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Feature Review
With several large-scale human brain projects currently
underway and a range of neuroimaging techniques
growing in availability to researchers, the amount and
diversity of data relevant for understanding the human
brain is increasing rapidly. A complete understanding of
the brain must incorporate information about 3D neural
location, activity, timing, and task. Data mining, high-
performance computing, and visualization can serve as
tools that augment human intellect; however, the result-
ing visualizations must take into account human abili-
ties and limitations to be effective tools for exploration
and communication. In this feature review, we discuss
key challenges and opportunities that arise when
leveraging the sophisticated perceptual and conceptual
processing of the human brain to help researchers un-
derstand brain structure, function, and behavior.

Exploiting the perceptual processes of brains to
understand brains
The human brain is one of the most complex systems that
scientists have ever tried to comprehend. Each of its
86 billion neurons has an average of approximately
5000 synapses, resulting in roughly 430 trillion synapses
in the cerebral cortex alone, and perhaps 1000 times as
many molecular-scale switches [1]. In the face of this
complexity, how can scientists hope to circumvent the
Catch-22 suggested by the adage ‘If the human brain were
so simple that we could understand it, then we would be so
simple that we couldn’t’ [2]? We believe that progress in
understanding the brain will crucially depend on develop-
ing data-mining techniques and visualizations that make
structural, functional, and behavioral neural patterns
intuitively graspable. Due to the complexity of the brain
and the diversity and amount of data that scientists collect
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from it, understanding it will likely be an effort necessi-
tating coordination among experts from different fields of
sciences: social sciences, life sciences, physical sciences,
mathematics, computer science, as well as engineering.
Cognitive science, because of its interdisciplinary nature,
is well positioned to supply useful methods and tools for
understanding the human brain because it is an interdis-
ciplinary home to scientists interested in the power and
limitations of human visual processing, the determinants
of effective visual depictions, and neuroscientists with
detailed knowledge of neural patterns.

One of the most promising approaches for enabling us
humans to understand our own brains is to develop visu-
alization tools that take advantage of the millions of years
of evolutionary research and development that have gone
into construction of the human visual systems. By harnes-
sing data mining and visualization tools, extremely large
data sets that would otherwise be impenetrably complex
can be converted into carefully crafted visual representa-
tions that can be effectively processed by the brain itself.
Some of the most commonly used visualization choices for
neuroscience data are detailed in Box 1.

Sophisticated understandings of brain structure, func-
tion, and behavior depend on re-representing quantitative
and qualitative data, but seemingly neutral choices regard-
ing data acquisition methodology, data analysis, and
visualization can have a major influence on the final
interpretation of the results. As an example, consider
scientific understanding of how brain regions are inter-
connected, a core pursuit of neuroscience [3]. White-matter
tracts are the principal anatomical structure responsible
for transmitting signals from one cortical region to other
distant regions. Unfortunately, a simple brain dissection
will not reveal the separate white-matter tracts because
they are hopelessly intermeshed by visual inspection. To
appreciate the organization of white matter into tracts,
modern, multistage data transformation processes can
produce the visualizations shown in Figure 1. Figure 1A
and B contrast the anatomy of the corticospinal tract and
arcuate fasciculus, estimated with two different commonly
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Box 1. Guided visualization design and frameworks

Making sense of data by designing appropriate visualizations is a

complex process that involves not only human perception and cogni-

tion [88,89], but also data mining, visualization algorithms, and user

interfaces. Different conceptualizations of the overall process have

been developed to understand and optimize this process, and to

improve human decision-making capabilities. Among others, process

models focus on key sense-making leverage points [90], the match

between pre-conceptualizations and expectations of visualization de-

signers and visualization readers [91], major data transformation and

visual mappings [92], or describing visualization design and interpre-

tation to support workflow optimization and tool design. Key visuali-

zation types are listed in Table I.

Table I. Key visualization types

Name Description Examplesa

Tables Ordered arrangements of rows and columns in a grid;

grid cells may contain geometric, linguistic, or pictorial

symbols

Figure 4A

Charts Depict quantitative and qualitative data without using a

well-defined reference system

Examples are pie charts in which the sequence of ‘pie slices’ and

the overall size of a ‘pie’ are arbitrary, or word clouds

Graphs Plot quantitative and/or qualitative data variables to a

well-defined reference system, such as coordinates on

a horizontal or vertical axis

Figures 2, 3A, 3C

Maps Display data records visually according to their physical

(spatial) relations and show how data are distributed

spatially

Figures 1A–F, 3B, 4C–E, 5A–C, 6A–D

Network layouts Use nodes to represent sets of data records, and links

connecting nodes to represent relations between those

records

Figure 4B; see also network overlays on brain maps in Figure 4C,D

aFigures cited refer to those in the main text.
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used tractography methods. The estimated anatomy dif-
fers substantially. Furthermore, the tracts project to strik-
ingly different cortical regions (Figure 1C,D; [4–6]).
Research groups using a variety of related methods have
come to different conclusions regarding the geometrical
structure of the human white-matter tracts. For example,
some researchers have claimed that tracts are organized in
sheaths of white-matter crossings with strict geometrical
structure [7], as shown in Figure 1E, whereas other
researchers have criticized the evidence supporting such
strict organization [8].

Figure 1 and the corresponding debate [7,8] show one
shortcoming of human perception and cognition: existing
preconceptions impact future actions, including the col-
lection, analysis, and visualization of data on the human
brain. If one were to view only one of the visualizations
(A)

(B)

–1cm (C)

(D)

Figure 1. Anatomical visualization methods of human white matter. The panel on the

fasciculus (AF; purple) identified using diffusion-weighted magnetic resonance imaging

depicts cortical projection zones of the AF estimated using deterministic (C) and pr

apparently organized in sheaths with 908 crossings (E) [7] or crossing at different angle

2

in isolation, one might well be convinced that the visu-
alization simply reflects the ‘true’ structure of white-
matter tracts: the cycle of subjective perception and
cognition can result in a self-fulfilling prophecy. The
beauty and concreteness of visualizations can encourage
investigators to take them literally, at face value
[9,10]. However, all visualizations are created using
many highly parameterized data cleaning, merging,
analysis, and visualization algorithms (Box 2), and the
interest to see certain patterns and dynamics might well
lead to attempts to extract and emphasize them in the
final rendering, as the juxtaposition of the different
visualizations in Figure 1 highlights. That is, proper
selection of analyses and visualizations are key for the
design of objective visualizations, as are expert inter-
pretations of visualizations.
(F)

(E)

45

60
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 left depicts trajectories of the human corticospinal tract (CST; gold) and arcuate

 and deterministic (A) or probabilistic (B) tractography methods. The center panel

obabilistic (D) tractography. The right-hand panel depicts white-matter fascicles

s (F) [8]. Reproduced, with permission, from [4] (A–D), [7] (E), and [8] (F).



Box 2. Guided visualization design and frameworks

Any visualization can theoretically be analyzed and interpreted as a

path along the columns of Table I. For example, given a scientific

question, the question type and detailed insight need is identified, then

data of different scale(s) are acquired, a visualization type is selected,

and relevant geometric symbol types are chosen and visually modified

(e.g., color coded) using different graphic variable types. Finally,

different interaction types might be implemented to facilitate the

interactive exploration of the visualization.

When visualizing the structure and function of the brain, the data that

need to be represented are high dimensional and inherently complex.

Many different types of visualization can be used and many different

mappings of data attributes to visual attributes are possible. To ease the

design of effective visualizations, different visualization frameworks (also

called taxonomies or classifications) have been developed in statistics,

information visualization, and graphic design [93–99]. Recent work [14]

provides predefined types for the process of data visualization, including

different task types, such as temporal (answering ‘when’ questions),

spatial (‘where’), topical (‘what’), and trees and network layouts (‘with

whom’), and common insight need types (Table I, column 1).

