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Abstract    

Network visualizations, a particular kind of data visualization, can be a useful way 
to visually represent the relationships in real or theoretical social, physical or bio-
logical systems. Network data can be generated and analyzed without being visu-
alized, but the visualizations are often more compelling and may be more easily 
understood than numbers that summarize network properties. With the growth of 
network science research across a variety of domains, there is an increased call for 
basic literacies in networks and the ability to use network visualization as a pow-
erful tool to understand interactions in complex systems.  

In this chapter, we discuss the current status of the research on network visuali-
zation literacy (NVL), how it is measured, what the current research says about 
NVL across a variety of contexts, ways experts are teaching to develop NVL, and 
recommendations based on our current understanding of best ways to improve 
NVL. 
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Introduction 

Broadly speaking, we visualize data to investigate complex relationships among 
variables and to communicate these relationships to others. Network visualizations 
translate network data into a visual representation of some combination of the ac-
tors, relationships, clusters, and data attributes. The value of visualizing the struc-
ture of relationships and connections is being recognized as an increasingly im-
portant 21st Century skill due to the need for all people to have a better 
understanding of complex phenomena across disciplines.  

A call for increased literacy about networks, writ large, resulted in the devel-
opment of essential concepts that can be taken as a set of goals for what a network 
literate person should know by the time they graduate high school (Sayama, 
Cramer, Porter, Sheetz, & Uzzo, 2016). For the purposes of this chapter, we define 
network visualization literacy (NVL) as the ability to read, interpret, and create 
visualizations of various types of networks. Research on NVL is still in its early 
phases, and recent studies suggest that NVL, and more generally data visualiza-
tion1 literacy, of youth and adults is not very high or broad (Börner, Balliet, 
Maltese, Uzzo, & Heimlich, 2015; Maltese, Harsh, & Svetina, 2015). 

Given this, we focus this chapter on a set of topics that together constitute an 
attempt to build a more comprehensive vision for NVL, including how to measure 
NVL, the role of NVL in teaching and learning, what the current research says 
about NVL across a variety of learning contexts, and recommendations based on 
our current understanding of best ways to improve NVL. Before we move into 
discussing these topics, we first define how we conceive of NVL. 

Network Visualizations 

The simplest network visualization is an adjacency list, where each node is item-
ized and followed by a list of all of the other nodes with which that node shares a 
link (its neighbors). In the example in Figure 1A, entity A has connections with B 
and D, and entity B has connections with A and C. Entities C (with B) and D (with 
A) only have singular connections with other nodes. 

Large networks are more likely to be visualized as matrices or node-link dia-
grams and can be displayed using one or more of several organizing principles. A 
matrix visualization (Figure 1B, representing the same network data as Figure 1A) 
is a tabular visualization where a node is represented by either a row or a column 
(or both) and a link is represented by a numerical value placed in the cell where a 
node row and a node column intersect. For example, in a matrix visualization of a 
network of individuals who send text messages to each other, a two-dimensional 

                                                             
1 In this chapter, “data visualization” is being used broadly to refer to information visualizations, 
scientific visualizations, and other conceptual or diagrammatic visualizations. 
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table is created where the same names appear in the row and column headers. 
Numerical values representing the number of texts sent between the two people 
will appear in the cell where the row of one individual and the column of the other 
intersect. Columns and rows can be ordered to highlight patterns in the data val-
ues, such as social cliques where all members text each other a lot (Eliassi-Rad & 
Henderson, 2010). 
 

 
Fig. 1. Sample network visualizations: adjacency list (A), matrix (B). 

In contrast to a matrix, a node-link diagram represents each actor as a single point 
using some graphical icon or symbol (often a circle). The presence of a link be-
tween two actors is visualized by the addition of a line or arc between the nodes 
(Figure 2). These components are often laid out such that smaller distances be-
tween nodes represent higher similarity (Figure 3), but nodes can also be arranged 
in a circular layout, perhaps in order of a certain property (e.g., a node’s number 
of links), or against a separate reference system like a geospatial map or a science 
map, where scientific disciplines are arranged in space using citation- or topic-
based similarity algorithms. (Figure 4). 

