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Abstract

Historically, science of science studies were/are performed by single investigators or small
teams. As the size and complexity of data sets and analyses scales up, a “Big Science”
approach (Price, 1963) is required that exploits the expertise and resources of
interdisciplinary teams spanning academic, government, and industry boundaries. Big science
of science studies utilize “big data”, i.e., large, complex, diverse, longitudinal, and/or
distributed datasets that might be owned by different stakeholders. They apply a systems
science approach to uncover hidden patterns, bursts of activity, correlations, and laws. They
make available open data and open code in support of replication of results, iterative
refinement of approaches and tools, and education. This paper introduces a database-tool
infrastructure that was designed to support big science of science studies. The open access
Scholarly Database (SDB) (http://sdb.cns.iu.edu) provides easy access to 26 million paper,
patent, grant, and clinical trial records. The open source Science of Science (Sci2) tool
(http://sci2.cns.iu.edu) supports temporal, geospatial, topical, and network studies. The
scalability of the infrastructure is examined. Results show that temporal analyses scale
linearly with the number of records and file size, while the geospatial algorithm showed
quadratic growth. The number of edges rather than nodes determined performance for
network based algorithms.

Conference Topic

Old and New Data Sources for Scientometric Studies: Coverage, Accuracy and Reliability
(Topic 2), Visualisation and Science Mapping: Tools, Methods and Applications (Topic 8)
and Open Access and Scientometrics (Topic 10)

Introduction & Related Work

Many science of science studies use heterogeneous datasets and advanced data mining and
visualization algorithms advance our understanding of the structure and dynamics of science.
The quality of results depends on the quality and coverage of the data used. Data cleaning
and preprocessing can easily consume 80 percent or more of the overall project effort and
budget. As the number of data records grows, different types of tools and expertise are
required to handle the data. MS Excel can load a maximum of 1,048,576 rows of data by
16,384 columns per sheet. MS Access file sizes cap at 2 gigabytes, including indices, forms,
and macros along with the data. Larger datasets need to be stored in a database designed with
scalability in mind. As the diversity of datasets increases, the structures of different datasets
need to be aligned. As data covers more and more years, dealing with format changes
becomes necessary. Many studies require extensive preprocessing and augmentation of the
data, such as identification of unique records or record values, geocoding of records in
preparation for geospatial analysis, or the extraction of networks for network studies. For
many researchers, the effort to compile ready-to-analyze-and-visualize data is extremely time
consuming and challenging and sometimes simply insurmountable.
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Many datasets relevant for science of science studies, e.g., papers, patents, grants, clinical
trials, are freely available by different providers. However, they are stored in separate silos
with diverse interfaces of varying usability that deliver data in many different formats.
Research projects seeking to use one or many of these data sources face major data access,
integration, and unification challenges. Indiana University’s Scholarly Database (SDB),
originally launched in 2005, makes over 26 million scholarly records freely available via a
unified interface and in data formats that are easy to use and well documented. In the last four
years, SDB has answered thousands of queries and delivered millions of records to users
around the globe. The 2012 update to the SDB improves the quality of data offered and
integrates new humanities and clinical trial datasets.

Equipped with high quality, high coverage data in standard data formats, tools that scale in
terms of the number of records that can be read and processed are needed to truly make sense
of big data (Robertson, Ebert, Eick et al., 2009). While most tools work well for micro and
meso level studies (up to 100,000 records), few scale to macro level big-data studies with
millions or even billions of records. Another type of scalability relates to the ease of usage
and ease of interpretation of big data visualizations. How to best communicate temporal
trends or burst of activity over a 100 year time span? How to depict the geospatial location of
millions of records in a scalable fashion? Can the topical evolution of massive document
datasets be communicated to a general audience? Most visualizations of million node
networks resemble illegible spaghetti balls—do advanced network analysis algorithms scale
and help to derive insights?

