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Abstract 
Historically, science of science studies were/are performed by single investigators or small 
teams. As the size and complexity of data sets and analyses scales up, a “Big Science” 
approach (Price, 1963) is required that exploits the expertise and resources of 
interdisciplinary teams spanning academic, government, and industry boundaries. Big science 
of science studies utilize “big data”, i.e., large, complex, diverse, longitudinal, and/or 
distributed datasets that might be owned by different stakeholders. They apply a systems 
science approach to uncover hidden patterns, bursts of activity, correlations, and laws. They 
make available open data and open code in support of replication of results, iterative 
refinement of approaches and tools, and education. This paper introduces a database-tool 
infrastructure that was designed to support big science of science studies. The open access 
Scholarly Database (SDB) (http://sdb.cns.iu.edu) provides easy access to 26 million paper, 
patent, grant, and clinical trial records. The open source Science of Science (Sci2) tool 
(http://sci2.cns.iu.edu) supports temporal, geospatial, topical, and network studies. The 
scalability of the infrastructure is examined. Results show that temporal analyses scale 
linearly with the number of records and file size, while the geospatial algorithm showed 
quadratic growth. The number of edges rather than nodes determined performance for 
network based algorithms.  

Conference Topic 
Old and New Data Sources for Scientometric Studies: Coverage, Accuracy and Reliability 
(Topic 2), Visualisation and Science Mapping: Tools, Methods and Applications (Topic 8) 
and Open Access and Scientometrics (Topic 10) 
 
Introduction & Related Work  
Many science of science studies use heterogeneous datasets and advanced data mining and 
visualization algorithms advance our understanding of the structure and dynamics of science. 
The quality of results depends on the quality and coverage of the data used. Data cleaning 
and preprocessing can easily consume 80 percent or more of the overall project effort and 
budget. As the number of data records grows, different types of tools and expertise are 
required to handle the data. MS Excel can load a maximum of 1,048,576 rows of data by 
16,384 columns per sheet. MS Access file sizes cap at 2 gigabytes, including indices, forms, 
and macros along with the data. Larger datasets need to be stored in a database designed with 
scalability in mind. As the diversity of datasets increases, the structures of different datasets 
need to be aligned. As data covers more and more years, dealing with format changes 
becomes necessary. Many studies require extensive preprocessing and augmentation of the 
data, such as identification of unique records or record values, geocoding of records in 
preparation for geospatial analysis, or the extraction of networks for network studies. For 
many researchers, the effort to compile ready-to-analyze-and-visualize data is extremely time 
consuming and challenging and sometimes simply insurmountable.  
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Many datasets relevant for science of science studies, e.g., papers, patents, grants, clinical 
trials, are freely available by different providers. However, they are stored in separate silos 
with diverse interfaces of varying usability that deliver data in many different formats. 
Research projects seeking to use one or many of these data sources face major data access, 
integration, and unification challenges. Indiana University’s Scholarly Database (SDB), 
originally launched in 2005, makes over 26 million scholarly records freely available via a 
unified interface and in data formats that are easy to use and well documented. In the last four 
years, SDB has answered thousands of queries and delivered millions of records to users 
around the globe. The 2012 update to the SDB improves the quality of data offered and 
integrates new humanities and clinical trial datasets.   

Equipped with high quality, high coverage data in standard data formats, tools that scale in 
terms of the number of records that can be read and processed are needed to truly make sense 
of big data (Robertson, Ebert, Eick et al., 2009). While most tools work well for micro and 
meso level studies (up to 100,000 records), few scale to macro level big-data studies with 
millions or even billions of records. Another type of scalability relates to the ease of usage 
and ease of interpretation of big data visualizations. How to best communicate temporal 
trends or burst of activity over a 100 year time span? How to depict the geospatial location of 
millions of records in a scalable fashion? Can the topical evolution of massive document 
datasets be communicated to a general audience? Most visualizations of million node 
networks resemble illegible spaghetti balls—do advanced network analysis algorithms scale 
and help to derive insights? 

