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Abstract

Background: We implement a high-resolution visualization of the medical knowledge domain using the self-organizing
map (SOM) method, based on a corpus of over two million publications. While self-organizing maps have been used for
document visualization for some time, (1) little is known about how to deal with truly large document collections in
conjunction with a large number of SOM neurons, (2) post-training geometric and semiotic transformations of the SOM
tend to be limited, and (3) no user studies have been conducted with domain experts to validate the utility and readability
of the resulting visualizations. Our study makes key contributions to all of these issues.

Methodology: Documents extracted from Medline and Scopus are analyzed on the basis of indexer-assigned MeSH terms.
Initial dimensionality is reduced to include only the top 10% most frequent terms and the resulting document vectors are
then used to train a large SOM consisting of over 75,000 neurons. The resulting two-dimensional model of the high-
dimensional input space is then transformed into a large-format map by using geographic information system (GIS)
techniques and cartographic design principles. This map is then annotated and evaluated by ten experts stemming from
the biomedical and other domains.

Conclusions: Study results demonstrate that it is possible to transform a very large document corpus into a map that is
visually engaging and conceptually stimulating to subject experts from both inside and outside of the particular knowledge
domain. The challenges of dealing with a truly large corpus come to the fore and require embracing parallelization and use
of supercomputing resources to solve otherwise intractable computational tasks. Among the envisaged future efforts are
the creation of a highly interactive interface and the elaboration of the notion of this map of medicine acting as a base map,
onto which other knowledge artifacts could be overlaid.
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Introduction

Scholarly communication in the form of journal articles, book

chapters, and related artifacts are the main means by which those

engaged in the scientific process attempt to disseminate knowledge

and ideas. Today, those engaged in extremely narrow scholarly

pursuits may still be able to personally engage with most of the

relevant literature by finding and reading individual articles,

reflecting on them, drawing connections, and developing new

ideas informed by their own education and experience. However,

that is an increasingly rare scenario. Instead, processes of scientific

knowledge construction and dissemination now occur within a

multidisciplinary environment. In this new world of science,

individual investigators must consider literatures from diverse

disciplines. In addition, most cutting-edge science now occurs in

multidisciplinary teams, whose members come from different

academic backgrounds, with different intellectual cultures. The

biomedical knowledge domain is a prime example, being a

domain that is large, continuously growing, and with tremendously

interdisciplinary make-up.

With the landscape of scientific inquiry thus increasingly

opening up, and in consideration of the sheer number of scholarly

articles in existence [1], the key question has emerged of how one

might be able to analyze, present, and understand the complex,

dynamic structures of science. Visualization-more specifically

knowledge domain visualization-has been put forth as a powerful

answer to that challenge [2,3]. Apart from various examples of

mapping individual domains and sub-domains, there has been

increasing publicity around the general idea of science mapping,

including through the traveling exhibit ‘‘Places & Spaces’’ (http://

www.scimaps.org/) and the recently published ‘‘Atlas of Science’’

[2].

There has also been a renewed push to map ‘‘all’’ of science,

with Klavans and Boyack [4] providing an overview of the various

efforts. Among the more prominent examples are the ‘‘UCSD

Map’’ based on five years of Web of Science and Scopus paper-

level data available in the Science of Science Tool [5] and the

international researcher networking tool VIVO (http://vivoweb.

org/) or the paper-level, Web of Science based map that supports

data overlays [6]. The medical knowledge domain has been
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prominently featured in such efforts as the NIH Visual Browser

[7].

While the use of citation-based linkages dominates these science

mapping efforts, online accessibility of publication databases has

opened up other means for attempting to uncover the collective

mind of scientists. An example is the use of click-streams that trace

the sequence in which users navigate between online articles [8].

Whether maps are derived from such user interaction or from

bibliometric structures, science mapping efforts are typically

driven by a network conceptualization of science. Accordingly,

network analysis and graph layout approaches dominate and a

growing number of network-oriented toolsets can be utilized [9–

11].

An alternative approach focuses on the content of documents,

with an analysis of terms used by authors aimed at uncovering the

topical structure and evolution of a domain. This tends to be based

on a vector space representation of documents [12], where each

document is represented by a vector of term weights. Those

vectors can be used to compute document-to-document similar-

ities and the resulting similarity matrix then be input to

dimensionality reduction, with multidimensional scaling (MDS) a

particularly popular approach [13]. However, the sheer size of

similarity matrices limits the applicability of that approach for

truly large data sets consisting of thousands or millions of

documents. One popular alternative is the self-organizing map

(SOM) method [14], which does not involve computation of

similarity matrices. Instead, document vectors are interpreted as

samples from a high-dimensional continuum [15] and are used to

perform a tessellation of that original space such that it can be laid

out in two dimensions. The result is a model that can itself be

visualized or serve as a base map onto which high-dimensional

vectors can be overlaid [16]. Numerous examples in applying this

method to document vectors exist [17–20]. With respect to truly

large data sets, Kohonen et al. [21] stands out, with a study

involving several million patent abstracts.

The purpose of this paper is to elaborate on portions of a recent

study whose aim was to investigate the accuracy of several text-

based similarity approaches, for a data set of more than two

million biomedical publications [22]. Specifically, we present a

detailed explanation of how the SOM method was applied in the

study, as well as several visualizations derived from the trained

SOM. We also present a novel form of expert evaluation for such

visualizations, with subjects providing both graphic and textual

feedback to a large-format topical map of the medical sciences.

Our study differs significantly from previous work, in terms of

the source and volume of data used, the techniques employed for

creating document vectors, the specific SOM training method, the

use of parallelization and supercomputing resources, the detailed

elaboration of the principles and implications of the neuron label

clustering technique, and the evaluation by subject experts. For

example, previous work [20]involved a data set of 2,220 abstracts

submitted to the Annual Meeting of the Association of American

Geographers, with each abstract’s title, author-chosen keywords,

and full text used in the analysis, while the current project was

focused on a data set larger by a factor of almost 1000, consisting

of 2.15 million biomedical publications, with only MeSH terms

being used in the analysis.

In previous work [19,20], a vocabulary was generated from

author-chosen keywords. That vocabulary was then used to

generate a term-document matrix consisting of 2,220 documents

and 741 term components, of which 1,148 documents are used for

neural network training [19]. Meanwhile, the work described here

generates a term-document matrix of 2.15 million documents and

initially 23,347 MeSH terms, which is then reduced to the 2,300

most frequent terms whose occurrence is recorded for 2.14 million

documents.

In the case of [19,20], the input data set of 1,148 documents and

741 terms was used to train a self-organizing map consisting of

4,800 neurons. This was done using SOM_PAK [23]. The current

project involved training of a SOM containing 75,625 neurons

with a data set of 2.14 million documents represented as 2,300

dimensional vectors. In other words, the number of neuron

weights in the current project is almost 50 times larger than in

Skupin (2002, 2004) and the number of potential document

weights is larger by a factor of almost 6,000. These dramatic

differences required implementation of a batch variant of SOM,

plus parallelization and deployment in a supercomputing hard-

ware, which made it possible to train one of the largest self-

organizing maps ever created in a non-hierarchical manner.

The work presented in [20] was centered on the use of different

clustering techniques for helping organize large SOMs. Three

clustering techniques were discussed and illustrated: hierarchical

clustering, k-means clustering, and the neuron label clustering.

While much of the current work is about exploring the latter, that

technique played only a minor role in [20]. Specifically, the main

figure showing a visualization of several thousand conference

abstracts with simultaneous display of five cluster levels used

hierarchical clustering ([20], p. 5275). Elsewhere, four different

layers are combined, namely a term dominance landscape, k-

means, hierarchical, and neuron label clustering (p. 5276).