Frequently, different types of analysis have to be applied to truly understand a natural, social,
or technological system. Examples are temporal studies that answer WHEN questions,
geospatial studies that answer WHERE questions and draw heavily on research in
cartography, topical studies that use linguistic analysis to answer WHAT questions, and
network studies that employ algorithms and techniques developed in social sciences, physics,
information science and other domains to answer WITH WHOM questions. However, most
existing systems support only one general type of analysis and visualization and many require
programming skills. For example, four of the top 20 data visualization tools listed by .net in
September of 2012 support charts and graphs while six support geospatial maps exclusively
(Suda, 2012). Only the D3 (Data-Driven Documents) and Raphaél JavaScript libraries, the
Google Chart API, and R support a larger array of charts, graphs, and maps yet all three
require programming or scripting skills that most users do not possess. Excel might be the
only tool on the list that can be used by a large number of non-programmers. A listing of
tools commonly used in science of science studies can be found at
http://sci2.wiki.cns.iu.edu/display/SCI2TUTORIAL/8.2+Network+Analysis+and+Other+Too
Is but most support a very limited range of workflows (Cobo, Lopez-Herrera, Herrera-
Viedma et al., 2011).

This paper presents a database-tool infrastructure that applies a divide-and-conquer approach
to support big science of science studies. It combines an online database supporting bulk
download of data in easy to process formats with a plug-and-play tool to read, clean,
interlink, mine, and visualize data using easy to manipulate graphical user interfaces.

The remaining paper is organized as follows: The next two sections present the database and
tool functionalities. Subsequently, we test and discuss their scalability. We conclude the
paper with a discussion of the presented work and an outlook to future work.
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The Scholarly Database (SDB)

The Scholarly Database was created in 2005 to provide researchers and practitioners easy
access to various datasets offered by different publishers and agencies (LaRowe, Ambre,
Burgoon et al., 2009). The Scholarly Database is implemented using PostgreSQL 8.4, a free
and open source relational database management system. Since the introduction of version
8.1, PostgreSQL developers have been focused on improving the scalable performance of the
system and this software is now employed by many companies to provide large-scale data
solutions, including Yahoo!, Sony Online and Skype. Today, the Scholarly Database provides
easy access to paper, patent, grant, and clinical trials records authored by 13.8 million people
in 208 countries (some, such as Yugoslavia, no longer in existence), interlinked by 58 million
patent citation links, and over 2.5 million links connecting grant awards to publications and
patents. As of November 2012, the SDB features over 26 million records from MEDLINE
(19,039,860 records spanning from 1865-2010), USPTO patents (4,178,196, 1976-2010),
NIH awards (2,490,837, 1972-2012), NSF awards (453,687, 1952-2010), NEH awards
(47,197, 1970-2012) Clinical Trials (119,144, 1900-2012).

Unique features of SDB comprise:

e Open Access: The SDB is composed entirely of open data so there are no copyright or
proprietary issues for the researcher to contend with in its use. Data is provided to
researchers free of charge.

e Ease of Use: Simple user interfaces provide a one-stop data access experience making
it possible for researchers to focus on answering their questions, rather than spending
much time on parsing, searching, and formatting data.

e Federated Search: By aggregating the data into a single environment, SDB offers a
federated search environment powered by a Solr core. Users can search one, some, or
all of the available datasets over some or all years using the same set of terms and get
a combined set of results that are ranked by relevance.

e Bulk Download: Most databases do not support downloads and those that do only
permit access to a limited number of records. SDB supports bulk download of data
records; data linkages—co-author, patent citations, grant-paper, grant-patent; burst
analysis files. Users are granted a base number of downloads by default to prevent
abuse of the system, but this number can be extended by request without charge.

e Unified File Formats: SDB source data comes in different file formats. NIH funding
data is stored in flat files; clinical trials are offered in XML, while patents come in a
variety of formats, depending on the year. Old patents come in a fixed width data
format while newer patents are provided in XML. Much time and effort was spent to
normalize this data into easy-to-use file formats, e.g., comma-delimited tables for use
in spreadsheet programs and common graph formats for network analysis and
visualization.

o Well-Documented: SDB publishes data dictionaries for every dataset offered.
Information on data provenance, table structure, data types, and individual field
comments are available. In addition, the SDB offers a set of small sample files, giving
researchers an easily usable test-bed for working out their algorithms before
committing to analysis of a larger set.

