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We introduce a network-based index analyzing excess scientific production and consumption to perform a
comprehensive global analysis of scholarly knowledge production and diffusion on the level of continents,
countries, and cities. Compared to measures of scientific production and consumption such as number of
publications or citation rates, our network-based citation analysis offers a more differentiated picture of the
‘ecosystem of science’. Quantifying knowledge flows between 2000 and 2009, we identify global sources and
sinks of knowledge production. Our knowledge flow index reveals, where ideas are born and consumed,
thereby defining a global ‘scientific food web’. While Asia is quickly catching up in terms of publications and
citation rates, we find that its dependence on knowledge consumption has further increased.

P
aper and citation counts are the ‘official currency’ in science and are widely used to assess the productivity
and impact of authors, institutions, and scientific fields1–5. Many academic rankings focus on numbers P(t)
of publications in leading journals and citations rates C(t), i.e., on knowledge production and consumption

over time t. Examples are rankings of people, institutions, cities, or journals6–9. They show that new powers such as
China and Brazil have recently emerged on the global scientific landscape10. Extrapolating these trends, it seems
that the USA and Europe might lose their academic leadership.

However, academic leadership requires one to be first to publish a paper and others to cite the ideas.
Simple counts of publications and citations of an entity (be it an author, institution, city, geographic area,
journal, or scientific field) do not reveal who cites whom (thereby consuming knowledge from others), and
who is cited (i.e., who produces knowledge consumed by others). The network-based approach proposed
here assumes the existence of a ‘scientific food web’ that interconnects academic entities via knowledge
flows.

A network perspective is important, because in many complex systems (such as the scientific ecosystem),
interaction effects can be more relevant for the resulting system behavior than the properties of the inter-
acting entities themselves. For example, it has been shown that author teams manage to be more successful
than single authors11–14. The social, network-based character of knowledge diffusion underlines this perspec-
tive as well15–17.

Compared with other ecosystems18,19, an entity in the scientific food web is considered to be particularly
successful (‘fit’), if its knowledge is consumed (cited) more than expected. The analogy to ecosystems is chosen
here to pronounce the mutual interdependencies and synergy effects in knowledge creation, since the production
of new knowledge is nourished by the previous existence of relevant knowledge sets and their recombination. This
is in line with research that uses the concept of ecosystems to shed new light on financial markets20 and the
evolution of national economies21.

In previous work, networks of scientific papers22 were used to analyze the evolution of scientific fields23, to study
innovation diffusion24,25 or clickstream patterns26, and to model the emergence and development of scientific
fields27. Moreover, knowledge diffusion has been mapped between 500 major U.S. academic institutions, using a
20-year dataset of 47, 073 PNAS papers28. Other research studied knowledge import patterns for the field of
transportation29. Our current study goes significantly beyond this by proposing and validating a new network-
based index measuring higher-than-expected knowledge flows, which can be consistently applied on multiple
levels. We demonstrate this by evaluating 13 million papers to identify global trends of knowledge diffusion at the
level of continents, countries, and cities.
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Results
We have analyzed the 80 million citations between 13 million papers
published in the time period 2000 to 2009, as recorded in Thomson
Reuters Web of Science (WoS). As the interaction of geographic
locations is of particular interest, we have geolocated the papers using
the first authors’ postal address. (The addresses of the other authors
are often not available in this database.)

To measure the knowledge flow between geographic locations or
areas, collectively referred to as entities i, we proceed as follows: Let
Cij be the number of citations, which papers produced by entity j
receive from papers by entity i in the time period under considera-
tion. Then, Cj 5 Si Cij is the total number of citations that entity j
receives from all entities. Ri 5 Sj Cij is the total number of references
listed in papers produced by entity i, citing other papers in our
dataset. R 5 Si Ri is the total number of references pointing to other
papers. Pi denotes the number of papers produced by entity i and P 5

Si Pi the total number of papers generated during the time period of
consideration.

