .group Cond .group Cond .group 
Cir 1 Fru 1 Ctrl 1 
Ord 1 Ord 1 Ord 1 
Ctrl 1 Ctrl  2 Fru 1 
Fru  2 Cir   3 Cir  2 
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(5) CONDITION:UNDERESTIMATED 

For the interaction between condition and underestimation, it appears that the circular 

layout leads to higher error with underestimation than with overestimation. The natural of the 

circular layout is such that there is more likelihood for link occlusion around the nodes, so it 

makes sense that users would underestimate the degree of a node with a lot of links. 

 

Figure 88. Estimated Marginal Means for the interaction between Condition and Underestimation for the Degree of Highest Degree 
Node task for the experimental conditions related to layout. 

Table 51. Compact letter display (CLD) of pairwise comparisons between conditions, separated by overestimation groups, for the Degree 
of Highest Degree Node task for the experimental conditions related to layout. 

Overestimated Underestimated 
Cond .group Cond .group 
Ord 1 Ord 1 
Ctrl 12 Fru 12 
Fru  2 Ctrl  2 
Cir  2 Cir   3 
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(6) DATASET:UNDERESTIMATED 

The interaction between dataset and underestimation shows that dataset 7 has an 

especially high error rate for underestimation. This may be the result of the high spike in error 

for the circular layout on dataset 7, as the circular layout is prone to underestimation. 

 

Figure 89. Estimated Marginal Means for the interaction between Dataset and Underestimation for the Degree of Highest Degree Node 
task for the experimental conditions related to layout. 

Table 52. Compact letter display (CLD) of pairwise comparisons between datasets, separated by overestimation group, for the Degree of 
Highest Degree Node task for the experimental conditions related to layout. 

Overestimated Underestimated 
Dataset .group Dataset .group 
1 1 1 1 
7 12 9  2 
9  2 7  2 
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d) NUMBER OF LINKS 

The number of links task is still the hardest task for layout conditions, though either the 

change in population, the new layout options, or the reduction of the number of datasets used 

seems to have reduced the error a bit for this task. 

 

Figure 90. Distribution of LogError values for the Number of Links task for the experimental conditions related to layout. 

The best model for this task in specified below and visualized in Figure 91. It has an R2 

value of 0.479679. 

LogError ~ Condition + Dataset + Underestimated + Condition:Dataset + 
Condition:Underestimated + Dataset:Underestimated + (1 | Demo.ResponseID) 
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Figure 91. Real LogError values vs. fitted values for the Number of Links task for the experimental conditions related to layout. 

(1) CONDITION 

For the number of links task, the order of performance for the layout algorithms is 

different from the previous task. In this task, the circular layout performs as well as the control 

layout and the F-R layout. Only OpenOrd is significantly worse. 
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Figure 92. Estimated Marginal Means for Condition for the Number of Links task for the experimental conditions related to layout. 

Table 53. Compact letter display (CLD) of pairwise comparisons between condition for the Number of Links task for the experimental 
conditions related to layout. 

Condition .group 
Cir 1 
Fru 1 
Ctrl 1 
Ord  2 

 

(2) DATASET 

For this tasks, the order of the datasets is as expected – dataset 1 performs significantly 

better than datasets 7 and 9, which are comparable. 
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Figure 93. Estimated Marginal Means for Dataset for the Number of Links task for the experimental conditions related to layout. 

Table 54. Compact letter display (CLD) of pairwise comparisons between datasets for the Number of Links task for the experimental 
conditions related to layout. 

Dataset .group 
1 1 
7  2 
9  2 

(3) CONDITION:DATASET 

The interaction between condition and dataset for this task shows up in unusual ordering 

for both dataset and condition. Within the circular layout, dataset 7 again performs worse than 

the other datasets. For the F-R layout, dataset 7 again performs better than the other two datasets. 

For OpenOrd, there is no difference between datasets 1 and 7. Between each particular dataset, 

the order of conditions changes, suggesting that dataset properties play a role in whether a layout 

algorithm is effective. The high error for OpenOrd on dataset 9 for the number of links task, for 
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example, may reflect the tendency of OpenOrd to prioritize tight node placement over link 

visibility, which may be especially problematic for networks with a lot of clusters.  

 

Figure 94. Estimated Marginal Means for the interaction between Condition and Dataset for the Number of Links task for the 
experimental conditions related to layout. 

Table 55. Compact letter display (CLD) of pairwise comparisons between datasets, separated by condition, for the Number of Links task 
for the experimental conditions related to layout. 

Control Circular Fruchterman-Reingold OpenOrd 
Dataset .group Dataset .group Dataset .group Dataset .group 
1 1 9 1 7 1 1 1 
7  2 1 1 1  2 7 1 
9  2 7  2 9  2 9  2 

 

Table 56. Compact letter display (CLD) of pairwise comparisons between conditions, separated by dataset, for the Number of Links task 
for the experimental conditions related to layout. 

1 7 9 
Cond .group Cond .group Cond .group 
Ctrl 1 Fru 1 Ctrl 1 
Cir 1 Ord  2 Ord  2 
Ord  2 Ctrl  23 Fru  2 
Fru  2 Cir   3 Cir   3 
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(4) CONDITION:UNDERESTIMATED 

The interaction between condition and underestimation shows up again for the circular 

layout, but in this task the underestimated responses have a considerably lower error than the 

overestimated responses. The OpenOrd layout, on the other hand, has a relatively high amount of 

error due to underestimation, compared to the other layouts. This is consistent with the idea that 

OpenOrd increases error for assessing the number of edges by increasing edge occlusion. 

 

 

Figure 95. Estimated Marginal Means for the interaction between Condition and Underestimation for the Number of Links task for the 
experimental conditions related to layout. 

Table 57. Compact letter display (CLD) of pairwise comparisons between conditions, separated by overestimation group, for the Number 
of Links task for the experimental conditions related to layout. 

Overestimated Underestimated 
Cond .group Cond .group 
Fru 1 Cir 1 
Ctrl 1 Fru  2 
Cir 1 Ctrl  2 
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Ord 1 Ord   3 
 

(5) DATASET:UNDERESTIMATED 

The interaction between dataset and underestimation shows that the error for 

underestimation increases for dataset 9. This is consistent with previous explanations involving 

the OpenOrd layout and dataset 9. 

 

 

Figure 96. Estimated Marginal Means for the interaction between Dataset and Underestimation for the Number of Links task for the 
experimental conditions related to layout. 

Table 58. Compact letter display (CLD) of pairwise comparisons between datasets, separated by overestimation group, for the Number 
of Links task for the experimental conditions related to layout. 

Overestimated Underestimated 
Dataset .group Dataset .group 
1 1 1 1 
9 12 7  2 
7  2 9   3 
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e) NUMBER OF NODES 

The LogError for the number of nodes task is summarized in Figure 97. The distribution 

of this task is more skewed than the number of links task, suggesting it has overall lower error 

and is thus slightly easier than number of links. 

 

Figure 97. Distribution of LogError values for the Number of Nodes task for the experimental conditions related to layout. 

The best-fitting model for this task, specified below and visualized in Figure 98, has an 

R2 value of 0.3991631. 

LogError ~ Condition + Dataset + DatasetDuration + Condition:Dataset + 
(1|Demo.ResponseID) 
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Figure 98. Real LogError values vs. fitted values for the Number of Nodes task for the experimental conditions related to layout. 

(1) CONDITION 

For the number of nodes task, the circular layout is significantly better than the other 

layouts, while control and OpenOrd are in the highest error group together. There is no 

significant difference between F-R and OpenOrd. In this task, the regular patterning of node 

placement in the circular layout may make it easier to estimate number of nodes by counting 

nodes in a small portion of the circle and extrapolating that number to the entire network. A 

follow-up qualitative study might be able to establish whether some procedure like this is at 

work. 
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Figure 99. Estimated Marginal Means for Condition for the Number of Nodes task for the experimental conditions related to layout. 

Table 59. Compact letter display (CLD) of pairwise comparisons between conditions for the Number of Nodes task for the experimental 
conditions related to layout. 

Condition .group 
Cir 1 
Fru  2 
Ord  23 
Ctrl   3 

 

(2) DATASET 

The group of datasets is as expected – dataset 1 is significantly better than datasets 7 and 

9, which do not differ. 
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Figure 100. Estimated Marginal Means for Dataset for the Number of Nodes task for the experimental conditions related to layout. 

Table 60. Compact letter display (CLD) of pairwise comparisons between datasets for the Number of Nodes task for the experimental 
conditions related to layout. 

Dataset .group 
1 1 
7  2 
9  2 

 

(3) DATASET DURATION 

The effect of dataset duration on LogError is significant and negative. That is, longer 

dataset duration times seem to be correlated with lower error rates (p = 1.82e-06). This would be 

consistent with a theory that users are doing some manual count of nodes in particular datasets or 

conditions. 
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Figure 101. The relationship between the Time to Complete Dataset and LogError values for the Number of Nodes task for the 
experimental conditions related to layout. 

(4) CONDITION:DATASET 

The interaction between condition and dataset shows up both in dataset order and in 

layout condition order. Within the control condition, the dataset order is not as expected. Dataset 

9 is significantly lower in error than dataset 7. Within datasets, the largest shifts also seem to 

happen with the control condition, which performs well for dataset 1, very poorly for dataset 7, 

and comparably to F-R and OpenOrd for dataset 9. It is not clear what properties of dataset 7 

might influence the number of nodes task so drastically for the control layout (GEM). 
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Figure 102. Estimated Marginal Means for the interaction between Condition and Dataset for the Number of Nodes task for the 
experimental conditions related to layout. 

Table 61. Compact letter display (CLD) of pairwise comparisons between datasets, separated by condition, for the Number of Nodes task 
for the experimental conditions related to layout. 

Control Circular Fruchterman-Reingold OpenOrd 
Dataset .group Dataset .group Dataset .group Dataset .group 
1 1 1 1 1 1 1 1 
9  2 7 12 7  2 7  2 
7   3 9  2 9   3 9  2 

 

Table 62. Compact letter display (CLD) of pairwise comparisons between conditions, separated by dataset, for the Number of Nodes task 
for the experimental conditions related to layout. 

1 7 9 
Cond .group Cond .group Cond .group 
Ord 1 Cir 1 Cir 1 
Ctrl 12 Fru  2 Ctrl  2 
Fru 12 Ord   3 Fru  2 
Cir  2 Ctrl    4 Ord  2 
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2. MODELING NODE RANK 

Both of the click tasks for the layout conditions ended up with the same model for the 

data. Unfortunately, post hoc analysis on the highest degree node model was unsuccessful, 

making it difficult to explore the results in further detail. 

a) NODE BETWEENNESS CENTRALITY 

For the node betweenness centrality task, the distribution of NodeRank is presented in 

Figure 103. The model, specified below and visualized in Figure 104, has an R2 value of 

0.376398. 