The SDB Wiki (http://sdb.wiki.cns.iu.edu) provides more information including a user guide,
information on each dataset, and release notes.
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The Science of Science (Sci2) Tool

The Science of Science (Sci?) tool is a modular toolset specifically designed for the study of
science. It supports the temporal, geospatial, topical, and network analysis and visualization
of scholarly datasets at the micro (individual), meso (local), and macro (global) levels, see
screenshot in Figure 1, general workflow in Figure 2 and specific workflows discussed in the

scalability tests section.
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Figure 1: Sci2 tool user interface with proportional symbol map visualization.

The tool’s OSGi/CIShell core architecture makes it possible for domain scientists to
contribute new algorithms written in a variety of programming languages using a plug-and-

play macroscope approach (Borner, 2011).

!
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hypothesis hypothesis is Stopwording
acquired Network extraction

Burst detection Bar graph The visualization
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Network clustering Science map his/her audience with
Community detection Co-occurrence insights that inspire
PageRank Radial Map new questions

Figure 2: General Sci2-based visualization creation workflow (tool-specific tasks in gray).

As of November 2012, the Sci2 tool has 171 algorithms, 112 of which are visible to the user

(see Figure 3) written in Java, C, C++, and

Fortran. In addition, a number of tools (Gnuplot,

Guess, and Cytoscape) were implemented as plugins and bridges to R and to Gephi were
created, allowing the seamless use of different tools. The Sci2 user interface and sample map

is shown in Figure 1.
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Category Algorithms Examples

Acquisition 5 Google Citation User ID Search Algorithm
Data Preparation 13 Extract Co-Occurrence Network
Preprocessing 22 Slice Table by Time, Extract ZIP Code
Analysis 47 K-Nearest Neighbor, Burst Detection
Modeling 4 Watts-Strogatz Small World, TARL

R 4 Create an R Instance, Send a Table to R
Visualization 17 Choropleth Map, Bipartite Network Graph
Total 112

Figure 3: Sci2 algorithm summary tables.
Unique features of Sci2 comprise:

e Open Source: Anybody can examine the source code and advance it.

e Extensive use of well-defined reference systems: To improve readability and to
support interpretation, Sci2 uses a number of carefully designed reference systems,
see Figure 4. Each comes with a title, legend, and a brief “How to read this
visualization” section that provides further details, e.g., on used geospatial
projections.

e Interactivity: While visualizations of small datasets can be explored interactively,
visualizations of big data are rendered into Postscript files that can be converted to pdf
files and examined using pan and zoom as well as filtered, e.g., by searching for
specific text in the display.

o Workflows: All user actions are recorded in a log file to ensure proper documentation
and easy replicability of workflows that might comprise 15-20 analysis and
visualization algorithms with a range of parameter settings.

e Online documentation: All Sci2 plugins as well as major workflows are documented
in the Sci2 Wiki (http://sci2.wiki.cns.iu.edu) together with release notes.

Figure 4: Exemplary reference systems supported by Sci2 including Temporal Bar Graph (top,
left), Choropleth map (top, right), UCSD science map (bottom, left), bimodal network
visualization (bottom, right) Full versions available at
http://wiki.cns.iu.edu/display/SCI2TUTORIAL/1+Introduction