Given well-defined general ‘task types’ and specific ‘insight need

types,’ the final visualization will also depend on the type of data (see

‘data scale types; Table I, column 2), the available ‘visualization types

(Table I, column 3), graphic symbol types (Table I, column 4), and

‘graphic variable types’ (Table I, column 5; Note that each type is

further detailed in [14] (e.g., ‘retinal: form’ includes size, shape, rota-

tion, curvature, angle and closure; ‘retinal: color’ subsumes value, hue,

and saturation) that can be used, and the level of interaction required

by the final visualization (Table I, column 6).

Table I. Visualization framework designed to ease the selection and design of data visualizationsa

Insight need types Data scale

types

Visualization types Graphic symbol types Graphic variable

types

Interaction

types

� Categorize/cluster

� Order/rank/sort

� Distributions (also outliers, gaps)

� Comparisons

� Trends (process and time)

� Geospatial

� Compositions (also of text)

� Correlations/relationships

� Nominal

� Ordinal

� Interval

� Ratio

� Table

� Chart

� Graph

� Map

� Network layout

� Geometric symbols

� point

� line

� area

� surface

� volume

� Linguistic symbols

� text

� numerals

� punctuation marks

� Pictorial symbols

� images

� icons

� statistical glyphs

� Spatial

� position (x, y, z)

� Retinal

� form

� color

� optics

� motion

� Overview

� Zoom

� Search and locate

� Filter

� Details on demand

� History

� Extract

� Link and brush

� Projection

� Distortion

aAdapted from [14].
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The power of visualizations for abetting scientific inter-
pretation is also a danger. Seeing is believing, and readers
will take visualizations as reflecting ‘the truth’ in a direct
way, without reflecting on the long chain that transforms
brain data into visualizations. Despite their concreteness,
neuroimages are more distantly related to actual brain
activity than photographs are to their subjects [9]. One way
to ameliorate the human bias to overinterpret concrete
depictions is to concretely show the sources of uncertainty
and variability within the visualization itself (Box 3; Rec-
ommendation no. 3 in Table 1). One survey of 1451 neu-
roimages indicated that only 20% of 3D depictions include
information about the uncertainty of the data, suggesting
that considerable improvement is possible [11].

This article has several goals. For researchers of percep-
tion, we describe the case study of interpreting neuroima-
gery and the unique perspective it provides for accounts of
high-level perception. For neuroscientists, we provide
recommendations for the design of effective brain visualiza-
tions informed by cognitive science principles. For philoso-
phers and sociologists of science, we present neuroimagery
as a compelling case in which theories and data mutually
inform one another, in large part because the graphic pre-
sentation that has been made visually immediate is the
result of a convoluted chain of theory-infused processing.

Data sources for visualizations in neuroscience
Human brain data are high volume and, crucially, 4D:
mental functions are commonly associated with brain
regions localized in three spatial dimensions and neural
activity or the biology of the brain tissue is tracked in a
fourth dimension of time. In addition, brain data is multi-
level, ranging from the molecular and genomics (micro) level
to the social (macro) level when correlations of brain activity
with human behavior or social networks are studied.

Figure 2 [12,13] shows the enormous temporal and
spatial scale covered by data relevant for the study of the
human brain together with the types of instrument and
method used to acquire the data. Individual or populations
of neural action potentials are measured by intracellular or
extracellular electrodes; extracellular neurotransmitter
levels can be acquired via micropipettes; synchronized elec-
trical activity of entire populations of neurons are measured
by electroencephalography (EEG); the degree of neural
synchrony across different regions is derived from either
extracellular or intracranial electrodes; the optical absorp-
tion of oxygenated hemoglobin is measured by diffuse opti-
cal imaging and near-infrared spectroscopy; the absorption
of metabolically active chemicals is measured by positron
emission tomography (PET); and changes in blood flow
associated with neural activity are measured by functional
magnetic resonance imaging (fMRI). The different types of
data are represented using diverse, but increasingly stan-
dardized, visualizations.

Principles of visual interpretation of data visualization
The number, size, and complexity of data sets being pro-
duced, as well as the number of experts in and publications
3



Box 3. Fundamental elements for visualization: measurements, estimates, and variability

So far, we have reviewed qualitative aspects of data visualization and

how interpretations are affected by perception and cognition. Here, we

discuss five fundamental elements to be visualized: (i) measurements

of data. This is often the mean or median measurement for one or more

experimental condition; (ii) the reliability of the measurements, ex-

pressing how variable are the measurements in the data, for example

how variable the data are if acquired more than once; (iii) the estimates

of a model in predicting the data. Scientists often try to describe or

predict the data using models; (iv) The reliability of the model predic-

tion. Most models in neuroscience have some probabilistic compo-

nent that can affect model prediction. This can come, for example,

from the choice of parameters assumed when fitting the model or

because of variation in initial seeds; (v) model accuracy and/or error.

All models have some degree of accuracy. Model error is independent

of how reliable the model estimates are; a model can be very reliable

(its predictions show little variability when the mode is rerun) but not

accurate (its predictions are far from the actual data). Alternatively, a

model can be very accurate on average but predict very different

values every time it is fit to the data.

Figure IA summarizes these five elements and their relation.

Figure IB–G shows an example of the elements visualized for a case

study of the human connectome and white-matter measurements in

vivo. Most often investigators visualize (i) and (iii), (ii) and (iv) are rarely

visualized, the distinction between (iv) and (v) is rarely made and

model error (v) is often neglected. Visualizing uncertainty in the data

(ii) and model error (v) is fundamental for giving scientists an under-

standing that findings and model fits should be assessed in a quanti-

tative manner, and that point estimates for data measurements and

model predictions should not be interpreted as either exact or certain

despite their visual exactness.
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Figure I. Measurements, estimates, and variability. (A) Schematic of fundamental elements to visualize and their relations. (B) First measurement of a single diffusion

direction shown on a coronal slice of a living human brain. (C) Second measurement. Repeated measurement of the same direction, collected during the same scanning

session, using the same scanner, sequence, and subject. (D) Data reliability. The variability in the data when collected twice. The root mean-squared error of the data is

expressed by the color map. (E) Brain connectome model. A set of connections from a human connectome (comprising part of the corona radiata) estimated using the

first measurement (B). (F) Model prediction. The estimate of the model of the measurement taken in (B), obtained using a linear fascicle evaluation method [59]. (G)

Model error. Estimate of the root mean-squared error of the model, estimated using the model prediction (F), built using the first data set (B) in predicting the second

data set (C). Reproduced, with permission, from [6] (B–D,F,G).
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on human brain research, are increasing exponentially
[3,6]. Data mining and visualization are used to make
sense of what is known and to communicate key insights
[14–16]. Understanding the capabilities and limitations of
human visual image interpretation is paramount in mak-
ing effective brain visualizations. Hereafter, we focus on
six aspects of visual interpretation that have particular
relevance to how scientists construct and interpret data.

Bottom-up processes

What humans perceive partially depends on what they
look for and what they know, and, in turn, what they know
is shaped by their previous perceptions, as exemplified by
the different visualizations and accounts in Figure 1E and
1F. Bottom-up processes take in sensory information and
transform it into more abstract forms, moving information
in a feed-forward manner from peripheral sensory organs
to identification and interpretation activities. Top-down
processing involves influences of concepts, experience, and
context on perception. Both processes and their bidirec-
tional interactions [17,18] contribute to the kind of high-
level perception involved in interpreting visualizations.