 

Figure 103. Distribution of NodeRank values for the Node Betweenness Centrality task for the experimental conditions related to layout. 

NodeRank ~ Condition + Dataset + CorrectAnswer + Condition:Dataset + 
(1|Demo.ResponseID) 
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Figure 104. Real NodeRank values vs. fitted values for the Node Betweenness Centrality task for the experimental conditions related to 
layout. 

(1) CONDITION 

The post hoc analysis for the BC task for the layout conditions indicates that the circular 

layout performs as well as the control layout and better than F-R and OpenOrd. 
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Figure 105. Estimated Marginal Means for Condition for the Node Betweenness Centrality task for the experimental conditions related 
to layout. 

Table 63. Compact letter display (CLD) of pairwise comparisons between conditions for the Node Betweenness Centrality task for the 
experimental conditions related to layout. 

Condition .group 
Cir 12 
Ctrl 1 
Fru  2 
Ord  2 

 

(2) DATASET 

The post hoc analysis was inconclusive about the groupings of the datasets, but the order 

is as expected, with dataset 1 being lower than dataset 7, which in turn is lower than dataset 9. 
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Figure 106. Estimated Marginal Means for Dataset for the Node Betweenness Centrality task for the experimental conditions related to 
layout. 

(3) CORRECT ANSWER 

Both click data models include the correct answer as a predictor of NodeRank of selected 

node. That is, the higher the BC of the top-ranking node, the higher the rank of the selected node 

(p < 2e-16). Another way of saying that is that the networks with extremely high betweenness 

centrality nodes tend to have higher error than those with lower BC values for the top-ranked 

nodes (Figure 107). 
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Figure 107. The relationship between the Correct Answer and NodeRank values for the Node Betweenness Centrality task for the 
experimental conditions related to layout. 

(4) CONDITION:DATASET 

The interaction between condition and dataset shows that the low error for the circular 

layout on this particular task is more pronounced for datasets 7 and 9, possibly as a result of high 

error within the other conditions. 
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Figure 108. Estimated Marginal Means for Condition for the Node Betweenness Centrality task for the experimental conditions related 
to layout, faceted by Dataset. 

Table 64. Compact letter display (CLD) of pairwise comparisons between conditions, separated by dataset, for the Node Betweenness 
Centrality task for the experimental conditions related to layout. 

1 7 9 
Cond .group Cond .group Cond .group 
Ctrl 1 Cir 1 Cir 123 
Ord 12 Ord  2 Ctrl 1 
Cir  2 Frul  2 Fru  2 
Fru  2 Ctrl  2 Ord   3 

b) HIGHEST DEGREE NODE 

As described above, the post hoc analysis for the highest degree node was not successful, 

so no pairwise comparisons are reported here. The distribution of NodeRank, the model 

specification, and a visualization of the model (R2 = 0.2698849) are nonetheless reported below. 

NodeRank ~ Condition + Dataset + CorrectAnswer + Condition:Dataset + 
(1|Demo.ResponseID) 
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Figure 109. Distribution of NodeRank values for the Highest Degree Node task for the experimental conditions related to layout. 

 

Figure 110. Real NodeRank values vs. fitted values for the Highest Degree Node task for the experimental conditions related to layout. 
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3. MODELING PERCENTAGE 

In the final task for the layout conditions, the percentage of nodes in the largest cluster is 

modeled with a zero-and-one-inflated beta distribution. The distribution of responses (Figure 

111), the model specification (R2 = 0.7089417), and a visualization of the model (Figure 112) are 

included below. 

 

Figure 111. Distribution of Response values for the Percentage of Nodes in Largest Cluster task for the experimental conditions related 
to layout. 

ResponsePct ~ Dataset + DatasetOrder + UnderestDummy + Dataset:UnderestDummy + 
DatasetOrder:UnderestDummy 
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Figure 112. Real Response values vs. fitted values for the Percentage of Nodes in Largest Cluster task for the experimental conditions 
related to layout. 
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(1) DATASET 

The order of the effects of dataset is as expected and is consistent with the graphics 

conditions. The responses for dataset 1 are much higher than datasets 7 and 9. 

 

Figure 113. Model fit for Dataset for the Percentage of Nodes in the Largest Cluster task for the experimental conditions related to 
layout. 
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(2) DATASET ORDER 

The order of presentation of the datasets appears to be significant for this task. Datasets 

presented first have a higher estimate for response than datasets presented second or third. 

 

Figure 114. Model fit for Dataset Order for the Percentage of Nodes in the Largest Cluster task for the experimental conditions related 
to layout. 
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(3) UNDERESTIMATED 

As logically follows, the underestimated responses are lower in value than the 

overestimated responses. 

 

Figure 115. Model fit for Underestimation for the Percentage of Nodes in the Largest Cluster task for the experimental conditions related 
to layout. 

 

(4) DATASET:UNDERESTIMATED 

The interaction between dataset and underestimation shows that underestimation 

decreases more slowly than overestimation between datasets 1 and 7. 
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Figure 116. A two-way plot of Dataset and Underestimation. The black solid line indicates underestimation, while the red dashed line 
indicates correct or overestimated responses. The indices 1, 2, and 3 on the x-axis correspond to datasets 1, 7, and 9, respectively. 

D. Discussion of Layout Results 

The results of the task analyses for the layout conditions indicate that while dataset 

difficulty does seem to play a more predictable role for layout conditions than for graphics 

conditions, the role of layout algorithm and the interaction between layout algorithm and task are 

more complicated than anticipated. 

Table 65 summarizes the CLD tables for the groupings for dataset across the different 

tasks. Problems with calculating pairwise comparisons prevent us from including groupings for 

the clicking high degree nodes task, but the other tasks show a fairly consistent pattern of dataset 

1 having lower error than datasets 7 and 9. The differences in properties between datasets 1 and 7 

are certainly larger than the differences between 7 and 9 (Table 13), and accuracy for dataset 1 is 

influenced by the fact that it is small enough for participants to be able to count every node 
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individually. Nonetheless, the same consistency is not present in the graphics conditions (Table 

43), where the three particular datasets do often group in different patterns. 

Table 65. Summary of CLD tables for Dataset across accuracy analyses for layout conditions. 

 

 

Figure 117. An alluvial diagram showing the compiled CLD tables for Dataset across accuracy analyses. The significance groups with the 
lowest error are at the top of the diagram. 

For H5, the effect of network science training (i.e., sample population) was proposed as 

something that would cut across all tasks. In truth, not a single model retained network science 

training as a significant predictor of accuracy or even response. As an individual predictor, this 

factor did have significance for the number of clusters task, but if failed to retain significance in 

the combined model. While sample size is certainly a possible factor here, sample size especially 

becomes a problem in combined models, where a small number of individuals can be split apart 

into subgroups and lose even more statistical power. The fact that the population group failed to 

reach significance even as an individual predictor of error suggests that any difference between 

these populations is quite low and would require an extremely large number of participants to 

detect. The hypothesis also proposed that this effect would continue regardless of condition (that 

 AvgDeg NumClust DegHD NumLinks NumNodes BC ClickHD 
1 2 NS 1 1 1 1 Unknown 
7 2 NS 2 2 2 2 Unknown 
9 1 NS 2 2 2 3 Unknown 
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is, that network science training would not interact with condition), and while it is true there is 

no interaction, there is also no main effect. 

This result is, in some way, reassuring. The lack of extensive training in network science 

does not seem to handicap novice users from being able to make judgments about network 

visualizations. The alternate, more pessimistic, view is that some tasks with a network 

visualization are hard enough that not even experts can perform them with a great deal of 

accuracy. For now, suffice it to say that a brief training period seems adequate to enable novice 

users to understand network visualizations at a level comparable to individuals with more 

extensive formal training. In future analyses, it may be worth exploring not just the LogError for 

responses but also variation or spread, to see if differences in population may emerge in that area 

instead. 

Hypothesis 6 (H6) concerns the layout conditions and their interaction with task. Table 

66 summarizes the results related to layout and task. H6a states that OpenOrd will relate to 

improved performance on cluster-based tasks. In fact, the primary cluster-based task, counting 

the number of clusters, found no significant effect of layout condition. Condition also was not 

significant in modeling the responses for percentage of nodes in the largest cluster. 

Table 66. Summary of CLD tables for Condition across accuracy analyses for layout conditions. 

H6b states that Fruchterman-Reingold will improve performance on node-based tasks, 

like counting nodes or finding prominent nodes. For the four tasks where condition was found to 

be significant, the F-R algorithm has only middle-of-the-road performance and does not seem to 

be strongly suited for any particular type of task. 

 AvgDeg NumClust DegHD NumLinks NumNodes BC ClickHD 
Control NS NS 1 1 3 1 Unknown 
Circular NS NS 3 1 1 12 Unknown 
F-R NS NS 2 1 2 2 Unknown 
OpenOrd NS NS 1 2 23 2 Unknown 
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Figure 118. An alluvial diagram showing the compiled CLD tables for Condition across accuracy analyses. The significance groups with 
the lowest error are at the top of the diagram. 

H6c states that the Circular layout will consistently underperform all other layouts. In 

truth, the circular layout is one of the better layouts. The tasks where it performs worst is the task 

of estimating the degree of the highest degree node. With the links in a circular layout all leaving 

the nodes in a small arc, it stands to reason that this estimation would be especially hard. 

Locating high betweenness centrality nodes, however, does not seem to be especially difficult 

with this layout, and it actually does quite well for the number of nodes and number of links 

tasks, which are two of the hardest tasks. The evidence suggests that improving the circular 

layout with better edge layout – for example, using edge bundling to make edge quantity more 

apparent – may yield a layout that performs well on a wide variety of tasks. The control layout 

(GEM), by contrast, had low performance on the number of nodes task, though it did perform 

well on the others. In hindsight, the lack of node overlap and the fact that the nodes in the 

circular layout were sorted according to cluster assignment may result in a layout algorithm that 

is easier to use because of its consistent reference system and its focus on the link patterns. 

The performance of the different layout algorithms for different tasks often interacts with 

the dataset. While dataset 7 has a lower number of nodes than dataset 9, it actually has a higher 

number of links and, by extension, a higher density. The underperformance of the circular layout 
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on the degree of highest degree node task is especially prominent for dataset 7, possibly due to 

this high concentration of links. Dataset 7 also has a high spread across the conditions for the 

number of nodes task, with the control condition having a large spike in LogError for this 

dataset. This confirms that it is not simply the number of nodes that influences whether a 

network dataset can be visualized effectively. There is a complicated interplay between layout 

algorithm, dataset properties, and task that influence user performance. Overall, though, the 

individual differences between users play less of a roll for network visualization performance 

than manipulations to the layout algorithm and dataset. 

