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Future scientific and technological developments in many fields will necessarily
depend upon coming to grips with complex systems. Such systems are complex in
both their composition – typically many different kinds of components interacting
simultaneously and nonlinearly with each other and their environments on multiple
levels – and in the rich diversity of behavior of which they are capable.

The Springer Series in Understanding Complex Systems series (UCS) promotes
new strategies and paradigms for understanding and realizing applications of
complex systems research in a wide variety of fields and endeavors. UCS is
explicitly transdisciplinary. It has three main goals: First, to elaborate the concepts,
methods and tools of complex systems at all levels of description and in all scientific
fields, especially newly emerging areas within the life, social, behavioral, economic,
neuro- and cognitive sciences (and derivatives thereof); second, to encourage novel
applications of these ideas in various fields of engineering and computation such as
robotics, nano-technology and informatics; third, to provide a single forum within
which commonalities and differences in the workings of complex systems may be
discerned, hence leading to deeper insight and understanding.

UCS will publish monographs, lecture notes and selected edited contributions
aimed at communicating new findings to a large multidisciplinary audience.
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Foreword

Andrea Scharnhorst, Data Archives and Networked Services & e-Humanities
group, The Royal Netherlands Academy of Arts and Sciences, The Netherlands

Katy Börner, Cyberinfrastructure for Network Science Center, School of Library
and Information Science, Indiana University, Bloomington, USA

Peter van den Besselaar, Department of Organization Science & Network Institute,
VU University Amsterdam, The Netherlands

Motivation

Models of Science Dynamics aims to capture the structure and evolution of science –
scholars and science itself become “research objects.” These research objects might
be represented by conceptual models based on historical and ethnographic obser-
vations, mathematical descriptions of measurable phenomena, or computational
algorithms. Some models re-create the structure of co-authorship networks and their
evolution over time. Others capture the dynamics of citation diffusion patterns.

The philosophy, history, and sociology of science have produced valuable
insights into the nature of scholarly activities as a human activity and social system.
Within this area, the dynamics and structure of the science system, including the
social sciences and humanities, have been the focus of a variety of explanatory,
exploratory, and metaphorical models (Kuhn 1962; Cole and Cole 1967; Crane
1972; Elkana 1978; Nowakowska 1984; Price 1963; Nalimov and Mulchenko 1969;
Leydesdorff and Van den Besselaar 1997). Almost every progress in mathematical
modeling has also been applied to model science itself. Phenomena such as specific
growth laws of publications and citations (Price 1965, 1976), scientific productivity
(Lotka 1926), or the distribution of topics over journals (Bradford 1934) have
always raised the interest of mathematicians and natural scientists. Mathematical
models have been proposed not only to explain statistical regularities (Egghe and
Rousseau 1990), but also to model the spreading of ideas (Goffman 1966) and
the competition between scientific paradigms (Sterman 1985) and fields (Kochen
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1983; Yablonskiı̆ 1986; Bruckner et al. 1990). Furthermore, they have been used
to model the relation between publishing, referencing, and the emergence of new
topics (Gilbert 1997), as well as the co-evolution of co-author and paper-citation
networks (Börner et al. 2004; Börner and Scharnhorst 2009; Börner 2010). Outside
of the field of science and technology studies, such models have also been presented
and discussed at conferences about self-organization, system dynamics, agent-based
modeling, artificial societies, and complexity theory. Despite its evident importance,
however, the mathematical modeling of science still lacks a unifying framework and
a comprehensive study of the topic. This book aims to fill this gap.

Structure of the Book

This book reviews and describes major threads in the mathematical modeling of
science dynamics for a wider academic audience. The model classes presented cover
stochastic and statistical models, system-dynamics approaches, agent-based simula-
tions, population-dynamics models, and complex-network models. The book starts
with an introduction (Börner et al. 2011) and a foundational chapter that defines
and operationalizes terminology used in the study of science. This is followed by
a review chapter (Lucio-Arias and Scharnhorst 2011) that discusses the history of
mathematical approaches to modeling science from an algorithmic-historiography
perspective. The subsequent chapters review specific modeling approaches such
as population-dynamic (Vitanov and Ausloos 2011), agent-based (Payette 2011),
and game-theoretic models (Hanauske 2011). Different modeling approaches used
to capture the structure and dynamics of social networks (Mali et al. 2011) and
citation networks (Radicchi et al. 2011) are presented in two separate chapters.
Model classes often combine descriptive and predictive elements—this book places
a strong emphasis on the latter. The book concludes with a short outlook (van den
Besselaar et al. 2011) to remaining challenges for future science models and their
relevance for science and science policy.
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Andrea Scharnhorst, Data Archives and Networked Services & e-Humanities 2

group, The Royal Netherlands Academy of Arts and Sciences, The Netherlands 3

Models of science – scattered knowledge 4

After World War II, scientists were increasingly subject to systematic and large 5

scale measurements efforts. The growth and changing roles of science stimulated 6

the need for governmental and “policy support of science” as well as the need 7

for an empirical basis for “science policy”. Since then a wealth of monitoring and 8

evaluative indicators has been created. Sociology of science (Bernal 1939; Kuhn 9

1962; Merton 1973) as well as Scientometrics (Nalimov and Mulchenko 1969; Price 10

1963) were established as scientific fields. The Society for Social Studies of Science 11

(4S), the European Associations for the Study of Science and Technology (EASST) 12

and the International Society of Scientometrics and Informetrics (ISSI), among 13

others, are active as professional organisations in this field. At their conferences 14

“models of science” occasionally appear, but are not presented in a systematic 15

way on a regular basis. Not only other knowledge domains, such as sociology, 16

philosophy, economics, but also physics apply their models to science (Lucio-Arias 17

and Scharnhorst 2011, Chap. 2), but so far there has been no common reference 18

point such as a conference series, edited books, or monographs devoted to modeling 19

science. The only exception to our knowledge, beyond review sections in journal 20

articles (e.g., Börner et al. 2004), a review in ARIST (Börner et al. 2003), and a 21

recent special issue on Science of Science (Börner and Scharnhorst 2009), is the 22

monograph of Yablonskiı̆ published 1986 in Russian with Nauka and not translated 23

into English (Yablonskiı̆ 1986 Matematicheskie Modeli v Issledovanii Nauki (in 24

Russian) Nauka, Moscow (Yablonskiı̆ 1986)). This edited volume aims to fill this 25

gap by presenting an overview about major current trends in modeling of science 26

(Chaps. 3 (Vitanov and Ausloos 2011), 4 (Payette 2011), 5 (Hanauske 2011), 6 (Mali 27

xi
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et al. 2011), and 7 (Radicchi et al. 2011)) and a general framework to relate these 28

trends to each other (Börner et al. 2011, Chap. 1). 29

New possibilities and challenges from information 30

science – mapping science 31

This book is also an expression of a growing interest in the field of modeling 32

science. One origin of this development can be found in recent achievements 33

in information and computer sciences. They have made it possible to visualize 34

research activities at an unprecedented scale and with a high level of sophistication 35

(Börner et al. 2003). Networks of publications and their citation patterns, word use, 36

collaborating researchers, or topics in e-mail threads have been measured, analysed 37

and visualized over time. With the emergence of network science (Chaps. 6 (Mali 38

et al. 2011) and 7 (Radicchi et al. 2011)) as a new cross-disciplinary approach 39

(Barabási 2002; Barabási et al. 2002) and in particular with the achievements of 40

visualizing knowledge domains in the information sciences (Shiffrin and Börner 41

2004), old dreams of mapping the sciences (Garfield et al. 1964; Small and Griffith 42

1974) can now be realized. A prominent example of this approach are the so-called 43

“maps of science” which show all scientific disciplines—as far as their activities are 44

covered by the ISI Thompson Reuters” Web of Knowledge, Elsevier’s Scopus, or 45

other databases (Boyack et al. 2005). A prominent initiative for mapping science is 46

the NSF funded “Mapping Science” exhibit (http://scimaps.org) informing a wide 47

audience about a new “cartography of science” (Börner 2010). The new maps of 48

science inspire new models as explanatory tools for emergent structures of the 49

science system. Mathematical models of complex systems play a specific role in 50

this discourse. 51

Beyond mapping – towards explanations 52

Information gathering about science as a backbone of the knowledge society is 53

only one aspect of these new developments. These instruments are also meant as 54

tools to detect and maybe forecast conditions under which scientific discoveries 55

emerge and areas where these discoveries can be found. At the same time, basic 56

questions about the understanding of science are raised, such as who are the actors 57

driving the development of science: individuals, groups or institutions. Earlier large- 58

scale maps concentrated on scientific communications as manifested in papers and 59

their citation interlinkage (Scharnhorst and Garfield 2010). Partly, this was due to 60

the fact that unique author names are hard to determine because of same names, 61

name variants and misspellings. So, a large part of bibliometrics and scientometrics 62

analyses texts (titles, keywords, words, references). Some automated techniques 63

http://scimaps.org/
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have partly solved this problem, at least on a higher level of aggregation. In maps 64

of scientific communication, authors as well as institutions can now be made visible 65

with a higher reliability. To explain the networks in which researchers are linked (by 66

publishing or communicating), current research in social-psychology and sociology 67

of science becomes relevant. Resumé analysis, ethnographic observations, and 68

interviews were presented as ways to gain access to local motivations and behavior. 69