Frequently, different types of analysis have to be applied to truly understand a natural, social, 
or technological system. Examples are temporal studies that answer WHEN questions, 
geospatial studies that answer WHERE questions and draw heavily on research in 
cartography, topical studies that use linguistic analysis to answer WHAT questions, and 
network studies that employ algorithms and techniques developed in social sciences, physics, 
information science and other domains to answer WITH WHOM questions. However, most 
existing systems support only one general type of analysis and visualization and many require 
programming skills. For example, four of the top 20 data visualization tools listed by .net in 
September of 2012 support charts and graphs while six support geospatial maps exclusively 
(Suda, 2012). Only the D3 (Data-Driven Documents) and Raphaël JavaScript libraries, the 
Google Chart API, and R support a larger array of charts, graphs, and maps yet all three 
require programming or scripting skills that most users do not possess. Excel might be the 
only tool on the list that can be used by a large number of non-programmers. A listing of 
tools commonly used in science of science studies can be found at 
http://sci2.wiki.cns.iu.edu/display/SCI2TUTORIAL/8.2+Network+Analysis+and+Other+Too
ls but most support a very limited range of workflows (Cobo, López-Herrera, Herrera-
Viedma et al., 2011). 

This paper presents a database-tool infrastructure that applies a divide-and-conquer approach 
to support big science of science studies. It combines an online database supporting bulk 
download of data in easy to process formats with a plug-and-play tool to read, clean, 
interlink, mine, and visualize data using easy to manipulate graphical user interfaces.  

The remaining paper is organized as follows: The next two sections present the database and 
tool functionalities. Subsequently, we test and discuss their scalability. We conclude the 
paper with a discussion of the presented work and an outlook to future work. 
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The Scholarly Database (SDB) 
The Scholarly Database was created in 2005 to provide researchers and practitioners easy 
access to various datasets offered by different publishers and agencies (LaRowe, Ambre, 
Burgoon et al., 2009). The Scholarly Database is implemented using PostgreSQL 8.4, a free 
and open source relational database management system. Since the introduction of version 
8.1, PostgreSQL developers have been focused on improving the scalable performance of the 
system and this software is now employed by many companies to provide large-scale data 
solutions, including Yahoo!, Sony Online and Skype. Today, the Scholarly Database provides 
easy access to paper, patent, grant, and clinical trials records authored by 13.8 million people 
in 208 countries (some, such as Yugoslavia, no longer in existence), interlinked by 58 million 
patent citation links, and over 2.5 million links connecting grant awards to publications and 
patents. As of November 2012, the SDB features over 26 million records from MEDLINE 
(19,039,860 records spanning from 1865-2010), USPTO patents (4,178,196, 1976-2010), 
NIH awards (2,490,837, 1972-2012), NSF awards (453,687, 1952-2010), NEH awards 
(47,197, 1970-2012) Clinical Trials (119,144, 1900-2012). 

Unique features of SDB comprise: 

 Open Access: The SDB is composed entirely of open data so there are no copyright or 
proprietary issues for the researcher to contend with in its use. Data is provided to 
researchers free of charge.    

 Ease of Use: Simple user interfaces provide a one-stop data access experience making 
it possible for researchers to focus on answering their questions, rather than spending 
much time on parsing, searching, and formatting data. 

 Federated Search: By aggregating the data into a single environment, SDB offers a 
federated search environment powered by a Solr core. Users can search one, some, or 
all of the available datasets over some or all years using the same set of terms and get 
a combined set of results that are ranked by relevance. 

 Bulk Download: Most databases do not support downloads and those that do only 
permit access to a limited number of records. SDB supports bulk download of data 
records; data linkages—co-author, patent citations, grant-paper, grant-patent; burst 
analysis files. Users are granted a base number of downloads by default to prevent 
abuse of the system, but this number can be extended by request without charge. 

 Unified File Formats: SDB source data comes in different file formats. NIH funding 
data is stored in flat files; clinical trials are offered in XML, while patents come in a 
variety of formats, depending on the year. Old patents come in a fixed width data 
format while newer patents are provided in XML. Much time and effort was spent to 
normalize this data into easy-to-use file formats, e.g., comma-delimited tables for use 
in spreadsheet programs and common graph formats for network analysis and 
visualization. 

 Well-Documented: SDB publishes data dictionaries for every dataset offered. 
Information on data provenance, table structure, data types, and individual field 
comments are available. In addition, the SDB offers a set of small sample files, giving 
researchers an easily usable test-bed for working out their algorithms before 
committing to analysis of a larger set.  

The SDB Wiki (http://sdb.wiki.cns.iu.edu) provides more information including a user guide, 
information on each dataset, and release notes. 

   



 

The Sci
The Sci
science
of scho
screensh
scalabil

The too
contribu
play ma

Figu

As of N
(see Fig
Guess, 
created,
is show

ience of Sci
ience of Sci
. It support

olarly datase
hot in Figur
lity tests sec

Figure 1: 

ol’s OSGi/C
ute new alg
acroscope ap

ure 2: Gener

November 2
gure 3) writt
and Cytosc
, allowing th

wn in Figure 

ience (Sci2
ience (Sci2)
ts the tempo
ets at the m
re 1, genera
ction.  