Incidentally, that is the only graphic depiction utilizing the latter

technique, while the following figures contain either only

hierarchical and k-means clustering (p. 5277) or only k-means

clustering (p. 5278), respectively.

As the neuron labeling technique was only tangentially

discussed in [20], the detailed discussion of term dominance

profiles and of cluster patches resulting from neuron labeling

clustering are other novel contributions made in the current work.

The user evaluation by subject experts is likewise a new

contribution for this kind of large-scale knowledge visualization.

Methods

Transforming a large document corpus into a compelling

visualization requires a series of processing steps drawing on

techniques that evolved in very different domains, ranging from

computer science to information science, geography, and cartog-

raphy (Figure 1). While the current study relies on identical source

data and preprocessing steps as in [22], use of the self-organizing

map method ultimately points toward a different underlying goal,

namely the creation of low-dimensional geometric structures that

allow leveraging the capabilities of the human perceptual and

cognitive system for understanding a very high-dimensional space

(see bottom-right of Figure 1). This contrasts with the goal of a

strictly computational delineation of clusters within the document

space (see bottom-left of Figure 1).

Study corpus
As detailed in Boyack et al. [22], data from MEDLINE and

Scopus were extracted to form a corpus of 2,153,769 documents

published during a five-year period (2004–2008). All of those

documents fulfilled that study’s goal of containing abstracts, at

least five MeSH terms (PubMed Medical Subject Headings), and

at least five references.

Text extraction and pre-processing
Among the document-specific elements included in the corpus,

our study focused on MeSH terms. While references and the
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network structures that can be derived from them (e.g., co-citation

links) are currently the dominant approach to the mapping of

scientific communications, our approach is focused on a topical

analysis of the biomedical knowledge domain. Titles, abstracts,

and MeSH terms could provide the necessary data. Indeed, our

study initially aimed at generating two topical models, one

constructed from MeSH terms, the other from the text content

of titles and abstracts, but with both models based on a

representation of documents as high-dimensional vectors. In other

words, using either data element (MeSH or title/abstract) the

corpus would become represented as a vector space [12]. After

filtering out MeSH terms and full text tokens appearing in under

four documents (see [22] for details), the two initial data sets

consist of 23,347 unique MeSH terms and 272,926 unique text

tokens, respectively. For the MeSH case, the resulting vector space

consists of binary entries indicating existence or absence of a term

for each particular document. For the vector space constructed

from title/abstract based tokens, actual counts of terms are

recorded. Given the anticipated difficulty of dealing with data of

such high dimensionality and the lower original dimensionality of

MeSH-based vector space (n = 23,347), the study proceeded to

focus on that data set first, with results reported in the remainder

of this paper.

SOM training
Since SOM training does not involve a computation of

document-document similarities, the primary challenge in our

study does not derive from the size of the document corpus as

such, but rather from our goal of generating a detailed model of

high-dimensional structures. This contrasts with the common use

of self-organizing maps as a clustering tool, where neurons

themselves act as clusters. For example, a SOM consisting of 10-

by-10 neurons would generate a tessellation of the high-

dimensional input space into 100 chunks, whose topological

structure can then be visually explored. Meanwhile, our study does

not primarily aim at clustering biomedical documents as such.

Instead, the goal is a detailed two-dimensional layout of the high-

dimensional space such that much of the inherent topical domain

structure would be preserved. The principal means for accom-

plishing this is to generate a high-resolution SOM, i.e. a SOM

consisting of a large number of neurons relative to the number of

documents. For our corpus of 2.1 million documents, one would

want to generate a SOM consisting of several hundred thousand

neurons.

An initial attempt was made to generate such a model using the

well-known toolkit SOM_PAK [23]. However, it soon became

clear that modeling over 2 million documents on a suitably large

Figure 1. Processing steps for visualizing a large corpus of medical literature based on the self-organizing map method. The figure
also references processing steps taken for the study by Boyack et al. (2011), which was centered on cluster quality.
doi:10.1371/journal.pone.0058779.g001
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map using SOM_PAK would not be computationally feasible, due

to the concurrent conditions of large neuron count and large

number of dimensions. Dimensionality of the input vector spaces is

extremely high, whether dealing with title/abstract terms (272,926

dimensions) or MeSH terms (23,347 dimensions). Given its

relatively lower dimensionality, the study focus shifted completely

to the MeSH-based data set. However, use of its full set of terms

was already deemed unfeasible. It was initially thought that

reducing dimensionality by thresholding of MeSH term frequency

would make deployment of SOM_PAK in a standalone PC-type

environment feasible, as it had been in previous studies [20,24],

where models of up to 2,500 dimensions had been trained.

However, even after generating a subset containing only the most

frequent MeSH terms (2,300 dimensions) and limiting the number

of neurons to fewer than 100,000, experiments on portions of the

document collection suggested that complete training might

require years of serial computation time.

Keep in mind that although MeSH-based input vectors contain

binary weights (i.e., presence or absence) and are very sparse (i.e.,

with few non-zero values for a given document), training will

generate continuous weights for all dimensions at each neuron.

Given the potentially small size of specific research communities,

we also aim to use all documents during training, instead of relying

on extensive sampling from the corpus. Consideration of those

goals and of initial experiments made it clear that a parallelizable

variation on the traditional SOM algorithm would be necessary to

perform training with the entire document set in a reasonable

amount of time. We implemented a particular ‘‘batch SOM’’

variant [25] and applied project- and infrastructure-specific

optimizations to suit the data and available computational

resources. In this ‘‘data-partitioned’’ batch SOM variant

(Figure 2), the training data is divided equally among all processes

and each process operates on a local set of neuron-specific

accumulators representing pending updates to the map. At the end

of each batch, all process-local accumulators are merged to apply

that batch’s global map update. This new map is then distributed

back out to each process for the next batch of training.

With respect to further optimizing this process, we restructured

the control flow to allow smaller batches, enabling more frequent

process-global map synchronizations. Further, instead of re-

calculating inter-neuronal grid distances at each accumulation,

we traded time for space by calculating a single Gaussian kernel

lookup table per batch. Finally, instead of the usual approach

wherein each vector reflects the entire attribute space, we

exploited the sparseness of the MeSH-document relation by

characterizing each document as a collection of only the actually

applied terms.

The following are core algorithmic elements of the training

procedure:

N initialize each component of each neuron’s reference vector

randomly;

N initialize the new codebook per-neuron numerator and

denominator accumulators to zero;

N initialize the width for the Gaussian neighborhood function to

roughly equal the size of the map;

N until the start of the next batch, iteratively:

# take the next training vector; search for the neuron with the

nearest reference vector according to cosine similarity;

# for each neuron, add to its accumulators a proportion of the

training vector commensurate with the neuron’s distance

(determined by the Gaussian lookup table) from the neuron

with the nearest reference vector.

# If this is the end of a batch, combine the accumulators into a

new live map, step down the width of the Gaussian, and reset

the accumulators to zero.

The trainer consists of 1000 lines of C++ code. It relies only on

standard language libraries and, for parallelization over an

arbitrary number of processes, MPI.

SOM post-processing
In addressing post-processing of the trained SOM, it helps to

remember that the use of parallelization and supercomputing

resources was necessitated by the goal of generating a fairly

detailed low-dimensional model of a very high-dimensional space.