The results show that changes in layout algorithm can impact performance, and often in 

surprising ways. Layout algorithms that may not be considered optimal (e.g., circular) have been 

found to perform quite well with minimal modifications. It may be that other layout algorithms 

or interaction paradigms, including 3D layouts and distortion techniques like hyperbolic 

distortion, could be evaluated within this same framework to determine the conditions under 

which they perform well or poorly. The results here suggest that basic perceptual factors such as 

occlusion negatively impact performance, and one of the easier solutions for occlusion problems 

is not to change the layout algorithm but to add interactivity or distortion to allow users to 

investigate further. Future work should not only expand to additional layout algorithms but 

incorporate interactivity to explore whether poor performance can be mitigated with interactive 

elements. 
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IX. CONCLUSIONS 

The work presented here comprises an exploratory study within the broad research space 

of network visualization literacy. The work builds on smaller studies by testing both graphical 

properties and commonly used layout algorithms on populations of both highly experienced and 

highly inexperienced users. The results here offer some initial recommendations for best 

practices with network visualizations, but they also raise more questions to be addressed by 

future research. 

A. Recommendations 

Manipulations to the graphical design and context of the network visualizations suggest 

that technical language is not an impediment to accurate judgments about network visualizations. 

With some brief training, both novices and experts can perform basic numerical analysis with 

network visualizations. The addition of a bright color may cause a slight improvement in 

performance. Future studies should test whether using color to encode numerical properties 

improves performance on tasks that require those properties (or inhibits performance on tasks 

that require ignoring those encodings). 

The use of layout algorithms should indeed take into account the intended tasks for the 

visualization, but a straightforward mapping between the layout algorithm optimizations and the 

desired tasks was not found. Instead, using a simple force-directed or even circular layout with 

edge bundling should offer a nice baseline for most tasks. OpenOrd should be used with caution 

for any tasks that involve estimating the number of links. 
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B. Major Challenges 

Several major challenges were identified over the course of this project. A major and 

ongoing challenge involves the selection and operationalization of tasks for network 

visualization literacy studies. The tasks used for this study were selected empirically, but 

continued study of the real-world uses of network visualizations is necessary to ensure the 

universality of the tasks or, perhaps better, to create different lists of tasks for different academic 

fields or user groups.  

This study relied on the opinions of network science researchers to identify tasks that 

were both important to network science research and likely to be estimable from a network 

visualization. In reflecting on the selection of these tasks, we can question whether the opinions 

of experts about the ease with which users can estimate a network measure from a visualization 

were supported by data. Figure 119 below show the relationship between the ratings of experts18 

and the LogError values of participants. The highest correlations between expert ratings and the 

LogError values occurred with the number of experts who rated a network measure as “Very 

Low” on estimability. Even with correlations of 0.661 and 0.705 on the graphics and layout 

conditions, respectively, neither linear model reaches a significant p-value. (For graphics, the p-

value is 0.106, and for the layout conditions the p-value is 0.077.)  

                                                

18 The mapping between network measures as they were posed to the experts and their operationalizations 

for the experimental studies is not perfect. In the opinion survey, experts were asked about “number of 

components,” which was then operationalized as number of clusters to focus on single-component network datasets. 

Additionally, the more general “number of components” network measure was operationalized as the size of the 

largest cluster, expressed as a percentage. “Node degree” was specified as related to the highest degree node, and it 

was operationalized as both a numerical and a click task. Figure 119 omits the click task for the highest degree node. 
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Figure 119. A comparison of the responses from the expert opinion survey to the LogError values from the experimental studies. 

The area under the regression line shows tasks for which experts underestimated human 

abilities. The experts were especially pessimistic about user abilities to estimate average degree, 

which ended up being the task with the lowest median LogError. Above the line, there are a few 

measures where experts overestimated human abilities. The number of nodes task got the fewest 

“very low” votes of any of the tasks, but it actually ranked 4th in terms of median LogError. The 

percentage of nodes in the largest cluster was also more difficult than experts expected, though 

this task was originally posed to experts as a “size of component” task. While not conclusive, 

this suggests that experts would be surprised by how easy (or difficult) some of the tasks turned 

out to be. By extension, in the future it may be important to continue to test additional network 

measures, regardless of expert valuation, to get a less biased picture of user performance. 

Beyond simple task selection lies another major challenge: how to design study 

instruments to best assess each task. In truth, each task could comprise its own dissertation 

project, where question phrasing and question type are iteratively designed to generate the best 

possible network visualization instrument. As we saw with the pilot testing on tasks for network 

density estimations, some tasks may involve a very different interpretive process and require a 

more complicated test instrument. 
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A second major challenge involved the operationalization of error. Determining how 

much of an effect changes in the properties of dataset should have on the calculation of error is 

an ongoing process. Other studies on visualization literacy can keep the magnitude of numerical 

responses within a small range, but one of the primary topics of interest in network visualization 

is the question of when a dataset is too big to visualize. The solution use here does seem reduce 

the influence of changes in magnitude, but it is difficult to say with confidence whether that 

reduction has too large of an impact on the results. 

Possibly the largest challenge of studies like this one is the recruitment of sufficient 

experts to establish definitively the effect of prior training. Our response rate was quite good for 

an expert population, but even with the simplification of the study design, a pool of about 60 

expert participants may not have been large enough to show whatever difference there may be 

between these populations. We can use this information to try to better calculate statistical power 

in the future, but the question of whether experts perform better on these tasks has not yet been 

settled. 

Another challenge emerged with the fit between the goal and the reality of the study. 

While the stated goal of the study was to measure literacy, the study included a lengthy training 

sequence. A more faithful measure of literacy would omit training and measure native literacy 

levels. Omission of the training block would be a logical next step for this research program. In 

such cases it is typical to omit the early experimental trials while participants are getting used to 

the procedure, which may mean that the number of experimental trials should be increased to 

compensate. The training block could potentially be replaced with another full experimental 

block. 
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C. Future Work 

Moving forward, this study may benefit from ongoing data analysis to try to improve the 

fit of certain models or find alternative ways to conduct post hoc analysis. A Bayesian approach 

to effect size estimation, while computationally expensive, would likely offer new insights and 

improve the reliability of the results. 

To extend this study to additional areas, a more fine-grained look at the role of color and 

size for data overlays would be of great use to the network visualization community. Another 

obvious addition to the study would be the use of interactivity and the role it can play in 

judgments about the network. Simon (1962), in a prescient outline of the field of complex 

systems research, emphasizes the implicit and characteristic hierarchy in complex systems. 

When navigating network datasets, the use of visualizations may be enhanced by taking 

advantage of any inherent hierarchy in the data to follow the classic visual information seeking 

mantra (Shneiderman, 1996): overview first, zoom and filter, then details-on-demand. Rather 

than expecting users to perform these kinds of calculations in their minds, the visualization 

would ideally be designed to include different levels of detail and different subsets of the data as 

needed. A study of network literacy that fails to explore interactive network visualizations is 

only telling part of the story of how humans use visualizations, but until static visualizations lose 

their place in traditional scholarly publications, it is still an important part of the story. Further 

work to refine the tasks, populations, or datasets would also potentially lead to new and 

important recommendations. 

A major opportunity for future work, however, lies in pursuing a deeper, more complete 

understanding of the use of network visualizations. These studies focus on a performance 

analysis – an assessment of how accurately people can estimate numerical properties of a 
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network dataset based on a visualization. There is still a great deal of foundational work left to be 

down, however, on the real usage of network visualizations. Are they created with the intention 

of communicating numerical properties of network data? Are they relying less on numerical 

analysis than on pattern recognition for important structures? Are researchers using them for data 

exploration as well as communication? While we have found that it is possible to estimate 

certain types of network measures with reasonable accuracy using a network visualization, that 

may not be the primary utility of a network visualization for actual users. To date this kind of 

ethnographic study of general network visualization use has not been attempted, but as use of the 

visualizations increases, the user base also increases and makes this type of study more feasible. 

Another way to complement this study with qualitative research would be to gather more 

information about the specific processes users employ to understand network visualizations. We 

now have a baseline of quantitative data for a variety of tasks, datasets, users, and design 

condition. We do not, however, have a good understanding of the sensemaking process that users 

undertake when presented with a novel visualization type. For a complete picture of network 

visualization literacy, which is necessary to improve education and best practices for the field, 

we will need depth of information as well as breadth. 

Nonetheless, the study presented here offers a comprehensive exploration of the variety 

of issues related to assessing network visualization literacy quantitatively, and it is hoped that the 

results will drive a renewed interest in this versatile and compelling visualization type. 
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XI. GLOSSARY 

Graphic:  

Typically used in noun form (e.g., “graphic interpretation”), this term refers to a constructed 

image or visual representation in general.  It is used somewhat interchangeably with visualization 

throughout this literature review because the review often covers literature that extends to 

graphics in general.  The adjective form is typically graphical (e.g., “graphical devices”). 

Interpretation:  

For the purposes of this review, interpretation refers to the process by which an individual makes 

sense of a graphic.  Individuals may bring many experiences, skills, and strategies to bear in the 

process of interpretation, including the individual’s exposure to prior images or related systems of 

analysis or notation, the individual’s assumptions about the image’s designer and his/her 

intentions, the individual’s understanding of the content area related to the image, the individual’s 

cultural background, etc.  Interpretation is acknowledged to be an active co-construction of 

meaning between an individual, an image, a social context, and a task environment. 

Network Visualization:  

This review uses network visualization to refer to a visualization depicting data that is comprised 

of entities and relationships between those entities.  The network data set can be visualized in 

many ways, the most common of which in Information Science is the node-link diagram.  This 

review lays the groundwork for a study that will likely compare usage of a node-link diagram to 

usage of another network visualization (e.g., a matrix diagram), which is why the general term 

network visualization is used throughout. 

Node-Link Diagram:  

A type of network visualization that represents networks as nodes (typically circles) and links 

(typically solid lines or arc) and determines the position of the nodes based on force-directed 

layout algorithms.  Algorithms are also used to reduce edge crossings. 
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Task:  

The interpretation of graphics is situated within a task context, even for novice users without 

explicit information needs or goals.  Task can refer to both a low level operation the user 

performs on/with the graphic (e.g., “evaluating size”) and a high level description of goal-directed 

behavior (e.g., “read pattern”) which is, itself, made up of a sequence of component tasks. 

User:  

The user is an individual who is interacting with a particular image graphic.  The term comes 

from the Human-Computer Interaction tradition, where interactivity is implied and individuals are 

expected to be “using” a system.  In visualization research, the term “user” is often convenient 

because of the commonalities between interface and visualization design and evaluation, as well 

as because of the difficulties of more general terms like “individual” or “interpreter.” 

Visualization:  

The term visualization can refer both to the process by which data are visualized and to the 

graphic that results from that process.  In this literature review, the latter use is predominant.  