Researching Network Visualization Literacy 

In general, we define data visualization literacy as the ability to make meaning 
from and interpret patterns, trends, and correlations in visual representations of da-
ta (Börner, Maltese, Balliet, & Heimlich, 2016). In order to interpret visualiza-
tions, users need the ability to complete a combination of the following tasks: read 
text, interpret data arrangements (e.g., to see correlations, trends), and compare 
object properties (e.g., compare the sizes of nodes in a network given a legend). 
Users of any information visualization form may engage in a variety of tasks, in-
cluding both low-level tasks like data foraging and high-level tasks like problem- 
solving and composing (i.e., making decisions based on data trends) (Card, 
Mackinlay, & Shneiderman, 1999). 
As a subset of data visualization, network visualization is subject to many of the 
same kinds of interpretation issues present in other approaches to data visualiza-
tion. Given the range of abilities needed to interpret visualizations and the myriad  
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Fig. 2. Node-link diagrams typically represent nodes as circles and links as lines or arcs. 

 
Fig. 3. A simple node-link diagram, labeled with common network-related terminology. 

 
Fig. 4. Sample network visualizations, using a circular layout algorithm (A), a geographic layout 
(B), and a science map (C). 
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tasks possible, it is important to acknowledge the opportunities for network visual-
izations to be easily misinterpreted. These challenges arise through lack of clarity 
about the limits of network visualizations in interpreting very complex systems, 
and the many ways that characteristics and behaviors of network components can 
be represented. 

Representational literacy: Do individuals understand how network 
data are converted into visuals? 

There has been an ongoing concern among network science practitioners about the 
trajectory of network science as a way into deepening data understanding, particu-
larly of large data sets. A call for increased literacy about networks, writ large, has 
resulted in the articulation of a set of seven essential concepts and core ideas 
(Sayama et al., 2016). These essential concepts can be taken as a set of goals for 
what a network literate person should know by the time they graduate high school. 
The fourth essential concept is: “Visualizations can help provide an understanding 
of networks,” and the core ideas subsumed by it include: 

• Networks can be visualized in many different ways 
• Diagrams of a network can be drawn by connecting nodes to each other using 

edges 
• There are a variety of tools available for visualizing networks 
• Visualization of a network often helps to understand it and communicate ideas 

about connectivity in an intuitive, non-technical way 
• Creative information design plays a very important role in making an effective 

visualization 
• It is important to be careful when interpreting and evaluating visualizations be-

cause they typically do not tell the whole story about networks 

These essential concepts are relatively new, and scaling them into wide adoption 
will require robust validation and transformative professional development that in-
tegrates new curriculum and learning materials on network visualization into rig-
orous content knowledge and pedagogical approaches. 

Research on the skills required to interpret network visualizations and the prev-
alence and quality of those skills is still in early phases. Small-scale studies inves-
tigated the comprehension of the basic metaphors used by the diagrams 
(Fabrikant, Montello, Ruocco, & Middleton, 2004), the specific structural proper-
ties of network data (Ghoniem, Fekete, & Castagliola, 2005), and the graph design 
aesthetics that are most likely to improve performance on quantitative interpreta-
tion tasks (Bennett, Ryall, Spalteholz, & Gooch, 2007). In the sections that follow 
we outline some general questions related to NVL that have been investigated 
through research along with initial findings. 
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Metaphoric literacy: How intuitive is the arrangement of nodes 
and links in a network visualization? 

Network visualization literacy studies might address whether users understand the 
metaphoric properties of the visualization – that is, the implicit structures the visu-
alization is using to represent network data. Most node-link diagrams have con-
ventions that guide interpretation of the diagram, such as: 

• The positions of nodes are an approximation of the similarity between the 
nodes, based on an analysis of the links between nodes (and possibly also the 
weights of those links) 

• Nodes that are close together are more similar than nodes that are far apart (the 
distance-similarity metaphor) 

• The positions of nodes may be influenced by aesthetic choices that are encoded 
into the layout algorithm (e.g., to minimize edge crossing) or that are used to 
make manual adjustments (e.g., to eliminate overlap of two nodes by manual 
shifting) 