The eventual use of a lattice of 2756275 neurons represents a

compromise between the desire to capture detailed structures of

the knowledge domain and the realities of contemporary

computational resources. While we may have preferred to go

much further in the spatial resolution of the SOM-yielding a lower

document-to-neuron ratio-the actual SOM created does already

go far beyond what is typical in SOM-based document mapping.

Display of individual neurons (and of the individual documents

captured by them) will be the exception and-in an interactive

visualization-occur only after significant zooming to the local scale,

while global and regional scale displays require significant

computational and semiotic transformations of the original SOM

into aggregate views. The foremost aim of our study is to generate

a single, large-format visualization that simultaneously encom-

passes global and regional structures of the medical knowledge

domain. Accordingly, the central post-processing step in dealing

with a SOM of this size is the generation of neuron clusters, which

includes partitioning the neuron space and determining appropri-

ate label terms for such clusters.

This study utilizes a neuron label clustering method [20]. Though

the binary weights associated with the 2.1 million input document

vectors merely account for the occurrence or absence of terms,

SOM training results in continuously scaled term weights. For

each neuron, our clustering approach first computes the propor-

tion of each term weight relative to the sum of neuronal term

weights. This is referred to as term dominance. Terms within each

neuron are then ranked in order of term dominance (see Figure 1).

The highest weighted term becomes the top label term for that

neuron. Next, if two neurons are neighbors in the two-dimensional

neuron lattice and they share the same top-ranked label term, then

their boundary is dissolved, thus forming a larger polygon, a

neuron label cluster. Since SOM training tends to preserve

topological relationships existing in high-dimensional space,

neighboring neurons will have a good chance of being dominated

by the same terms and thus the process of neuron aggregation can

lead to fairly large 2D clusters.

As with any clustering approach, this tessellation of the input

space is followed by the labeling of clusters. This tends to be a

difficult task in knowledge visualization, since it requires extracting

essential characteristics of cluster content, keeping in mind that

these have to be communicable in a compact, meaningful form.

For example, in a typical scenario, one would have to come up

with one or two terms that succinctly summarize a cluster of

dozens or hundreds of documents. Luckily, determining the cluster

label is trivial with the clustering technique employed in this study,

since a single term drives the creation of a cluster. It therefore

becomes that cluster’s label term.

Clustering is independently repeated for several more term

dominance ranks, thus resulting in separate cluster solutions for
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first-ranked terms, second-ranked terms, and so forth. These later

become layers in the visualization.

While determining the content of a label for individual neuron

label clusters is easy, computing its placement is an extremely

challenging combinatorial task. This stems from competing goals

of (1) clearly associating a label with the respective geometric

object, (2) maintaining label legibility, and (3) imbuing labels with

semiotic properties driven by the source data, e.g., making

quantitative and qualitative differentiations among labeled objects.

While these considerations apply to any visualization, the sheer

number of possible labels to be simultaneously placed make our

particular task exceptionally difficult. In this study, the Maplex

extension to the geographic information system (GIS) software

ArcGIS is used. Maplex provides numerous controls, aimed at

avoiding placement conflicts. We create label solutions in a

hierarchical manner. First, label positions for the cluster solution

computed from top-ranked terms are calculated, typically in fairly

large font, in consideration of available display space. In order to

avoid overprinting, those top-rank labels then constrain the

labeling of second-rank neuron label clusters. Next, first- and

second-rank cluster labels together constrain the placement of

third-rank cluster labels, and so forth. In this manner, several

ranked label solutions are built as layers that are all referenced to

the same SOM and can thus be overlaid as desired.

Finally, cluster boundary geometry and labels are overlaid to

form the actual visualization product. The geometry of only first-

level clusters is depicted, plus its labels, and additional labels for

other term dominance levels. Specifically, the map generated for

examination by the subject experts contains geometry of first-level

clusters, plus labels for three term dominance levels (Figure 1).

Display of full cluster geometry for all cluster levels is precluded by

the resulting clutter. However, we exploit the fact that intelligent

label placement sometimes makes it possible to dispense with

explicit display of feature geometry altogether, if labels manage to

approximate that geometry in size and shape [26].

Evaluation by subject experts
Interested in understanding the strengths and weaknesses of the

SOM-based visualization, we conducted formal user evaluation

using 10 domain experts. To our knowledge this is the first formal

evaluation of a science map at this scale of number of publications

and number of labels.

This study was accepted by the Human Subjects Office of

Indiana University Bloomington as meeting the criteria of exempt

research as described in the Federal regulations at 45 CFR

46.101(b), paragraph 2. The Human Subjects Office accepted the

use of an information sheet. After reviewing the information sheet,

all study participants gave verbal consent, which was recorded in a

spreadsheet. Furthermore, completion of the study by each of the

participants represented acceptance of consent.

The study comprises pre- and post-test questionnaires and

hands-on map area identification tasks as detailed subsequently.

The pre-test questionnaire captured information on gender,

age, native language, academic background, expertise, current

employment, and familiarity with data/techniques of the study.

Next, each subject received an instruction sheet, a poster-size

print of the map, and a red and a black marker. The instruction

sheet provided brief information on the goals of the study, an

introduction to the SOM method, and instructions on task at

hand:

‘‘We are interested to increase our understanding of the strengths and

weaknesses of a self-organizing map of more than 2 million

Figure 2. Parallelized batch training of the SOM, with 225 parallel processes. Included is only the first of a total of 240 sequential batches,
with the trained SOM serving as input to the subsequent batch.
doi:10.1371/journal.pone.0058779.g002
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MEDLINE publications we have made, and self-organizing maps in

general.

Self-organizing maps create spatializations of high-dimensional input

data, rendering many dimensions into a few that take advantage of the

area available. The landscape of a self-organizing map is made up of

many small cells, each of which has various levels of association with

all of the terms in the term space. The self-organizing map is ’trained’

so that the levels of association are based off how related terms are in the

training documents, and neighboring cells have similar levels of

association, generally. The landscape has peaks, where associations of

the landscape with terms are strong, and valleys, where those

associations are more tenuous. Terms can appear in multiple locations,

especially if they have strong associations with multiple terms that are

not themselves strongly associated.

To visualize a self-organizing map, areas of the map are labeled

according to the terms that are most associated with an area. Lower

‘levels’ of terms, in this case represented by smaller text, are sub-terms in

areas more strongly associated with terms represented in larger text.

Peaks tend to occur where the terms you see are strongly associated

together in meaning around an organizing topic. Valleys tend to occur

where the terms have less strong associations, but are often related to the

terms on nearby peaks. Associations on self-organizing maps are not just

between neighbors. Self-organizing maps tend to have human-

interpretable ‘regions’ of closely-related terms.

Please examine the large format self-organizing map of about 2,300

MeSH terms from two million MEDLINE papers. Please locate your

own research area(s) on the map. Draw a boundary around them and

label them in RED.

Identify six areas of science, draw a BLACK boundary around them,

and label them. The areas can be as small as coaster or as large as a

dinner plate. You don9t need to span the whole map, just try to identify

main areas at similar levels of abstraction and give them a label that

characterizes how them–it doesn9t have to be perfect.

This task will help us know how understandable the high-level structure

of the map is.’’

Results

Quantitative characteristics of the model
A map of 75,625 neurons in a hexagonal lattice of 275 rows and

275 columns was randomly initialized, such that each of the 2,300

term MeSH term weights of each neuron took a value from {0, 1}

with uniform probability. For each parallel process in each

sequential batch, the width of the Gaussian kernel was dropped

linearly from 250 down to 1 over the course of each batch.