In order to assess the significance of knowledge flows, we need
some kind of baseline scenario to compare with. Let us assume all
papers would have the same capacity to attract citations. In such a
case, the references listed in papers of entity i would cite the papers
published by entity j in a proportional way, and the expected number
of citations from i to j would be E(Cij) 5 RiPj/P. Consequently, the
proposed network-based index

Sij~
Cij{E Cij

� �
Ri

~
Cij

Ri
{

Pj

P
ð1Þ

measures the excess citations per reference (i.e., the relative surplus).
The index quantifies the interactions between a finite number of
papers, which are distributed over a fixed set of entities such as
geolocations. Note that the above formula considers self-citations
of entity i. The slightly modified network flow index
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Ri{Cii
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Pj

P{Pi
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with Fii 5 0 removes the effect of self-citations. Defining (excess)
knowledge flows from entity j to i in this way, the weighting factor
Pi/P takes into account the volume of papers contributing to them,
and the formula has the favorable mathematical properties 21 # Fij

, 1 and Si Fij 5 0 This makes the index values easy to interpret: A
positive flow indicates a surplus, i.e., an entity is cited more often
than expected. A negative flow indicates a deficit, i.e., the entity is
cited relatively little compared to the number of papers it produces. A
neutral knowledge flow is not necessarily a sign of academic inactiv-
ity, but indicates that an entity receives the number of citations
expected on average.

We now define the index of (scientific) fitness

Ki~
X

j

Fij ð3Þ

by summing up the (excess) knowledge flows from an entity i to all
other entities j. It measures how much the consumption of know-
ledge created by entity i exceeds the statistical expectation.

21 # Ki , 1 and Si Ki 5 0. It becomes negative if entity j cites
other publications more frequently than expected, while a positive
value indicates that j is a net creator of knowledge. Entities with a
negative overall knowledge flow are referred to as ‘knowledge sinks’,
while those with positive knowledge flow are called ‘knowledge
sources’. As entities with low academic activity rate around Ki 5 0,
fitness does not measure academic strength, but the likely ability to
thrive, if the consumption of external knowledge would be reduced.
In other words, scientific fitness, as defined above, measures the
resilience to the reduction of external inputs of knowledge.

To assess the plausibility of our new indices, we create rankings of
geolocations based on the number of papers Pi, the number of

citations Ci, the number of citations per paper Ci/Pi, and the fitness
Ki. In order to have reliable index values (based on the statistical law
of large numbers), we consider only entities with more than Pi 5 500
publications in the investigated time period (848 geolocations fit that
criterion in both considered time periods).

Our analysis shows the following: (1) The number of papers Pi and
citations Ci are largely determined by the size of a country or city (see
Tables S1 [countries] and S2 [cities]). Industrial countries perform
better, but emerging scientific powers such as China and Brazil are
catching up quickly (see Fig. 1). (2) The number of citations per
paper, Ci/Pi is particularly high in countries such as Switzerland
and The Netherlands, while the average performance of big countries
seems to be pulled down by a large number of poorly performing
academic institutions (see Table S1). The related city ranking appears
to be sensitive to particularities such as the research focus of an
institution. (3) Rankings based on fitness for countries (see Table
S1) and for cities (Table S2) confirm known knowledge-producing
areas in the world (see Fig. 2).

A closer look at the knowledge flows between different areas of the
world shows that, despite the phenomenal growth of scientific pro-
ductivity in Asian countries (see Fig. 1), the dependence on know-
ledge produced in the North America and Europe has further

Figure 1 | World map of knowledge production and consumption in 6
major geographic areas of the world (North America, South America,
Europe, Asia, Australia and Africa). Circle size reflects the number of

papers Pi produced by the corresponding entities i. The inner circle is for

2000–2002, the outer one for 2007–2009. The size of the pies represents (A)

the relative proportion of citations Ci that the entities earned in the 6

geographic areas, (B) similar for references Ri recorded in the Thomson

Reuters Web of Science database. The number of papers and citations have

increased over time in all geographic areas, but their shares of references

and citations have changed. For example, Asia reaches higher shares

recently, characterizing it as an emergent scientific power, which has

become almost comparable to North America or Europe. Note that, in the

three leading knowledge producing areas, the majority of references cites

papers published in the same geographic area, i.e., proximity matters.
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increased (see Fig. 3). Note that the bars in Fig. 3 do not measure the
distance between competitors, but the rate at which this distance
changes. That is, as long as the bar is green, the distance between
competitors grows, while the rate at which the distance increases
shrinks, if the bar gets shorter.