• Network visualizations can be rotated or reflected in space arbitrarily 
• Some network visualizations omit a portion of the links to better focus attention 

on the node positions and the most important link structures 
• Shorter links are usually stronger than longer links, even though longer links 

may draw the eye and shorter links may be so short that they almost disappear 

Studies of the metaphoric properties of network visualizations are rare and have 
focused primarily on the distance-similar metaphor. Fabrikant and colleagues 
(Fabrikant & Montello, 2008; Fabrikant et al., 2004; Fabrikant, Ruocco, 
Middleton, Montello, & Jörgensen, 2002) explored the judgments of novice users 
of network visualizations regarding the presumed similarity of two pairs of target 
nodes, manipulating a variety of topological and aesthetic variables: the Euclidean 
distance between the nodes, the cumulative measured length of links between the 
nodes, the number of intervening nodes on the path between the target nodes, and 
the width, darkness or hue of links. In all studies, participants overwhelmingly as-
sociated similarity with the length of the path between two nodes (in terms of ge-
ometric length or direct-line distance, not the number of links in the path).  Nodes 
close to each other “as the crow flies” were considered less similar to each other 
than nodes that had a shorter network connection. The only design features of a 
network that contradicted this powerful intuition were the width of a link and, to a 
lesser extent, the darkness of a link; wider links especially made nodes seem more 
similar to each other, even if those nodes had a longer measured path. 

In a final study, Fabrikant and Montello (2008) compared judgments of node 
similarity to judgments of node distance by making a slight change to the task in-
structions from their previous studies, such that participants answered questions 
about similarity and distance separately. When asked about distance, participants 
focused on Euclidean distance. When asked about similarity, participants focused 
on the geometric length of links. These results are encouraging, in that network 
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layout algorithms may make compromises about where a node is positioned, 
thereby rendering “as the crow flies” distances less meaningful than the presence 
of links. On the other hand, the length of links can be determined both by the lay-
out of the nodes and by whether the layout algorithm has a constraint on link 
length. Novices without a sophisticated understanding of layout algorithms will be 
likely to make judgments based on the length of the lines. 

One way of interpreting these findings is through the lens of basic perceptual 
skills. Even without special training, users of visualizations have natural skills for 
interpreting spatial information. These skills were described over a century ago by 
German psychologists as “Gestalt laws” (Ware, 2013), and they can help explain 
how components of data visualizations are understood on a very fundamental, per-
ceptual level. These laws are especially relevant for network visualizations, where 
training and even exposure are uncommon among a general population. The ar-
rangements of nodes in space and the connect of those nodes by lines have very 
strong connotations for users, and visualization designers must anticipate how that 
will affect interpretation. 

Topological literacy: Do individuals understand basic network 
properties when reading network visualizations? 

Beyond a user’s intuition about a network visualization, researchers may also want 
to investigate whether users can glean topological information (i.e., the mathemat-
ical or statistical properties of the network data underlying the diagram) from the 
visualization. Depending on the field of study, different parts of a network dataset 
may be considered especially important. In some fields, the clusters of nodes in 
the network are most important, whereas in other fields it is important to identify 
specific nodes that are highly influential. For example, a study could measure a 
user’s ability to identify nodes with a high betweenness centrality score (i.e., those 
nodes that lie on heavily travelled paths between node clusters) from the network 
visualization. Testing whether a user can read or estimate topological information 
about network data from a visualization can be an important way of assessing ei-
ther the user’s literacy or the visualization’s success. 

A user’s topological literacy is dependent on many factors: the user’s prior 
training with both network data and network visualizations, the choice of network 
layout algorithm (and by extension, the topological properties that are emphasized 
by the network layout algorithm), any additional design choices made by the pro-
ducer of the network visualization (e.g., adding color coding to emphasize a par-
ticular topological property), the specific properties of that particular network da-
taset (e.g., the size of the network, whether some nodes have notably more links 
than others), and the choice of topological property (i.e., “task”) to measure. 
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Effect of layout or base map choice 

Node-link diagrams have a wide variety of layout algorithms (Figure 5) that de-
termine the position of nodes and edges. The most common layout algorithms, es-
pecially for small or medium-sized networks, are algorithms drawn from physical 
analogies likes springs and forces, pushing and pulling the nodes into place based 
on the presence and/or weight of edges. The complexity of network data means 
that there is no one “correct” layout of the nodes and edges – two nodes may have 
a strong link to each other, but they may also be strongly connected to other nodes 
that are very far apart. Because of this complexity problem, different layout algo-
rithms have been developed to prioritize either different features of the data or to 
make certain types of visual judgments easier.  