Training computations were carried out over three 2-day jobs

across 225 processes running in parallel on the supercomputer Big

Red at Indiana University. An equivalent serial runtime was

estimated to require nearly 4 years. With a total of 108 million

training time steps over 240 batches (each step involving a single

input vector), the complete input data set of 2.1 million documents

was presented to the training procedure over 50 times.

Visualization
Visualizing the self-organizing map. In examining the

various term dominance solutions (first rank, second rank, etc.), the

sheer number of different terms rising to the top is surprising

(Table 1). For example, 626 different terms appear as first-level

label terms. In other words, more than 27 percent of 2,300 model

terms are the highest-weighted term in at least one of 75,625

neurons. Further down the term dominance levels, a total of

94.3% of model terms rise to level 5 of term dominance. In other

words, virtually all terms have a relatively high weight at least

somewhere in the SOM. A number of factors contribute to this.

One is of course the large number of neurons, which allows

making finer distinctions within the knowledge space. This, in

conjunction with NLM indexers choosing a very limited number

of MeSH terms per document (mean: 7.06; median: 7.00; standard

deviation: 3.67), produces a good chance that more terms have an

opportunity to rise high in the rankings. That chance is even

greater due to the elimination of all but the 2,300 most common

MeSH terms early on.

The explicit goal of the current study was to produce a map of

the medical knowledge domain as large-format paper output. With

a size of 30-by-36 inches for the core map-not counting legend and

explanatory text-the result is difficult to convey in a journal paper.

Figure 3 gives an idea of the look and content of the map, with a

thumbnail version of the complete map in the center, surrounded

by several detailed views. Notice the semiotic organization, with

different term dominance rankings distinguished by color (blue: 1st

rank; green: 2nd rank; red-orange: 3rd rank) and cluster size

indicated by label font size. Where appropriate and possible, labels

attempt to follow the geometric shape of clusters. This is especially

useful for second and third rank clusters, for which labels are the

only possible indicator of geometry.

Variations in color, font size, and label geometry shape are

meant to help with seeing meaningful patterns and relationships

within a labeling solution that may initially seem enormously

space-filling. What is not immediately apparent is that the number

of labels appearing in the map is actually smaller than the number

of contiguous neuron patches that should be labeled. At the top

term dominance rank, only 606 out of 818 contiguous patches are

labeled (74.1%), while the remaining 212 patches (25.9%) are not

labeled (Table 1). Unplaced labels are caused by a confluence of

small patch sizes, long label strings, and conflicts with the labels of

neighboring patches. The number of unplaced labels rises

dramatically for lower term dominance ranks, not only because

the average patch size becomes lower. Another contributing factor

is that higher-rank labels are used as exclusionary masks for lower-

rank labels, in the interest of legibility. This additional constraint

leads to 83.2% of second-rank patches remaining unlabeled, and

by the time the system attempts to label fifth-rank patches, there is

only enough space for labeling 3.2% of patches. Interestingly, the

total number of labels placed remains fairly consistent from levels

2 onward, with between 899 and 1056 labels (Table 1), probably

due to our effort of systematically reducing font sizes when labeling

smaller neuron patches and lower term dominance ranks.

Contrary to many other clustering techniques, our approach

does not constrain the total number of neuron patches. In our

Table 1. Statistics of label placement for top five term
dominance levels.

Level Unique Terms Patch Count Labels Placed Labels Unplaced

1 626 818 606 (74.1%) 212 (25.9%)

2 1342 6126 1028 (16.8%) 5098 (83.2%)

3 1810 14936 1058 (7.1%) 13878 (92.9%)

4 2054 24649 899 (3.6%) 23750 (96.4%)

5 2170 32789 1056 (3.2%) 31733 (96.8%)

The first three levels correspond to the blue, red-orange, and green layers in
Figure 3.
doi:10.1371/journal.pone.0058779.t001
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study, this results in a large number of patches (818 at the top

level), but terms are by no means evenly distributed across those

patches. One might expect that terms with a higher document

frequency (Table 2) come to dominate a larger number of neurons

(Table 3). However, that is not necessarily the case, since the list of

terms with the highest neuron counts only partially matches the list

of high-frequency terms. Notably, all matches between Tables 2

and 3 reflect fairly general, procedural concepts, such as these

three siblings within the ‘‘Cohort Studies’’ category: ‘‘Follow-Up

Studies’’, ‘‘Prospective Studies’’, ‘‘Retrospective Studies’’. Mean-

while, high-frequency terms addressing broad groups of specific

tools or techniques (e.g., ‘‘Molecular Sequence Data’’, ‘‘Cells,

Cultured’’, ‘‘Amino Acid Sequence’’) do not appear to dominate a

correspondingly large number of neurons.

Looking at specific terms further clarifies that document

frequency as such does not directly predict the area of the map

dominated by a term (i.e., the neuron count). For example, while

‘‘Time Factors’’ occurs in almost twice as many documents as

‘‘Follow-Up Studies’’, it is the top-ranked term in 31% less

neurons. Meanwhile, ‘‘Molecular Sequence Data’’ is the third

most frequent term in the input data, but does not make it into the

top ten list at all, when neuron counts are considered.

It helps to consider that high-frequency terms may play different

roles than simply dominating a particular research theme. Some

high-frequency terms relate to varied research themes, such as

when a popular technique is applied in different contexts. Using

the term dominance technique, this might result in such terms

being distributed across various map regions. As a result, such

terms might form discontiguous regions or patches. Indeed, seven

out of the ten most frequent terms make it onto the list of the ten

terms with the highest patch count (Table 4). ‘‘Molecular

Sequence Data’’ by far ranks at the top, with twice as many

patches as the second-ranked ‘‘Risk Factors’’. It seems that

‘‘Molecular Sequence Data’’ play a unique role in very varied

Figure 3. Zoomed-out view of the complete map of medical literature, plus detailed views of several regions. Contents and design as
presented to domain experts for qualitative evaluation.
doi:10.1371/journal.pone.0058779.g003

Table 2. The ten most frequent terms in the input data set,
including the depth levels at which each term appears in the
MeSH hierarchy.

MeSH Term Doc Count MeSH Level

Time Factors 137352 4

Treatment Outcome 132118 4/6/7

Molecular Sequence Data 100719 5

Risk Factors 95599 6/7/8

Retrospective Studies 94146 7/8

Follow-Up Studies 74821 8

Prospective Studies 72366 8

Cells, Cultured 71290 3

Sensitivity and Specificity 68620 3/5/6

Amino Acid Sequence 67764 5/6

doi:10.1371/journal.pone.0058779.t002
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circumstances, although in a secondary, supporting role that does

not necessarily characterize what the local research theme is

actually about.

Term Dominance Profile. Though neuron label clustering

was first discussed in [20], and has been used in a number of map

projects, including Skupin’s ‘‘In Terms of Geography’’ [2, p. 102–

105], its specific construction and implications have never been

explored in detail. Figures 4 and 5 and Table 5 are meant to fill

that gap. We constructed a transect through the SOM, starting at

a neuron near the center of the top-level region labeled ‘‘Blood

Pressure’’, crossing through a portion of the ‘‘Body Mass Index’’

region, making a turn within the ‘‘Obesity’’ region, and ending at

a neuron within the ‘‘Exercise’’ region. In total, 36 neurons are

traversed along the transect.