The collective effect of which is reflected in the large scale global maps of science. 70

We call this the return of the actors in scientometrics research. If one thinks 71

in terms of modeling network of scholars, these models entail assumptions about 72

the behavior of the “nodes” (Mali et al. 2011, Chap. 6). This is the moment when 73

qualitative, quantitative, and mathematical models need to come together. 74

A second observation concerns the increasing need to explain changes in 75

scholarly activities. The design of mostly static maps of science, social science and 76

the humanities is therefore only a starting point. Ultimately, we need to see and 77

understand the dynamics of science (Börner et al. 2004; Leydesdorff and Schank 78

2008; Börner and Scharnhorst 2009). Visualizations that show the unfolding of 79

scholarly activities in a ‘fast forward’ mode can help refute or confirm existing 80

theories and trigger questions for novel research into the basic mechanisms of 81

scientific growth. We call this the return of time and dynamics. 82

Contribution of models – models as heuristic devices. Meeting 83

between information science and physics 84

Mathematical models represent a very specific instrumentarium to analyse ele- 85

mentary processes behind measurable phenomena on a more global scale. As 86

mentioned above, in particular during the 1970s and 1980s, the science system 87

has been conceptualized as a self-organizing system in sociology (Luhmann 1990) 88

as well as modeled using concepts and techniques from physics and cybernetics 89

(Scharnhorst 1988). Nowadays, network models are proposed for studying scientific 90

collaborations or the emergence of topics. These new approaches to the modeling of 91

science look into the growth of scholarly networks (Barabási et al. 2002; Committee 92

on Network Science for Future Army Applications 2005; Börner et al. 2004), the 93

structure of scientific communities (Newman et al. 2006), the epidemics of ideas 94

on collaboration networks (Bettencourt et al. 2006), scholarly information foraging 95

(Sandstrom 1994), the formation of effective teams (Amaral and Uzzi 2007), the 96

competition of groups about paradigms (Chen et al. 2009), the scientific productivity 97

of generations of scientists over time (Fronczak et al. 2007), and modeling the 98

dynamics of actor networks (Snijders et al. 2007). However, as mentioned above, the 99

many existing models of science have been developed in many different scientific 100

fields ranging from physics, sociology to history of science. They exist often 101

unrelated and independently from each other and are seldom linked to other studies 102

of science. Nevertheless, in the last couple of years we have witnessed several 103
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encounters between physics and information sciences (Fortunato 2010; Bollen et al. 104

2009; Barabási 2002). This book aims to contribute to a consolidation of the 105

knowledge about models and their mutual dependencies. 106

Outline of the book 107

The book consists of four parts: Part I – Foundations, Part II – Exemplary Model 108

Types, Part III – Exemplary Model Applications and Part IV – Outlook. 109

Part I contains two chapters. In Chap. 1 “An introduction to modeling science: 110

Basic model types, key definitions, and a general framework for the comparison 111

of process models” (Katy Börner, Kevin W. Boyack, Staša Milojević and Steven 112

Morris). Börner et al. (2011) develop a set of reference or frames along which 113

models can be ordered and compared. Departing from a general definition of the 114

term “model” the authors identify a set of dichotomies, such as descriptive versus 115

process models, which can be used to differentiate between essence, purpose and 116

insights of different models. Even if the reader might want to extend or alter the 117

prosed criteria, he or she has to accept that no comparison of models is possible 118

without a clear articulation of their main elements (units, interactions, targeted 119

phenomena) and their tentative ordering in a common reference framework. With 120

a glossary at the end of his chapter, the authors further deliver jigsaw pieces for a 121

common ground on which models can be related to each other. 122

One cannot understand the emergence and the essence of certain models without 123

looking into the history of modeling science. The emphasis of certain perspectives of 124

modeling science above others is obviously correlated with the overall Zeitgeist of a 125

certain time period. Accordingly, the second chapter (“Mathematical approaches 126

to modeling science from an algorithmic-historiography perspective ” by Diana 127

Lucio-Arias and Andrea Scharnhorst) (Lucio-Arias and Scharnhorst 2011) describes 128

the history of science models combining a participant story with a bibliometric 129

reconstruction. Histories are always told on the basis of a set of experiences on 130

the one side and a set of norms and values on the other. Consequently, a variety 131

of histories can be found. Only recently the different perception of members of a 132

scientific community could be made visible by a bibliometric analysis of the citation 133

network of this community (Havemann et al. 2010). Chapter 2 (Lucio-Arias and 134

Scharnhorst 2011) chooses the classical method of algorithmic historiography as 135

introduced by Eugene Garfield. One of the most interesting findings is that current 136

threads in mathematical modeling in scientometrics seem to ignore each other while 137

at the same time relying on the same classical papers. 138

Part II – Exemplary Model Types contains three chapters which all review models 139

belonging to a certain class of mathematics and partly also introduce own model 140

approaches. We are quite aware that these chapters do not cover all occurring threads 141

in the history and presence of science models. Missing are, for example, system 142

dynamics (Sterman 1985) which has been successfully applied in innovation studies 143

and urban development, or entropy and information measures. The threads reviewed 144
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in this part of the book are examples in which selection is based on the availability of 145

authors, and of course which could be extended. Although they all use an individual 146

language, what binds them together is a more generic perspective of science models. 147

All chapters depart from mathematical techniques available and interrogate to which 148

extent they can be used to obtain a better understanding of the science system. 149

Accordingly, the empirical validation of the models is discussed but not in the 150

foreground. These chapters introduce the reader to the details of the model building 151

process in terms of conceptualization, abstraction, operationalization and extension 152

towards increasingly more complex models. In Chap. 3 (Knowledge epidemics and 153

population dynamics models for describing idea diffusion) Nicolai Vitanov and 154

Marcel Ausloos (Vitanov and Ausloos 2011) present a rich inventory of dynamic 155

models based on the behavior of groups of scientists and suitable to describe the 156

emergence and spreading of new ideas in a competitive process. Groups of scientists 157

can be defined based on their actual acquaintance with a certain idea (epidemic 158

models) or their membership in a certain scientific community. That scientists can 159

change their membership in scientific communities creates an extra challenge for 160

modeling. The authors also discuss the role of fluctuations during the emergence 161

of innovation and when best to turn from deterministic models to more complex 162

stochastic models. This chapter also demonstrates that a further methodological 163

exploration is needed to fill the toolbox of science models. With this respect in mind 164

the introduction of time-lag elements and the combination of time and space are the 165

most original contributions in this chapter. Nicolas Payette (2011) introduces the 166

reader in Chap. 4 “Agent-Based Models of Science” into the world of agent-based 167

modeling as practiced in computational sociology and computational philosophy. 168

Obviously, the type of rule based modeling as proposed by Epstein and Axtell 169

connects very well to known social theories about the behavior of social beings. 170

Payette digs out the longer history of agent-based modeling, which goes back to 171

John von Neumann. Actually, there are links to spin models (widely applied in 172

sociophysics) waiting for further exploration (Stauffer and Solomon 2007). The 173

chapter provides the reader with excellent and clear insights into the inner logic 174

of different ABM approaches to science. In difference to dominant mathematical 175

language of the previous chapter, in an interesting contrast, Payette compares 176

models qualitatively by mapping their different conceptual frames. He highlights 177

possible links to other model threads such as network models. Matthias Hanauske 178

returns in Chap. 5 “Evolutionary Game Theory and Complex Networks of Scientific 179

Information” (Hanauske 2011) to the power of mathematics and scientific diagrams. 180

Triggered by a real-world phenomenon – the reorganization of the market of 181

scientific publishing – Hanauske questions the possibilities to model the interaction 182

of different players in this process (authors and scientific journals) with game theory. 183

Game theory is designed to explore the consequence of individual strategic behavior 184

in interactions between many individuals. In particular it allows statements for 185

multi-level networked systems – a suitable description for the complex interaction 186

of producers and disseminators of scientific products where the same individuals 187

often switch roles. 188
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Part III – Exemplary Model Applications describes models for two major 189

aspects of scientific communication: co-authoring and referencing. Not surprisingly 190

a network model approach is applied to both phenomena, relying on the different 191

epistemic traditions of sociology and physics. Co-authoring and referencing are 192

both part of scientific production. Consequently, in Chap. 6 “Dynamic Scientific 193

Co-Authorship Networks”, Mali et al. (2011) start with the whole universe of 194

scientific communication before zooming into their specific topic of co-authoring. 195

They also start with an excellent history of Social Network Analysis. Here the reader 196

is provided with detailed context to obtain a better understanding of the sources of 197

some of the still existing tensions between different network approaches. Among 198

the dynamic models, blockmodeling applied to evolving networks and stochastic 199

actor-oriented models form the cornerstones of this chapter. Empirical studies are 200

extensively reviewed; ordered alongside of dimensions of cross-disciplinary, cross- 201

sectoral and cross-national collaboration pattern; and linked to SNA model insights. 202

Among their own studies one of the interesting findings points to a tension between 203

strongly local (national) connectivity and the requirements of being interwoven into 204

the international (global) knowledge production. Chapter 7, “Citation Networks” 205

of Radicchi et al. (2011) complementary to Chap. 6 (Mali et al. 2011) looks into 206