Bottom-up processes, arising from the low-level visual
properties of visualizations, can have a profound influence
on how easy different sources of information are to
4

cognitively process. For example, the choice of color maps
in fMRI visualizations affects the salience of different brain
activity levels [19]. Although it might be thought that using
the full spectrum of visible light with a rainbow gradient is
ideal for making color discriminations, humans perceive
color hues categorically rather than in terms of a single
continuous dimension [20]. Using a rainbow color map
often leads humans to mistakenly believe that the data
are organized into discrete levels of activity [21]. Different
colors also have different saliences, which will influence
how attention is naturally directed to them [22,23]. These
differences can be leveraged to create intuitive visualiza-
tions of uncertainty in data, by using less-saturated colors
to represent data with less certainty [24]. Data that are
naturally ordered in terms of magnitude (e.g., oxygen
consumption level, spikes/seconds, or electrical potential)
are better depicted by continuously perceived dimensions,
such as luminance or color saturation, whereas categorical
data (e.g., different experimental conditions or anatomi-
cally separable brain regions) are better represented by
categorically perceived dimensions, such as hue or shape
[25]. Other applications of aligning graphical objects with
properties of data include recommendations to: (i) use
spatial proximity to reflect similarity [26]; (ii) use lines
to represent connections, points to represent locations, and



Table 1. Recommendations for visualization practices and examples from neuroscience

Recommendation Examples

1. Devote a substantial amount of research time to

creating illustrative visualizations; view visualizations

not as superficial depictions of scientific

understandings, but as devices for generating and

communicating understandings

If you only have 60 h to do your research, spend 20 h collecting data, 20 h analyzing

data, and 20 h finding the best visualization and communication method for your

data analysis results

2. Consider the audience for, and purpose of, a

visualization

More details for experts and exploration, but fewer details for novices and

communication; display intact cortical surface for spatial fidelity, but inflate or

explode surface to provide global overview of entire surface

3. Show uncertainty in visualizations Depict uncertainty in data with error bars, opacity, saturation, thickness, ranges

rather than points, and distributions rather than central tendencies

4. Use strategic simplifications and idealizations Bundle together tracts or connectivity paths (Figure 1A, main text) to avoid

overcomplicated networks; align multiple brains or trials and show their overlap by

brightness, opacity, or size; display complex connectivity patterns with 2D matrices;

further simplify connectivity matrices with multidimensional scaling; use latent

factor methods (MDS, PCA, ICA, factor analysis, hidden Markov models, Expectation

Maximization) to compress high-dimensional data sets

5. Show all critical information Use exploded brain diagrams to show entire cortical surface without occlusion;

translucency; projection of brain activity onto panels; be explicit about the

conventions and tools used; user-controlled rotation

6. Align graphic symbol types and graphic variable

types with data scale types to be visualized and the

insight needs to be satisfied

Represent continuous dimensions by saturation, size, or position on x-axis;

represent categorical dimensions by shape or color hue; use time in animation to

represent time since stimulus onset; represent positive EEG voltages by

displacement above, not below, a horizontal midline

7. Carefully consider how best to align data from

different trials, brains, stimuli, and studies

Consider aligning brains by cortical surface and anatomical anchor points rather

than volumetric coordinates; use multidimensional scaling techniques to establish

second-order relational similarities between stimuli

8. Create and use interactive visualization tools that

support exploratory data analysis and show how

complex data unfold over time

Relevant tools include mrTools, Vistasoft, Brain Voyager, Explore DTI, Camino,

FreeSurfer, PyCortex, MRI Studio, AFNI, BrainBrowser, BrainVisa, EEGLab, DSI

Studio, Caret, VTK, Dipy, FLS, IPython. Connectome Visualization Utility, TrackVis,

LONI, Neuroimagery that can be scanned, rotated, and scaled; user-controlled

overlays on top of a base map; user-controlled animations representing brain

activity over time

9. Establish infrastructures that allow for sharing of

data, analysis methods, visualization algorithms, and

experimental methods in support of replicable results

and efficient research and training

Use Flickr to share brain imaging data and visualizations, GitHub to share code,

Medline to share results, open journals such as Scientific Data to share data and

workflows
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boxes to represent sets containment [16]; (iii) if consumers
of a visualization need to be able to efficiently search for
particular events, make sure that those events are signaled
by preattentively processed features, such as discriminable
colors, oriented lines, or motions, rather than conjunctions
of simple features or the absence of features [27]; and (iv)
use vertically higher positions, brighter colors, and larger
objects to represent positive values [28,29].

This fourth principle is generally followed by investiga-
tors, for example, see Figures 1C,D, 3A, and 4A, where
‘more’ in data is represented by brighter colors. However, it
is routinely violated by traditional EEG recordings, in
which positive voltage is represented as displacement
below a vertical midline [30]. Another surprising violation
of the general principle of visual-data alignment is the use
of line thickness in Figure 4B. It is natural for readers to
interpret the thickness of the lines connecting brain
regions as reflecting the extent of their connectivity, when
in fact the line thickness simply reflects the surface areas of
the regions being connected. The authors of this illustra-
tion state clearly in the figure caption and methods that
thickness does not reflect extent of connectivity, but mis-
interpretations are almost unavoidable because this align-
ment is so natural. For cases in which convention and
principles of perception conflict, we generally recommend
honoring the latter. Conforming to perceptually unjustified
standards only further reinforces those standards.
Adopting improved design practices may cause temporary
confusion and require initial explication, but will promote
understanding in the long run.

Top-down processes

Although we know of no empirical research directly bear-
ing on the interpretation of brain visualizations by scien-
tists, there is strong evidence for top-down effects on the
interpretation of other similarly complex visualizations,
such as graphs [16], weather maps [31,32], and air traffic
control displays [33]. In these and other domains, users of a
visualization prioritize their inquiry of it according to their
knowledge, needs, and expectations. When scientists cre-
ate visualizations, these top-down factors influence the
selection of data, algorithms, parameter values, and the
visual encoding and presentation of data variables. When
readers interpret visualizations, top-down factors influ-
ence attention to features of the visualization, the encoding
of features into internal representations, and inferences
drawn from these representations [34]. One implication of
the strong top-down nature of complex visualization gen-
eration and interpretation is that different scientists,
equipped with different theories, will often generate dif-
ferent visualizations and, in turn, interpretations. That is,
visualizations both reflect and motivate theorizing. In the
same way that early microscopists disregarded visual
evidence for the existence of mitochondria within cells
5
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Figure 2. Spatiotemporal resolution of techniques in neuroscience. The spatiotemporal domain of neuroscience methods available for the study of the nervous system in

2014 is compared with that in 1988 [13] (inset). Colored regions represent the domain of spatial and temporal resolution for each method. Open regions represent

measurement methods, and filled regions represent stimulation methods. The large gap in measurement resolution in the middle of the graph in 1988 has since been filled

by the advent of modern in vivo neuroimaging measurements of the human brain. Reproduced, with permission, from [12].
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because their presence was not predicted, so too can many
neuroscientists miss a substantial white-matter tract be-
cause it is not predicted by theories [35,36].