In Figure 4, three graphs express the term dominance of the

first, second, and third-ranked terms along those 36 neurons. The

four top-ranked regions are traversed in expected order (Figure 4,

top right), with the first ten neurons having ‘‘Blood Pressure’’ as

the term with the highest weight. For the next four neurons, ‘‘Body

Mass Index’’ is dominant, and so forth. Term dominance- a term’s

weight divided by the sum of term weights for a particular neuron-

for the top-ranked terms ranges from 10% to almost 20%, with

fairly smooth transitions. Local maxima or peaks of term

dominance are located near the centers of regions, while switches

between top-ranked terms occurs near local minima.

The dominance values for second-ranked terms are prominently

featured in the middle-right of Figure 4, but are also plotted as a

dashed line in the top-right. It becomes clear that the centers of

top-level regions are indeed clearly associated with particular

terms (i.e., the second-ranked terms are trailing far behind), but

that regional boundaries are less clear-cut, with first- and second-

ranked terms having very similar term dominance.

In the graphs for the second- and third-ranked terms, notice

how sharply the profile of term dominance values changes, as

compared to the more smooth profile for the top-ranked terms.

This has something to do with the nature of the neuron label

clustering method and its ordinal ranking by term dominance and

does not necessarily reflect absolute changes of term dominance

for a particular term. For example, ‘‘Body Mass Index’’ gets

demoted to second rank just inside the ‘‘Blood Pressure’’ and

‘‘Obesity’’ regions, though its absolute values remains quite high

for a for a few more neurons.

In order to more fully explore dominance-based ranking of

specific terms, Figure 5 contains rank transition profiles along the

36-neuron transect. For clarity, only terms that rise at least to third

rank within the transect are included. Given the nature of the self-

organizing map method and especially considering the level of

Table 3. The ten terms occupying the most space in the map.

Top-Level Term Neuron Count Patch Count Doc Count MeSH Level

Follow-Up Studies 2328 2 74821 8

Treatment Outcome 2042 9 132118 4/6/7

Time Factors 1621 5 137352 4

Prospective Studies 1538 1 72366 8

Signal Transduction 1251 1 61715 4/5

Retrospective Studies 1170 5 94146 7/8

Questionnaires 1040 3 65557 4/5/6

Cell Line 1016 1 54657 4

Magnetic Resonance Imaging 1016 1 51776 5/6

Models, Biological 1015 1 58690 4

Terms are ordered according to the number of neurons for which each is the highest-weighted term. Also given is the number of contiguous patches for each term.
doi:10.1371/journal.pone.0058779.t003

Table 4. The ten terms occurring in the largest number of contiguous patches.

Top-Level Term Patch Count Neuron Count Doc Count MeSH Level

Molecular Sequence Data 20 699 100719 5

Risk Factors 10 1001 95599 6/7/8

Reproducibility of Results 10 517 64595 4/5/6

Treatment Outcome 9 2042 132118 4/6/7

Models, Molecular 8 275 48310 4

Amino Acid Sequence 6 904 67764 5/6

Time Factors 5 1621 137352 4

Retrospective Studies 5 1170 94146 7/8

Mutation 5 842 59174 4

Cells, Cultured 5 709 71290 3

Terms are ordered according to the number of patches. Also given is the number of neurons over which those patches are distributed.
doi:10.1371/journal.pone.0058779.t004
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detail supported by using tens of thousands of neurons, one would

expect that terms slowly rise and drop in rank across the map. An

example for the expected pattern is ‘‘Physical Fitness’’, which

slowly rises from rank 8 to rank 2 (see Figure 5) once the transect

crosses the boundary between ‘‘Obesity’’ and ‘‘Exercise’’ (see

Figure 4). A more surprising observation is that the weight and

rank of some terms drop very dramatically and immediately near

their local maxima. For example, ‘‘Obesity’’ immediately drops to

below tenth rank once it is not first-ranked anymore. In other

words, these are terms that are seen as worthy of succinctly

characterizing a paper’s overarching topic, but without value for

characterizing either secondary meaning or specific research

detail. Meanwhile, ‘‘Body Mass Index’’ is an example for a term

that manages to remain in second-rank for a while on either side of

its local transect maximum (behind ‘‘Blood Pressure’’ and

‘‘Obesity’’, respectively), before dropping from sight (Figure 5).

Sometimes one observes rapid back-and-forth switching be-

tween certain terms, indicating that they are perhaps used

synonymously by different researchers and as such are often used

near each other (i.e., in otherwise closely related articles), but rarely

within the same article. For example, notice how ‘‘Insulin

Resistance’’ and ‘‘Diabetes Mellitus, Type 2’’ seem to play such

a role between neurons 12 and 19. Though they clearly are related

terms, it is surprising that they only once along this transect (in

neuron 14) appear together among a neuron’s top ten terms.

As one descends the term rankings within a neuron, one

encounters finer semantic detail. The map itself attempts to

express this through a visual hierarchy, especially via font size.

However, labeling constraints make it difficult to perform a

semantic drill-down for a particular location. Figures 4 and 5 help

a bit in peeling back term layers for particular neurons. For

example, for the 22nd neuron along the transect (i.e., the pivot

neuron), Figure 4 allows retrieving the rank sequence and relative

dominance of the three terms ‘‘Obesity’’, ‘‘Weight Loss’’, and

‘‘Metabolic Syndrome X’’. Figure 5 further reveals ‘‘Energy

Intake’’ at rank 5.

One of the goals of developing SOMs with high resolution (i.e.,

large number of neurons relative to the volume of input data) is to

enable exploration of semantic patterns at multiple scales. The

global pattern along the shown transect has already been discussed,

and regional patterns have been touched upon via second and third

ranked terms (Figures 4 and 5). Beyond that, its is also possible to

explore local patterns, i.e., the scale of specific research questions.

Arguably, this is the scale at which most funded projects and

Figure 4. Transect through the term dominance landscape from ‘‘Blood Pressure’’ to ‘‘Exercise’’ via ‘‘Obesity’’. Detailed profiles are
shown for the first, second, and third-ranked terms for all transected neurons, with the line graph indicating the proportion of neuron vector weights
accounted for by a particular label term. The first, last, and pivot neuron are highlighted (see also Table 5).
doi:10.1371/journal.pone.0058779.g004
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project-specific research papers operate. Table 5 is meant to

demonstrate how a deeper semantic drill-down may help in

understanding those patterns. Included are the ten highest ranked

terms for four neurons, namely (1) the first neuron along the

transect and (2) its immediately neighboring neuron, (3) the pivot

neuron, and (4) the last neuron of the transect. Neuron 1 and 2 are

included in order to better appreciate the gradual transition of

term weights. Notice how some terms appear to rise or fall in sync,

such as observed with ‘‘Vascular Resistance’’, ‘‘Cardiac Output’’,

and ‘‘Vasoconstriction’’. Meanwhile, again, certain high-rank

terms rapidly enter or leave the scene, such as when ‘‘Hemody-

namics’’ appears to take the place of ‘‘Heart Rate’’. Sometimes

this process allows a term to rise in ranking despite a slight drop in

dominance. Such is the case with ‘‘Sympathetic Nervous System’’,

whose rise along the transect seems to be enabled by ‘‘Heart Rate’’

and ‘‘Vasodilator Agents’’ simultaneously dropping out of sight.

As one approaches lower-ranked terms, one would expect that

terms associated with very specific research questions come to the

fore. That is because documents with matching low-ranked terms

are likely to be closely related and perhaps indicative of a specific

Figure 5. Term rank transitions along the 36 neurons transected in Figure 4. Included are all terms that make it to the first, second, or third
term dominance rank in any neuron along the transect.
doi:10.1371/journal.pone.0058779.g005

Table 5. Top ten terms for four neurons along the transect in Figure 4.