One way of evaluating layout algorithms is to explore the extent to which the 
layout follows guidelines for graph design aesthetics (Börner, Chen, & Boyack, 
2003; Brandes, 2001). Many such graph aesthetic principles have been identified 
(Bennett et al., 2007), including: 

• Global and local symmetry 
• Non-overlapping nodes 
• Minimized edge crossings 
• Edges of equal length 
• Evenly spaced nodes 
• Visual representation or emphasis of clusters (e.g., intra-cluster edges are 

shortened, inter-cluster edges are lengthened) 
• Space-filling algorithms 
• Node-area awareness 
 

 
Fig. 5. Two visualizations of the same network data. The layout algorithm on the left prioritizes 
clusters, while the layout algorithm on the right prioritizes even node distribution. 
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The most widely studied aesthetic properties for network visualizations have been 
edge crossings and the angles created by those crossings, as these features have 
been found to have a large impact on topological literacy, and different layout al-
gorithms vary greatly in their performance on these aesthetic properties.  

Seminal work by Purchase and colleagues (Purchase, 1997, 2000; Purchase, 
Carrington, & Allder, 2002; Purchase, Cohen, & James, 1997; Ware, Purchase, 
Colpoys, & McGill, 2002) manipulated and tested a series of aesthetic properties 
of network visualizations to determine user performance on three tasks for find-
ing: a) the length of the shortest path between two nodes, b) the number of nodes 
that need to be removed to destroy a path between two nodes, and c) the number 
of edges that need to be removed to destroy a path between two nodes. Through a 
sequence of related studies, Purchase and colleagues (Purchase, 1997, 2000; 
Purchase et al., 2002; Purchase et al., 1997) systematically investigated the effects 
of edge bends, edge crossings, layout symmetry, angles between links as they 
leave a node, and use of an orthogonal grid for nodes and links. Results consistent-
ly emphasized that higher numbers of edge crossings and high numbers of edge 
bends generally reduce performance, measured via task accuracy and response 
time. Related work by Huang and colleagues (Huang, 2013, 2014; Huang, Eades, 
Hong, & Lin, 2013; Huang & Huang, 2011; Huang, Huang, & Lin, 2016) supports 
these results and suggests that edge crossings with small angles, especially, inhibit 
performance (measured by accuracy, response time, and self-reported mental ef-
fort) on tasks that require users to follow paths. 

As a follow-up to the original studies by Purchase and colleagues, Ware et al. 
(2002) introduced the concept of path continuity, or the lack of abrupt changes in 
direction of the path. This study focused on a single task – length of the shortest 
path between two nodes – and found that response time on this task increased as a 
result of the following changes (in order of influence): increase in number of edg-
es in shortest path, decrease in continuity of shortest path, increase in number of 
crossings on shortest path, and increase in number of branches off nodes in the 
shortest path. This suggests that for tasks requiring users to follow a path, any-
thing increasing the number of additional candidate paths or that makes it harder 
to focus on the shortest path will increase the time needed to complete the task. 
Rather than focusing on properties of the entire network visualization, it may 
make more sense to optimize visualizations for specific tasks and the aesthetic 
properties that will make those tasks easier.  