The extent of top-down processing in visualizations
becomes even greater if one takes an ‘extended mind’
[37] perspective on the process of perceptual interpretation
so as to include the methods and analyses that a scientist
uses to craft a visualization. If one considers perceptual
interpretation to be a protracted, distributed, and collabo-
rative activity that involves data collection, identification
of important measurements, data filtering, data normali-
zation, visualization construction, visual inquiry, and iter-
ative refinement along all of these steps, then it becomes
easy to understand how different laboratories can use
similar tasks with similar groups of participants, focusing
on similar brain regions, but still come to markedly differ-
ent conclusions about whether specific functional specia-
lizations even exist or how the brain is anatomically
organized. One noteworthy example of this for cognitive
science is the controversy regarding whether fusiform face
area (FFA) is uniquely specialized for face processing in
humans. Whereas some studies show the right hemisphere
FFA to be selectively active when faces are presented as
stimuli [38–41], others [42–44] find the same region to be
active when experts are shown objects from within their
domain of expertise, such as cars being shown to car
experts. Although inspection of the researchers’ visualiza-
tions confirms each respective account with apparent clar-
ity, these visualizations are the culmination of several
6

different choices from the teams in terms of selecting
experts, behavioral tasks, methods for identifying regions
of interest, and imaging techniques.

One advantage of adopting an extended mind perspec-
tive [37,45–47] is that the normally rapid process of visual
interpretation can be viewed in slow motion, revealing
detailed dynamics of confirmation bias, interpretation
competition, and interpretation revision. Adopting this
extended understanding of the interpretive process helps
explain how such impressively different interpretations
about the nature of white-matter tracts, as shown in
Figure 1, can emerge. Figure 1E and F lead to nearly
opposite conclusions with regard to the crossing angles
of white-matter tracts because, in part, they use different
thresholds for determining the extent of white-matter
tracts.

Another striking example, shown in Figure 5, of how
the long pipeline of distributed data-processing activities
can affect the interpretation of brain function, concerns the
localization of the cortical region specialized for processing
visually presented words [48–51]: the visual word form
area (VWFA). The left side of Figure 5A shows two areas
[middle temporal gyrus (MTG) and VWFA] that appear to
be fairly distant in terms of distance over cortical folds, but
the projection on the right side of Figure 5A shows that the
two gray-matter areas happen to dwell in sulci that lie
close to one another but are separated by a white-matter
tract [51]. Moreover, if the resolution of the fMRI is not
sufficiently high or the signals are spatially averaged, then
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Figure 3. Visualization of signals in time and space. (A) Intracranial electroencephalographic recordings (i-EEG). The left column shows a time versus voltage i-EEG plot

from macaque visual cortex. Signals are time locked to stimulus onset and offset (dashed vertical lines). The right column depicts a time versus frequency power plot

averaged across trials. (B) Surface-based average of current density (n = 12) of target-selective extracranial electroencephalographic (e-EEG) recorded responses time

locked to the stimulus. (C) e-EEG time versus current source-density plot. Colors indicate responses with different cortical sources (see legend). Vertical dashed lines mark

peak activity in different brain areas. Reproduced, with permission, from [60] (A) and [61] (B,C).

Feature Review Trends in Cognitive Sciences xxx xxxx, Vol. xxx, No. x

TICS-1447; No. of Pages 13
activity from a ventral cortical location may be visualized
in lateral cortex, making it possible to misinterpret activity
from ventral cortex as originating from lateral cortex.
Figure 5B shows a likely mislocalization of the VWFA
[48–50], which stems from inadequate spatial resolution
of the imaging technique, projection onto a 3D representa-
tion of the brain without depicting cortical distances, and
spatial averaging based on voxels rather than following the
7
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Figure 4. Visualization of connectivity data. (A) Tabular (asymmetric matrix) representation. Rows represent 29 tracer source areas, whereas columns represent 29 injected

target areas. Color shows the strength of projection, whereby black indicates an absent connection and green indicates intrinsic projections (see color bar). (B) Coarse

topological network layout. Schematic representation of 24 richly interconnected visual cortical areas in the macaque brain. (C) Neural projections to one brain region,

mapped onto brain. Schematic representation of the connections of brain area V4 in the macaque brain. (D) Human connectome. Dorsal view of the connectivity backbone,

node (red), and edges (blue). (E) Human white-matter tract anatomy. Seven of the major human white-matter fascicles are shown. Reproduced, with permission, from [100]

(A), [63] (B), [64] (C), [65] (D), and [4] (E).
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cortical folds of the gray matter (Recommendation no. 7 in
Table 1). Figure 5C shows a contemporary understanding
of the location of the VWFA [51–53], which looks to be in a
different location than the dominant activity shown in
Figure 5B. Perceptual interpretation is always a construc-
tive process, but the extent of this construction becomes
dramatic when one considers the entire chain of processes
involved in visualizing brain activity that is invisible with-
out recording, analysis, and rendering technologies.

Exploration versus communication

Visualizations can be used to explore data in search of
patterns or to communicate key results. Although explor-
atory visualizations are interactive and customizable, com-
municative visualizations are typically polished and static.

When trying to explore data, scientists typically in-
terrogate the results of a study using several different
8

analysis methods, filtering choices, measures, and algo-
rithms for uncovering patterns. In this mode, scientists
are interacting closely with their computers, measure-
ment devices, visualization software, and algorithms to
view the data from different vantage points and at
different levels of detail, continuously adjusting their
visualizations. Interactive visualization tools (Recom-
mendation no. 8 in Table 1) have a crucial role in this
early exploratory process.

Once a scientist converges on an interpretation based on
this exploration, he/she will then wish to communicate it to
the scientific community. For communication, optimiza-
tion of the visualization for the settled interpretation is
often the goal. Confusing exploratory and communicative
goals have led to some counterintuitive results. For exam-
ple, many studies have shown that viewers of animated
visualizations demonstrate a poor understanding of the
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Figure 5. Visualization can change brain interpretation. (A) Idealized example of misleading visualization of brain activity in ventral cortex activity (V, VWFA) in lateral cortex

(M, MTG) due to low spatial resolution of data (e.g., both M and V fall within a single blue square). (B) Depiction of brain activation during a reading task [48–50]. In former

times, data were acquired at low spatial resolution and large smoothing kernels were applied, risking mislocalization of brain function. (C) Location of frequent brain activity

during reading tasks (VWFA) visualized correctly on the ventral surface of brain in ventral cortex [51]. The VWFA is shown in relation to the location of the face responsive

cortical area (FFA [101]). Modern methods show higher fidelity in functional measurement and visualization. Reproduced, with permission, from [50] (B); modified, with

permission, from [102] (A) and [51] (C). Abbreviations: FFA, fusiform face area; MTG, middle temporal gyrus; VWFA, visual word form area.
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depicted system, compared with the comprehension of
viewers shown static visualizations [54]. Animated visua-
lizations are often too fast and complicated for unacquaint-
ed viewers. Even when interactive controls are added to
animations, understandings can be poor [55]. However,
these reviewed studies are typically probing the commu-
nicative, not exploratory, value of a visualization.

Idealization

Medical books feature hand drawings instead of photo-
graphs to highlight important structures and features.
These so-called ‘strategic idealizations’ depart from a
working assumption of ‘the more realistic the better’ by
subtly caricaturing, highlighting, and coarsening impor-
tant features. Needless to say, these transformations can
also mislead and so should be applied in a nuanced way
that does not obfuscate. Systematic departures from real-
ism are valuable because they promote high-level inter-
pretation, deemphasize irrelevant and potentially
misleading details, and enable viewers to see overall
trends that might otherwise be masked [56,57].

Interestingly, several studies have revealed that both
novices and experts have a tendency to wrongly believe
that their performance will be better with realistic com-
pared with idealized visualizations, when the reverse is
true [58]. For example, many participants viewing weather
maps intuited that task-irrelevant variables and realism
would improve their interpretive performance, when they
were in fact hindered by their inclusion [59]. This meta-
cognitive failure may arise because humans do not suffi-
ciently appreciate the difficult perceptual, attentional, and
cognitive processes required to give a coherent interpreta-
tion to a raw visualization.