Though often used interchangeably with graphic as described above, visualization is used when a 

more constrained concept is appropriate (e.g., when referring to network visualizations, which are 

always both graphics and visualizations) and when the theories or methodologies involved are 

strongly tied to the Information Visualization field. 
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XII. APPENDICES 

A. Instrument for Opinion Survey 

1. What is your primary academic field? 

If you are active in multiple fields, choose the field in which you've received the most training. 

a. Humanities 

i. Anthropology 

ii. Arts; Classics 

iii. History 

iv. Languages 

v. Literature 

vi. Philosophy 

vii. Religion  

b. Social sciences  

i. Archaeology 

ii. Communication studies 

iii. Cultural and ethnic studies 

iv. Economics 

v. Geography 

vi. History 

vii. Information science 

viii. Linguistics 

ix. Political science 

x. Psychology 

xi. Sociology 
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c. Life sciences  

i. Biology 

ii. Chemistry 

iii. Earth sciences 

iv. Physics 

v. Space sciences 

d. Formal sciences  

i. Mathematics 

ii. Computer sciences 

iii. Logic 

iv. Statistics 

v. Systems science 

e. Professional  

i. Architecture and design 

ii. Business 

iii. Divinity 

iv. Education 

v. Engineering 

vi. Human physical performance and recreation 

vii. Journalism, media studies and communication 

viii. Law 

ix. Library and museum studies 

x. Medicine 

xi. Military sciences 

xii. Public administration 

f. Other 
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2. What is the highest degree or level of school you have completed? 

If currently enrolled, highest degree received. 

a. Bachelor’s degree 

b. Master’s degree 

c. Professional degree 

d. Doctorate degree 

e. Other 

3. How much experience do you have as a consumer (e.g., reader, follower) of network science 

research? 

a. None 

b. A little 

c. Some 

d. A lot 

4. How much experience do you have as a producer (e.g., writer, publisher) of network science 

research? 

a. None 

b. A little 

c. Some 

d. A lot 

5. How well does the following statement describe you? 

My research addresses network analysis (e.g., computational structural analysis, 
centrality measures of real-world networks, diffusion across networks, etc.). 

a. Not well at all 

b. Not very well 

c. Somewhat well 

d. Very well 
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6. How well does the following statement describe you? 

My research addresses network visualization (e.g., layout algorithm development, user 
testing, exploratory network visualizations, etc.). 

a. Not well at all 

b. Not very well 

c. Somewhat well 

d. Very well 

7. When you are doing network analysis, how frequently do you use each of the following tools? 

 

  

 Unfamiliar Never/almost 
never Seldom/rarely Often Almost 

always/always 
Cytoscape □ ○ ○ ○ ○ 
NetworkX □ ○ ○ ○ ○ 
D3 □ ○ ○ ○ ○ 
SoNIA □ ○ ○ ○ ○ 
VOSviewer □ ○ ○ ○ ○ 
SigmaJS □ ○ ○ ○ ○ 
SAS □ ○ ○ ○ ○ 
NodeXL □ ○ ○ ○ ○ 
Gephi □ ○ ○ ○ ○ 
GUESS □ ○ ○ ○ ○ 
UCINET □ ○ ○ ○ ○ 
Network Workbench □ ○ ○ ○ ○ 
ORA □ ○ ○ ○ ○ 
R □ ○ ○ ○ ○ 
Sci2 □ ○ ○ ○ ○ 
Pajek □ ○ ○ ○ ○ 
Graphviz □ ○ ○ ○ ○ 
Tulip □ ○ ○ ○ ○ 
Other □ ○ ○ ○ ○ 
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9. How important are these network measures and calculations to your research? 

 

  

 Unfamiliar Very 
unimportant 

Somewhat 
unimportant 

Somewhat 
important 

Very 
important 

Average degree or degree 
distribution □ ○ ○ ○ ○ 

Number of links □ ○ ○ ○ ○ 
Number of nodes □ ○ ○ ○ ○ 
Number of unconnected 
components □ ○ ○ ○ ○ 

Component size distribution □ ○ ○ ○ ○ 
Average path length □ ○ ○ ○ ○ 
Average shortest path/ 
shortest path distribution □ ○ ○ ○ ○ 

Diameter 
(longest path length) □ ○ ○ ○ ○ 

Link density 
(# current links/#possible 
links) 

□ ○ ○ ○ ○ 

Clustering coefficient □ ○ ○ ○ ○ 
Modularity/community/cluste
r 
detection 

□ ○ ○ ○ ○ 

Node degree 
(including in-degree and out-
degree) 

□ ○ ○ ○ ○ 

Node betweenness centrality □ ○ ○ ○ ○ 
Closeness centrality □ ○ ○ ○ ○ 
Eigenvector centrality □ ○ ○ ○ ○ 
Link betweenness centrality □ ○ ○ ○ ○ 
Presence of cycles/loops □ ○ ○ ○ ○ 
Other □ ○ ○ ○ ○ 
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11. Consider the sample network visualizations below. 

For network visualizations like these, how likely is it that you would be able to estimate the 

following network measures and calculations from a visualization of the network? 

 

 

  

 Unfamiliar Very 
unlikely 

Somewhat 
unlikely 

Somewhat 
likely 

Very 
likely 

Average degree or degree 
distribution □ ○ ○ ○ ○ 

Number of links □ ○ ○ ○ ○ 
Number of nodes □ ○ ○ ○ ○ 
Number of unconnected 
components □ ○ ○ ○ ○ 

Component size distribution □ ○ ○ ○ ○ 
Average path length □ ○ ○ ○ ○ 
Average shortest path/ 
shortest path distribution □ ○ ○ ○ ○ 

Diameter 
(longest path length) □ ○ ○ ○ ○ 

Link density 
(# current links/#possible 
links) 

□ ○ ○ ○ ○ 

Clustering coefficient □ ○ ○ ○ ○ 
Modularity/community/cluster 
detection □ ○ ○ ○ ○ 
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13. Consider the sample network visualizations below. 

For network visualizations like these, how likely is it that you would be able to estimate the 

relative value of the following node properties from a visualization of the network (rather than 

the exact values for each node)? 

 

 

14. Consider the sample network visualizations below. 

For network visualizations like these, how likely is it that you would be able to estimate the 

relative value of the following link properties from a visualization of the network (rather than 

the exact values for each link)? 

 

 Unfamilia
r 

Very 
unlikely 

Somewhat 
unlikely 

Somewhat 
likely Very likely 

Node degree 
(including in-degree and out-
degree) 

□ ○ ○ ○ ○ 

Node betweenness centrality □ ○ ○ ○ ○ 
Closeness centrality □ ○ ○ ○ ○ 
Eigenvector centrality □ ○ ○ ○ ○ 
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15. For projects involving network data, how often do you produce some kind of network 

visualization? 

a. Never 

b. Rarely 

c. Sometimes 

d. Most of the time 

e. Always 

16. When you are doing network visualization, how frequently do you use each of the following 

tools? 

 Unfamiliar Never/almost 
never Seldom/rarely Often Almost 

always/always 
Cytoscape □ ○ ○ ○ ○ 
NetworkX □ ○ ○ ○ ○ 
D3 □ ○ ○ ○ ○ 
SoNIA □ ○ ○ ○ ○ 
VOSviewer □ ○ ○ ○ ○ 
SigmaJS □ ○ ○ ○ ○ 
SAS □ ○ ○ ○ ○ 
NodeXL □ ○ ○ ○ ○ 
Gephi □ ○ ○ ○ ○ 
GUESS □ ○ ○ ○ ○ 
UCINET □ ○ ○ ○ ○ 
Network Workbench □ ○ ○ ○ ○ 
ORA □ ○ ○ ○ ○ 
R □ ○ ○ ○ ○ 
Sci2 □ ○ ○ ○ ○ 
Pajek □ ○ ○ ○ ○ 
Graphviz □ ○ ○ ○ ○ 
Tulip □ ○ ○ ○ ○ 
Other □ ○ ○ ○ ○ 

 

 Unfamiliar Very 
unlikely 

Somewhat 
unlikely 

Somewhat 
likely Very likely 

Link betweenness 
centrality □ ○ ○ ○ ○ 

Presence of cycles/loops □ ○ ○ ○ ○ 
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17. When you are doing network visualization, how frequently do use the following layout 

algorithms and techniques? 

 

18. What are some of the biggest challenges analysts face in visualizing networks? 

19. What would you like to be able to do with network analysis and visualization tools that you 

cannot do at this time? 

20. Other comments about your work with network analysis and/or visualization: 

  

 Unfamiliar Never/almost 
never Seldom/rarely Often Almost 

always/always 
Force Atlas □ ○ ○ ○ ○ 
Radial diagram with 
a center node 

□ ○ ○ ○ ○ 

OpenOrd □ ○ ○ ○ ○ 
Graph Embedder 
(GEM) 

□ ○ ○ ○ ○ 

Tube/subway map □ ○ ○ ○ ○ 
Hive plot □ ○ ○ ○ ○ 
Force Atlas 2 □ ○ ○ ○ ○ 
Lin-Log □ ○ ○ ○ ○ 
VxOrd □ ○ ○ ○ ○ 
Fruchterman 
Reingold 

□ ○ ○ ○ ○ 

Circular layout □ ○ ○ ○ ○ 
Deterministic layout 
(e.g., alphabetical, 
geographical, 
temporal) 

□ ○ ○ ○ ○ 

Generic spring 
layout 

□ ○ ○ ○ ○ 

Matrix □ ○ ○ ○ ○ 
Circos or chord 
diagram 
(circular layout with 
edge bundling and 
node clustering) 

□ ○ ○ ○ ○ 

Kamada-Kawai □ ○ ○ ○ ○ 
Other □ ○ ○ ○ ○ 
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B. Instrument for Performance Studies 

1. TRAINING BLOCK 

 

This is an image of a network. Networks have nodes (the circles) and links (the lines). 

Sometimes, a group of the nodes in the network are tightly grouped together; this is called 

a cluster. 

In this study, you will be answering questions about various images of networks, 

sometimes focusing on the whole network and other times focusing on specific nodes or groups 

of nodes. 

The next few questions will introduce you to the basic format of the study. Please read 

the instructions and answer the questions as well (and as quickly) as possible.  
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About how many total nodes are in this network? Please write the number below. (For 

larger networks, the number can be an approximation, but please type only numbers into the 

box.) 

 

Correct Answer:  

Correct!  There are 8 nodes in this network. 

In this network, it is easy to count the nodes individually.  In larger networks, just give it 

your best guess! 

Incorrect Answer: 

Actually, in this case, there are 8 nodes in this network.  If you answered by 

approximating the number of nodes rather than counting them, that's fine.  It will be important to 

be able to do that for larger networks. 
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About how many total links are in this network?  Please type the number below.  (For 

larger networks, the number can be an approximation, but please type only numbers into the 

box.) 