(citation) networks from a statistical physics perspective. Again we see a recurrent 207

pattern. Following the epistemic tradition of physics, Radicchi et al. (2011) insist on 208

the search for universality and general organizing principles in their network studies 209

where Mali et al. (2011), in the epistemic tradition of sociology, emphasize how 210

best to incorporate the multi-facet roles of individuals in networks and the different 211

context of their link structures. Nevertheless, there is an overlapping area. Against 212

expectations based on the knowledge of how different the citation behavior is in 213

different disciplines, on a statistical level there are still similarities or universalities. 214

It remains open if these ‘general laws’ are just mathematical artefacts or if the point 215

to a shared feature in citing across disciplines. Also in SNA the aim is to detect 216

a general pattern in social behavior (as for instance by blockmodeling). In both 217

cases the challenge is to give these patterns a meaningful interpretation. Similar to 218

(Mali et al. 2011, Chap. 6), the authors of Chap. 7 (Radicchi et al. 2011) carefully 219

discuss empirical material. Time is a leading theme through both chapters. Time is 220

the ‘hidden constructor’ behind specific distributions of networks (such as degree 221

distributions). The authors of Chap. 7 address time more explicitly in dynamic 222

models of the evolution of citation networks and diffusion processes across citation 223

networks. Concerning the latter they take a very elegant and original approach – 224

namely to model papers in terms of their received reward by citations. While citation 225

networks are cumulative in time and the position of a paper in such a network cannot 226

change, its perception can change with each new generation of citing papers; so, 227

reward and recognition of a paper can travel in network topologies and in this way, 228

the diffusion of ideas become visible. 229

The book concludes with Part IV – Outlook. Chapter 8 “Science policy and the 230

challenges for modeling science” partly also reflects on the process of the making 231

of the book, and the lessons learned from it (van den Besselaar et al. 2011). Despite 232

the character of the book as a collection of chapters, authors and editors have taken 233
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specific measures to enhance the consistency of it. This becomes visible in the 234

different appendices of the book. A glossary of relevant terms comes as appendix 235

with Börner et al. (2011) Chap 1. Another group of appendices lists the (historic) 236

knowledge base of the field – adding details to Lucio-Arias and Scharnhorst 2011, 237

Chap. 2. Also all model chapters in Parts II and III contain overviews and short 238

descriptions of the models they address. They also contain text boxes (Key points) 239

highlighting main insights for the general audience and/or science policy makers. 240
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Chapter 1 1

An Introduction to Modeling Science: Basic 2

Model Types, Key Definitions, and a General 3

Framework for the Comparison of Process 4

Models 5

Katy Börner, Kevin W. Boyack, Staša Milojević, and Steven Morris 6

1.1 Introduction 7

Science is in a constant state of flux. Indeed, one of the purposes of science is to 8

continually generate new knowledge, to search for or create the next breakthrough 9

that will open new doors of understanding. Science can also be viewed as a 10

research process in which scholars coordinate their actions, working in a wide 11

range of institutions and using ever better methods and instruments, to generate new 12

knowledge, which is then recorded in tangible forms as journal articles, reports, 13

books, patents, data, and software repositories, etc. (Whitley 1984). 14

Science is a complex phenomenon, and as such it captures the interest of a wide 15

range of researchers in fields such as history, philosophy and sociology of science, 16

and scientometrics. From the standpoint and for the purposes of scientometrics and 17

modeling of science, science can be defined as a social network of researchers 18

that generate and validate a network of knowledge. This definition is based on 19

the premise that science consists of knowledge and ideas that are produced and 20

validated by a community of researchers. Researchers belong to institutions that 21

support activities related to scientific research and inquiry. The way knowledge 22

is produced, organized, and disseminated is dependent on historical, institutional, 23

political, and research contexts. At the same time, the meanings of the concepts 24
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one uses to describe science and knowledge are not only constantly changing but 25

are also culturally and historically specific. For example, in recent years, there is 26

a tendency towards heterogeneous (interdisciplinary) teams of researchers solving 27

pressing social problems with higher accountability (Gibbons et al. 1994; Nowotny 28

et al. 2001). Due to the changing nature of knowledge and the changing social 29

structure of science, some of the institutional forms and established practices in 30

science are undergoing changes themselves. 31

The idea of studying science using scientific methods is at the core of sciento- 32

metrics. Many scientometric studies describe the structure and evolution of science, 33

while a few others aim to replicate and predict the structure and dynamics of science. 34

It is the latter group that is the focus of this chapter and this book. 35

1.1.1 Science as a Social Activity 36

The relationships between scholars and the institutions they are affiliated with 37

constitute the social characteristics of science. Scientific knowledge does not exist 38

in a vacuum. It requires social infrastructure for support. This social infrastructure 39

can be manifest in forms such as funding, oversight, management, collaboration, 40

and less formal modes of communication. Researchers often work collaboratively 41

to produce new knowledge. They also use both formal and informal channels to 42

communicate their results. At the same time, they are embedded in a number of 43

organizations and institutions, such as university departments, research centers, 44

and research institutes. These institutions, together with meta-institutions such as 45

government agencies, industry segments, or universities, shape rewards in science. 46

Different interactions in which scholars engage can result in different aggregates, 47

such as invisible colleges, specialties, disciplines, and interdisciplines.1 Studies of 48

science as a social activity mostly focus on the stages of development of smaller 49

units of aggregation, such as specialties. Studies that focus on the social aspects of 50

science view science as a development of social structures, viewed qualitatively as 51

stages of social group formation (Crane 1972; Wagner 2008), or quantitatively as 52

stages of cluster formation (Palla et al. 2007). 53

The intricacies of the relationships between social and cognitive aspects of 54

science are most visible among relatively small groups of scholars over short periods 55

of times. At the same time, these scholars are embedded, through both training and 56

employment, in larger units, such as fields or disciplines or university departments, 57

which exercise significant power over rewards and thus shape the behavior of 58

scholars. 59

1The terms “multidisciplinary”, “interdisciplinary” and “transdisciplinary” have been used to
describe research activities, problems, institutions, teachings, or bodies of knowledge, each with
an input from at least two scientific disciplines.
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1.1.2 Science as a Knowledge Network 60

The cognitive structure of science consists of ideas and relationships between ideas. 61

Cognitive studies focus on science as a body of knowledge. There is no unanimously 62

accepted definition of cognitive structure, and studies on the topic range from those 63

dealing with epistemology, the structure of scientific theories, and the relationship 64

between theoretical and empirical work, to the studies of the cognitive consensus 65

among scientists. Given the importance of textual documents in the practice of 66

science (Callon et al. 1983; Latour and Woolgar 1986), it is natural to focus on 67

the shared conceptual system of scientific communities as expressed through the 68

terminology used in those documents. In this paper, we focus on the studies of 69

scientific knowledge using documents or artifacts produced by scholars as the data. 70

There are different ways in which one can study scientific knowledge using 71

documents as a starting point. One approach is to study textual elements associated 72

with the documents (e.g., words from titles, abstracts, keywords or index terms, or 73

even full text) using, for example, word co-occurrence analysis. Another approach 74

is to treat references as concept symbols (Small 1978) and then perform a whole 75

range of analyses using references as a data source. These analyses can be used 76

to produce maps of science that seek to visually describe the structure of the data 77

(Börner et al. 2003). A third approach is to take journals as units of analysis and 78

study their subjects. These analyses are often used for studying interdisciplinarity. 79

Regardless of the approach, these studies focus mostly on the evolving structure 80

of scientific ideas or the emergence, growth, and diffusion of scientific ideas. They 81

are highly relevant for funding agencies that continually seek to support the most 82

promising and/or emerging topics in science. 83

1.2 Science Models 84

This section introduces a general definition of science models and explains how 85

they are designed. It then discusses different model types. This book focuses on 86

quantitative predictive models that might be universal or concrete. Frequently, there 87

is the desire to model a system at multiple levels. 88

1.2.1 Definition and General Design of a Science Model 89

“Model” is a word with a number of meanings. The Oxford English Dictionary, 90

for example, states in one of its 17 definitions of the word that a model is “a 91

simplified or idealized description or conception of a particular system, situation, 92

or process, often in mathematical terms, that is put forward as a basis for theoretical 93

or empirical understanding, or for calculations, predictions, etc.; a conceptual or 94
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mental representation of something.”2 In philosophy of science, models can be 95

representations of certain phenomena or data, or they can represent a theory.3 In 96

the social sciences, models are simplified representations of an aspect of the real 97

world. They are “a generic term for any systematic set of conjectures about real 98

world observations.”4 In system science and applied mathematics, a model is “an 99

encapsulation of some slice of the real world within the confines of the relationships 100

constituting a formal mathematical system.”5
101

Here, we are interested in models that capture the structure and dynamics of 102

scientific endeavor to gain insights into the inner workings of science. Structure can 103

be defined as a regular pattern in the behavior of elementary parts of a system based 104

on observations of repeated processes of interaction. Typical time frames used in 105

structural models can be as short as a month or as long as a decade. Dynamics refers 106

to the processes and behaviors that lead to changes (e.g., birth, merge, split, or death) 107

(Palla et al. 2007) in the structural units of science (e.g., research teams, specialties) 108

or their interlinkages. Different model types are discussed in the next section. Recent 109

work aims to develop models that describe the interplay of structure and dynamics 110

to increase our understanding of how usage (e.g., collaboration of citation activity) 111

impacts the structure of science and how structure supports activity. 112

In general, the study of science aims to answer specific questions such as when 113