Effect of data overlay design choices 

Regardless of the layout algorithm used, other basic graphic design properties that 
apply to all visualizations should be considered when designing network visualiza-
tions. A series of core perceptual studies have addressed basic human perceptual 
abilities as they relate to interpreting information visualizations.  Both early stud-
ies and more recent replications (Cleveland & McGill, 1985; Heer & Bostock, 
2010) suggest that humans have aptitude for comparisons related to position in 
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space and length of an object.  Accuracy suffers when tasks require comparisons 
of area (like comparisons between two circles) or color value (like the compari-
sons between two shades of red). Node-link diagrams employ only relative posi-
tioning, and even those relative positions are the result of algorithms that may not 
have an optimal solution for a 2D visualization. In data visualization, there is often 
a tension between accuracy and aesthetics. The differences in positions in a node-
link diagram are not meant to be interpreted with great accuracy, despite human 
acuity for position comparisons. Conversely, node-link diagrams often employ 
size- and color-coding to emphasize topological data in the visualization despite 
our relatively low acuity with those visual encodings. These mismatches between 
node-link diagrams and our basic human perceptual systems suggest challenges 
for the use of network visualizations without supplemental numerical information. 

Effect of network data properties 

The basic properties of a network dataset can also have a large impact on the ef-
fectiveness of the visualization. Ghoniem, Fekete, and Castagliola (2005) com-
pared task performance of users viewing matrices and node-link diagrams, varying 
the size and densities of sample data sets. They found performance on all experi-
mental tasks deteriorated for node-link diagrams as the size increased from 20 
nodes to 50 nodes, and again between 50 nodes and 100 nodes. Increases in densi-
ty between 0.2 and 0.6 had mixed effects on task performance. They concluded 
that certain tasks are much harder with high-density networks, while others show 
no significant drop in accuracy as density increases. Similarly, Purchase, Cohen, 
and James (1997) found that an increase in density of node-link diagrams relates 
to a decrease in accuracy on tasks dealing with the connectivity of a network.  

Teaching Network Visualization Literacy 

As reviewed above, research within the visualization community focuses primarily 
on experimental studies of network visualization comprehension, limited to specif-
ic pre-determined tasks. A more robust understanding of network visualization lit-
eracy must also take into account both how users understand network visualiza-
tions when they encounter them in their daily life and how individuals can gain the 
expertise necessary to produce their own network visualizations. Thus, a combina-
tion of formal and informal education is desirable for empowering many to read 
and make network data visualizations. Here we present and discuss three existing 
approaches: Connections: the Nature of Networks (a public science museum exhi-
bition at the New York Hall of Science); NetSci High (a research program for high 
school students sponsored by Boston University, Binghamton University, USMA 
West Point, and the New York Hall of Science); and the Information Visualization 
MOOC course at Indiana University.  
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Network Visualization in Informal Learning Environments 

Informal learning environments (which includes unstructured learning opportuni-
ties such as museums, and personal learning) provide opportunities for acquaint-
ing the public with network visualization to increase NVL. Because of the un-
structured nature of these environments and the relative novelty of the use of 
network visualization as a tool for understanding complex systems, significant 
scaffolding is required for effective learning and knowledge transfer. 

Connections: The Nature of Networks 

The first public museum exhibition on network science was developed by the New 
York Hall of Science in 2004 (Uzzo & Siegel, 2010). The pedagogical goal of this 
exhibition was to acquaint museum visitors with the fundamentals of network sci-
ence, including the basic ways networks are represented as a series of links and 
nodes, but also, the generalizability and value of how most kinds of complex con-
nected systems can be represented as networks, the benefits of these kinds of rep-
resentations, and a basic characterization of complex network concepts (small 
worlds, scale-free properties and emergence). To address a very diverse audience 
(including all ages), it was theorized that the experience overall should engage 
 

 
Fig. 6. Ropes and Pulleys (left) conveys the complexity and dynamic of networks. Visitors turn 
the wheels to change the topology of the pulleys and ropes creating clusters and isolated nodes. 
NEAR (bottom right) simulates the dynamics of social networks using nearest neighbor algo-
rithms. 
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visitors in network concepts in a variety of ways, including visual representations, 
sound, and embodied or physical interaction with networks and network concepts. 