 

Estimating the number of links in a network can be tricky.  Here is one strategy that 

might help you do this kind of estimating. 

First, start with an estimate of the number of nodes.  In this network there are 8 nodes.   

As you look at each node, try to see approximately how many links are attached to each 

node.  In this network, some nodes have only one or two links.  Other nodes have five or six.  

Let's say that, on average, each node has about 4 links. 

Each link is attached to two nodes, though - one on each end.  That means that we might 

accidentally count the link twice if we think about every node as having 4 links.  Instead, each 

node really has 4 half-links.  So, really, each node has about 2 links.  (That's just 4 links divided 

by 2 nodes each.) 
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So, if we have 8 nodes, and each node has about 2 links, then the whole network has 

about 16 links (8 x 2 = 16).   

 And actually, that is very close to the correct answer!  This network has 14 links.   

 If we had estimated that each node has about 3 links, then we would have divided 3 by 2 

(which equals 1.5) and multiplied that by 8 nodes to get 12 total links.  This answer would also 

be very close to the correct answer of 14. 

 Another tip to remember is that most networks will have at least as many links as it has 

nodes.  So, the number of links will almost always be bigger than the number of nodes.   

 How much bigger the number is depends on how "dense" the network looks - how many 

links overlap each other, how many nodes have a lot of links, etc. 
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Click on the node with the most links.  (Your last click will be the only click recorded.) 

 

 

This is the node with the most links. It has 6 links. If this is the node you picked, great 

job! 
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How many clusters do you see in this network? Please type the number below. 

 

Correct answer: 

Correct!  This network has 2 clusters. 

Deciding how many clusters are in a graph can be pretty tricky.  In this case, using a 

common computational process for determining clusters, there seem to be 2. 

Incorrect answer: 

Actually, this network has 2 clusters. 

Deciding how many clusters are in a graph can be pretty tricky.  In this case, using a 

common computational process for determining clusters, there seem to be 2. 
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Find the largest cluster in the network, and look at the nodes in that cluster. What 

percentage (approximately) of the total nodes in the network can be found in the largest cluster? 

 

 

Correct answer: 

Good job! That answer was very close. 

The largest cluster has 5 nodes, and the full network has 8 nodes.  The percentage value 

that is equal to 5/8 is 62.5%. 

Incorrect answer: 

Actually, the largest cluster has 5 nodes, and the full network has 8 nodes.  The 

percentage value that is equal to 5/8 is 62.5%.  Your answer was a bit low or a bit high. 

  

0% 100% 50% 

What percentage of 
the nodes in the 
network are in the 
largest cluster? 
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Sometimes a node doesn't fit in just one cluster. It might have connections to two or more 

clusters, which makes it look like a bridge between separate clusters. 

Find any nodes that bridge gaps between clusters, rather than being closely connected to 

a single cluster. Circle each of those nodes. (If you see a lot of these nodes, please choose at 

most five that seem to be clear examples.) 

 

 

In this example, there are two nodes that operate as a sort of bridge.  The highlighted 

node on the right acts most like a bridge because it is connected to a large number of nodes, and 

those nodes aren't all connected to each other.  The highlighted node on the left also bridges one 

node to a series of other nodes, but it doesn't bridge quite as many nodes.  The other nodes in the 

network typically connect nodes that are already connected to each other or that can connect 

through some other path, so those nodes are not considered bridges. 

If you selected these two nodes (and no other nodes), great job! 
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Now that you have tried out some of the questions from the study, it's time for the study 

itself. 

You will see different images and a few additional types of questions. Again, please 

answer the questions as quickly and accurately as possible, but feel free to estimate numbers 

for the networks that have a lot of nodes and links. 

 

2. EXPERIMENTAL QUESTION PHRASING 

Question Phrasing (Technical) Question Phrasing (Informal) 
Find the node with the most links. About how 
many links does it have?  

Find the most popular person. About how many 
friends does he or she have?  

Click on the node with the most links.  (Your 
last click will be the only click recorded.) 

Click on the person with the most friendship 
connections.  (Your last click will be the only click 
recorded.) 

Find any nodes that bridge gaps between 
clusters, rather than being closely connected to 
a single cluster.  Click on each of those nodes.  
(If you see a lot of these nodes, please choose 
at most five that seem to be clear examples.) 

Find any people who bridge gaps between friend 
groups, rather than being closely connected to a 
single friend group.  Click on each of those people.  
(If you see a lot of these people, please choose at 
most five who seem to be clear examples.)  

How many clusters do you see in this network? 
Please type the number below.  

How many tightly-connected friend groups do you 
see in this community? Please type the number 
below.  

If you were asked to estimate the number of 
clusters in this network, about how confident 
would you be in your estimation? 

If you were asked to estimate the number of tightly-
knit friend groups in this community, about how 
confident would you be in your estimation? 

Find the largest cluster in the network, and 
look at the nodes in that cluster.  What 
percentage (approximately) of the total nodes 
in the network can be found in the largest 
cluster? 

Find the largest friend group in the network, and look 
at the people in that group.  What percentage 
(approximately) of the total people in the community 
can be found in the largest friend group? 

About how many total nodes are in this 
network? Please type the number below. 

About how many total people are in this community?  
Please type the number below.  

About how many links does each node in this 
network have, on average? 

About how many friendship connections does each 
person in this community have, on average? 

About how many total links are in this 
network? 

About how many total connections are there in this 
community? 
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3. ALL VISUALIZATIONS 

Condition Training 1 3 5 7 8 9 
GEM, phrasing 

       
color 

       
size 

       
circular 

       
Fruchterman-
reingold 

       
OpenOrd 
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4. DEMOGRAPHICS 

1. What is your primary academic field? 

If you are active in multiple fields, choose the field in which you've received the most training. 

2. What is the highest degree or level of school you have completed? 

If currently enrolled, highest degree received. 

a. Bachelor’s degree 

b. Master’s degree 

c. Professional degree 

d. Doctorate degree 

e. Other 

3. Age 

4. Sex 

5. Primary language spoken at home 

6. Average hours per day spent using a computer (desktop or laptop or tablet) 

7. Average hours per day spent using a smart phone 

8. Average hours per week spent playing computer or video games (i.e., games played on a personal 

computer, mobile device, or video game console)? 

9. How much expertise do you have with data analysis? 

a. Little or none 

b. Some 

c. A lot 

10. How much expertise do you have with data visualization? 

a. Little or none 

b. Some 

c. A lot 

11. How much expertise do you have with reading network visualizations like the ones you just saw? 
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a. Little or none 

b. Some 

c. A lot 

12. How much expertise do you have with creating network visualizations like the ones you just saw? 

a. Little or none 

b. Some 

c. A lot 

13. Any additional relevant information? 

14. Any additional comments on the network visualization tasks? 
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C. Recruitment Text for Performance Studies 

1. AMAZON MECHANICAL TURK RECRUITMENT 

 

Study Title:  

Answer questions about a series of images for a research study (~30 minutes) 

 

Extended description: 

We are conducting an academic survey about visual displays of information. We want to 

learn about your impressions of these images and your background with these types of images. 

 

Study Instructions: 

We are conducting an academic survey about visual displays of information. We want to 

learn about your impressions of these images and your background with these types of images.  

This survey should take between 25 and 30 minutes.   

Click on the link below to participate in the study.  Make sure to leave this window 

open as you complete the survey.  At the end of the study, you will receive a code that you will 

paste into the box on this page. 

 

2. STUDENT RECRUITMENT 

 

Recruitment Email for Professors: 

Subject:  

PhD student of Katy Börner, hoping to collaborate 
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Email text: 

Dear Professor X, 

My name is Angela Zoss.  I am a doctoral candidate in the Department of Information 

and Library Science at IU, study under the supervision of Dr. Katy Börner.  I am emailing you to 

ask if you would be willing to help me recruit participants for my dissertation project, and I 

thank you in advance for your time and consideration. 

My research focuses on network visualization literacy, or how well individuals can read 

the mathematical properties of a network from a variety of types of node-link diagrams. I'd like 

to compare people who have no training in network science to people who have completed at 

least one course that covered some basic network science concepts. 

You have been identified as an instructor of a recent course (Name of course) that has 

covered basic network science concepts.  I’m writing to ask if you would be willing to forward 

two emails – a recruitment email and a reminder – to your students who have completed (or are 

currently enrolled in) such a course.  I will send the initial email to instructors on October 24 

and one reminder on November 7.  The final survey deadline is November 15. 

The email (copied below) will include a link to a survey, information about the benefits 

of the study, and details about how I can be contacted with any additional questions or concerns.  

The survey itself is completely voluntary, and no identifiable information will be attached to the 

data collected from participants.  Students who participate will be eligible for a drawing for an 

Amazon Gift Card. 

Please let me know if you would be willing to send my recruitment emails to your 

students or if you have any additional questions.  I greatly appreciate your time. 

Best regards, 
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Angela M. Zoss, MS 

PhD Candidate 

Department of Information and Library Science 

Indiana University – Bloomington, IN 

 

Recruitment Email for Students: 1st Email 

Subject:  

Network Visualization Comprehension Study – Deadline 11/15 

 

Email Text: 

Professors – thank you in advance for forwarding this information to students who have 

completed (or are nearing completion of) a course that covers basic network science concept 

training. 

 

Hello everyone, 

My name is Angela Zoss, and I am a doctoral candidate in Information Science at Indiana 

University.  For my dissertation research, I am exploring how individuals with network science 

training explore network visualizations. You have been selected because you are currently 

enrolled in or have recently completed a course that covers basic concepts about network 

science.  

I would greatly appreciate your participation in this experimental study.  We are hoping 

that this information will help to improve the design and education surrounding network 

visualizations, and your participation would provide especially useful insights. 
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The study is completely voluntary and anonymous, and your participation will have no 

impact on any current or future course you may take with the same professor.  The survey may 

take 25-30 minutes to complete, but participants can opt-in to a drawing to win one of two $50 

Amazon Gift Cards.   

The deadline to participate is November 15. 

The study link is: 

[URL] 

Please participant in the study only once. 

Thank you in advance for your time and willingness to participate!  If you have any 

questions, please do not hesitate to contact Angela Zoss at amzoss@indiana.edu. 

 

Best regards, 

Angela M. Zoss, MS 

PhD Candidate 

Department of Information and Library Science 

Indiana University – Bloomington, IN 

 

Recruitment Email for Students: 2nd email 

Subject:  

Reminder: Network Visualization Comprehension Study – Deadline 11/15 

 

Email Text: 
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Professors – thank you for your previous help and for forwarding this reminder to your 

students. 

 

Hello everyone, 

This is a reminder that you have until November 15 to complete the survey described 

below and to enter the drawing for a $50 Amazon Gift Card.  Thank you for your consideration. 