(temporal), where (spatial), what (topical), or with whom (network analysis), or 114

combinations thereof. Temporal questions are commonly answered by dynamic 115

models, including those based on linear regression and those that use sudden bursts 116

of activity as an indicator of new developments. Spatial and topical questions 117

assume an underlying geographic or semantic space and are often answered using 118

structural models. They might simulate people’s foraging for information, collabo- 119

rators, or reputation in a model space analogous to that used by anthropologists to 120

study food foraging. Other models adopt approaches from epidemiology to help us 121

understand the impact of the origin of diffusing entities (tangible ones like people or 122

intangible ones like ideas), infection/adoption rate, seasonality effects (e.g., papers 123

published during spring semester or summer break), etc., on diffusion patterns and 124

dynamics. In addition, there are models that simulate the growth of homogeneous 125

or heterogenous networks, diffusion dynamics over networks, or the interplay of 126

network structure and usage. Recent work in epidemiology aims to understand the 127

interaction of epidemic spreading and social behavior (e.g., staying home when you 128

2Oxford English Dictionary Online, s.v. “model,” accessed January 20, 2011, http://www.oed.com/
view/Entry/120577?rskey=r3QCjg&result=1&isAdvanced=false.
3Roman Frigg and Stephan Hartmann, “Models in Science,” The Stanford Encyclopedia of
Philosophy (Summer 2009 Edition), ed. Edward N. Zalta, http://plato.stanford.edu/archives/
sum2009/entries/models-science/.
4Charles A. Lave and James G. March, An Introduction to Models in the Social Sciences (Lanham:
University Press of America, 1993), 4.
5John L. Casti, Alternate Realities: Mathematical Models of Nature and Man (New York: Wiley,
1989), 1.

http://www.oed.com/view/Entry/120577?rskey=r3QCjg&result=1&isAdvanced=false
http://www.oed.com/view/Entry/120577?rskey=r3QCjg&result=1&isAdvanced=false
http://plato.stanford.edu/archives/sum2009/entries/models-science/
http://plato.stanford.edu/archives/sum2009/entries/models-science/
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Fig. 1.1 General model design, validation, and refinement process

are sick). Analogously, it is desirable to study and model the effect of breakthrough 129

ideas on scholarly network formation and usage. 130

Model design typically involves the formulation of a scientific hypothesis about 131

the identification of a specific structure or dynamics. Often, this hypothesis is based 132

on analysis of patterns found in empirical data. Whether the hypothesis is based on 133

data or in theory, an empirical dataset needs to be available to test model results. 134

Next, an algorithmic process is designed and implemented using either tools (e.g., 135

NetLogo, RePast) or custom codes that attempt to mathematically describe the 136

structure or dynamics of interest. Subsequently, simulated data are calculated by 137

running the algorithm and validated by comparison with empirical data. Resulting 138

insights frequently inspire new scientific hypotheses, and the model is iteratively 139

refined or new models are developed. The general process is depicted in Fig. 1.1. 140

1.2.2 Qualitative Models vs. Quantitative Models 141

There are two major types of models: Qualitative models often use verbal descrip- 142

tions of general behavior. Quantitative models express units of analyses, their 143

interrelations and dynamics using properties susceptible of measurement. The latter 144

are the focus of this book. 145

1.2.3 Deductive (Top-Down or Analytical) Models vs. Inductive 146

(Bottom-Up or Synthetic) Models 147

Deductive models take a “top-down” approach by working from the more general 148

to the more specific. For example, a deductive modeling approach might start with 149

a general theory and then narrow it down into more specific hypotheses that can be 150

tested. Deduction can be seen as the identification of an unknown particular based 151

on the resemblance of the particular to a set of known facts. 152
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Inductive models take a “bottom-up” approach that starts with specific 153

observations and measurements, continues with the identification of patterns and 154

regularities, formulates some tentative hypotheses that can be explored, and results 155

in general conclusions or theories. Induction is also known as the formation of a 156

generalization derived from examining a set of particulars. It is more open-ended 157

and exploratory, especially at the beginning. 158

1.2.4 Deterministic Models vs. Stochastic Models 159

Deterministic models describe the behavior of an object or phenomenon whose 160

actions are entirely determined by its initial state and inputs. In deterministic 161

models, a given input will always result in the same output. A single estimate is 162

used to represent the value of each model variable. Examples are physical laws 163

(e.g., Newton’s laws) that can be used to describe and predict planetary motion. 164

Stochastic (also called probabilistic) models make it possible to predict the 165

behavior of an object or phenomenon if the influence of several unknown factors 166

is sizable – the subsequent state is determined both by predictable actions and by a 167

random element. They cannot predict the exact behavior but predict the probability 168

that a particular value will be observed at a particular time within a known 169

confidence interval. Ranges of values (in the form of a probability distribution) are 170

used to describe each model variable. 171

1.2.5 Descriptive Models vs. Process Models 172

Quantitative models of science can be further divided into two categories: descrip- 173

tive models and process models. Both can be used to make predictions. Descriptive 174

models aim to describe the major features of typically static data sets. Results are 175

communicated via tables, charts, or maps. The focus of this book is on process 176

models, which aim to capture the mechanisms and temporal dynamics by which 177

real-world networks are created (Newman and Leicht 2007; Zhang et al. 2010), 178

with particular emphasis on identification of elementary mechanisms that lead to 179

the emergence of specific network structures and dynamics. These models aim 180

to simulate, statistically describe, or formally reproduce statistical characteristics 181

of interest, typically by means of formulas or implemented algorithms. Formal 182

mathematical approaches to process modeling work best for static, homogeneous 183

worlds. Computational models, however, allow us to investigate richer, more 184

dynamic environments with greater fidelity helping us to understand and explain 185

the dynamic nature of science. 186

Note the difference between laws and computational models. Bibliometric 187

laws are, in reality, descriptive models of data that are held true for certain 188

classes of systems. Examples include Lotka’s law (Lotka 1926), Bradford’s law 189
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(Bradford 1934), and Zipf’s law (Zipf 1949). Computational models describe the 190

structure of dynamics of science using different computational approaches such 191

as agent-based modeling, population models (Bettencourt et al. 2008), cellular 192

automata, or statistical mechanics. 193

A number of studies that use co-authorship networks to study network dynamics 194

(Barabási et al. 2002; Barabási and Albert 1999; Farkas et al. 2002; Nagurney 195

1999; Newman 2001) reveal the existence of small-world and scale-free network 196

topologies (see Sect. 1.2.6) and preferential attachment (Price 1976) as a structuring 197

factor. Preferential attachment in the context of networks means that the well- 198

connected nodes are more likely to attract new links. 199

1.2.6 Universal Models vs. Domain-Specific Models 200

Models can be designed at different levels of generality or universality. Universal 201

models aim to simulate processes that hold true across different domains and 202

datasets. Examples include scale-free network models (Barabási and Albert 1999) 203

or small-world network models (Watts and Strogatz 1998) generating network 204

structures that can be found in vastly diverse systems such as social, transportation, 205

or biological networks. Domain-specific models aim to replicate a concrete dataset 206

in a given domain. One example is Goffman’s (Goffman 1966) application of 207

an epidemic model to study the diffusion of ideas and the growth of scientific 208

specialties. By using mast cell research as a case study, he demonstrated that it was 209

possible to see growth and development as sequences of overlapping epidemics. 210

In this and in other dynamic models, one simulates the dynamic properties of the 211

system by applying certain global laws characteristic of complex systems. This 212

is particularly useful for modeling the growth of a whole system, some part of a 213

system, or of a measure that corresponds to a size. Price studied the growth of 214

science using data until about 1960 and observed an exponential growth (Price 215

1963). Since then, growth has been largely linear, mirroring the massive but linear 216

growth in R&D funding. 217

Today, it is assumed that there are two ways science can grow: homogeneously 218

and heterogeneously. Homogeneous growth is a simple expansion of a given unit. 219

Heterogeneous growth, on the other hand, means differentiation or rearrangement 220

of component elements. Highly differentiated, heterogeneous growth of science can 221

be viewed through authorship patterns. For example, not only is the number of 222

authors per paper increasing over time, but also these authors come from different 223

disciplines, different institutions, and different knowledge-production sites (e.g., 224

universities and industries). In addition, there is a wide geographic distribution of 225

co-authors as well. This is the result of the globalization of science and the role 226

that specialized knowledge plays in the development of science. A particularly 227

promising area of research is the study of co-evolving networks of co-authors and 228

paper-citations (Börner et al. 2004), as well as work that examines the interplay of 229
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Fig. 1.2 Temporal levels (top left), data types (top right), reference systems (lower left), and levels
of aggregation (lower right)

existing network structures and resulting scholarly dynamics that, in turn, affect the 230

growth of scholarly networks. 231

1.2.7 Multi-Level and Multi-Perspective Models 232

It is often desirable to model a system at multiple levels using different vantage 233

points (see Fig. 1.2). 234

For example, the different levels could represent: 235

• Temporal scales – different levels describe the structure and/or dynamics of a 236

system at different points in time. 237

• Data types – different levels represent different relations/dynamics for the very 238

same set of elements (e.g., co-author, co-PI, co-investigator, co-inventor, author 239

co-citation, and topical similarity for a set of nodes). 240
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• Reference systems – different levels provide different views of the same data 241