Rank Neuron 1 (Blood Pressure) Neuron 2 (Blood Pressure) Neuron 22 (Obesity) Neuron 36 (Exercise)

1 Blood Pressure 0.1118 Blood Pressure 0.1259 Obesity 0.1952 Exercise 0.1908

2 Heart Rate 0.0470 Vascular Resistance 0.0351 Weight Loss 0.0268 Physical Fitness 0.0272

3 Vascular Resistance 0.0302 Hemodynamics 0.0260 Metabolic Syndrome
X

0.0142 Exercise Test 0.0172

4 Regional Blood Flow 0.0183 Regional Blood Flow 0.0221 Dietary Fats 0.0113 Physical Endurance 0.0170

5 Vasodilator Agents 0.0141 Cardiac Output 0.0157 Energy Intake 0.0107 Physical Exertion 0.0105

6 Cardiac Output 0.0136 Sympathetic Nervous
System

0.0107 Overweight 0.0081 Exercise Therapy 0.0081

7 Sympathetic Nervous
System

0.0120 Ventricular Function, Left 0.0085 Body Composition 0.0057 Running 0.0054

8 Angiotensin II 0.0076 Vasoconstriction 0.0082 Health Policy 0.0057 Affect 0.0036

9 Vasoconstriction 0.0066 Vasoconstrictor Agents 0.0075 Food Habits 0.0054 Weight Loss 0.0033

10 NG-Nitroarginine Methyl
Ester

0.0051 Pulmonary Artery 0.0063 Schools 0.0053 Task Performance and
Analysis

0.0033

Table includes four neurons: the first neuron along the transect, its immediate neighbor, the pivot neuron, and the final neuron. For each neuron, terms are ranked
according to their relative term dominance.
doi:10.1371/journal.pone.0058779.t005
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research theme. This should then drive local patterns in the SOM,

i.e., patterns expressed through just a few neurons. Neuron 22 is a

good candidate where a general focus on pathology (‘‘Obesity’’,

‘‘Metabolic Syndrome X’’, ‘‘Overweight’’) and physical factors

(‘‘Weight Loss’’, ‘‘’’Dietary Fats’’, ‘‘Body Composition’’) then turns

towards broader, societal considerations (‘‘Health Policy’’, Food

Habits’’, ‘‘Schools’’). This could be the starting point of further

exploration of those research topics, like with a search for all

articles containing the MeSH terms ‘‘Food Habits’’ and

‘‘Schools’’, followed by a similarity-based overlay of those articles

onto the base map of SOM neurons (Figure 6). In this example, it

turns out that several relevant articles do in fact locate near the

center of the ‘‘Obesity’’ region, but that the bulk of articles are

found in three separate clusters, which could then be further

investigated (see right portion of Figure 6).

Caution is advised when it comes to making more detailed local

and document-level inferences that rely on lower-ranked terms,

especially with ranks beyond the mean vector length of seven

MeSH terms. The input data set contains plenty of documents

with very few MeSH terms, including over 50,000 documents with

only a single MeSH term and over 100,000 documents with two

MeSH terms. One implication is that small variations in indexers’

choice of MeSH terms can have dramatic effects on where a single

document ends up getting placed. Note that this is different from

the global and regional structures observed in the SOM, because

these are the result of the training algorithm looking to preserve

patterns contributed by thousands of documents. However, in order

to support detailed exploration of local patterns, future extensions

of this work should consider the full text of documents, yielding a

richer, more nuanced data set.

Results of expert subjects study
Formal user studies were run using ten subjects and the process

outlined in section ‘Evaluation by subject experts.’ Here we report

the results of pre-test questionnaire, hands-on map area identifi-

cation and labeling exercise, post-test questionnaire, and debrief-

ing session.

Pre-test questionnaire. Demographic attributes and exper-

tise of participants varied as follows:

(a) Gender

# Female: 3

# Male: 7

Figure 6. Base map function of the SOM demonstrated with an overlay of all articles containing MeSH terms "Food Habits" and
"Schools". Larger circles indicate neurons with larger number of matching articles. Note the split into three main regions, each visualized at finer
scale on the right.
doi:10.1371/journal.pone.0058779.g006
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(b) Age:

# 31–40 years: 3

# 41–50 years: 2

# 51–60 years: 2

# 60+ years: 2

# Unknown: 1

(c) Native language

# English: 7

# French, Romanian, Spanish: one each

(d) Academic background:

# Degrees ranging from B.S. to Ph.D. in areas as diverse as

history, theology, sociology, biology, pathology, biophysics,

social studies of science, information science (2), geology,

clinical psychology, archaeology and law

(e) Expertise

# data analysis, medical research, cardiovascular medicine,

genetics, biology (2), tissue engineering, bibliometrics, science

policy (2), sociology of science, science education, geology,

social science, environmental remediation, neuroscience,

biochemistry, signal transduction, cell adhesion, psychopa-

thology, psychophysiology, schizophrenia, electroencephalog-

raphy, European prehistory, genomics and computational

biology, domain mapping, law

(f) Current employment:

# Program Analyst, Consultant, Senior Advisor, Senior Man-

ager, Professor, and Librarian;

# Government (3), academic (6), combination of both (1);

(g) Familiarity with data/techniques of the study

# MEDLINE (6)

# Medical Subject Headings-MeSH (4)

# self-organizing maps (2)

Hands-on map area identification and labeling

exercise. Here, subjects were asked to spent about 30 minutes

to locate their own research area(s) on the map, draw a boundary

around them, and label them in RED. Next, they were asked to

identify six areas of science, draw a BLACK boundary around

them, and label them. Each of the resulting ten annotated paper

maps was digitized using a digital camera. Next, the subject-

annotated markings for each map were vectorized on-screen and

referenced to the corresponding digitized base map. The resulting

maps are shown for comparison in Figure 7. As can be seen, some

subjects perform no research in the biomedical domain that this

map captures and their maps include no red areas. One subject

(7(i)) has a degree outside of the medical sciences- which might

explain why no red areas were delineated- but is now working in

computational biology and genomics. Other subjects spent most of

their time identifying the extensive areas of their own research and

expertise, e.g., 7(b), 7(g), and 7(j). While identified areas and

labeling differed considerably across maps, there are also a

number of commonalities. For example, all but one subject

identified and labeled the lower left to middle area as relevant for

‘Genetics,’ ‘Genomics’ or similar. In general, subject matter

expertise seems to strongly impact the attention subjects pay to

specific areas and labels on the map. For example, subject 7(g)

focused mostly on areas close to his/her main area of expertise.

Subjects 7(a) and 7(c) which had less biomedical expertise,

produced rather similar areas and labels which is particularly

surprising given the complexity of the map and the rather limited

time frame to make sense of it.

Subjects verbally commented on the map during that part of the

study: One domain expert pointed out that ‘‘‘Virology,’ Evolu-

tion,’ and ‘Paleontology’ are missing. ‘Virus replication,’ ‘HIV,’

‘Adenovirus’ (gene therapy) should be close to ‘Virology.’’’ The

subject also pointed out that ‘‘those terms do not line up with

department names.’’

Another pointed out that ‘‘there is a lack of terms that describe

diseases. Many describe methodology which is typical for

medicine. Could disease terms be extracted from documents? If

researchers would get to pick terms: Would they pick diseases

(treatment goals) or methodology terms (librarians seem method

focused)?’’