5
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Scalability Tests

To demonstrate the scalability of the database and tool, tests were performed using synthetic
datasets with pre-defined properties generated in Python and datasets retrieved from the
Scholarly Database. All four types of analysis supported by Sci2 were tested: temporal
analysis, geospatial analysis, topical analysis, and network analysis. Initially, we identified
workflows indicative of these four main types of analysis. From there, we broke down each
workflow into the specific steps (algorithms) involved in the workflow, starting with loading
the data and ending in visualization. For each algorithm, e.g., data reader, analysis,
visualization, we measured (in seconds) the length of time it took for an algorithm to finish
processing. We considered the start of the algorithm to be the point at which the user inputs
his or her parameters (where applicable) and then executes the algorithm. We considered all
algorithms to be finished when the associated data files appeared in the Data Manager and
were displayed as complete in the Scheduler. For each test, we calculated the average for 10
trials. Between trials, we closed down Sci2 in order to minimize any adverse effects of
residual memory. Tests were performed on a common system: an Intel(R) Core(TM) Duo
CPU E8400 3.00GHz processor and 4.0GB of memory running a 64bit version of Windows 7
and a 32bit version of Java 7. Memory allotted to Sci2 was extended to 1500 MB.

Records | Columns| Size | Load Time | SD (sec) kil Sl v Load Thae
(MB) (sec)

50,000 2 0.48 0.72 0.06 140 4

100,000 2 0.95 1.08 0.04 TR L °-m?3;jjg-;é;:**d-m36 ®
500,000 2 4.77 3.75 0.05 :
1,000,000 2 9.54 7.14 0.14 3 100 7
1,500,000 2 14.31 10.26 0.08 2 %
2,000,000 2 19.07 13.26 0.17 E
2,500,000 2 23.84 16.47 0.13 -'-; 60

50,000 25 5.96 3.56 0.07 3 40 4

100,000 25 11.92 6.44 0.05 Y

500,000 25 59.61 29.62 0.91 20 + '
1,000,000 25  |119.21| 122.36 0.64 6 / _ _
1,500,000 25 178.81 -TF* 0 50 100 150
2,000,000 25 238.42 -TF* File Size (MB)
2,500,000 25 | 298.02 -TF*

Figure 5: Comparison of load times, measured in seconds, across standardized datasets,
tabulated (left) and plotted with quadratic regression line (right).

File Loading

Synthetic data was used to measure how file loading times vary in terms of number of records
and length of individual record in bytes. Two series of datasets were generated, one with only
two rows, a small integer, and a short string and one with 25 rows, a small integer and 24
short strings, each with increasing numbers of rows. Average loading times over ten trials are
given in Figure 5. The three largest datasets did not load but returned a Java heap space error
(-TF*). At first glance, there seems to exist a direct relationship between file size and loading
time (R* = 0.9384), a closer look at the plot of size versus time reveals that a quadratic
regression line has a noticeably better fit (R>=0.9889). This is likely a result of the tool
having to devote resources to file management that would otherwise be available for
completing functions more efficiently.

Next, SDB data prepared for usage in science of science workflows was read comprising
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e NIH data at 3.4GB, NSF data at 489MB, NIH data at 139MB, and NEH data at
12.1MB data prepared for temporal analysis.

o Data from NIH, NSF, MEDLINE, UPSTO, and Clinical Trials at 11.5 MB and
MEDLINE data at 1GB to be used in geospatial analysis.

e MEDLINE data at 514KB for topical analysis.

e NSF data at 11.9MB and UPSTO data at 1.04GB network analysis.

Average load times measured across ten trials are shown in Table 1. The three largest
datasets, would not load but returned a Java heap space error (-TF*).

Table 1: Comparison of load times, measured in seconds, across nine different datasets.

Dataset Size Number of Mean | Standard Minimum Maximum
Records Deviation

NIH (year, title, | 3.4GB 2,490,837 -TF

abstract)

USPTO (patent, | 1.04GB | 57,902,504 | -TF

citations)

MEDLINE 1.0GB 9,646,117 -TF

(geospatial)

NSF (year, title, | 489MB 453,740 64.54 0.991 63.2 65.9

abstract)

NIH (title, year) | 139MB 2,490,837 83.86 1.32 82.3 85.6

NEH (year, 12.1MB 47,197 2.05 0.070 1.9 2.1

title, abstract)

NSF (co-author | 11.9MB 341,110 452 0.063 4.4 4.6

network)

Combined geo- 11.5MB 11,549 1.91 0.056 1.8 2.0

spatial

MEDLINE 0.5MB 20,775 0.44 0.096 0.3 0.6

journals

Temporal Studies (““When)

To test the scalability of temporal analysis within Sci2 we selected the Burst Detection
algorithm as described by Kleinberg (2003). To test this in a standardized fashion, we
generated a randomized set of years from 1980 to 2000, assigning each year a distribution of
short strings to test the accuracy of the algorithm. We then calculated the average time,
minimum time, and the maximum time it took the Burst Detection algorithm to complete
across ten trials. In all cases, the algorithm was able to detect a pre-programmed burst of a
word over a short time frame.