(e.g., a map of NIH funding is linked to a map of authors is linked to a map of 242

their MEDLINE publications). 243

• Levels of aggregation – levels might represent different geospatial aggregations, 244

topical aggregations, or network aggregations such as individual, group, pop- 245

ulation level data, e.g., co-author networks, research communities, or invisible 246

colleges. 247

1.2.8 Exemplification Using Predictive Workflows 248

As mentioned in Sect. 1.2.1, models of science aim to answer when, where, what 249

and with whom questions at different levels of aggregation, e.g., 250

• when (temporal): days, weeks, months, years, decades, centuries; several journal 251

volumes/issues make up years 252

• where (spatial): postal codes, counties, states/provinces, countries, continents. 253

NanoBank has an elaborate system for this. Congressional districts matter. OPEC 254

countries, EU, etc., aggregations of countries 255

• what (topical): terms make up topics, documents, and lines of research; papers 256

appear in journals, journals group into disciplines or subject categories, major 257

fields, or all of science 258

• with whom (network analysis): person is part of a research team, part of a 259

research community/invisible college; person works at an institution, institution 260

is part of a sector (e.g., academia, government, industry). 261

Answers to these different types of questions each demand their own data struc- 262

tures (e.g., time-stamped data or networks). Below, we provide sample modeling 263

workflows that aim to answer research or science policy questions. 264

Although models of science aim to answer the when, where, what, and with 265

whom questions mentioned above, it is important to relate them to the needs of 266

science policy and practice. There are many types of questions currently being asked 267

by decision-makers (from team leaders to university officials to agency heads) that 268

can potentially be informed by science models. These include: 269

• How do changing resources alter the structure of science (at multiple levels of 270

aggregation)? What areas would benefit most from increased funding? 271

• What science is currently emerging or likely to emerge in the near future? 272

• How can I create or strengthen a particular R&D area at my institution? What 273

key expertise and resources are needed? 274

To a large degree, science policy and practice is interested in models as a way to 275

make informed decisions regarding future (investment) strategies in science. In that 276

respect, they are interested in predictive models of science. 277

To date, the majority of predictive models have sought to describe phenomena at 278

high levels of aggregation. Descriptive models have much more often been able to 279
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describe phenomena at very detailed levels. What is needed in the future is a merging 280

of the scales that are currently possible using descriptive models with the predictive 281

power of computational models. This combination has an unparalleled opportunity 282

to impact science policy and the practice of science in very significant ways. We 283

would like to extend this as a challenge to the science-modeling community. To 284

illustrate this challenge and this opportunity, we provide an example of how such 285

a model (or combination of models) could be used to provide answers to detailed 286

questions. 287

Dynamics of the S&T system. It is well known that topics in science are 288

born, can merge or split, and eventually die. Some descriptive models can show 289

the past dynamics of topics or disciplines; isolated studies have examined this 290

issue in some segments of the literature. Predictive models have reproduced the 291

growth characteristic of the life span of many scientific fields (Gupta et al. 1997). 292

However, to date, there has been no comprehensive study to (1) track communities 293

or specialties over all of science to discover the empirical birth, merge, split, and 294

death rates (the comprehensive descriptive model), and (2) to correlate those rates 295

with properties of the communities or specialties (the comprehensive predictive 296

model). This combination could result in a highly specific model that could be used 297

to predict (based on model parameters fit to past performance) the status of each 298

current community for the next several years. Such a predictive model would be an 299

extremely powerful tool for decision-makers. 300

1.3 Basic Conceptualization and Science-Modeling 301

Terminology 302

Despite the fact that different science models have been designed to answer vastly 303

different questions at many levels of generality, the discussion above has implicitly 304

assumed, without explicitly stating, that any model of science must be based on 305

some sort of framework or conceptualization of science, its units, relationships, 306

and processes. In an attempt to provide a unifying conceptualization (Börner and 307

Scharnhorst 2009) for the comparison of models, we present here two different 308

frameworks, one starting with terms and definitions, and one starting with a 309

visual network approach. The two frameworks have a high degree of overlap, and 310

demonstrate that useful frameworks can be approached from multiple perspectives. 311

There are some facets of these frameworks that are similar to those previously 312

published by Morris and Rodriguez (Morris and van der Veer Martens 2008; Morris 313

and Yen 2004; Rodriguez et al. 2007). However, there are many differences as well. 314

The origin, usage, and utility of key terms very much depends on the goal and 315

type of modeling performed. Models that conceptualize science as a social activity 316

(see Sect. 1.1.1) will use researchers, teams, and invisible colleges as key social 317

terms. Models that simulate science as a knowledge network (see Sect. 1.1.2) have 318

to define knowledge terms such as documents and journals. Models that place a 319

central role on the bibliographic data used in model validation require a definition of 320
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bibliographic terms. Models that conceptualize science as an evolving system of co- 321

author, paper-citation, and other networks will need to define network terms. Other 322

models aim to capture the phenomenology of science or try to provide actionable 323

knowledge for science policy decisions and hence define phenomenological terms 324

and policy/infrastructure terms. The majority of the underlined terms are defined in 325

the Appendix; the definitions provide more information on the concrete interlink- 326

ages between terms. Exemplary sets of essential terms (concepts) are given here: 327

• Social terms: researcher, team, invisible college, research community, specialty, 328

institution, collaboration. 329

• Knowledge terms: base knowledge, line of research, discipline, field of study, 330

research front, communication, knowledge diffusion, knowledge validation. 331

• Bibliographic terms: author, document (e.g., article, patent, grant), reference, 332

citation, journal, term, topic. 333

• Network terms: network, node, link, clustering, network metric. 334

• Phenomenological terms: core and scatter, hubs and authorities, aggregation, 335

overlap, distributions, bursts, drifts, trends. 336

• Policy/Infrastructure terms: funding, indicator, metrics. 337

Note that there are strong interrelations among these terms within and across the 338

different term sets: 339

• Most researchers are authors. 340

• References and citations are links between papers. 341

• Researchers aggregate to teams, invisible colleges, research communities; they 342

are affiliated with an institution. 343

• Journals include papers; papers have references and might be cited; papers are 344

comprised of terms and address a specific topic. 345

• Clustering occurs not only in networks but also over time (e.g., only authors who 346

are alive can co-author) and geospatial and topic space (e.g., authors who are 347

geospatially close and work on similar topics are more likely to co-author). 348

The most inconsistently used terms are those used to describe 349

• Social groupings such as invisible colleges, research community, specialty and 350

• Knowledge groupings such as line of research, field of study, discipline. 351

Authors of the book chapters were encouraged to conform to or redefine the 352

definitions given in the Appendix. Readers of the book might like to do the same. 353

Note that many different groupings of these terms are possible. Leydesdorff 354

(Leydesdorff 1995) suggested a three-dimensional space of different units of 355

analysis: social dimensions (people, institutions), institutional dimensions (rules, 356

funding, metrics, indicators), and cognitive dimensions (texts, journals), see Fig. 1.3. 357

The three derivative two-dimensional spaces represent different lines of research. 358

• Social x institutional dimensions: Sociology of science 359

• Social x cognitive dimensions: Scientometrics, informetrics 360

• Institutional x cognitive dimensions: Philosophy of science, artificial intelligence 361
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Fig. 1.3 Three-dimensional space by Leydesdorff (Leydesdorff 1995). The three axes stand for
units of analysis. A phenomenon can be represented as a point in this space with a value on each
of the three axes via projection. For example, an institutional rule that would be attributed to an
institution might be represented as text, and has cognitive (substantive) content

In an analogy to a physical system, social dimensions are the “volume,” cognitive 362

dimensions are the “temperature,” and institutional dimensions are the “pressure.” 363

A system-theoretic approach by sociologist Luhmann (1995) depicts science as 364

a self-organizing process within society that takes human resources, education, and 365

funding as input and produces papers, books, patents, and innovations as output. 366

While science strives for “truth,” economy aims for profit. 367

A final alternative, network-based approach is given in Fig. 1.4. This concep- 368

tualization is useful when developing models for science policy-makers with a 369

deep interest in indicators. Here, social, knowledge, and topical descriptor networks 370

are extracted to study base entities and their physical aggregations into teams, 371

institutions, journals, and documents. Conceptual aggregations such as invisible 372

colleges, specialties, or smaller communities can be analyzed and mapped, and can 373

show signs of incremental growth, emergence, and breakthrough, or controversy 374

and conflict, depending on the actual dynamics of the science involved. Temporal 375

changes in lines of research or bursts and drifts in time-stamped texts can be 376

calculated and modeled. The ultimate goal is the support of effective funding, 377

communication, collaboration, and their validation. 378

We note that many different conceptualizations of science are possible, and that 379

the two presented here are only examples. They are not intended to provide an 380

exhaustive list of the units of science that can be analyzed, but rather to suggest 381

that one should be able to place the units and interactions used in any model of 382

science in a coherent framework that will be useful to others. 383
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Fig. 1.4 Network-centric grouping of key terms used in models relevant for science policy
making. Terms in bold italic are defined in the Glossary

1.4 Overview of Major Science Models 384

The remainder of this book reviews major process models that were developed in 385

many different areas of science. Among them are 386

• Statistical approaches and models which are “based on the laws and distributions 387

of Lotka, Bradford, Yule, Zipf-Mandelbrot, and others [and] provide much useful 388

information for the analysis of the evolution of systems in which development is 389

closely connected to the process of diffusion of ideas” (Chap. 3, p. 1); 390

• Deterministic dynamical models that are “considered to be appropriate for the 391

analysis of [evolving] ‘large’ societal, scientific and technological systems for 392

the case when the influence of fluctuations is not significant” (Chap. 3, p. 1); 393