Figure 3A [60] shows a powerful example of idealization.
The left side of Figure 3A shows raw EEG traces. These can
be averaged as shown in the bottom of the panel (see also
Figure 3C [61]). However, this summary waveform hides
crucial structure. An often more revealing representation
is to submit individual waveforms to a Fourier transfor-
mation that expresses each wave in terms of its power at
different frequency bands (right side of Figure 3A).

Another example is the idealized connectivity shown in
Figure 4A [62] compared with the more literal connectivity
patterns shown in Figure 4B [63] and C [64]. In both cases,
there is significant interpretive gain, particularly for see-
ing global patterns in data, derived from the shift to a less
literal, more derived representation. In Figure 4A, connec-
tivity is no longer represented by intuitive lines, but this
may be more than compensated for by the viewer’s gained
ability to see the sequential and hierarchical organization
of visual areas; for example, that V1, V4, MT, and DP form
a tightly interconnected group of areas is revealed by the
noisy, bright square in the upper-left corner of the matrix.
Figure 4C shows a different choice for simplification. It
visualizes only projections to and from one specific area:V4.
It would be difficult to simultaneously preserve the basic
geometry of the brain, as done in Figure 4C, and simulta-
neously show every major connection between areas, as
done in Figure 4A and B. An undecipherable spaghetti of
connections is likely to result, given that Figure 4B already
risks interpretation difficulties because of its dense con-
nection pattern. Figure 4D shows another point along the
continuum of idealization representing the human connec-
tome [65]. The figure depicts all strong connections be-
tween cortical areas and risks impenetrability because of
its sheer density of connections. It is nonetheless an ideal-
ization of the highly complex nature of the pathways that
connective tracts take, representing these paths as simple
straight lines. The complexity of the anatomical pattern
formed by some of the tracts comprising the connectome
can be appreciated in Figure 4E [4], which is itself a
simplification of the actual neurobiology. The various dia-
grams in Figure 4 show the value of idealization for
revealing global patterns of brain connectivity, and the
necessity of choosing visualizations wisely based on ‘in-
sight need types’ (Box 2); Figure 4E can answer questions
9
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TOS

Figure 6. Visualization of the brain surface. (A) Sagittal view of a structural

magnetic resonance image (MRI) of the brain with an overlay of the acquisition

volume for a functional MRI scan (yellow) [100]. Image created using mrTools

[103]. (B) Digital representation of the surface boundary between gray and white

matter in the left hemisphere, demonstrating cortical folding of a human

participant; sulci (dark gray), gyri (light gray). Colored areas show early visual

areas. Image created using Vistasoft. (C) Computationally inflated brain surface of

an individual human left hemisphere. (D) Flattened brain surface of the same

hemisphere as in (C). (C,D) were generated using the online tool Pycortex, colors

represent data from [104]. Reproduced, with permission, from [105] (B).
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about the specific anatomy tracts connecting different
brain areas, although even this idealization can be too
detailed to support claims about the global organization
of the brain into hierarchical modules, a role better played
by Figure 4A.

A first specific recommendation that derives from con-
sidering idealization is to apply a systematic caricatur-
ization process. A caricature of an object O(x) can be
defined as an exaggeration O0(x) that emphasizes its
distinctive aspects compared with other confusable enti-
ties. Although caricaturization might be interpreted as
misleading, even basic processes, such as dyes and stains,
can be interpreted as caricaturization. The Golgi stain of
silver nitrate that revealed the branching patterns of
neurons exaggerates the differences between the neurons
and their environment, but should not be interpreted as
deceitful. Likewise for the modern technique of optoge-
netics, which uses light to control and record from neu-
rons that have been genetically sensitized to light [66]. In
both techniques, it is important that exaggerated differ-
entiation is performed in a systematic way to avoid arbi-
trary bias and distortion. A second recommendation is to
use smoothing and averaging within spatial or temporal
windows to produce coarse-scale representations. With
the caveats reported in relation to Figure 5, this may
sound like a counterintuitive suggestion. How can throw-
ing away high spatial frequency details improve one’s
ability to decipher patterns? The empirically supported
[67] answer to this question is that if there are broad
patterns that result from low spatial frequencies, then
they will be masked by prominent higher spatial frequen-
cies.

Coordinating interpretation needs with visualization

affordances

No visualization is perfect for all uses (e.g., insight needs
and/or user groups) because there are unavoidable trade-
offs that will make a visualization more apt for some
purposes but thereby less apt for others [68]. For example,
visualizations that allow viewers to see the decomposition
of the brain into quasi-modules are not typically compati-
ble with visualizations that reveal the anatomy of the
tracts that connect these modules together. Figure 1A
and B show the anatomy of the tracts connecting modules,
whereas Figure 1C and D show the anatomy of cortical
modules being connected.

Detailed visualizations that are appropriate for focused
identification tasks are inappropriate for providing an
overview of major regions [58]. Bar and box-plot graphs
emphasize main effects in an experiment, whereas line
graphs emphasize interactions between variables
[14,69,70]. Tasks and insight needs that require the inte-
gration of several pieces of information benefit from visua-
lizations composed with integral (psychologically ‘fused
together’) dimensions, such as saturation and brightness
for colors, or features in close spatial proximity [71]. By
contrast, tasks that require focused attention to specific
values benefit from visualizations with easily separable
dimensions, such as brightness and size, or elements that
are spatially separated (see, for example, the physically
separated representations of space and time in Figure 3B).
10
Figure 6 shows several different representations of
brain regions varying in their structure and function. Each
panel has a different portfolio of preserved and lost infor-
mation, and which is best adopted depends on one’s needs.
Figure 6A (volumetric, brain slice) perfectly preserves the
spatial relations between cortical areas but at the cost of
showing only one 2D slice. Figure 6B (surface of the
boundary between white- and gray-matter, uninflated)
shows more of the cortical surface and preserves informa-
tion about the cortical folds with shading, but much of the
brain is still hidden, either because a region is occluded by
more foregrounded brain regions or because the region
falls deep within a sulcus. Figure 6C (inflated surface)
sacrifices information about cortical folds by ‘inflating’
the brain (eliminating the difference between sulci and
gyri), but consequently gains the capacity to show activity
information associated with regions deep within sulci.
Figure 6D (flattened cortex) goes still further in sacrificing
the natural geometric structure of the brain by strategi-
cally cutting the surface at several points, but gains the
capacity to show the entire brain surface. Which of these
visualizations should be chosen depends on how important
it is to preserve aspects of the geometry of the brain versus
show increasingly large percentages of the entire brain.

When designing visualizations of the human brain,
researchers should first specify the task(s) for which the
visualization will be used (see Box 2 for common task types
and insight needs). Common tasks in neuroscience are:
identifying functional specializations for compact brain
regions; understanding functional dependencies or struc-
tural connections across brain regions (see ‘correlations/
relations’ in Table I in Box 2, column 1); tracing prominent
brain subnetworks (also ‘correlations/relations’); identify-
ing common or distinct structures across individual brains
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(‘categorize/cluster’ and ‘comparisons’); and determining
the time course of neural activity from the onset of a
stimulus (‘trends’). Given that a scientist’s interests and
tasks may shift from moment to moment, one effective
strategy is to overlay different data on the same brain
reference system (see Figure 6 for options) that highlight
different patterns. If this is done, it is important for over-
lays to be coded in a consistent manner to help users map
across the different representations [72].