Examining Fig. 3 more closely, the top row shows that North
America is a major source of the knowledge that is consumed in
Europe and Asia. Nevertheless, the excess knowledge flows from
North America and Europe have decreased in the past decade.
South America, in contrast, is improving its performance, while
Africa’s scientific activity is still on a low level (see also Fig. 1).

Discussion
In conclusion, our study addresses the fact that indices exclusively
oriented at knowledge production or consumption (such as numbers
of papers or citations), do not measure the most crucial property of
the ecosystem of science, which is knowledge exchange. Given that
the creation and diffusion of knowledge largely depend on social
networks30,31, and given the large relevance of network theory in
many scientific areas, we believe that classical, node-based indices
must be complemented by network-based indices. We, therefore,
expect that there will be a whole new class of network-based scientific
indices besides betweenness centrality32 and PageRank33 to character-
ize the scientific ecosystem in the future.

Here, we propose to measure scientific leadership by a network-
based index that quantifies excess knowledge consumption by others.
For knowledge leadership, the position of an entity in the scientific

food web is crucial. It is important to understand whether a scientific
entity is citing or being cited (‘consumed’), and whether one is first to
publish an idea or second. Our definition of knowledge flows cap-
tures the essence of this and has favorable mathematical properties.
Our empirical analysis with Web of Science data reveals that the
consumption of knowledge from North America, Europe, and
China decreases relative to their production, while South America
is improving its position.

The network-based knowledge flow index has the favorable prop-
erty that it allows one to derive a related node-based index, which we
call the fitness of a scientific entity. The corresponding fitness ranking
is compatible with other science rankings of cities (see Fig. 4).
However, our index has the advantage that everyone with access to
citation data can measure it, since it does not require surveys or Web
analytics. Notably, the same knowledge flow and fitness indices can
also be applied to scientific fields and subdisciplines.

Methods
Dataset. Journal paper records for the years 2000–2009 were retrieved from
Thomson Reuters’ Web of Science (WoS) data. The dataset comprises about
13 million journal papers and 80 million citations between them (citations of non-
WoS papers are not included in the dataset). While the WoS dataset has inherent
limitations, e.g., does not include book or most conference publications and it is
dominated by English publications, WoS is still considered to be the standard dataset
to run global citation analyses accross all areas of science.

Determination of geographic location. All papers were geolocated with a success
rate of 91.8%, using the Yahoo! geocoder in the Science of Science (Sci2) Tool. We
found 47,333 unique geo-locations (latitude-longitude pairs) and 80 million citations

Figure 2 | World map of the greatest knowledge sources and sinks, based on our scientific fitness index. Green bars indicate that the number of

citations received is over-proportional, red that the number of citations received is lower than expected (according to a homogeneous distribution of

citations over all cities that have published more than 500 papers). It can be seen that most scientific activity occurs in the temperate zone. Moreover, areas

of high fitness tend to be areas that are performing economically well (but the opposite does not hold).

www.nature.com/scientificreports
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between them. From these, we identified all science locations with more than 500
publication during the period under consideration. Self-citations were excluded.

Each paper was geolocated, using the address field of the corresponding author
(C1), or reprint address fields (RP) when no corresponding author was specified. For
the selected address fields, we used the state field (NP), if the country field (NU)
pointed to the US, and the city field (NY) otherwise. 12 million journal records
(91.8% of all publications) were successfully geo-located with 80,793 unique city/
state-country pairs. The other 8.2% of the journal records either did not have the
required address fields, or the Yahoo! Geocoder detected their address fields as
invalid. The geocoder provided latitude and longitude values with 14 digit decimals.

We aggregated the neighboring locations by rounding latitude and longitude
values to 2 digits. This resulted in 47,333 unique geo-locations (latitude-longitude
pairs). Finally, the top-550 major geolocations were identified, using the number of
raw citation and reference counts.

Identification of trends from geolocated records. To identify trends, the 10-year
dataset was divided into 8 partially overlapping time slices: 2000–2002, 2001–2003 …
2007–2009. For each time slice, a network was extracted that comprises citations of
papers published in the last year, received from papers published within the whole
time slice. For example, time slice 2000–2002 considers all citations of recorded
papers published in 2002, received from papers published in 2000–2002. Therefore,
only early citations to papers are captured, i.e., those made shortly after publication.
The total number of these early citations is 31 million (which amounts to 39% of the
total number of citations from and to papers published within the whole 10-year time
period).
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