• Stochastic models which are “appropriate when the system of interest is ‘small’ 394

but when the fluctuations become significant for its evolution” (Chap. 3, p. 1); 395

• Agent-based models (ABM), which “are concerned with the micro-level pro- 396

cesses that give rise to observable, higher-level patterns. If an ABM can generate 397
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some macrophenomenon of interest, then it can at least be considered a candidate 398

explanation for it.” (Chap. 4, p. 6) 399

• Evolutionary game theory (EGT) is “a time-dependent dynamical extension of 400

‘Game Theory’ (GT), which itself attempts to mathematically capture behavior 401

in strategic situations in which an individual’s success in making choices depends 402

on the choices of others. EGT focuses on the strategy evolution in populations 403

to explain interdependent decision processes happening in biological or socio- 404

economic systems” (Chap. 5, p. 2); 405

• Quantum game theory is “a mathematical and conceptual amplification of 406

classical game theory (GT). The space of all conceivable decision paths is 407

extended from the classical measurable strategy space in the Hilbert space of 408

complex numbers. Through the concept of quantum entanglement, it is possible 409

to include a cooperative decision path caused by cultural or moral standards” 410

(Chap. 5, p. 18). 411

Figure 2.1 in Chap. 2 sketches the temporal evolution of the different model 412

types. Chapters 3–7 each feature a table that lists major models reviewed in that 413

chapter. While Chaps. 3–5 each review one specific model type, Chaps. 6 and 7 414

discuss different types of models that address questions related to the structure and 415

dynamics of co-author and paper-citation networks respectively. 416
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Glossary 524

Agent In the context of an agent-based model, an agent is an individual that is 525

capable of autonomous behavior. It usually has a well-defined internal state and 526

is situated in an environment with which it can interact. That environment usually 527

includes other agents and other targets of interaction. 528

Base knowledge Facts and ideas that are more or less widely known within a 529

specialty. These can correspond to widely accepted ideas and theories, techniques, 530

and empirical facts, but can also correspond to controversies or conflicting ideas. 531

Base knowledge is most often referred to by citing the documents in which those 532

facts or ideas were either first or most prominently elucidated. Cited documents, or 533

references, are thus used as symbols for base knowledge. 534

Citation Citation is a term that can be easily misunderstood. It is used in two 535

different senses by different groups of researchers. In the biomedical and social 536

science literatures, “citation” typically refers to a document, or a node in the 537
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document network. For example, a MEDLINE citation refers to the bibliographic 538

record of a document. By contrast, in bibliometrics and network science, “citation” 539

refers to the directed link between one document and another; it refers to the 540

citation of one document by another document. Citation counts thus accrue to cited 541

documents. In citation analysis, one speaks of a document having been cited n times, 542

or having n citations. In this work we use the bibliometric definition of “citation” 543

exclusively. 544

Clustering The process of assigning a set of elements into groups, where the 545

elements in a group are similar to each other in some sense (e.g., according to 546

selected properties of units). In the three network types listed here, researchers, 547

documents, and terms can each be clustered into groups based on similarities in 548

those elements. Although the individual elements of a network are the basic units, 549

clusters are often the unit of analysis that is reported. Clustering is often used 550

to approximate the composition of conceptual aggregations. For example, authors 551

can be clustered to approximate the memberships of different invisible colleges, 552

documents can be clustered to approximate the outputs of research communities or 553

specialties, and terms can be clustered to form broader topic spaces. 554

Collaboration Collaboration is an active process where two or more researchers 555

and/or institutions work together on something of common interest. Co-authorship 556

of a document is thought of as a direct indicator of collaboration. 557

Communication Communication in science can happen on a variety of levels, both 558

formal and informal. It is the mode by which an invisible college operates, and 559

can include everything from the most formal collaboration (co-authorship, which 560

is relatively easy to measure), to the transmission of ideas through the reading and 561

citing of articles (measurable), to informal discourse on scientific topics via face-to- 562

face, phone, or email conversations (far less measurable). 563

Discipline An academic or scientific discipline (or field) is an established body of 564

knowledge with similar cognitive content. This establishment, while fundamentally 565

cognitive, is most clearly evidenced in the existence of interconnected social 566

and institutional structures (or networks), such as discipline-specific university 567

departments or institutes where research is performed and instruction takes place, 568

as well as in discipline-specific academic journals, organizations, societies and 569

meetings. Disciplines fulfill a number of roles: they specify the objects that can 570

be studied, provide methods, train and certify practitioners, manufacture discourse, 571

provide jobs, secure funding, and generate prestige. Some of the traits a discipline 572

should have are: university departments and institutes, specialized scientific soci- 573

eties, specialized journals, textbooks, a specific domain of objects studied from a 574

specific perspective, methods for the production and analysis of data, means of 575

presentation using specific terminology as a conceptual framework, and forms of 576

communication. In science modeling, a discipline is most often defined as a set of 577

journals, or as the papers published in a set of journals. Some people refer to a 578

discipline as a large set of papers around a particular field of study, without regard 579
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to a particular set of journals. We prefer to call this type of aggregation a field rather 580

than a discipline. 581

Document For science and bibliometrics studies, scientific articles are usually the 582

basic independent record in the project database. Documents can include various 583

article types, including journal articles, review papers, conference papers, etc. If 584

extended beyond the scientific realm, documents can include gray literature, gov- 585

ernment reports, patents, and even the proposals associated with funded research. 586

Element Individual vertices or nodes. 587

Funding Monetary inputs into the science system. These can come in the form of 588

grants, contracts, investments (e.g., venture capital), or direct R&D monies within 589

an institution. 590

Indicator “Science indicators are measures of changes in aspects of sciences” 591

(Elkana, Lederberg, Merton, Thackray, & Zuckerman 1978).AQ2 592

Institution In the context of science modeling, an institution is an organization 593

that creates knowledge, typically through the mechanism of an author publishing 594

an article. In a practical sense, institution names are typically listed with author or 595

inventor names in documents. Institutions can also include funding agencies. 596

Invisible college The most recent definition of invisible college comes from 597

(Zuccala 2006): “An invisible college is a set of interacting scholars or scientists 598

[researchers] who share similar research interests concerning a subject specialty, 599

who often produce publications [documents] relevant to this subject and who 600

communicate both formally and informally with one another to work towards 601

important goals in the subject, even though they may belong to geographically 602

distant research affiliates.” 603

Journal A publication medium in which a selection of scientific articles (docu- 604

ments) on a particular topic or set of topics is published, typically in a series of 605

issues. A journal can appear in print or electronic form or both. Most journals that 606

are considered as the prime publication outlets by researchers are peer-reviewed, 607

meaning that other researchers review submitted manuscripts and recommend (or 608

not) their publication. 609

Knowledge diffusion The process by which science knowledge is spread (Wojick 610

et al. 2006). 611

Knowledge validation Peer review and replication. 612

Network A network is a set of vertices (or nodes) that represent the units, and 613

a set of lines (or links) that describe the relationship between those elements. 614

Networks are often represented visually by graphs using node/link diagrams. Many 615

different networks can be created from bibliographic data – for example, a social 616

network showing the relationships between people (researchers), a knowledge 617

network showing relationships between documents, or a descriptor network that 618

shows relationships between terms. 619
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Network metric A variety of metrics are used to characterize properties of 620

networks. These include edge count distributions (known as degree, in-degree, or 621

out-degree), path lengths, clustering coefficients, centralities of various types, etc. 622

Researcher As a broad definition, a researcher is a person who performs research. 623

In terms of modeling science, a researcher must not only perform research, but must 624

also publish that research. For the purpose of modeling of science and technology, 625

we can expand that definition to include authors who publish, inventors who apply 626

for patents, and investigators who apply for and receive funding through grant 627

proposals. 628

Research community Many years ago, sociologists, specifically Kuhn (1962) and 629

Merton (1973), suggested that researchers organize themselves into relatively small 630

socio-cognitive groups – on the order of 10 people – working on common problems. 631

Although the word “community” implies a group of people, the output of a single 632

such group can be thought of as a research community. A typical community will 633

publish around 10–15 articles (documents) per year, assuming the authors each 634

publish 1–2 articles annually on the problem focused on by the community. 635

Research front The working definition of a research front according to Thomson’s 636

ScienceWatch is that of a co-citation cluster of highly cited articles, limited to 637

the most recent 5 years. A more general definition might be “a specialty’s current 638

literature” or “the most recent development of a specialty” without regard to being 639

highly cited or not. 640

Research specialty A research specialty (or field) is usually defined at a higher 641

level of aggregation than a research community, and can be thought of (more or 642

less) as the documents published by an invisible college. A research specialty can be 643

comprised of many research communities and is comprised of, on average, hundreds 644

of articles per year. Lucio-Arias and Leydesdorff (2009) write that “a research 645

specialty can be operationalized as an evolving set of related documents. Each 646

publication can be expected to contribute to the further development of the specialty 647

at the research front.” Research specialty is often considered to be the largest 648

homogeneous unit of science, in that each specialty has its own set of problems, 649

a core of researchers, shared knowledge, a vocabulary, and literature. 650

Team A small group of researchers who tend to work together on a particular topic 651

or set of topics. Members of research teams are strongly connected – that is, each 652

team member knows and interacts with, and often co-authors with, the other team 653

members. Teams are typically low-level groups that cannot be further subdivided. 654