Sci2 tool us

CIShell core 
orithms wri
pproach (B

ral Sci2-base

012, the Sci
ten in Java,
ape) were im
he seamless
1. 

) Tool  
) tool is a m
oral, geospa

micro (indiv
al workflow

er interface 

architectur
itten in a va
örner, 2011

ed visualizat

i2 tool has 
 C, C++, an
mplemented
s use of diff

4 

modular too
atial, topica
vidual), mes
w in Figure 2

with propo

re makes it p
ariety of pro
).  

tion creation

171 algorith
nd Fortran. I
d as plugins
ferent tools.

 

lset specific
al, and netw
so (local), a
2 and speci

ortional sym

possible for
ogramming 

n workflow 

hms, 112 of
In addition,
s and bridge
. The Sci2 u

Ac

cally design
work analysi
and macro 
fic workflo

bol map vis

r domain sci
languages u

(tool-specif

f which are v
 a number o

es to R and 
user interfac

ccepted for 

ned for the 
is and visua
(global) lev
ws discusse

ualization. 

ientists to 
using a plug

fic tasks in g

visible to th
of tools (Gn
to Gephi w

ce and samp

ISSI 2013 

study of 
alization 
vels, see 
ed in the 

 

g-and-

 

gray). 

he user 
nuplot, 
ere 

ple map 



 

Unique 

 
 

 

 

 

 

Figure 
lef

Categor
Acquisit
Data Pr
Preproc
Analysi
Modelin
R 
Visualiz
Total 

features of

Open Sourc
Extensive u
support int
see Figure 
visualizatio
projections
Interactivity
visualizatio
files and e
specific tex
Workflows:
and easy 
visualizatio
Online doc
in the Sci2 

    

4: Exempla
ft), Chorople

htt

ry 
tion 

reparation 
cessing 
s 
ng 

zation 

Fig
f Sci2 comp

ce: Anybod
use of wel
terpretation,
 4. Each c

on” section
.  

ty: While v
ons of big da
examined us
xt in the disp
: All user ac
replicabilit

on algorithm
cumentation
Wiki (http:

ary reference
eth map (top

visualizat
tp://wiki.cns

Algorithm
5 

13 
22 
47 
4 
4 

17 

112 

gure 3: Sci2 
rise: 

dy can exam
ll-defined r
, Sci2 uses 
comes with
n that pro

visualization
ata are rend
sing pan an
play. 
ctions are r
ty of work
ms with a ran
n: All Sci2 p
//sci2.wiki.

e systems su
p, right), UC
tion (bottom
s.iu.edu/disp

5 

ms Example
Google C
Extract C
Slice Tab
K-Neares
Watts-Str
Create an
Chorople

algorithm su

mine the sou
reference sy

a number 
h a title, l
ovides furt

ns of small
dered into P
nd zoom as

ecorded in 
kflows that
nge of para
plugins as w
cns.iu.edu) 

upported by
CSD science

m, right) Full
play/SCI2TU

es 
Citation User I
Co-Occurrence
ble by Time, E
st Neighbor, B
rogatz Small W
n R Instance, S
th Map, Bipar

ummary tab

rce code an
ystems: To
of carefully

legend, and
ther details

l datasets c
ostscript fil
s well as f

a log file to
t might co
meter settin
well as maj
together wi

y Sci2 includ
e map (botto
l versions av
UTORIAL/1

Ac

ID Search Alg
e Network 
Extract ZIP Co
Burst Detection
World, TARL
Send a Table t
rtite Network 

bles. 

nd advance i
o improve 
y designed 
d a brief “
s, e.g., on

can be exp
les that can 
filtered, e.g

o ensure pro
omprise 15
ngs. 
or workflow
ith release n

ding Tempor
om, left), bim
vailable at 
1+Introduct

ccepted for 

gorithm 

ode 
n 

L 
to R 
Graph 

it. 
readability 
reference s

“How to re
n used ge

lored intera
be converte
., by search

oper docum
5-20 analy

ws are docu
notes.  

ral Bar Grap
modal netwo

tion 

ISSI 2013 

and to 
systems, 
ead this 
eospatial 

actively, 
ed to pdf 
hing for 

mentation 
ysis and 

umented 

 

ph (top, 
ork 



 

Scalabi
To dem
datasets
Scholar
analysis
workflo
workflo
the dat
visualiz
process
his or h
algorith
were di
trials. B
residual
CPU E8
and a 32