A look at the table and graph in Figure 6 shows linear growth with number of records that
holds equally true with file size. It is possible that with larger files, this may begin to show
the same quadratic tendency as the file loading, but 2.5 million records was the largest file
loaded. The data does illustrate that, barring resource exhaustion issues, Sci2 runs this
algorithm in a linear timescale.



Accepted for ISSI 2013

Records |Size (MB)| Run Time (sec) | SD (sec) Run Time vs Number of Records
50,000 0.48 0.75 0.07 20

100,000 0.95 1.03 0.05 g 15 . ®
500,000 4.77 3.55 0.07 g 10 ®

1,000,000| 9.54 6.67 007 | 5. s

1,500,000f 14.31 9.76 0.18 ) @ °

2,000,000) 19.07 13:15 0.17 0 1 2 3

2,500,000 23.84 15.73 022 Number of Records (Millions)

Figure 6: Comparison of Burst Detection run times, measured in seconds, across standardized
datasets, tabulated (left) and plotted (right).

We then conducted a burst analysis of the title fields for NIH, NSF, and NEH grant data. The
NSF and NEH datasets contain three columns: title, abstract, and year. The NIH data contains
only two columns: title and year. The NIH grant data set is the largest at 139MB and
2,490,837 records, followed by the NSF grant data at 489MB and 453,740 records, and
finally the NEH grant data at 12.1MB with 47,197 records. In order to obtain accurate results
with the Burst Detection algorithm we had to normalize the title text with the Lowercase,
Tokenize, Stem, and Stopword Text algorithm prior to running the Burst Detection algorithm,
a step not necessary with the synthetic data since it was optimized for burst analysis. Due to
the number of records in the NIH dataset, the Lowercase, Tokenize, Stem, and Stopword Text
algorithm failed to terminate and as a result the Burst Detection algorithm was not tested with
this dataset (-NT*).

Table 2: Temporal Analysis Algorithm Run Time in seconds.

Burst Detection

Dataset Size Rows Mean SD | Min Max
NSF 489 MB 453,740 13.64 | 0.648 | 12.9 14.8
NIH 139 MB 2,490,837 -NT”

NEH 12.1 MB 47,197 1.57 | 0.094 1.4 1.7

Geospatial Studies (“Where™)

In order to test Sci2 performance for geomapping, randomized datasets with lists of U.S.
cities and associated longitude and latitude, were generated. There was only one distinct step
(algorithm) involved in this geospatial workflow: visualizing the geolocated data with the
Proportional Symbol Map (Biberstine, 2012), see U.S. geomap in Figure 2. We projected this
on a map of the United States, as this data set only included locations within the U.S.
Average run times are shown in Figure 7. Like with file loading, the Proportional Symbol
Map data is better fit by a quadratic model (R? of 0.997 as opposed to 0.9834 for a linear fit).
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Records | Size (MB) |Run Time (sec) | SD (sec) Run Time vs Number of Records
50,000 1.82 6.26 0.25 150
y=8.758x%+ 28.713x+5.766 @

100,000 3.66 8.86 0.45 3 s R?=0.997

500,000 | 1871 22.71 200 | 3 o
1,000,000 | 37.52 44.37 5.21 Z 50 °
1,500,000 | 56.81 70.73 2.15 e °
2,000,000 | 76.09 92.93 5.63 0 1 2 3
2,500,000 | 95.38 134.69 2.78 umber of Records (wifions)

Figure 7: Comparison of Proportional Symbol Map run times, measured in seconds, across
standardized datasets.