 

Best, 

Angela 

 

----------- 

[copy of original email with details] 

 

3. IUNI AFFILIATE/CNS PHD STUDENT RECRUITMENT 

 

Paper mailing, sent to faculty (only) on IU letterhead – text for Gift Card recipients 

 

Dear [Title] [Last Name], 

My name is Angela Zoss, and I am doctoral candidate in Information Science at Indiana 

University – Bloomington. For many years, I have undertaken research and applied work in 

network science and visualization, and I have a passion for improving our understanding of 

human perception as it relates to network visualizations. 
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My dissertation, supervised by Dr. Katy Börner, is an ambitious project to try to gather 

data on how people interpret network visualizations. To make a real breakthrough in this field, 

we desperately need information about the influence of network science training/expertise on 

the understanding of network visualizations. 

Indiana University is quite extraordinary in the size and diversity of its network science 

community. I am emailing you directly because you are listed as an affiliate of the Indiana 

University Network Science Institute (IUNI) or a related research laboratory. As a member of 

the network science community, you have a chance to make a huge contribution to our 

understanding of network visualizations.  

I know that your time is incredibly valuable, and there probably isn’t much I can offer 

you that would be a strong incentive.  As a token, I am happy to be able to compensate your time 

with a $10 Amazon Gift Card, which will be sent to you after you complete the survey.  

I also want you to know that your participation is going to have an impact on the larger 

research community. At the conclusion of the study, I will share the data and the results of the 

research publicly on GitHub. I will also be presenting preliminary results at the IUNI Open 

Science Forum on Wednesday, November 1, at 4pm in Woodburn Hall. 

If you consent to participate in this survey, you will go through a short training section 

and three experimental sections, with a short final questionnaire collecting demographics 

information.  The survey is anonymous, and pretesting shows a median completion time of 15 

minutes. 

Please do consider joining me in improving our understanding of network visualizations.  

The deadline for participation is October 31, 2017. 

Survey URL: http://netvislit.org 
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Researcher code: [custom code] 

(The above code is personalized for you, so please do not share this announcement with 

others.  If you have any additional suggestions for participants, though, please let me know.) 

Thank you in advance for your time and willingness to participate!  If you have any 

questions, please do not hesitate to contact Angela Zoss at amzoss@indiana.edu. 

 

Best regards, 

Angela M. Zoss, MS 

PhD Candidate 

Department of Information and Library Science 

Indiana University – Bloomington, IN 

 

Paper mailing, sent to faculty (only) on IU letterhead – text for donation recipients 

 

Dear [Title] [Last Name], 

My name is Angela Zoss, and I am doctoral candidate in Information Science at Indiana 

University – Bloomington. For many years, I have undertaken research and applied work in 

network science and visualization, and I have a passion for improving our understanding of 

human perception as it relates to network visualizations. 

My dissertation, supervised by Dr. Katy Börner, is an ambitious project to try to gather 

data on how people interpret network visualizations. To make a real breakthrough in this field, 

we desperately need information about the influence of network science training/expertise on 

the understanding of network visualizations. 
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Indiana University is quite extraordinary in the size and diversity of its network science 

community. I am emailing you directly because you are listed as an affiliate of the Indiana 

University Network Science Institute (IUNI) or a related research laboratory. As a member of 

the network science community, you have a chance to make a huge contribution to our 

understanding of network visualizations.  

I know that your time is incredibly valuable, and there probably isn’t much I can offer 

you that would be a strong incentive.  As a token, I am happy to be able to make a $10 donation 

to the Indiana University First Generation and Diversity Scholarship for your completed survey.  

I also want you to know that your participation is going to have an impact on the larger 

research community. At the conclusion of the study, I will share the data and the results of the 

research publicly on GitHub. I will also be presenting preliminary results at the IUNI Open 

Science Forum on Wednesday, November 1, at 4pm in Woodburn Hall. 

If you consent to participate in this survey, you will go through a short training section 

and three experimental sections, with a short final questionnaire collecting demographics 

information.  The survey is anonymous, and pretesting shows a median completion time of 15 

minutes. 

Please do consider joining me in improving our understanding of network visualizations.  

The deadline for participation is October 31, 2017. 

Survey URL: http://netvislit.org 

Researcher code: [custom code] 

(The above code is personalized for you, so please do not share this announcement with 

others.  If you have any additional suggestions for participants, though, please let me know.) 
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Thank you in advance for your time and willingness to participate!  If you have any 

questions, please do not hesitate to contact Angela Zoss at amzoss@indiana.edu. 

 

Best regards, 

Angela M. Zoss, MS 

PhD Candidate 

Department of Information and Library Science 

Indiana University – Bloomington, IN 

 

Recruitment Email for faculty (gift card condition): 1st Email 

 

Subject:  

Network Visualization Comprehension Study – Deadline 10/31 

 

Email Text: 

Dear [Title] [Last Name], 

My name is Angela Zoss, and I am doctoral candidate in Information Science at Indiana 

University – Bloomington.  Hopefully by now you have received a letter inviting you to 

participate in a study I am conducting for my dissertation, supervised by Dr. Katy Börner. 

To make a real breakthrough in our understanding of how people interpret network 

visualizations, we desperately need information about the influence of network science 

training/expertise on the understanding of network visualizations. As a member of IU’s 
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Network Science community, you have a chance to make a huge contribution to our 

understanding of network visualizations. 

If you consent to participate in this survey (median completion time of 15 minutes in 

pretest), I am happy to be able to compensate your time with a $10 Amazon Gift Card. After the 

study is completed I will publish the data and results openly on GitHub, and I will also be 

presenting preliminary results at the IUNI Open Science Forum on Wednesday, November 1, at 

4pm in Woodburn Hall. 

Please do consider joining me in improving our understanding of network visualizations.  

The deadline for participation is October 31, 2017. 

Survey URL: http://netvislit.org 

Researcher code: [custom code] 

 (The above code is personalized for you, so please do not forward this announcement to 

others.  If you have any additional suggestions for participants, though, please let me know.) 

Thank you in advance for your time and willingness to participate!  If you have any 

questions, please do not hesitate to contact Angela Zoss at amzoss@indiana.edu. 

 

Best regards, 

Angela M. Zoss, MS 

PhD Candidate 

Department of Information and Library Science 

Indiana University – Bloomington, IN 
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Recruitment Email for faculty (donation condition): 1st Email 

 

Subject:  

Network Visualization Comprehension Study – Deadline 10/31 

 

Email Text: 

Dear [Title] [Last Name], 

My name is Angela Zoss, and I am doctoral candidate in Information Science at Indiana 

University – Bloomington.  Hopefully by now you have received a letter inviting you to 

participate in a study I am conducting for my dissertation, supervised by Dr. Katy Börner. 

To make a real breakthrough in our understanding of how people interpret network 

visualizations, we desperately need information about the influence of network science 

training/expertise on the understanding of network visualizations. As a member of IU’s 

Network Science community, you have a chance to make a huge contribution to our 

understanding of network visualizations. 

If you consent to participate in this survey (median completion time of 15 minutes in 

pretest), I am happy to be able to make a $10 donation to the Indiana University First Generation 

and Diversity Scholarship for your completed survey. After the study is completed I will publish 

the data and results openly on GitHub, and I will also be presenting preliminary results at the 

IUNI Open Science Forum on Wednesday, November 1, at 4pm in Woodburn Hall. 

Please do consider joining me in improving our understanding of network visualizations.  

The deadline for participation is October 31, 2017. 

Survey URL: http://netvislit.org 
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Researcher code: [custom code] 

 (The above code is personalized for you, so please do not forward this announcement to 

others.  If you have any additional suggestions for participants, though, please let me know.) 

Thank you in advance for your time and willingness to participate!  If you have any 

questions, please do not hesitate to contact Angela Zoss at amzoss@indiana.edu. 

 

Best regards, 

Angela M. Zoss, MS 

PhD Candidate 

Department of Information and Library Science 

Indiana University – Bloomington, IN 

 

Recruitment Email for graduate students: 1st Email 

 

Subject:  

Network Visualization Comprehension Study – Deadline 10/31 

 

Email Text: 

Dear [Title] [Last Name], 

My name is Angela Zoss, and I am doctoral candidate in Information Science at Indiana 

University – Bloomington.  My dissertation, supervised by Dr. Katy Börner, is an ambitious 

project to try to gather data on how people interpret network visualizations.  
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To make a real breakthrough in our understanding of how people interpret network 

visualizations, we desperately need information about the influence of network science 

training/expertise on the understanding of network visualizations. As a member of IU’s 

Network Science community, you have a chance to make a huge contribution to our 

understanding of network visualizations. 

If you consent to participate in this survey (median completion time of 15 minutes in 

pretest), I am happy to be able to compensate your time with a $10 Amazon Gift Card. After the 

study is completed I will publish the data and results openly on GitHub, and I will also be 

presenting preliminary results at the IUNI Open Science Forum on Wednesday, November 1, at 

4pm in Woodburn Hall. 

Please do consider joining me in improving our understanding of network visualizations.  

The deadline for participation is October 31, 2017. 

Survey URL: http://netvislit.org 

Researcher code: [custom code] 

(The above code is personalized for you, so please do not forward this announcement to 

others.  If you have any additional suggestions for participants, though, please let me know.) 

Thank you in advance for your time and willingness to participate!  If you have any 

questions, please do not hesitate to contact Angela Zoss at amzoss@indiana.edu. 

 

Best regards, 

Angela M. Zoss, MS 

PhD Candidate 

Department of Information and Library Science 
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Indiana University – Bloomington, IN 

 

 

Recruitment Email for Faculty: Reminder email 

 

Subject:  

Reminder: Network Visualization Comprehension Study – Deadline 10/31 

 

Email Text: 

Dear [Title] [Last Name], 

This is a reminder that you have until October 31 to participate in this ambitious survey 

to collect information about how well people can read network visualizations.  So far, 

[Number]% of those invited have completed the survey. Your participation will make a huge 

difference! Thank you for your consideration. 

 

Best, 

Angela 

 

----------- 

 [copy of original email with details] 

 

 

Recruitment Email for Graduate Students: Reminder email 
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Subject:  

Reminder: Network Visualization Comprehension Study – Deadline 10/31 

 

Email Text: 

Dear [Title] [Last Name], 

This is a reminder that you have until October 31 to participate in this ambitious survey 

to collect information about how well people can read network visualizations.  So far, 

[Number]% of those invited have completed the survey. Your participation will make a huge 

difference! 

The link below is available at any time.  Please note, though, that I will also be holding 

three sessions for completing the survey in person. Free pizza will be provided, and you will be 

able to receive your Amazon Gift Card immediately upon completing the survey.  

Please stop by to complete this short, 15-minute survey and contribute to our 

understanding of network visualization comprehension. 