A significant challenge to developing this experience was that the notion of 
networks as a general principle was a new idea to visitors. In a preliminary visitor 
study (Cohen, 2002) visitors could readily identify computer and communications 
networks with little or no prompting, but they could not readily identify networks 
in either social or natural contexts. A summative evaluation of the exhibition 
(Rothenberg & Hart, 2006) indicated an increase in the number of visitors who 
identified networks in a broad spectrum of applications, particularly environmen-
tal and social and indicate that networks are a way to understand the world 
through the Connections exhibition. To achieve these outcomes, however, re-
quired intervention by floor staff to explain relevant network ideas represented in  
the exhibition. By far the most popular and effective aspects of the experience 
were where visitors physically interacted with networks.  

On balance, beyond positive affect and recognition of the ubiquity of networks, 
there was little transfer of knowledge. It was a much more difficult task for visi-
tors to deepen their understanding of the properties of networks. The implications 
of this work for NVL is that effective engagement of museum visitors in complex 
network ideas: a) is deeper when visualization is combined with hands-on activi-
ties where the visitor is engaged in network concepts, b) requires intervention of 
floor staff for understanding specific network properties, and c) exists within a re-
ality of an overall lack of understanding of networks among a diverse visitorship, 
indicating the need for more learning opportunities for the public about the im-
portance and utility of networks. 

Network Visualization in Formal Learning Environments 

For the sake of this chapter, formal learning environments circumscribe teaching 
and learning in primary, secondary, and post-secondary school-based environ-
ments. The following section details NVL activities in both university and high 
school classrooms. 

NetSci High 

Network visualizations have been taught at the university level for some time, but 
secondary educational environments only recently started exploring this topic. As 
with the introduction of any new idea, finding a way to fit networks into existing 
curriculum is difficult for teachers, who are accountable primarily for their stu-
dent’s performance on standardized tests. Because networks align well with math-
ematics and science content standards through the Common Core (National 
Governors Association Center for Best Practices & Council of Chief State School 
Officers, 2010) and Next Generation Science Standards (NGSS Lead States, 
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2013), it is reasonable to infuse these ideas into curriculum, create professional 
development opportunities, and also student and teacher research through guid-
ance by researchers and university faculty. 

NetSci High started in 2010 and is a first of its kind program to train high 
school teachers and students in network analysis techniques and have them apply 
it to research mentored by university researchers and graduate students (Cramer et 
al., 2015). An important aspect of this program is training of students and teach-
ers, which between 2012 and 2015 took the form of a 2-week “boot camp” at Bos-
ton University, where teachers and students were immersed in network concepts 
and trained in tools to equip them for mentored research during the school year. 
Research projects culminate in display and defense of research at the International 
School and Conference for Network Science. Findings from the evaluation of the 
Connections exhibition at the New York Hall of Science were useful to inform the 
development of the training and the role of network visualization in the program. 
Specifically, this involved exposing participants to a wide variety of applications 
of networks and how they are visualized, as well as providing hands-on and em-
bodied ways to demonstrate and engage with network concepts. Central to the 
training was skills development in the use of network analysis tools. NetworkX 
and Gephi were the primary tools taught, and various other analysis environments 
and techniques were included in the actual research phase. Program evaluation by  
Davis Square Research Associates (Faux, 2015) indicated significant gains in the 
understanding of a) the value of network visualization and its role in analysis of 
complex networks, b) the intimate relationship between analysis and visualization, 
c) the process of representing a variety of network attributes, which can be ac-
complished through a variety of tools, and d) the importance of an intensive ap-
proach to teaching novices network visualization as a tool to analyze and com-
municate findings in network science. 

Information Visualization MOOC 

In a long-running teaching and research program at Indiana University, teaching 
university students to understand and create network visualizations began by de-
veloping a systematic process for designing effective visualizations.  This frame-
work for creating visualizations has then been embedded into course structure, 
books, activities, software, and digital teaching aids, all of which allowed the 
graduate-level Information Visualization course to expand into a Massive Open 
Online Course (MOOC). 