Novices and experts

Although some visualizations are designed for exclusive
use by experts, many are used by expert and novice users
alike. Designing apt visualizations for both kinds of users
is difficult because of the expertise reversal effect, accord-
ing to which adding additional scaffolding information to a
visualization often helps novices but hurts experts [73]. For
example, expert dermatologists performed better medical
diagnoses when given only photographs than when given
photographs and verbal descriptions, whereas the reverse
trend was true for nonexperts [74]. The generally greater
reliance on visualizations for experts compared with
novices belies the claim that perceptual processing is
superficial and conflicts with sophisticated understand-
ings. Experts often acquire their deep understandings by
training, not trumping, their perceptual processes
[75]. This expertise reversal effect is also worth keeping
in mind for authors as they prepare communicative visua-
lizations. Readers who are not as familiar with a visuali-
zation type will typically need more descriptive scaffolding
to effectively understand images.

At least two recommendations stem from an awareness
of powerful individual differences related to expertise. The
first is to match the complexity of a visualization to its
intended audience. Figure 1A is more appropriate for a
novice wishing to understand the basic connectivity pat-
terns of the two tracts, whereas Figure 1B is more suitable
for an expert wishing to understand the full possible extent
and coverage of the tracts. Second, as graphical depictions
become more processed, derived, and idealized, their opti-
mal audience shifts rightwards along the novice-to-expert
continuum. Students first learning about EEG will benefit
from seeing the raw traces on the left side of Figure 3A, but
experts will tend to spend more time perusing the trans-
formed and compressed representation of the right side of
the figure. Figure 4C is useful for its concrete grounding for
novices, but as expertise increases, representations such as
Figure 4B and then Figure 4A will become increasingly
beneficial. The strategy of progressively idealizing origi-
nally concrete representations has been shown to be a
cognitively effective way of creating grounded yet flexible
understandings [76,77].

Concluding remarks
Theoretical insight is often irreducibly just that: in sight.
Neuroimages have a strong psychological impact because
of their concreteness and intuitive appeal. For a lay audi-
ence, studies have shown that neuroscience research is
judged to be more scientifically credible [78] and more
understandable [79] when it is accompanied by brain
images rather than by bar graphs or more abstract
topographical maps. Although other studies fail to repli-
cate a general effect of neuroimagery on scientific persua-
siveness [80,81], there appear to be at least some limited
contexts [82] in which neuroimagery does add gravitas to
scientific arguments. In light of results showing that im-
agery depicting the 3D geometric structure of a brain (e.g.,
Figure 6B) is more scientifically convincing than a flat-
tened topographic map (e.g., Figure 6D) for lay audiences
[83], one conjecture is that lay audiences are naively
interpreting the 3D, object-like depictions as directly cap-
turing and displaying brain activity [8,9]. Researchers
should be sensitive to this likely misconstrual of neuroi-
magery, articulating rather than concealing the long pipe-
line needed to create images that seem to directly reflect
brain activity. There may even be cases in which concrete,
3D neuroimagery should be avoided so that viewers engage
in a more critical, reflective process of analyzing and
assessing the images [84].

Another possible case of disproportionate influence of
neuroimagery is that amateur and professional designers’
visualizations of the same data can lead to different reader
responses. Viewers might trust the latter readily but not
the former. Similarly, low-quality data rendered by a
professional designer may disguise data quality or other
issues: viewers will likely assume that the well-designed
visualization reflects accurate results. Accordingly, devot-
ing a substantial amount of time and effort in training
scientists to prepare professional scientific visualizations
has the power to amplify the impact of research.

Nine theoretically grounded yet practically useful
recommendations for novice and expert makers and users
of visualizations are listed in Table 1. They may guide the
design of effective visualizations and the development of de
facto standards in support of data, code, and workflow
sharing, replication, and further development.

This review may leave the impression that humans are
slaves to their own eyes, and that the constraints of their
perceptual and cognitive systems limit how they interpret
scientific visualizations. In fact, human perceptual and
cognitive constraints should guide graphic design decisions
when visualizing brain data. However, there are two im-
portant ways in which humans are not strictly limited by
their perceptual and cognitive constraints. The first is that
humans are capable of impressive feats of perceptual
learning [85]. Quite a bit is known about some of the
neurological underpinnings of these changes [86] and, as
humans, we can systematically adapt our perceptual sys-
tems so as to provide more useful representations for
downstream cognitive processes [75,87]. The second way
in which humans can rise above their perceptual and
cognitive constraints is by creating new measurement
devices, experimental protocols, interactive technologies,
and visualization algorithms to make otherwise invisible
brain processes visible. Thus far, too much of neuroscience
has grown as a cottage industry in which each laboratory
creates its own idiosyncratic tools. For neuroscience to
progress with rapidity in the future, greater effort must
be made to build visualization tools and infrastructures
that facilitate replication, reuse, and extension [6]. Armed
with sophisticated systems designed for widespread
use, the neuroscience community would be poised for a
11
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revolution in theoretical insights. As scientists, our con-
jectures are governed by what we perceive, but what we
present to ourselves is limited only by our imagination.

References
1 Azevedo, F.A. et al. (2009) Equal numbers of neuronal and

nonneuronal cells make the human brain an isometrically scaled-
up primate brain. J. Comp. Neurol. 513, 532–541

2 Pugh, G.E. (1977) The Biological Origin of Human Values, Basic
Books

3 Van den Heuvel, M.P. and Sporns, O. (2013) Network hubs in the
human brain. Trends Cogn. Sci. 17, 683–696

4 Pestilli, F. et al. (2014) Evaluation and statistical inference for human
connectomes. Nat. Methods 11, 1058–1067

5 Tournier, J. et al. (2012) MRtrix: diffusion tractography in crossing
fiber regions. Int. J. Imaging Syst. Technol. 22, 53–66

6 Pestilli, F. (2015) Test–retest measurements and digital validation for
in vivo neuroscience. Sci. Data 2, 140057

7 Wedeen, V.J. et al. (2012) The geometric structure of the brain fiber
pathways. Science 335, 1628–1634

8 Catani, M. et al. (2012) Comment on ‘The geometric structure of the
brain fiber pathways’. Science 337, 1605

9 Roskies, A.L. (2008) Neuroimaging and inferential distance.
Neuroethics 1, 19–30

10 Keehner, M. and Fischer, M.H. (2011) Naive realism in public
perceptions of neuroimages. Nat. Rev. Neurosci. 12, 118–165

11 Allen, E.A. et al. (2012) Data visualization in the neurosciences:
overcoming the curse of dimensionality. Neuron 74, 603–608

12 Sejnowski, T.J. et al. (2014) Putting big data to good use in
neuroscience. Nat. Neurosci. 17, 1440–1441

13 Churchland, P.S. and Sejnowski, T.J. (1988) Perspectives on cognitive
neuroscience. Science 242, 741–745

14 Börner, K. (2015) Atlas of Knowledge: Anyone Can Map, MIT Press
15 Kirsh, D. (1995) The intelligent use of space. Artif. Intell. 73,

31–68
16 Tversky, B. (2011) Visualizing thought. Top. Cogn. Sci. 3, 499–535
17 McClelland, J.L. and Rumelhart, D.E. (1981) An interactive

activation model of context effects in letter perception: part I. An
account of basic findings. Psychol. Rev. 88, 375–407

18 Shah, P. and Freedman, E.G. (2011) Bar and line graph
comprehension: an interaction of top-down and bottom-up
processes. Top. Cogn. Sci. 3, 560–578

19 Gehlenborg, N. and Wong, B. (2012) Points of view: mapping
quantitative data to color. Nat. Methods 9, 769

20 Goldstone, R.L. and Hendrickson, A.T. (2010) Categorical perception.
Wiley Interdiscip. Rev. Cogn. Sci. 1, 69–78

21 Bergman, L.D. et al. (1995) A rule-based tool for assisting colormap
selection. Visualization 1995, 118–125

22 White, A.L. et al. (2014) The attentional effects of single cues and color
singletons on visual sensitivity. J. Exp. Psychol. Hum. Percept.
Perform. 40, 639–652