Next, 11,848 SDB records related to gene therapy funding (NIH, NSF), publications
(MEDLINE), patents (USPTO), and clinical trials were loaded and the Proportional Symbol
Map was used to display the geocoded data. Exactly 299 records had no or incomplete
geolocation data and were removed resulting in 11,549 rows at 11.5MB. The run time, at 4.37
sec is lower than predicted by the model (6.11 sec), implying that the quadratic model may
not perfectly describe the run time, particularly with smaller sets.

Table 3: Geospatial Analysis Algorithm Run Time in seconds.
Algorithm 1: Proportional Symbol Map
Dataset Size Rows Mean SD Min Max
Pre-located 11.5 MB 11,549 4.37 0.125 4.2 4.6

Topical Studies (““What™)

The Sci2 tool supports the generation of science map overlays. Specifically, it uses the UCSD
map of science and classification system (Borner, Klavans, Patek et al., 2012), a visual
representation of 554 sub-disciplines within 13 disciplines of science and their relationships
to one another, see lower left map in Figure 2. This basemap is then used to show the result
of mapping a data set's journals to the underlying subdiscipline(s) those journals represent
(Biberstine, 2011). Mapped subdisciplines are shown with node sizes relative to the number
of articles matching journals and color is based on the discipline as defined in the basemap.
To create a standardized dataset, random lists of valid journal names were generated. The
number of records and run time results are tabulated in plotted in Figure 8. Linear and
quadratic models fit about equally well, but both show that the intercept is about 1.5 seconds,
more than half of the run time for all but the largest sets. This stands to reason as the lookup
tables must be loaded and accessed regardless of the size of the dataset being used.

Records |Size (MB)|Run Time (sec) | SD (sec) Run Time vs Number of Records
50,000 1.33 1.59 0.13 5

100,000 2.67 1.58 0.09 3! L
500,000 | 13.79 1.89 0.09 | &° . v
1,000,000| 27.66 2.25 007 | 5 @ ®

1,500,000 42.02 2.92 0.16 0

2,000,000 56.40 3.19 0.03 0 1 2 3
2’500’0m 70.77 3.93 0.26 Number of Records (Millions)

Figure 8: Comparison of UCSD Map of Science Generation run times, measured in seconds,
across standardized datasets.
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Next, MEDLINE data was obtained from SDB including all 20,773 journals indexed in
MEDLINE and the number of articles published in those journals. Average Map of Science
via Journals run times are given in Table 4.

Table 4: Topical Visualization Algorithm Run Time in seconds.
Algorithm 1: Map of Science via Journals
Dataset Size Rows | Mean SD | Min | Max
MEDLINE journals 514 KB 20,773 | 7,84 0.096 7.7 8.0

Network Studies (““With Whom®)

Sci2 supports the extraction of diverse network types. The Extract Directed Network
algorithm (Alencar, 2010) accepts tabular data and constructs a directed network from
entities in the specified source column to entities in the specified target column. Run times
across ten trials for networks with different numbers of nodes and edges are shown in Figure
9. As to be expected, there is a direct linear relationship between the number of edges and the
run time.

Records | % Edges Size Run | SD Records | % Edges Size Run SD
Conn (MB) | (sec) | (sec) Conn (MB) (sec) (sec)
500 2 5,000 0.017 | 113 0.05 250 50 31,250 0.124 1.86 0.05
500 5 12,500 0.045 | 1.44 0.07 500 50 125,000 0.546 5.89 0.1
500 10 25,000 0.093 | 1.92 0.04 1,000 50 500,000 2.28 20.74 0.12
500 25 62,500 0.247 | 3.46 0.08 1,500 50 1,125,000 5.21 45.28 0.44
500 50 125,000 0.546 | 5.89 0.1 2,000 50 2,000,000 9.33 79.41 0.62
Edges vs Run Time
100

—_ y =39.296x+ 0.9353

§ 80 RZ=1 9

o 60

£

E 40 L

=

& 20 e

0 &2
0 0.5 1 1.5 2 2.5
Number of Edges (Millions)

Figure 9: Average Directed Network Extraction run times, measured in seconds versus the
number of edges in the dataset, across standardized datasets, tabulated with varying
connectivity (left) and number of nodes (right) (top) and plotted (below).