Term A single- or multiple-word phrase. Terms can be generated in different 655

ways. For instance, they can be chosen from a standardized set of terms (e.g., a 656

thesaurus like MeSH) by an author, indexer, or editor; or they can be extracted from 657

a document, title, or abstract using automated means. 658
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Topic A topic can be an area of interest or the focus of an article or document. The 659

notion of topic includes both a main idea and supporting details. Thus, a topic is 660

much broader than a single term. 661

Unit Element type (e.g., author, article, journal, etc.). 662
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Chapter 2 1

Mathematical Approaches to Modeling Science 2

from an Algorithmic-Historiography Perspective 3

Diana Lucio-Arias and Andrea Scharnhorst 4

2.1 A Narrative of the History of Mathematical Models 5

of Science 6

The accumulative nature of knowledge requires systematic ways to comprehend and 7

make sense of what we know. In the case of scientific knowledge, this requirement 8

is enhanced by the importance given to science as a driver of social and economic 9

progress. The persistent interest in a “science of science” or a “social studies of 10

science” is a consequence of the reflexive endeavor to comprehend and assimilate 11

science and the growth of scientific knowledge – perhaps together with policy 12

intentions to design evaluation and stimulus mechanisms. 13

This interest has led to significant efforts to define and refine ways of modeling, 14

representing, and understanding science in the scientific community – efforts unre- 15

stricted to single disciplines or intellectual traditions. Reflection upon knowledge 16

production co-evolves with knowledge production itself. It reaches from early 17

philosophy to the arts, encompassing attempts to order knowledge. One famous 18

example of how to order knowledge is the arbor scientiae of the philosopher 19

Raimudus Lullus (1232–1316) (Dominguez Reboiras et al. 2002). 20

At the same time, in our modern understanding, the old symbol of the tree also 21

encompasses the idea of evolution. To characterize the evolution of the science sys- 22

tem (natural sciences, social sciences, humanities, and arts), its growth and differen- 23

tiation, mathematical models are one possible scientific method. This book reviews 24
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the transfer of models belonging to different branches of an imagined “(sub)tree 25

of mathematics” to scientometrics. Mathematical models in scientometrics are 26

developed to understand better the structure and evolution of the imagined whole 27

tree of knowledge, and so the circle closes. In this chapter, the metaphor of the 28

tree reoccurs once more in the method used to depict the history of mathematical 29

modeling of the sciences. Treelike structures are the core of the historiographic 30

method where, constructed from citations of key papers, they illustrate the evolution 31

of knowledge. 32

Mathematical models of the sciences do not stand alone in our modern day 33

but stem from formulations made earlier in time. Mathematics has penetrated 34

almost all other scientific disciplines. We not only know mathematical physics and 35

mathematical biology, but also mathematical economics, mathematical sociology, 36

mathematical psychology and mathematical finance.1 Although there is no field of 37

“mathematical science studies,” the emergence of quantitative studies of science – 38

bibliometrics, scientometrics, informetrics – came along naturally together with 39

mathematical approaches. Not surprisingly, methods of statistics are well estab- 40

lished in scientometrics (Egghe and Rousseau 1990). However, applications of 41

mathematical models to the dynamics of the science system form relatively singular 42

and isolated events. This observation, together with an increasing need for modeling 43

dynamic processes in science, was not only the trigger for this book, but also the 44

starting point for this chapter. 45

We can attempt to categorize mathematical models of science according to 46

the phenomena they try to explain and the epistemic approaches they follow. 47

Phenomena include: growth and distribution of expenditures for education and 48

research across countries and fields; number of PhD’s in different fields; growth 49

of the number of publications; formation of and competition between scientific 50

fields; citation structures; and different productivity patterns among researchers 51

from different disciplines, taking into account age and gender. Epistemic approaches 52

differ according to their perspective (which can be micro or macro), their basic 53

elements, their units of analysis, and how major dynamic mechanisms of the 54

system under study are identified. Scientific methods are part of the epistemics, 55

so models of science can differ by their use of mathematical technique and 56

mathematical language (see Börner et al. in Chap. 1). Concerning mathematical 57

approaches applied to the sciences as an object, we observe a mixture between new 58

mathematical techniques available and newly emerging scientific fields. 59

In Fig. 2.1, we try to sketch the appearance and diffusion of some mathematical 60

models of science. This sketch is based on the insights of one author who did 61

1 The appearance of separate subject classifications for these subfields or specialization in the
Mathematics Subject Classification (MSC) – a system used to categorize items covered by
the two reviewing databases, Mathematical Reviews (MR) and Zentralblatt MATH (Zbl) – can
indicate the consolidation of mathematical approaches in these fields. According to the MSC2010,
mathematical economics encompasses 37 subclasses, mathematical sociology 6, mathematical
psychology 5, and mathematical finance 9 (see http://www.ams.org/mathscinet/msc/msc2010.
html).

http://www.ams.org/mathscinet/msc/msc2010.html
http://www.ams.org/mathscinet/msc/msc2010.html
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Fig. 2.1 Branches of mathematics and appearance of mathematical models in scientometrics
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her PhD in this area in 1988 and kept publishing in the field (Scharnhorst 1988; 62

Bruckner et al. 1990). In the upper part of Fig. 2.1, branches of mathematics are 63

selected (labeled according to the Mathematics Subject Classification) according to 64

their relevance for models of science. Of course, inside mathematics, these branches 65

overlap and form a fabric (Boyack and Klavans 2009), or turbulent, reacting- 66

diffusing fluids, rather than a static tree with separable branches. The lower part 67

of Fig. 2.1 depicts growth curves of certain models of science. However, there 68

is no linear causality between a certain progress in mathematics and its possible 69

application to the science system, even if we indicate relations by arrows as in 70

Fig. 2.1. Few models enter the field of scientometrics via biology, psychology, 71

economy, or physics. Last but not least, it all depends if researchers are intrigued 72

enough by the problem to model mathematically the sciences as a cognitive and 73

social system. 74

For the time being, we would like to stick to such a narrative that combines 75

epistemic streams running across different disciplines with the first occurrence of 76

certain types of models applied to science as a system. In the main part of the 77

paper, we search for empirical evidence supporting or contradicting this historical 78

narrative. 79

We state that in parallel with the emergence and spreading of “approaches 80

and techniques” (for example, stochastic distributions at the end of the nineteenth 81

century; the emergence of system science and operations research; the paradigmatic 82

change in physics towards irreversible, dissipative and complex processes; and the 83

rise of rule-base agent modeling, to name only a few), researchers – most of the time 84

also pioneers in developing these methods – were curious also to apply them to an 85

environment in which they felt at home: the academic system. 86

For instance, Lotka described the skewed distribution of the productivity of 87

scientists (Lotka 1926) as part of his more general approach to apply methods 88

of (statistical) physics to evolution in nature as well as society (Lotka 1911). 89

Sterman’s system-dynamics model of Kuhn’s scientific revolution (Sterman 1985) 90

is embedded in his overall work on complex social systems, part of the emergence 91

of system dynamics as a specific mathematical systems theory (Sterman 1992), and 92

just another exemplification of feedback loops and complex correlations between 93

dynamic micromechanisms. Goffman modeled the diffusion of ideas similarly to 94

the spreading of diseases, and other researchers (Nowakowska, Kochen, Yablonsky, 95

Bruckner et al.) compared the emergence of scientific fields to the evolution 96

of biological species. They all made use of differential equations and master 97

equations at the moment non-linear differential equations became very popular 98

ways to describe the dynamics of complex systems (Nicolis and Prigogine 1977). 99

Gilbert’s agent-based model of science (1997) marks the entry and spread of rule- 100

based modeling into mathematical and computational sociology (Epstein and Axtell 101

1996), for which Gilbert also did pioneering work (Gilbert and Troitzsch 2005). 102

Furthermore, the interest of Gilbert was also obviously triggered by his earlier work 103

on the history and sociology of science (Gilbert and Mulkay 1984). 104

But not in all cases do we find a strict temporal correlation between the 105

establishment of the mathematical method and its testing out for the science system 106
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as one specific social system. In the case of game theory, developed in the 1930s and 107

1940s (see von Neumann and Morgenstern 1944), only now is the method tested 108

upon science itself (see Hanauske in Chap. 5). 109

Moreover, there are differences in the way the scientific community has 110

embraced these pioneering approaches. Lotka’s law is known today as a classic law 111

in scientometrics. Stochastic processes, which can explain also Lotka’s law, have 112

been present almost the whole time (e.g., Glänzel and Schubert 1995; Van Raan 113

2006; Egghe 2005. However, Lotka’s general framework of a physics of evolution 114

applicable to processes in nature and society did not travel. Even more, his famous 115

systems of non-linear differential equations (Lotka–Volterra equations), applied 116

extensively in mathematical biology (Lotka 1925), did not travel, at least not 117

through Lotka’s own initiation. Although Goffman’s epidemic model belongs to 118

the same type of models, the link to Lotka–Volterra equations has been made 119

explicit only in the 1980s. After seeing a first rush in the 1960s, 1970s and 1980s, 120

epidemic models themselves only reappeared in the context of epidemic processes 121

on networks, together with the emergence of a cross-disciplinary network science 122