Frameworks for Network Visualization Education 

Börner (2015) proposes a general process for converting data into a visualization 
(Figure 7), each step of which is based on an analysis of what the users of the vis-
ualization need and want from the visualization. First, data need to be parsed and 
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Fig. 7. Needs-driven workflow design with science map network example on right.  

read (READ). Extensive cleaning and preprocessing might be needed. Temporal, 
geospatial, topical, and network analyses might be performed to identify trends 
and patterns (ANALYZE). The visualization phase (VISUALIZE) comprises three 
major steps. First, the appropriate reference system must be identified. This refer-
ence system becomes the stable base map onto which data are layered. Second, the 
reference system might be modified (e.g., an axis may undergo a logarithmic 
transformation). Third, additional data variables are visually encoded using di-
verse graphic variable types. Ultimately, the visualization must be deployed 
(DEPLOY) (i.e., printed, published online, etc.) Last but not least, the visualiza-
tion is presented to stakeholders for validation and interpretation. Frequently, new 
visual insights lead to new questions, requiring additional data analysis and visual-
ization—the cycle repeats. 

This detailed formulation of different steps involved in visualization design 
open each step up for the critical discussions that are necessarily for gaining data 
visualization literacy.  For example, different needs from stakeholders, combined 
with different properties of the data, will lead to different visual design recom-
mendations.  In the case of network visualizations, the framework is especially 
helpful in guiding students through a series of design choices that are easy to dis-
miss as arbitrary because of the lack of standardized guidelines and training within 
the broader information visualization community.  

The Information Visualization MOOC (IVMOOC) (CNS Center at Indiana 
University, 2017) is a graduate-level course that has been continually developed 
and taught at Indiana University (IU) since 2013. Most students, hailing from over 
100 countries, take the course for free to earn a personalized letter of accomplish-
ment and digital Mozilla badge. Additionally, in Spring 2016, more than 120 stu-
dents registered for three IU credits as part of the Information and Library Science 
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M.S. program and the online Data Science M.S. Program offered by the School of 
Informatics and Computing. 

Course Structure 

The IVMOOC course aims to improve data visualization literacy—the exper-
tise and skills needed to read and make data visualizations. It teaches theoretical 
foundations and advanced tools that help turn data into insights. 

The course uses a combination of hands-on case studies showing how to read, 
analyze and visualize; theory lectures; client projects; homework assignments; and 
exams to empower students to design effective visualizations that take the needs 
of users into account. In the first week of the course, students are introduced to the 
visualization framework, which is used to structure the course’s schedule and ex-
ams, textbook (Börner & Polley, 2014), tools, and an IVMOOC flashcard app 
(discussed more below). In weeks two to six students use the framework to learn 
about a variety of types of visualizations, including network visualizations. In the 
last seven weeks of the course, students collaborate on real-world projects for a 
variety of clients. Results from previous student projects are published in Börner 
and Polley (2014). 

Each unit includes theory and hands-on sections. Each theory section compris-
es: 

• Examples of exemplar visualizations 
• Visualization goals 
• Key terminology 
• General visualization types and their names 
• Workflow design, and 
• Discussion of specific algorithms 

Each hands-on section guides students through user- and task-analysis; data prepa-
ration, analysis, and visualization; deployment; and the interpretation of visualiza-
tions. The sections feature in-depth instruction on how to navigate and operate 
several software programs used to visualize information. Furthermore, students 
learn the skills needed to visualize their own data, allowing them to create unique 
visualizations.  

The theory component and the hands-on component are standalone, meaning 
that participants can read/watch whichever section they are more interested in 
first, and then review the other section. After the theory videos there are self-
assessments, and after the hands-on videos are short homework assignments. 
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Textbook 

The Visual Insights textbook (Börner & Polley, 2014) was designed as a compan-
ion resource for students taking the IVMOOC. It contains all theory and work-
flows covered in the course. While the Atlas of Knowledge (Börner, 2015) aims to 
feature timeless knowledge, or principles that are indifferent to culture, gender, 
nationality, or history, the IVMOOC and associated textbook cover “timely 
knowledge,” or the most current data formats, tools, and workflows used to con-
vert data into insights. 

Analogous to the IVMOOC course, Chapter 1 introduces the visualization 
framework intended to help non-experts assemble advanced analysis workflows 
and design different visualization layers. It also showcases how the framework can 
be applied to “dissect visualizations” for optimization or interpretation. Chapters 
2–7 in the textbook introduce the different types of analysis: temporal (when), ge-
ospatial (where), topical (what), and trees and networks (with whom). Chapter 8 
presents exemplary case studies that resulted from IVMOOC real-world client 
projects. 