Next we retrieved from the SDB all 6,206 USPTO patents that cite patents with numbers 591
and 592 in the patent number field. We ran the Extract Directed Network algorithm, creating
a network pointing from the patent numbers to the numbers those patents reference in the
dataset and results are given in Table 5. While the scalability of Sci2 third-party visualization
tools such as GUESS, Cytoscape, and Gephi do not pertain to Sci2 in a direct way, we were
interested to understand their scalability. Neither Cytoscape nor GUESS were capable of
rendering the network in a Fruchterman-Reingold layout, while Gephi loaded the network in
2.1 seconds and rendered it in about 40 seconds (the actual process in Gephi is non-
terminating, but this was the time to a reasonably defined network). Gephi is able to achieve
higher performance due to its ability to leverage GPUs in computing intensive tasks.

10
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Table 5: Network Analysis Algorithm Run Time in seconds.
Algorithm 1: Extract Co-Occurrence Network

Dataset Size in MB Nodes Edges | Mean | SD Min | Max
U.S. Patent References 0.147 12,672 7,940 7.88 | 0.103 1.7 8.1

Discussion and Future Work

This paper introduced and examined the scalability of a database-tool infrastructure for big
science of science studies. SDB relational database functionality was exploited to store,
retrieve, and preprocess datasets. Subsequently, the data were processed using the Sci2 Tool.
The scalability of this approach was tested for exemplary analysis workflows using synthetic
and SDB data. Techniques used were similar to those employed in testing the performance of
web-native information visualizations (Johnson & Jankun-Kelly, 2008). Most run-times scale
linearly or exponentially with file size. The number of records impacts run-time more than
file size. Files larger than 1.5 million records (synthetic data) and 500MB (SDB) cannot be
loaded and hence not be analyzed. Run times for rather large datasets are commonly less than
10 seconds. Only large datasets combined with complex analysis require more than one
minute to execute.

A forthcoming paper will compare the runtime of Sci2 with other tools that have similar
functionality, e.g., TEXTrend or VOSViewer for topical analysis and visualization;
CiteSpace, Leydesdorff’s Software, DynaNets, SISOB, Cytoscape, and Gephi for network
analysis and visualization, see below and (Cobo, Loépez-Herrera, Herrera-Viedma et al.,
2011) for links and references.

Recent work has added web services to the Sci2 Tool and selected workflows can now be run
online. Other efforts aim to expand the adoption of OSGi/CIShell in support of algorithm and
tool plugin implementation and sharing across scientific boundaries. Tools that are
OSGi/CIShell compatible comprise TEXTrend (http://textrend.org) led by George Kampis at
E6tvos Lorand University, Budapest, Hungary supports natural language processing (NLP),
classification/mining, and graph algorithms for the analysis of business and governmental
text corpuses with an inherently temporal component and DynaNets
(http://www.dynanets.org) coordinated by Peter Sloot at the University of Amsterdam for the
study of evolving networks, or SISOB (http://sisob.lcc.uma.es) an observatory for science in
society based in social models.

Much of the development time for the SDB for the last year has been focused on adding data
to the system and refactoring code to make it easier to manage and update. Going forward,
we plan to implement an API to further ease access and usage of the SDB and we are
exploring an RDF conversion to add SDB to the Web of Linked Open Data (Heath & Bizer,
2011). In addition, we are considering a visual interface to SDB that uses Sci2 Web services
to empower users to interactively explore, analyze, and visualize search results.

Documentation and teaching of tool functionality and workflows are important for research
and practice. SDB and Sci2 are used in the Information Visualization MOOC
(http://ivmooc.cns.iu.edu) which debuted in Spring 2013 to over 1,700 users, making existing
and new workflows available via video tutorials to a much broader audience.
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