23 Pestilli, F. and Carrasco, M. (2005) Attention enhances contrast
sensitivity at cued and impairs it at uncued locations. Vis. Res. 45,
1867–1875

24 Christen, M. et al. (2013) Colorful brains: 14 years of display practice
in functional neuroimaging. Neuroimage 73, 30–39

25 Bertin, J. (W. Berg, Trans.) (1983) Semiology of Graphics: Diagrams
Networks Maps, University of Wisconsin Press

26 Goldstone, R.L. (1994) An efficient method for obtaining similarity
data. Behav. Res. Methods Instrum. Comput. 26, 381–386

27 Treisman, A.M. and Gelade, G. (1980) A feature-integration theory of
attention. Cogn. Psychol. 12, 97–136

28 Franklin, N. and Tversky, B. (1990) Searching imagined
environments. J. Exp. Psychol. 119, 63–76

29 Spence, C. (2011) Cross modal correspondences: a tutorial review.
Atten. Percept. Psychophys. 73, 971–995

30 Luck, S.J. (2014) An Introduction to the Event-related Potential
Technique, MIT Press

31 Hegarty, M. et al. (2010) Thinking about weather: how display
salience and knowledge affect performance in a graphic
interference task. J. Exp. Psychol. Learn. Mem. Cogn. 36, 37–53
12
32 Lowe, R.K. (1996) Background knowledge and the construction of a
situational representation from a diagram. Eur. J. Psychol. Educ. 11,
377–397

33 Mogford, R.H. (1997) Mental models and situation awareness in air
traffic control. J. Aviat. Psychol. 7, 331–341

34 Hegarty, M. (2005) Multimedia learning about physical systems. In
Handbook of Multimedia (Mayer, R.E., ed.), pp. 447–465, Cambridge
University Press

35 Yeatman, J.D. et al. (2014) The vertical occipital fasciculus: a century
of controversy resolved by in vivo measurements. Proc. Natl. Acad.
Sci. U.S.A. 111, E5214–E5223

36 Ogawa, S. et al. (2014) White matter consequences of retinal receptor
and ganglion cell damage. Invest. Ophthalmol. Vis. Sci. 55, 6976–6986

37 Clark, A. and Chalmers, D.J. (1998) The extended mind. Analysis 58,
7–19

38 Grill-Spector, K. et al. (2004) The fusiform face area subserves face
perception, not generic within-category identification. Nat. Neurosci.
7, 555–562

39 Grill-Spector, K. et al. (2006) Repetition and the brain: neural models
of stimulus-specific effects. Trends Cogn. Sci. 10, 14–23

40 Haxby, J.V. et al. (2000) The distributed human neural system for face
perception. Trends Cogn. Sci. 4, 223–233

41 Haxby, J.V. et al. (1996) Face encoding and recognition in the human
brain. Proc. Natl. Acad. Sci. U.S.A. 93, 922–927

42 Gauthier, I. et al. (1999) Activation of the middle fusiform ‘face area’
increases with expertise in recognizing novel objects. Nat. Neurosci. 2,
568–573

43 Gauthier, I. et al. (2003) Perceptual interference supports a
nonmodular account of face processing. Nat. Neurosci. 6, 428–432

44 Bukach, C.M. et al. (2006) Beyond faces and modularity: the power of
an expertise framework. Trends Cogn. Sci. 10, 159–166

45 Hutchins, E. (1995) Cognition in the Wild, MIT Press
46 Scaife, M. and Rogers, Y. (1996) External cognition: how do graphical

representations work? Int. J. Hum. Comput. Stud. 45, 185–213
47 Kirsh, D. and Maglio, P. (1994) On distinguishing epistemic from

pragmatic action. Cogn. Sci. 18, 513–549
48 Cohen, L. et al. (2000) The visual word form area: spatial and temporal

characterization of an initial stage of reading in normal subjects and
posterior split-brain patients. Brain 123, 291–307

49 Brunswick, N. et al. (1999) Explicit and implicit processing of words
and pseudowords by adult developmental dyslexics: a search for
Wernicke’s Wortschatz? Brain 122, 1901–1917

50 Paulesu, E. et al. (2001) Dyslexia: cultural diversity and biological
unity. Science 291, 2165–2167

51 Wandell, B.A. (2011) The neurobiological basis of seeing words. Ann.
N. Y. Acad. Sci. 1224, 63–80

52 McCandliss, B.D. et al. (2003) The visual word form area: expertise for
reading in the fusiform gyrus. Trends Cogn. Sci. 7, 293–299

53 Yeatman, J.D. et al. (2013) Anatomy of the visual word form area:
adjacent cortical circuits and long-range white matter connections.
Brain Lang. 125, 146–155

54 Tversky, B. et al. (2002) Animation: can it facilitate? Int. J. Hum.
Comput. Stud. 57, 247–262

55 Kriz, S. and Hegarty, M. (2007) Top-down and bottom-up influences
on learning from animations. Int. J. Hum. Comput. Stud. 65, 911–930

56 Kaminski, J.A. et al. (2008) The advantage of abstract examples in
learning math. Science 320, 454–455

57 St John, M. et al. (2001) The use of 2D and 3D displays for shape
understanding vs. relative position tasks. Hum. Factors 43, 79–98

58 Smallman, H.S. and Cook, M.B. (2011) Naı̈ve realism: folk fallacies in
the design and use of visual displays. Top. Cogn. Sci. 3, 579–608

59 Hegarty, M. et al. (2009) Naı̈ve cartography: how intuitions about
display configuration can hurt performance. Cartographica 44,
171–186

60 Tallon-Baudry, C. (2009) The roles of gamma-band oscillatory
synchrony in human visual cognition. Front. Biosci. 14, 321–332

61 Ales, J.M. et al. (2013) The time course of shape discrimination in the
human brain. Neuroimage 67, 77–88

62 Markov, N.T. et al. (2014) A weighted and directed interareal
connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24,
17–36

63 Wallisch, P. and Movshon, J.A. (2008) Structure and function come
unglued in the visual cortex. Neuron 60, 195–197

http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0530
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0530
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0530
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0535
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0535
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0540
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0540
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0545
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0545
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0550
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0550
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0555
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0555
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0560
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0560
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0565
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0565
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0570
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0570
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0575
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0575
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0580
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0580
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0585
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0585
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0590
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0590
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0595
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0600
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0600
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0605
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0610
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0610
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0610
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0615
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0615
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0615
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0620
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0620
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0625
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0625
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0630
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0630
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0635
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0635
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0635
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0640
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0640
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0640
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0645
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0645
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0655
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0655
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0660
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0660
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0665
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0665
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0670
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0670
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0675
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0675
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0680
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0680
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0680
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0685
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0685
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0685
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0690
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0690
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0695
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0695
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0695
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0700
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0700
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0700
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0705
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0705
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0710
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0710
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0715
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0715
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0715
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0720
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0720
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0725
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0725
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0730
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0730
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0735
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0735
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0735
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0740
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0740
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0745
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0745
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0750
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0755
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0755
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0760
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0760
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0765
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0765
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0765
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0770
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0770
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0770
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0775
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0775
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0780
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0780
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0785
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0785
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0790
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0790
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0790
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0795
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0795
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0800
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0800
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0805
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0805
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0810
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0810
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0815
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0815
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0820
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0820
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0820
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0825
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0825
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0830
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0830
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0835
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0835
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0835
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0840
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0840


Feature Review Trends in Cognitive Sciences xxx xxxx, Vol. xxx, No. x

TICS-1447; No. of Pages 13
64 Ungerleider, L.G. et al. (2008) Cortical connections of area V4 in the
macaque. Cereb. Cortex 18, 477–499