Software 

Every student who registers for the IVMOOC gets experience using the Sci2 Tool 
(Sci2 Team, 2009), a software application for data analysis and visualization de-
veloped by Börner at IU. The NSF-funded tool has been in development since 
2008 and benefits from more than 10 years of tool development and feedback 
from many of the more than 150,000 tool users in academia, industry, and gov-
ernment. The tool supports the temporal, geospatial, topical, and network analysis 
and visualization of scholarly datasets at the micro (individual), meso (local), and 
macro (global) levels. It implements the visualization framework to help users as-
semble more than 180 algorithms into proper workflows.  Specifically, it organiz-
es the main menu structure by workflow steps (from reading and preprocessing 
data to analyzing and visualizing data and saving out results) and by visual analy-
sis type (Temporal, Geospatial, Topical, Networks) using the visualization frame-
work discussed above. 

Flashcard App 

Visualization designers and users must have a basic understanding of different 
visualizations – their types and the visual encodings used. They must be able to 
recognize and name visualizations in order to refer to and talk about visualiza-
tions. The IVMOOC Flashcard app lets users browse more than 60 information 
visualizations. Users swipe to navigate through visualizations, pinch in/out to 
zoom, and tap to turn the card to access information about: name of the visualiza-
tion, visualization type (e.g., graph, map, network layout), visual encoding used 
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(graphic symbol types, and graphic variable types), and reference to additional in-
formation provided in the Atlas of Knowledge (Börner, 2015). The Flashcard app, 
created in Unity3D, supports both Android and iOS. 

What are our best ways forward? 

Based on our review of relevant research and experiences with teaching and learn-
ing with network visualization in formal and informal settings, we make the fol-
lowing recommendations for improving network visualization literacy: 

• Use data that are meaningful to the learner. Data that are personally relevant to, 
directly collected from/by or selected by the learner will increase their engage-
ment and familiarity with the data. Similarly, when asking questions of the da-
ta, instructors are urged to pick tasks that make sense for network visualizations 
but also those that make sense for the selected data and for the research ques-
tions the user is investigating.  

• When introducing novices to networks and visualization techniques, best prac-
tices would suggest the use of small networks with low density to increase un-
derstanding.  

• When designing visualizations, leverage core perception mechanisms by fol-
lowing Gestalt grouping, continuity, and proximity principles. Additionally, 
endorsing certain types of aesthetic principles like minimal edge crossing and 
path continuity should improve the likelihood of understanding by the public. 

• Following best instructional practices, educators should engage novices in low 
complexity tasks with greater support and move toward higher complexity 
tasks and networks, withdrawing support as the learners gain competence.  

• Network scientists need to provide explicit instruction on how readers/users 
should read the visualizations they create. Clearly outlining what conclusions 
are and are not valid will help users in interpretation. This should include use of 
standardized terminologies to leverage prior knowledge.  

Discussion 

In conclusion, there is ample evidence that network visualization is an important 
tool for understanding complex connected systems. But it is important that it be 
thoughtfully combined with other pathways into understanding what networks are, 
their characteristics and behaviors.  

To enact these recommendations and advance the nascent research on NVL, we 
invite close collaboration with others on developing both widely adoptable visual-
ization frameworks that can be used to teach information visualization theory and 
methods, and also custom development of a more refined and meaningful defini-
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tion and framework for NVL. Efforts must be made to develop guidelines that 
recommend skills and learning outcomes and competencies for both learners that 
have taken information visualization courses in formal settings and a wide audi-
ence of citizens and policymakers. Additionally, the visualization community 
should work together openly to standardize terminology, theoretical frameworks 
and visualization techniques. This work should involve the development, testing, 
and implementation of course designs, tools, materials and activities to increase 
student competency with interpreting and implementing visualizations, preparing 
them to evangelize these methods and practices in research, practice, and training.  
Finally, open data, open code, and open education are true enablers that can em-
power anyone to convert data into visual insights. 
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