Fig

File Loa
Synthet
and leng
two row
short str
given in
(-TF*). 
time (R
regressi
having 
complet

Next, S

ility Tests 
monstrate the
s with pre-
rly Databas
s, geospatia
ows indicati
ow into the 
ta and end
zation, we m
sing. We co
her paramet
hms to be f
isplayed as 
Between tri
l memory. 
8400 3.00G
2bit version

ure 5: Comp
tabu

ading   
tic data was
gth of indiv
ws, a small 
rings, each 
n Figure 5. 
At first gla

R2 = 0.9384
ion line ha
to devote 

ting functio

DB data pre

e scalability
-defined pro
se. All four
al analysis, 
ive of these
specific ste

ding in vis
measured (i
onsidered th
ers (where 

finished whe
complete in
ials, we clo
Tests were

GHz process
n of Java 7. 

parison of lo
ulated (left) 

s used to me
vidual recor

integer, an
with increa
The three la

ance, there s
4), a closer 
s a noticea
resources 

ons more eff

epared for u

y of the dat
operties ge
r types of 
topical ana

e four main 
eps (algorith
sualization. 
in seconds) 
he start of th

applicable)
en the asso
n the Sched
osed down 
e performed
sor and 4.0G
Memory al

oad times, m
 and plotted

easure how 
rd in bytes. T
nd a short s
asing numbe
argest datas
seems to ex

look at th
ably better 

to file ma
ficiently. 

usage in sci

6 

abase and t
nerated in 
analysis su

alysis, and 
types of an

hms) involv
For each 

the length 
he algorithm
 and then e

ociated data
duler. For ea

Sci2 in or
d on a com
GB of memo
lotted to Sc

measured in 
d with quadr

file loading
Two series 

string and o
ers of rows.
sets did not 

xist a direct 
he plot of s

fit (R2=0.9
anagement 

ence of scie

tool, tests w
Python an

upported by
network an
nalysis. Fro
ved in the w

algorithm,
of time it t

m to be the 
executes the
a files appea
ach test, we
rder to min
mon system
ory running
ci2 was exte

seconds, ac
ratic regress

g times vary
of datasets 

one with 25
. Average lo
load but re
relationship

size versus 
9889). This 

that would

ence workfl

Ac

were perform
d datasets 
y Sci2 wer
nalysis. Init
om there, w
workflow, st
, e.g., data
took for an 
point at wh

e algorithm.
ared in the 
e calculated
nimize any 
m: an Intel(
g a 64bit ver
ended to 150

cross standar
sion line (rig

y in terms of
were gener

5 rows, a sm
oading time
eturned a Jav
p between fi

time revea
is likely a

d otherwise

lows was re

ccepted for 

med using s
retrieved fr

re tested: t
ially, we id

we broke dow
tarting with 
a reader, a
algorithm t

hich the use
. We consid
Data Mana

d the averag
adverse ef

(R) Core(TM
rsion of Win
00 MB.  

rdized datas
ght). 

f number of
rated, one w
mall integer
es over ten t
va heap spa

file size and
als that a q
a result of 
e be availa

ad comprisi

ISSI 2013 

synthetic 
from the 
temporal 
dentified 
wn each 
loading 

analysis, 
to finish 
er inputs 
dered all 
ager and 
ge for 10 
ffects of 
M) Duo 
ndows 7 

 

sets, 

f records 
with only 
r and 24 
trials are 
ace error 
d loading 
quadratic 

the tool 
able for 

ing  



Accepted for ISSI 2013 

7 
 

 NIH data at 3.4GB, NSF data at 489MB, NIH data at 139MB, and NEH data at 
12.1MB data prepared for temporal analysis.  

 Data from NIH, NSF, MEDLINE, UPSTO, and Clinical Trials at 11.5 MB and 
MEDLINE data at 1GB to be used in geospatial analysis.  

 MEDLINE data at 514KB for topical analysis.  
 NSF data at 11.9MB and UPSTO data at 1.04GB network analysis.  

Average load times measured across ten trials are shown in Table 1. The three largest 
datasets, would not load but returned a Java heap space error (-TF*). 