 

[Dates and times] 

 

Best, 

Angela 

 

----------- 

 

[copy of original email with details] 
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Announcement Email for IUNI Affiliates, sent by IUNI officials: 

 

Subject:  

Open Science Forum on Network Visualization Comprehension 

 

Email text: 

On November 1, Angela Zoss (a Ph.D. candidate in Information and Library Science) 

will present her work on network visualization comprehension and literacy, including the results 

of an ongoing study of network visualization literacy. Details of the study are included below.  

Invitations to participate in the study will be sent to IUNI faculty and graduate student affiliates 

directly. 

Please join us on November 1, and make sure to participate in the online survey by 

October 31! 

 

Description: 

Despite a lack of widespread training and complaints of “hairball” layouts, network 

visualizations enjoy growing popularity both inside and outside academic circles. As yet, no 

systematic study has been done to gather baseline literacy values for network visualizations 

across diverse populations and diverse visualization comprehension tasks.  In this Open Science 

Forum, I will describe my efforts to study and describe network visualization literacy, and I will 

invite the audience to participate in the research and contribute to our growing body of 

knowledge about these visualizations.



 

 

XIII. CV 

Address Bostock 226B-1H | Box 104732 | Durham, NC 27708 

Phone   919.684.8186  

E-mail   angela.zoss@duke.edu 

Website http://angelazoss.com  

Department http://library.duke.edu/data 

A. Education 

• Ph.D. Indiana University (completed: May 2018). 

Information Science.  Minor in Informatics. 

Supervised by Drs. Katy Börner, Hamid Ekbia, Staša Milojević, and Johan Bollen. 

• M.S. Cornell University (completed: May 2008). 

Communication.  Member of Culturally-Embedded Computing Group and HCI Lab. 

Supervised by Drs. Geri Gay, Tarleton Gillespie, and Phoebe Sengers. 

• B.A. Indiana University (completed: May 2003). 

Communication & Culture, Cognitive Science.  Minors in Computer Science, Music. 

B. Work Experience 

Data Visualization Coordinator (June 2012-present) 

Data and Visualization Services Department, Duke University Libraries – Durham, NC 

• Offers campus-wide support for data visualization projects and pedagogy 

• Develops and provides workshops on visualization software, graphic design, visual 

communication 



 

 

• Provides face-to-face and virtual consultation on data processing, analysis, and 

visualization 

• Develops and maintains web-based instructional materials 

• Contributes to intra- and inter-university events surrounding data analysis and 

visualization 

• Participates in visualization and library academic communities  

 

Adjunct Instructor (January 2010-May 2012) 

School of Library and Information Science, Indiana University – Bloomington, IN 

Courses  

taught: 

 

• Information Visualization (Spring 2012; Assistant Instructor Spring 

2011, Spring 2010) 

• Collection Development and Management (Summer 2011) 

• Emerging Technologies and Libraries (Summer 2011) 

 

Research Assistant (August 2008-August 2011) 

Cyberinfrastructure for Network Science Center, SLIS, Indiana University – 

Bloomington, IN 

• Design and execution of information visualizations using, e.g., Python, Sci2, Excel, 

Illustrator 

• Individual research projects employing methods from network science, bibliometrics, 

HCI, etc.  

• Contract work for NIH, NSF evaluating funding programs and award portfolios 



 

 

• Presentations/tutorials on and consultations for CNS InfoVis software at workshops, 

conferences 

• Writing and editing of CNS documentation, reports, publications 

 

arXiv.org Administrator (July 2006-July 2008) 

Digital Library and Information Technologies, Cornell University Library – Ithaca, NY 

• Validate and correct technical problems with text and image files submitted by users.  

• Administer customer support and help moderate the submission of manuscripts to an 

internationally renowned online repository of research documents.  

• Update and maintain documentation of work processes, redesign web templates and help 

pages, assist with presentations and reports about project status.  

• Conducted research projects to improve website design and organization. 

 

Project Euclid Student Computer Assistant (February-June 2006) 

Digital Library and Information Technologies, Cornell University Library – Ithaca, NY 

• Amended and debugged PERL scripts that parse digital publications and output XML 

documents for web lookup services.  

• Made corrections to code to maintain consistency and precision in look and feel of 

project websites.  

• Organized code and file systems to improve efficiency. 

 

HCI Graduate Student Intern (June-August 2005) 

Sandia National Laboratories – Albuquerque, NM 



 

 

• Collaborated with another graduate student to conduct an ethnographic research study on 

the communication and information seeking behaviors of two software development 

departments.  

• Gave three separate (joint) presentations on research methods and preliminary findings. 

 

Teaching Assistant (August 2004-May 2006) 

Communication Department, Cornell University – Ithaca, NY 

Courses  

taught: 

 

• Human-Computer Interaction (Co-Instructor, Spring 2006) 

• Psychology of Television and Beyond (Teaching Assistant, Fall 

2005) 

• Mass Media and Society (Grader, Spring 2005) 

• Oral Communication (Teaching Assistant, Fall 2004, Spring 2005) 

C. Publications 

• Zoss, A., Maltese, A., Uzzo, S., & Börner, K. (2018). Network visualization literacy: Novel 

approaches to measurement and instruction. In C. Cramer, S. Uzzo (Eds.), Network Science 

in Education. New York, NY: Springer. 

• Kouper, I., Zoss, A., Edelblute, T., Boyles, M., & Ekbia, H. (2016). Mental disorders over 

time: A dictionary-based approach to the analysis of knowledge domains. iConference 2016 

Proceedings, iSchools. DOI:10.9776/16303. 

• Zoss, A. (2016). Challenges and solutions for short-form data visualization instruction. In A. 

Joshi, E. Adar, S. Engle, M. Hearst, & D. Keefe (Eds.), Pedagogy of Data Visualization, 

Workshop at IEEE VIS 2016. 



 

 

• Zoss, A. M. (2016). Designing public visualizations of library data. In L. Magnuson (Ed.), 

Data Visualization: A Guide to Visual Storytelling for Librarians. Lanham, MD: Rowman & 

Littlefield Publishers, Inc. 

• Stipelman, B. A., Hall, K. L., Zoss, A., Okamoto, J., Stokols, D., & Börner, K. (2014). 

Mapping the impact of transdisciplinary research: A visual comparison of investigator-

initiated and team-based tobacco use research publications. Journal of Translational 

Medicine & Epidemiology, 2(2), 1033. 

• Zoss, A. M. (2013). Cognitive processes and traits related to graphic comprehension. In M. 

Huang & W. Huang (Eds.), Innovative Approaches of Data Visualization and Visual 

Analytics, IGI Global, 94-110.  

• Börner, K., Klavans, R., Patek, M., Zoss, A. M., Biberstine, J. R., Light, R. P., Larivière, V., 

& Boyack, K. W. (2012). Design and update of a classification system: The UCSD Map of 

Science. PLoS ONE, 7(7), e39464.  

• Zoss, A. (2012). Seeding a field: The growth of bibliometrics through co-authorship ties. 

Bulletin of the American Society for Information Science and Technology, 38(6), 29-32. 

DOI:10.1002/bult.2012.1720380608 

• Zoss, A. M., & Börner, K. (2012). Mapping interactions within the evolving Science of 

Science and Innovation Policy community. Scientometrics, 91(2), 631-644. 

• Stamper, M. J., Kong, C. H., Ma, N., Zoss, A. M., & Börner, K. (2011). MAPSustain: 

Visualising biomass and biofuel research. In M. Hohl (Ed.), Proceedings of Making Visible 

the Invisible: Art, Design and Science in Data Visualization, University of Huddersfield, 

United Kingdom, 57-61. 



 

 

• Zoss, A. M., Conover, M., & Börner, K. (2010). Where are the academic jobs? Interactive 

exploration of job advertisements in geospatial and topical space. In S.-K. Chai, J. Salerno, & 

P. L. Mabry (Eds.), Advances in Social Computing: Third International Conference on Social 

Computing, Behavioral Modeling and Prediction, SBP10: Bethesda, MD, March 30-31, 

Springer, 238-247. DOI:10.1007/978-3-642-12079-4_30 

• Börner, K., & Zoss, A. (2010). Evolving and emerging populations and topics. White paper 

for CISE/SBE Advisory Committee on Research Portfolio Analysis, National Science 

Foundation. Retrieved from: http://ivl.cns.iu.edu/km/pub/2010-borner-zoss-sbe-

evolvepop.pdf 

• Börner, K., Huang, W. (B.), Linnemeier, M., Duhon, R. J., Phillips, P., Ma, N., Zoss, A., 

Guo, H., & Price, M. A. (2010). Rete-netzwerk-red: Analyzing and visualizing scholarly 

networks using the Network Workbench tool. Scientometrics, 83(3), 863-876. 

DOI:10.1007/s11192-009-0149-0 

• Börner, K., Ma, N., Duhon, R. J., & Zoss, A. M. (2009). Science & technology assessment 

using open data and open code. IEEE Intelligent Systems, 24(4), 78-81. 

DOI:10.1109/MIS.2009.68 

• Zoss, A. M. (2008). From measure to leisure: Extending theory on technology in the 

workplace. Unpublished thesis. 

• Boehner, K., Thom-Santelli, J., Zoss, A., Gay, G., Barrett, T., & Hall, J. (2005). Imprints of 

place: Creative expressions of the museum experience. In Extended Abstracts of CHI 2005, 

New York: ACM Press. DOI:10.1145/1056808.1056881 

  



 

 

D. Select Presentations and Workshops 

• Monson, E., & Zoss, A. M. (2017). Data Visualization. Presentation for Duke University 

Library Advisory Board, Durham, NC. November 18, 2017. 

• Zoss, A. M. (2017). Network Visualization Literacy. Presentation for Indiana University 

Network Science Institute Open Science Forum, Bloomington, IN. November 1, 2017. 

• Zoss, A. M. (2017). Visualization for data science in R. Two-day course on visualization 

tools and techniques offered as a part of the Data Matters Data Science Short Course Series 

sponsored by the National Consortium for Data Science, The Odum Institute, and RENCI. 

August 10-11, 2017. 

• Zoss, A., Edelbute, T., & Kouper, I. (2017). Data quality, transparency and reproducibility in 

large bibliographic datasets. Presentation at IASSIST Annual Conference 2017, Lawrence, 

KS. May 26, 2017. 

• Herndon, J., Joque, J., & Zoss, A. (2017). Cheap, fast, or good - pick two: Data instruction in 

the age of data science. Panel presentation at IASSIST Annual Conference 2017, Lawrence, 

KS. May 24, 2017. 

• Zoss, A. M. (2017). Introduction to Data and Visualization for Humanities Scholars. Three 

days of custom training for Digital Scholarship Bootcamp, hosted by University of 

Tennessee, Knoxville. May 15 to 17, 2017. 

• Zoss, A. M. (2017). Visualization for Data Science. Webinar for DataBytes series, sponsored 

by the National Consortium for Data Science. May 3, 2017. 