65 Hagmann, P. et al. (2008) Mapping the structural core of human
cerebral cortex. PLoS Biol. 6, e159

66 Pastrana, E. (2010) Optogenetic: controlling cell function with light.
Nat. Methods 8, 24

67 Harmon, L.D. and Julesz, B. (1973) Masking in visual recognition:
effects of two–dimensional filtered noise. Science 180, 1194–1197

68 Boukhelifa, N. and Duke, D.J. (2009) Uncertainty visualization: why
might it fail? In CHI’09 Extended Abstracts on Human Factors in
Computing Systems, pp. 4051–4056, Association for Computing
Machinery

69 Streit, M. and Gehlenborg, N. (2014) Points of view: bar charts and box
plots. Nat. Methods 11, 117

70 Krzywinski, M. and Altman, N. (2014) Points of significance:
visualizing samples with box plots. Nat. Methods 11, 119–120

71 Carswell, C.M. and Wickens, C.D. (1987) Information integration and
the object display: an interaction of task demands and display
superiority. Ergonomics 30, 511–527

72 Kosslyn, S.M. (2006) Graph Design for the Eye and Mind, Oxford
University Press

73 Kalyuga, S. et al. (1998) Levels of expertise and instructional design.
Hum. Factors 40, 1–17

74 Kulatunga-Moruzi, C. et al. (2004) The diagnostic disadvantage of
having all the facts: using comprehensive feature lists to bias medical
diagnosis. J. Exp. Psychol. Learn. Mem. Cogn. 30, 563–572

75 Goldstone, R.L. et al. (2010) The education of perception. Top. Cogn.
Sci. 2, 265–284

76 Bruner, J.S. (1966) Toward a Theory of Instruction, Belknap Press
77 Fyfe, E.R. et al. (2014) Concreteness fading in mathematic and science

instruction: a systematic review. Educ. Psychol. Rev. 26, 9–25
78 McCabe, D. and Castel, A. (2008) Seeing is believing: the effect of brain

images on judgments of scientific reasoning. Cognition 107, 343–352
79 Ikeda, K. et al. (2013) Neuroscientific information bias in

metacomprehension: the effect of brain images on
metacomprehension judgment of neuroscience research. Psychon.
Bull. Rev. 20, 1357–1363

80 Michael, R.B. et al. (2013) On the (non)persuasive power of a brain
image. Psychon. Bull. Rev. 20, 720–725

81 Farah, M.J. and Hook, C.J. (2013) The seductive allure of ‘seductive
allure’. Perspect. Psychol. Sci. 8, 88–90

82 Schweitzer, N.J. et al. (2013) Fooled by the brain: re-examining the
influence of neuroimages. Cognition 129, 501–511

83 Keehner, K. et al. (2011) Different clues from different views: the role
of image format in public perceptions of neuroimaging results.
Psychon. Bull. Rev. 18, 422–428

84 Hullman, J. et al. (2011) Benefitting InfoVis with visual difficulties.
IEEE Trans. Vis. Comput. Graph. 17, 2213–2222

85 Gauthier, I. et al. (2009) Perceptual Expertise: Bridging Brain and
Behavior, Oxford University Press
86 McGugin, R.W. et al. (2012) High-resolution imaging of expertise
reveals reliable object selectivity in the FFA related to perceptual
performance. Proc. Natl. Acad. Sci. U.S.A. 109, 17063–17068

87 Goldstone, R.L. et al. (2015) Fitting perception in and to cognition.
Cognition 135, 24–29

88 Palmer, S.E. (1999) Vision Science: Photons to Phenomenology, MIT
Press

89 Ware, C. (2004) Information Visualization: Perception for Design,
Morgan Kaufman

90 Pirolli, P. and Card, S. (2005) The sensemaking process and leverage
points for analyst technology as identified through cognitive task
analysis. In Proceedings of the International Conference on
Intelligence Analysis, pp. 2–4, Mitre

91 Hook, P.A. and Börner, K. (2005) Educational knowledge domain
visualizations: tools to navigate, understand, and internalize the
structure of scholarly knowledge and expertise. In New Directions
in Cognitive Information Retrieval (Spink, A. and Cole, C., eds), pp.
187–208, Springer-Verlag

92 Chi, E.H. (2000) A taxonomy of visualization techniques using the
data state reference model. Inf. Vis. 20, 69–75

93 Mackinlay, J.D. (1986) Automating the design of graphical
presentations of relational information. ACM Trans. Graph. 5,
110–141

94 Kosslyn, S.M. (1989) Understanding charts and graphs. Appl. Cogn.
Psychol. 3, 185–225

95 Shneiderman, B. (1996) The eyes have it: a task by data type
taxonomy for information visualizations. Vis. Lang. 1996, 336–343

96 Harris, R.L. (1999) Information Graphics: A Comprehensive
Illustrated Reference, Oxford University Press

97 Keim, D.A. (2001) Visual exploration of large data sets. Commun.
ACM 44, 38–44

98 Munzner, T. (2014) Information Visualization: Principles, Techniques
and Practice, AK Peters

99 Wilkinson, L. (2005) The Grammar of Graphics, Springer
100 Ress, D. et al. (2000) Activity in primary visual cortex predicts

performance in a visual detection task. Nat. Neurosci. 3, 940–945
101 Kanwisher, N. et al. (1997) The fusiform face area: a module in human

extrastriate cortex specialized for face perception. J. Neurosci. 17,
4302–4311

102 Wandell, B.A. et al. (2012) Learning to see words. Annu. Rev. Psychol.
63, 31–53

103 Pestilli, F. et al. (2011) Attentional enhancement via selection and
pooling of early sensory responses in human visual cortex. Neuron 72,
832–846

104 Takemura, H. et al. (2015) A major human white matter pathway
between dorsal and ventral visual cortex. Cereb. Cortex Published
online March 31, 2015. http://dx.doi.org/10.1093/cercor/bhv064

105 Huth, A.G. et al. (2012) A continuous semantic space describes the
representation of thousands of object and action categories across the
human brain. Neuron 76, 1210–1224
13

http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0845
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0845
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0850
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0850
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0855
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0855
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0860
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0860
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0865
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0865
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0865
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0865
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0870
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0870
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0875
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0875
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0880
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0880
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0880
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0885
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0885
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0890
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0890
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0895
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0895
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0895
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0900
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0900
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0905
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0910
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0910
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0915
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0915
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0920
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0920
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0920
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0920
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0925
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0925
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0930
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0930
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0935
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0935
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0940
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0940
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0940
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0945
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0945
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0950
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0950
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0955
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0955
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0955
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0960
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0960
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0965
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0965
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0970
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0970
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0975
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0975
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0975
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0975
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0980
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0980
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0980
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0980
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0980
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0985
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0985
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0990
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0990
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0990
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0995
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref0995
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1000
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1000
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1005
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1005
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1010
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1010
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1015
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1015
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1020
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1025
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1025
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1030
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1030
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1030
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1035
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1035
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1040
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1040
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1040
http://dx.doi.org/10.1093/cercor/bhv064
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1050
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1050
http://refhub.elsevier.com/S1364-6613(15)00124-2/sbref1050

	Self-portraits of the brain: cognitive science, data visualization, and communicating brain structure and function
	Exploiting the perceptual processes of brains to understand brains
	Data sources for visualizations in neuroscience
	Principles of visual interpretation of data visualization
	Bottom-up processes
	Top-down processes
	Exploration versus communication
	Idealization
	Coordinating interpretation needs with visualization affordances
	Novices and experts

	Concluding remarks
	References