Post-test questionnaire. The feedback subjects provided in

the post-test questionnaire is summarized in Table S1. In general,

30 minutes might be too little time to understand a map that aims

to capture the semantic structure of more than two million

documents. Most subjects were not familiar with MeSH and it

might be hard to guess exactly which set of the 2300 MeSH terms

used best characterizes a certain area. Some subjects expected to

see methodology and technology labels while others expected

disease term labels-this is most likely due to different expertise

profiles but is also a reflection of the 2,300 most frequent MeSH

terms covering mostly the top ranges of the MeSH hierarchy

where specific methodologies/technologies/diseases are not yet

encountered. Subjects were surprised/confused by label replica-

tions but most understood quickly that one method or object can

be relevant for many models, diseases, etc. See also comments

captured in debriefing session. Subjects were not sure if missing

areas/labels were caused by limited data coverage (mostly

biomedical research) or if they simply could not find a potentially

lower level, small label without running an automated search over

the map. There was also interest to interact with the data: to zoom

in; to search for certain labels (e.g., ‘‘Clinical psychology’’) on the

map; and/or to display all documents matching a certain search

query as symbols on the map, so that their placement can be

understood. One subject suggested that we explain straight

horizontal versus ‘‘warped’’ labels. S/he suggested using synthetic

data and colors to explain layout, labeling, clustering, peaks and

valleys on this abstract map. Two subjects suggested using contour

lines or color coding to make peaks and valleys easier to infer.

Debriefing. Several subjects asked a number of additional

questions and made diverse constructive suggestions during

individual debriefing including:

N Were all 2300 terms active in all years?

N Would be nice to see all documents as point symbols.

N Different journals have different title lengths and number of

keywords. They might have more general or more specific

titles/keywords. How does this affect the map creation and

reading?

N How many of the 2300 terms are used how often as labels and

on what aggregation levels (different color and type fonts)? A

frequency plot of label usage would be great.
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Figure 7. Digitization of markings made independently by ten subject experts on poster-size map printouts. Labels either explicitly
stated by experts or extracted from encircled areas of the map. Subjects can be roughly categorized into Science of Science and information science
researchers (a,b c), science analysts (d, e, f), and biomedical domain experts (g, h, i, j).
doi:10.1371/journal.pone.0058779.g007
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N Please also provide distribution of MeSH terms over 2 million

documents.

N What labels/MeSH terms are most spread out on the map-use

TF-IDF? Which ones are frequent (across different levels) or

clumped?

N Is there any correlation between the MeSH hierarchy and the

clustering of MeSH terms on the map?

N Exactly how are area boundaries identified?

N Do (visible) lower level boundaries really hurt map reading?

N How to make valley’s and hills more visible? Some had seen

the LastFM map and seemed to prefer its rendering.

N Add numbers 1…275 on outer map boundaries to create a

reference system?

N Spread out vs. normal writing/labeling; horizontal vs. warped

writing; but also label density lead to different perceptual

dominance of terms that are little understood but might have a

major impact on map reading.

N What does type font represent? 3rd level labels can be much

larger than 1st level-this is different from cartographic maps.

N New user study idea: Give subjects a small area on the map

and have them generate more terms/labels for that area.

Some of these questions and comments are specifically

addressed in this paper (see previous section). Others provide

valuable input to further improve the usability/usefulness of the

presented map and other science maps.

Discussion

Limited Vocabulary and Vector Sparseness
One of the goals of this project was to see how far the

application of a basic vector space model in conjunction with

standard SOM training could be pushed when faced with a truly

large document corpus. That required a dramatic reduction of

terms, using only the ,10% most frequently occurring MeSH

terms, which automatically reduces the semantic richness of any

resulting model. Further, in relation to the total remaining

vocabulary of 2,300 MeSH terms, the vectors representing

individual documents are exceedingly sparse, with an average of

only seven terms per document. That sparseness implies that there

is less opportunity for multi-facetted overlapping of the content of

vectors. As a result, the model is somewhat ‘‘flat’’, lacking in

semantic richness, as compared to previous SOM-based visuali-

zation examples [20]. This is especially true at the local level,

where one might want to investigate relationships among

individual papers. Meaningful local operations along the lines of

‘‘show me the ten most similar papers to the one I selected on the

map’’ will require construction of more comprehensive document

vectors, ideally from articles’ full text. The most immediate

alternative would be to use the already existing title/abstract terms

and that is indeed one of the envisaged near-term extensions to

this study.

Limited Scale Range of Static Map
With a visualization derived from over two million documents,

one should ideally be able to investigate patterns at a range of

scales, from the global level (e.g., dominant groupings of topics) to

the local level (i.e., relationships among individual documents). A

static visualization, such as created in this project, does not lend

itself to covering that full range. For the future, a highly

interactive, zoomable interface, should provide meaningful scaling,

based on appropriate computational approaches. Hierarchical

clustering is one of the methods particularly suited to multi-scale

visualization, due to the cognitively advantageous nesting of scale

levels [19,20]. Other methods would allow a statistically more

optimal generation of scale-dependent patterns-like k-means

clustering-but at the price of lacking coordination across scales

[20]. Creation of a zoomable interface to the STS map would also

depend on the type of rich, literally multi-layered, content that the

current degree of term filtering does not provide.

Topics as Dimensions in SOM
As stated before, much in this experiment was geared towards a

methodologically straightforward and ‘‘clean’’ vector-space and

SOM apparatus. With the help of supercomputing resources, the

Figure 8. Geometric zooming versus semantic zooming. Juxtaposed are examples of geometric zooming into the static display of multiple
levels optimized for preventing label overlaps (top) versus semantic zooming with successive revealing of lower levels of term dominance (bottom).
doi:10.1371/journal.pone.0058779.g008
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project was able to push this approach much further than would

otherwise be possible. Though only 10% of MeSH terms were

used, those were the most frequently used terms. Given the much

lower frequency of the eliminated terms and the overall sparseness

of term vectors, we would not have gained much semantic power

by just moving up to using 20% or 30% of the MeSH terms, at the

cost of a doubling or tripling of the model’s dimensionality. Instead

of reducing dimensionality by merely dropping dimensions, one

should aim to combine all of the initial terms into aggregate/

surrogate dimensions that then form the basis of a vector-space

model of documents. Armed with such a reduced-dimensionality

model, one can then proceed to train a SOM of even higher

resolution than in the current experiment, with several hundred

thousand or even a million neurons. Latent Dirichlet Allocation

(LDA) would be a particularly interesting candidate, with its latent

semantic topics serving as dimensions for further analysis.

Compared to a typical LDA approach, one would aim to extract

a relatively large number of topics (e.g., several hundred), which

then become the SOM’s dimensions. Use of a topic model also

seems essential with respect to a move from MeSH keywords to

handling full text data.

Controlled Vocabularies
It appears that the use of indexer-chosen keywords, including in

the case of a large controlled vocabulary-MeSH terms in this

study-raises interesting questions. The rank transition diagram in

particular helped to highlight the fact that different vocabulary

items play different roles in indexers’ attempts to characterize the

content of specific publications. The complex interplay of

hierarchical relationships and functional roles of MeSH terms

deserves further investigation, which may inform future efforts of

how specific terms are handled in computational analysis. For

example, models constructed from terms occurring at intermediate

levels of the MeSH hierarchy might look and function quite

different from the top-level model presented here.

User-centered Studies
Future user studies will include term differentiation tasks to help

us understand whether/how users can differentiate senses of terms

on the self-organizing map. When a term appears prominently in

multiple places, that indicates multiple senses or contexts for that

term. One study might involve subjects being shown two regions

within which a particular label term appears and the abstracts of

several papers containing that term. Subjects would then be asked

to rate each abstract along a continuum between two extremes

formed by the two senses/contexts. Studies like that will help us

evaluate how understandable the local structure of the map is.