Table 1: Comparison of load times, measured in seconds, across nine different datasets. 
Dataset Size Number of 

Records 
Mean Standard 

Deviation 
Minimum Maximum 

NIH (year, title, 
abstract) 

3.4GB 2,490,837 -TF*    

USPTO (patent, 
citations) 

1.04GB 57,902,504 -TF*    

MEDLINE 
(geospatial) 

1.0GB 9,646,117 -TF*    

NSF (year, title, 
abstract) 

489MB 453,740 64.54 0.991 63.2 65.9 

NIH (title, year) 139MB 2,490,837 83.86 1.32 82.3 85.6 
NEH (year, 
title, abstract) 

12.1MB 47,197 2.05 0.070 1.9 2.1 

NSF (co-author 
network) 

11.9MB 341,110  4.52 0.063 4.4 4.6 

Combined geo-
spatial 

11.5MB 11,549 1.91 0.056 1.8 2.0 

MEDLINE 
journals 

0.5MB 20,775 0.44 0.096 0.3 0.6 

Temporal Studies (“When”) 
To test the scalability of temporal analysis within Sci2 we selected the Burst Detection 
algorithm as described by Kleinberg (2003). To test this in a standardized fashion, we 
generated a randomized set of years from 1980 to 2000, assigning each year a distribution of 
short strings to test the accuracy of the algorithm. We then calculated the average time, 
minimum time, and the maximum time it took the Burst Detection algorithm to complete 
across ten trials. In all cases, the algorithm was able to detect a pre-programmed burst of a 
word over a short time frame.  

A look at the table and graph in Figure 6 shows linear growth with number of records that 
holds equally true with file size. It is possible that with larger files, this may begin to show 
the same quadratic tendency as the file loading, but 2.5 million records was the largest file 
loaded. The data does illustrate that, barring resource exhaustion issues, Sci2 runs this 
algorithm in a linear timescale. 
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Table 5: Network Analysis Algorithm Run Time in seconds. 
Algorithm 1: Extract Co-Occurrence Network 

Dataset Size in MB Nodes Edges Mean SD Min  Max 

U.S. Patent References 0.147 12,672 7,940 7.88 0.103 7.7 8.1 

Discussion and Future Work  
This paper introduced and examined the scalability of a database-tool infrastructure for big 
science of science studies. SDB relational database functionality was exploited to store, 
retrieve, and preprocess datasets. Subsequently, the data were processed using the Sci2 Tool. 
The scalability of this approach was tested for exemplary analysis workflows using synthetic 
and SDB data. Techniques used were similar to those employed in testing the performance of 
web-native information visualizations (Johnson & Jankun-Kelly, 2008). Most run-times scale 
linearly or exponentially with file size. The number of records impacts run-time more than 
file size. Files larger than 1.5 million records (synthetic data) and 500MB (SDB) cannot be 
loaded and hence not be analyzed. Run times for rather large datasets are commonly less than 
10 seconds. Only large datasets combined with complex analysis require more than one 
minute to execute. 

A forthcoming paper will compare the runtime of Sci2 with other tools that have similar 
functionality, e.g., TEXTrend or VOSViewer for topical analysis and visualization; 
CiteSpace, Leydesdorff’s Software, DynaNets, SISOB, Cytoscape, and Gephi for network 
analysis and visualization, see below and (Cobo, López-Herrera, Herrera-Viedma et al., 
2011) for links and references. 

Recent work has added web services to the Sci2 Tool and selected workflows can now be run 
online. Other efforts aim to expand the adoption of OSGi/CIShell in support of algorithm and 
tool plugin implementation and sharing across scientific boundaries. Tools that are 
OSGi/CIShell compatible comprise TEXTrend (http://textrend.org) led by George Kampis at 
Eötvös Loránd University, Budapest, Hungary supports natural language processing (NLP), 
classification/mining, and graph algorithms for the analysis of business and governmental 
text corpuses with an inherently temporal component and DynaNets 
(http://www.dynanets.org) coordinated by Peter Sloot at the University of Amsterdam for the 
study of evolving networks, or SISOB (http://sisob.lcc.uma.es) an observatory for science in 
society based in social models. 

Much of the development time for the SDB for the last year has been focused on adding data 
to the system and refactoring code to make it easier to manage and update. Going forward, 
we plan to implement an API to further ease access and usage of the SDB and we are 
exploring an RDF conversion to add SDB to the Web of Linked Open Data (Heath & Bizer, 
2011). In addition, we are considering a visual interface to SDB that uses Sci2 Web services 
to empower users to interactively explore, analyze, and visualize search results.  

Documentation and teaching of tool functionality and workflows are important for research 
and practice. SDB and Sci2 are used in the Information Visualization MOOC 
(http://ivmooc.cns.iu.edu) which debuted in Spring 2013 to over 1,700 users, making existing 
and new workflows available via video tutorials to a much broader audience. 
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