• Zoss, A. M. (2017). Introduction to data visualization. One-day course on visualization tools 

and techniques offered as a part of the 2017 Data Science and Visualization Institute for 

Librarians, sponsored by North Carolina State University. April 27, 2017. 



 

 

• Zoss, A. M. (2017). Visualization Week, a week-long residency for Project VIS at Skidmore 

College, Sarasota Springs, NY. January 30 to February 3, 2017. 

• Zoss, A. M. (2016). Data Visualization Support. Webinar for Oklahoma State University 

Libraries staff. December 14, 2016. 

• Zoss, A. M. (2016). Discussant, panel on Curriculum Design, Pedagogy of Data 

Visualization Workshop at IEEE VIS 2016, Baltimore, MD. October 23, 2016. 

• Zoss, A. M., & White, R. (2016). Introduction to data visualization. Full-day data 

visualization workshop for Professional Development Day, sponsored by Special Libraries 

Association Southern California Chapter, Long Beach, CA. September 23, 2016. 

• Joque, J., Rutkowski, A., & Zoss, A. (2016). Making Sense of Data Through Visualization. 

Full-day pre-conference program on data visualization for librarians at the 2016 Annual 

meeting of the American Library Association, Orlando, FL. June 23, 2016. 

• Zoss, A. M. (2016). Introduction to information visualization. Two-day course on 

visualization tools and techniques offered as a part of the Data Matters Data Science Short 

Course Series sponsored by the National Consortium for Data Science, The Odum Institute, 

and RENCI. June 20-21, 2016. 

• Zoss, A. M. (2016). Introduction to data visualization. One-day course on visualization tools 

and techniques offered as a part of the 2016 Data and Visualization Institute for Librarians, 

sponsored by North Carolina State University. May 24, 2016. 

• Zoss, A. M. (2015). Introduction to data visualization. One-day course on visualization tools 

and techniques offered to subject librarians at North Carolina State University as a part of a 

week-long series of data science short courses. October 14, 2015. 



 

 

• Zoss, A. M., Joque, J. (2015). Data visualization in the library: Collections, tools, and 

scalable services. A program presented at the 2015 Annual meeting of the American Library 

Association, San Francisco, CA. June 27, 2015. 

• Zoss, A. M. (2015). Introduction to information visualization. Two-day course on 

visualization tools and techniques offered as a part of the Data Matters Data Science Short 

Course Series sponsored by the National Consortium for Data Science, The Odum Institute, 

and RENCI. June 22-23, 2015. 

• Zoss, A. M. (2015). Text-based disease classification of medical literature. Presentation for 

the Duke Center for Health Informatics Informatics Research Seminar Series, Durham, NC. 

February 11, 2015. 

• Zoss, A. M. (2015). Places & Spaces: Mapping Science at Duke. Presentation for the Duke 

University Libraries First Wednesday Series, Durham, NC. February 4, 2015. 

• Zoss, A. M. (2015). Places & Spaces: Mapping Science at Duke. Presentation for the Duke 

Media Arts + Sciences Rendezvous. January 29, 2015. 

• Zoss, A. M. (2015). Maps of Science exhibit tour. Presentation for the Duke Visualization 

Friday Forum, Durham, NC. January 23, 2015. 

• Zoss, A. M. (2014). Text-based disease classification of medical literature. Presentation for 

the Duke Visualization Friday Forum, Durham, NC. October 24, 2014. 

• Zoss, A. M. (2014). Creating clean, effective charts and graphs. Presentation at MediaLab: A 

Research Translation Boot Camp, Durham, NC. August 21, 2014. 

• Zoss, A. M. (2014). Design and support recommendations from data visualization research. 

Presentation at Science Boot Camp Southeast, Raleigh, NC. July 18, 2014. 



 

 

• Zoss, A. M. (2014). Discussant, panel on New Directions for Data Visualization in Library 

Public Services at ALA 2014, Las Vegas, NV. June 28, 2014. 

• Zoss, A. M. (2014). Coauthorship and email networks as proxies for collaboration. 

Presentation for the HASTAC NSF EAGER-sponsored event entitled Big (and mess) Data & 

Collaboration Workshop & Conference, Durham, NC. May 28, 2014. 

• Zoss, A. M. (2014). Practical data visualization. Presentation for Duke Science and Society’s 

Faculty SciComm Fellows Program, Durham, NC. April 20, 2014. 

• Zoss, A. M. (2014). Discussant, panel on Better PowerPoint Presentations for the Duke 

Nicholas Institute, Durham, NC. April 7, 2014. 

• Zoss, A. M. (2014). From imagination to visualization: Getting comfortable with data 

representations. Presentation for THATCamp Digital Knowledge 2014, Raleigh, NC. March 

28, 2014. 

• Zoss, A. M. (2014). Visualization for exploration, communication, and inspiration. 

Presentation for the Duke Information Initiative at Duke (iiD) Data Seminar Series, Durham, 

NC. February 12, 2014. 

• Zoss, A. M. (2013). Visualizing (:) A New Data Support Role for Duke University Libraries. 

Presentation for the Coalition for Networked Information (CNI) Fall 2013 Meeting, 

Washington DC. December 10, 2013. 

• Zoss, A. M. (2013). Discussant, panel on Digital Humanities Data for the Duke Doing DH 

series, Durham, NC. October 24, 2013.  

• Zoss, A. M. (2013). Visualization for teaching and research (A conference report). 

Presentation for the Duke Visualization Friday Forum, Durham, NC. September 6, 2013. 



 

 

• Zoss, A. M. (2013). Approaches to Teaching (Data Visualization) Tools. Presentation to 

Duke Munch & Mull Digital Humanities weekly discussion group, Durham, NC. March 18, 

2013. 

• Zoss, A. M. (2012). High Level Text Analysis and Techniques. Presentation for Duke 

University Libraries Text > Data seminar series, Durham, NC. October 25, 2012. 

• Zoss, A. (2012). Preparing to incorporate visualizations into a *metrics research project. 

Webinar sponsored by American Society for Information Science and Technology (ASIS&T) 

and its Special Interest Group on Metrics (SIG/MET), March 29, 2012. 

• Zoss, A. M., & Börner, K. (2011). Mapping interactions within the evolving Science of 

Science and Innovation Policy community. Presented at the 13th International Society of 

Scientometrics and Informetrics (ISSI) conference, Durban, South Africa. July 6, 2011. 

• Zoss, A. M. (2011). Testing comprehension of informetric visualizations. Presented at the 

Doctoral Forum of the 13th International Society of Scientometrics and Informetrics (ISSI) 

conference, Durban, South Africa. July 4, 2011. 

• Zoss, A. (2011). Tools for Multivariate, Evolving Scientometric Visualizations. Presented at 

2011 Workshop on Mining the Digital Traces of Science, Paris, France. March 23, 2011. 

• Zoss, A. (2011). Analysis and Visualization of Science. Presented at Workshop on Scholarly 

Communication and Bibliometrics, iConference 2011, Seattle, WA. February 8, 2011. 

• Zoss, A. (2010). Information Visualization and Network Workbench: Incorporating 

Cyberinfrastructure into Instruction. Presented at 2010 HarambeeNet Workshop on Social 

Networks as an Introduction to Computer Science, Durham, NC. July 8, 2010. 

• Zoss, A. M., Conover, M., & Börner, K. (2010). Where are the academic jobs? Interactive 

exploration of job advertisements in geospatial and topical space. Presented at 2010 



 

 

International Conference on Social Computing, Behavioral Modeling, & Prediction (SBP10), 

Bethesda, MD.  March 31, 2010.  

• Zoss, A. M. (2009). Analyzing and Visualizing the Structure and Evolution of the World 

Wide Science. Presented at the Information Kinetics: Egoviz Workshop hosted by Arteleku 

in San Sebastián, Spain. August 12, 2009 

• Zoss, A. M. (2009). Presentation to Complex Adaptive Systems and Computational 

Intelligence Research Group on Tagging Neural Network. May 13, 2009. 

• Zoss, A. M. (2009). Presentation to Cyberinfrastructure for Network Science Center on 

TTURC research project. March 9, 2009 

• Zoss, A., Börner, K., et al. (2008). Mapping Transdisciplinary Tobacco Use Research 

Centers (TTURC) Publications onto the Landscape of the Tobacco Research Field. Results 

presented at the 2008 Annual Conference of the American Evaluation Association in Denver, 

Colorado. November 8, 2008. 

• Zoss, A. M. (2008). Presentation to Cyberinfrastructure for Network Science Center on 

arXiv.org. September 29, 2008. 

• Wei, C., & Zoss, A. (2005). Patterns of communication and information exchange in 

software development. Presented at Sandia National Laboratories, Student Internship 

Symposium 2005. August 2005. 

• Boehner, K., Thom-Santelli, J., Zoss, A., Gay, G., Barrett, T., & Hall, J. (May). Imprints in 

the Museum: Social Navigation Technology for Participatory Expression. Poster presented at 

ICA 2005. May 2005. 

  



 

 

E. Awards 

• Zoss, A., Edelblute, T., & Kouper, I. (2014): Diseases across the Top Five Languages in 

PubMed. “Student Best Entry” award for visualization submitted to the Data Challenge for 

ACM Web Science 2014 Conference. DOI: 10.6084/m9.figshare.1033878 

F. Service Activities 

• Co-organized Duke Visualization Friday Forum, a weekly talk series on visualization. 

August 2012 to present. 

• Served as a judge on Triangle DataFest panel, 2014 to present. 

• Paper reviews: 

o SUI 2016 

o CHI 2016 

o IEEE VIS 2014 

• Hosted annual student Data Visualization Contest at Duke. Fall 2012 to Spring 2016.  

• Organized and hosted Places & Spaces: Mapping Science exhibit at Duke. January to April 

2015. 

• Organized and hosted Uncharted: Mapping the Spaces Between Disciplines – a half-day 

conference on interdisciplinarity at Duke. January 23, 2014. 

• Communications Officer and Webmaster of ASIS&T SIG-Metrics, October 2010 to 

November 2013 

• Chair of SLIS Doctoral Student Association, December 2008 to May 2012. 

o SLIS Friday Conversations Coordinator, August 2009 to May 2010. 

  



 

 

G. Software Experience 

• Information visualization: Excel, Tableau, d3.js, RAW, plot.ly, JMP, ggplot2 

• Geospatial visualization: ESRI ArcGIS, QGIS, Google Earth, CartoDB, TileMill 

• Network visualization: Gephi, Sci2, Network Workbench 

• Scientific visualization: Avizo 

• Graphic design: Adobe Illustrator, Inkscape 

• Data wrangling: Open Refine, Python 

• Statistical software: R, Stata, JMP, SAS 

H. Programming/Scripting Experience 

• Python 

• R 

• (Postgre|My)SQL 

• (X)HTML/CSS/JavaScript 

• Shell scripting 

• Regular expressions 

 