Exploratory Visual Analysis
This paper includes numerous examples of how a detailed

SOM-based representation of a very large document corpus could

be further explored, including use of transects, profiles, rank

transition diagrams, and drill-downs. All of these build on the

nature of the SOM method, with its conceptualization of a

continuous high-dimensional space that is then represented in

tessellated, low-dimensional form. This draws a distinction to

previous efforts of representing document spaces based on layered

density landscapes [11,27,28] that ultimately are driven by a

discrete object conceptualization [24].

Interactive Map
An obvious direction for future work is to transform the static,

print-focused map of the biomedical knowledge domain into a

highly interactive Web-accessible application that would support

such functions as search, selection, and scale change (i.e.,

zooming), as requested by several human subjects. Some of the

enormous constraints imposed by the conjunction of a single static

display with sheer corpus size could be loosened in an interactive

setting. For example, it would become possible to aim for semantic

zooming, with detailed concepts being revealed as users zoom in.

Added interactivity would allow more freedom in simultaneous

display of multiple levels, revealing more of the semantic richness

of the document space (see sequence of zooms in Figure 8), as

compared to the large numbers of patches remaining unlabeled in

the current map (Table 1).

Extending the target user group of such an interactive

application beyond the core biomedical community will require

significant enhancements. For example, users searching for

‘‘Cancer’’ in the current map might be surprised that the term is

virtually absent. Meanwhile, ‘‘Neoplasms’’ and various related

noun phrases (e.g., ‘‘Breast Neoplasms’’, ‘‘Antineoplastic Agents’’)

are MeSH terms associated with tens of thousands of documents in

the corpus and large swaths of the map. Making the map truly

accessible to the general public or out-of-domain researchers will

require exploiting ontological links between expert-preferred terms

and laypersons’ language.

Supporting Information

Table S1 Subject responses.

(XLS)

Acknowledgments

The work of Marilyn Stowell in digitizing expert annotations is gratefully

acknowledged, as are the comments and suggestions made by Kevin

Boyack in response to an earlier draft of this paper.

Author Contributions

Conceived and designed the experiments: AS JB KB. Performed the

experiments: AS JB KB. Analyzed the data: AS JB KB. Contributed

reagents/materials/analysis tools: AS JB KB. Wrote the paper: AS JB KB.

References

1. Jinha AE (2010) Article 50 million: an estimate of the number of scholarly

articles in existence. Learned Publishing 23: 258–263.

2. Börner K (2010) Atlas of science: visualizing what we know. Cambridge, Mass.:

MIT Press.

3. Börner K, Chen C, Boyack KW (2002) Visualizing knowledge domains. In:

Cronin B, editor. Annual Review of Information Science and Technology. pp.

179–255.

4. Klavans R, Boyack KW (2009) Toward a Consensus Map of Science. Journal of

the American Society for Information Science and Technology 60: 455–476.

5. Börner K (2011) Plug-and-Play Macroscopes. Communications of the ACM 54:

60–69.

6. Rafols I, Porter AL, Leydesdorff L (2010) Science Overlay Maps: A New Tool

for Research Policy and Library Management. Journal of the American Society

for Information Science and Technology 61: 1871–1887.

7. Herr II BW, Talley EM, Burns GA, Newman D, La Rowe G (2009) The NIH

Visual Browser: An Interactive Visualization of Biomedical Research.

Proceedings of the 13th International Conference on Information Visualization

(IV09). Barcelona, Spain: IEEE Computer Society. pp. 505–509.

8. Bollen J, Van de Sompel H, Hagberg A, Bettencourt L, Chute R, et al. (2009)

Clickstream Data Yields High-Resolution Maps of Science. PLoS ONE 4:

e4803.

9. NWB_Team (2006) Network Workbench Tool. Indiana University, Northeast-

ern University, and University of Michigan.

Visualizing the Medical Sciences

PLOS ONE | www.plosone.org 15 March 2013 | Volume 8 | Issue 3 | e58779



10. de Nooy W, Mrvar A, Batagelj V (2005) Exploratory Social Network Analysis

with Pajek. Cambridge, UK: Cambridge University Press.

11. Davidson GS, Hendrickson B, Johnson DK, Meyers CE, Wylie BN (1998)

Knowledge mining with VxInsight: Discovery through interaction. Journal of

Intelligent Information Systems 11: 259–285.

12. Salton G (1989) Automated Text Processing: The Transformation, Analysis, and

Retrieval of Information by Computer. Reading MA: Addison-Wesley

Publishing Company.

13. Kruskal JB, Wish M (1978) Multidimensional Scaling.

14. Kohonen T (1995) Self-organizing maps. Berlin; New York: Springer. xv, 362 p.

p.

15. Skupin A (2002) On Geometry and Transformation in Map-like Information

Visualization. In: Börner K, Chen C, editors. Visual Interfaces to Digital

Libraries (Lecture Notes in Computer Science 2539). Berlin, Germany:

Springer-Verlag. pp. 161–170.

16. Skupin A, Agarwal P (2008) Introduction-What is a Self-Organizing Map? In:

Agarwal P, Skupin A, editors. Self-Organising Maps: Applications in

Geographic Information Science. Chichester, England: John Wiley & Sons.

pp. 1–20.

17. Chen H, Schuffels C, Orwig R (1996) Internet categorization and search: a self-

organizing approach. Journal of Visual Communication and Image Represen-

tation 7: 88–102.

18. Lin X 1992. Visualization for the Document Space; IEEE CS Press. pp. 274–

281.

19. Skupin A (2002) A cartographic approach to visualizing conference abstracts.

IEEE Computer Graphics and Applications 22: 50–58.
20. Skupin A (2004) The World of Geography: Visualizing a knowledge domain

with cartographic means. Proceedings of the National Academy of Sciences 101:

5274–5278.
21. Kohonen T, Kaski S, Lagus K, Salojärvi J, Honkela T, et al. (1999) Self

Organization of a Massive Text Document Collection. In: Oja E, Kaski S,
editors. Kohonen Maps. Amsterdam: Elsevier. pp. 171–182.

22. Boyack KW, Newman D, Duhon RJ, Klavans R, Patek M, et al. (2011)

Clustering More than Two Million Biomedical Publications: Comparing the
Accuracies of Nine Text-Based Similarity Approaches. PLoS ONE. pp. e18029.

23. Kohonen T, Hynninen J, Kangas J, Laaksonen J (1996) SOM_PAK: The Self-
Organizing Map Program Package. Espoo, Finland: Helsinki University of

Technology, Laboratory of Computer and Information Science.
24. Skupin A (2009) Discrete and continuous conceptualizations of science:

Implications for knowledge domain visualization. Journal of Informetrics 3:

233–245.
25. Lawrence RD, Almasi GS, Rushmeier HE (1999) A scalable parallel algorithm

for self-organizing maps with applications to sparse data mining problems. Data
Mining and Knowledge Discovery 3: 171–195.

26. Skupin A (2011) Mapping Text. Glimpse | the art+science of seeing 3: 69–77.

27. Boyack K, Wylie BN, Davidson GS, Johnson DK Analysis of patent databases
using VxInsight; 2000; Washington, DC.

28. Wise J (1999) The ecological approach to text visualization. Journal of the
American Society for Information Science 50: 1224–1233.

Visualizing the Medical Sciences

PLOS ONE | www.plosone.org 16 March 2013 | Volume 8 | Issue 3 | e58779