(2005), from 2000 onwards. In the same context of the revival of networks, other 123

early network models like Price’s gain a second period of attention. In contrast, 124

applications of agent-based models and system-dynamics models remain rare 125

occurrences. Yet, agent-based models – outside of scientometrics and independent 126

from it – have been embraced by computational philosophy, which uses concepts 127

and mathematical approaches for epistemic spaces and dynamics quite similar to 128

those used in scientometrics ((Weisberg and Muldoon 2009) see Payette in Chap. 4). 129

All in all, the impression emerges that mathematical models applied to science 130

come in waves, remain relatively independent from each other, and form more an 131

ephemeral than a persistent thread in scientometrics (Fig. 2.1). 132

This is quite interesting. Why, unlike other sciences, does the modeling of science 133

dynamics appear as a process of eternal beginning, and why does it still lack a 134

coherent theoretical framework? Can we find facts for such an impression now 135

turned into a hypothesis? Can bibliometrics confirm that we indeed are faced today 136

with modeling approaches to science that are scattered, while older approaches 137

might have been obliterated or forgotten with time? Can historiographic analysis 138

also reveal some of the causes for such a situation? 139

The purpose of this chapter is to counter an individual account of science history 140

with a bibliometric study. We present a historiography of mathematical models 141

and approaches to science. This will give the opportunity to reveal the cognitive 142

history of the models. What might seem unrelated today might share a cognitive or 143

disciplinary memory or might stem from significant older papers that had citation 144

relations between them. We follow this section with a description of the method 145

of algorithmic historiography to reveal scientific developments. This method is 146

later used to (a) delineate the cognitive historiography of today’s mathematical 147

approaches to science and (b) illustrate approaches to science constituting a lasting 148

thread that may have been forgotten or obliterated by new models. 149
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2.2 The Use of Bibliometrics in Science History – Algorithmic 150

Historiography 151

Publishing as a means of communicating, corroborating, or refuting scientific 152

findings is a crucial operation for the development of scientific knowledge (Lucio- 153

Arias and Leydesdorff 2009). For this reason, citation practices have also become 154

established in this discursive construction of scientific knowledge (Wouters 1999). 155

Early in the invention of citation indexing, which was primarily aimed at advancing 156

information retrieval, Garfield proposed to use these databases to reconstruct the 157

history of scientific ideas (Garfield et al. 1964). The bibliographic information 158

contained in a collection of published articles and their references makes historical 159

reconstruction through citations a collective and social enterprise (ibid.). However, 160

one has to keep in mind that looking at citations represents a specific empirical 161

method. Both bibliometrics and scientometrics have known a long and continuing 162

debate over the meaning of citations in knowledge production, dissemination, and 163

reconstruction (De Bellis 2009). Recently, it has been observed that “it remains 164

a question what actually bibliometrics can add to science history based on text 165

analysis and eye witness accounts” (Scharnhorst and Garfield 2010). The method 166

of algorithmic historiography as applied in the following is therefore used as one 167

possible empirical method to test some of the hypotheses presented in the previous 168

section, and the results make explicit the limitations of this method. 169

The notion of algorithmic historiography is supported by the introduction of 170

HistCiteTM as a bibliometric tool that aids the process of uncovering transmissions 171

of knowledge that lead to scientific breakthroughs (Pudovkin and Garfield 2002). 172

It relies on citation data to describe historically scientific fields, specialties, and 173

breakthroughs (Garfield 1979). The software creates a mini-citation matrix for any 174

set of documents retrieved from the ISI Web of Science, facilitating historical 175

reconstructions based on a literary simplification of science (Garfield et al. 2003b,a, 176

2005). Depending on the seed nodes selected to start the citation, mining the method 177

can be applied to a scientific field or a journal, the oeuvre of a scholar, or an 178

individual paper (Scharnhorst and Garfield 2010). 179

The method of utilizing the textual footprint of scientific discoveries and break- 180

throughs to reconstruct their history has been employed in scientometrics. Citations 181

might be considered as the memory carriers of the system, and their use as nodes 182

in network-like historiographs can be further enhanced by using algorithms from 183

network and information theory (Lucio-Arias and Leydesdorff 2008). Even though 184

this approach is used to a lesser extent by philosophers and historians of science, the 185

algorithmic approach to historical reconstruction enables us to include more variety 186

in the perspective than a reconstruction based on dispersed narratives (Kranakis and 187

Leydesdorff 1989). This approach, labeled scientometric historiography, relies on 188

citation networks to build descriptive reconstructions of history, assuming that these 189

networks reflect a transmission or flow of ideas between papers. 190

Possible biases caused by the use of citations for empirical reconstructions 191

might include the overestimation of contributions from elite scientists (MacRoberts 192
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and MacRoberts 1987, 1989), negative or critical citations, or the perfunctory 193

acknowledgement of earlier work. Nevertheless, different studies have agreed that 194

around 70% of the references used in a scientific paper correspond to criteria of 195

scientific relevance (Vinkler 1996; Krampen et al. 2007). In other words, 70% of 196

citations respond to the normative theory of citing (Cronin 1984), which justifies 197

the value of citation analysis for historical reconstruction of scientific fields. We 198

use the main-path algorithm from social network analysis to identify those central 199

documents in the citation networks. Specifically, we use the Search Path Link 200

Count available in Pajek which accounts for the number of all possible search 201

paths through the network emanating from an origin (Hummon and Doreian 1989; 202

Batagelj 2003). These main paths have been acknowledged to identify documents 203

that build on previous work, while acting as authorities for later works (Yin 204

et al. 2006). These documents can be expected to be associated with thematic or 205

methodological transitions in the development of a topic (Carley et al. 1993) and 206

are significant for writing the history of science (Hummon and Doreian 1989). 207

In the following sections, we use two different approaches to chronological 208

networks of citations. Citations allow us to study the diffusion of ideas among 209

documents. But citations can also be understood in the process of codifying 210

scientific knowledge. They link older texts to today’s scientific knowledge while 211

providing information about the cognitive position of scientific knowledge claims, 212

which through citations and references get contextualized in scientific repertoires 213

and trajectories. Citations give disciplinary context to publications. We will take 214

both of these perspectives into account in the following sections. In the first part of 215

the results section, we will present the bibliographic history of mathematical models 216

used today to study science. We expect to encounter well-known pioneers like the 217

models mentioned throughout the book, but we will also encounter lesser-known 218

models that may have been obliterated or forgotten over time. We will show how dif- 219

ferent threads are codified in relation to different “classical” or seminal approaches 220

to mathematical models of science. The second reading given in the results section 221

corresponds to the trajectories constructed from the diffusion of seminal approaches 222

to science modeling. We reconstruct the diffusion of the ideas introduced by Alfred 223

J. Lotka, Derek de Solla Price, and William Goffman based on citation analysis. 224

2.3 Data Selection and Analysis Design 225

In this chapter, we use bibliometrics to study and follow the implementation 226

of mathematical models for science. The purpose will be to uncover different 227

characteristics of the process of codifying mathematical models that have been 228

published in the last 5 years in selected journals of Library and Information Science. 229

In this section, we look at the knowledge base of this set of papers to determine 230

their cohesiveness. The method of using mathematics to model the structure and 231

behavior of science presents scattered trajectories that could respond to the lack 232

of a unifying theory or intellectual base. In a later section, some of the models 233

that appear in chapters of this book will be presented from the perspective of their 234
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Table 2.1 Statistics of the search: present to past

Journal Documents Inside citations Total citations

JASIST 50 39 416
Scientometrics 47 44 271
IP&M 20 5 63
J. Informetrics 20 13 53
Total documents 137
Source: ISI Web of Science, query May 25, 2010, HistCiteTM.

diffusion trajectories. This will emphasize possible recombinations, cognitive links, 235

or disciplinary shifts that affect the appropriation of the models in the scientific com- 236

munity. In this specific section, the diffusion trajectories are detailed in relation to 237

the characteristics of the models presented in the introductory chapter of this book. 238

All our analyses are based on retrievals from the Thomson Reuters Web of 239

Science, which can easily be read by the HistCiteTM software. 240

For the cognitive history of contemporary papers using (or referring to) mathe- 241

matical models of science (Present to past analysis – Sect. 2.4.1), we selected four 242

major journals in ISI’s subject category of Library and Information Science. The 243

selection of the journals was determined by their popularity inside the community of 244

the information sciences. For retrieving documents using mathematical approaches 245

to science, we first used a topical search in the ISI Web of Science2 that retrieved 246

2,876 documents. However, we encountered the problem that the majority of them 247

were not in line with the purpose of our study. For this reason, we decided to down- 248

load all documents published in Scientometrics, Journal of the American Society 249

for Information Science and Technology, Journal of Informetrics, and Information 250

Processing and Management in the period considered. We made a manual selection 251

based on the titles, abstracts, and full text (when necessary) of those documents that 252

used mathematical approaches (ideally models) to explain science. The drawback 253

of this last approach is that there are various mathematical models in existence. 254

There is also an ambiguity in the use of the word “model” and even “mathematical 255

model.” Many of the documents selected claimed to be modeling approaches but 256

failed to have all the specifications necessary to be considered as such. Table 2.1 257

gives an overview of the number of retrieved documents per journal, as well as the 258

citations inside the retrieved set of documents (inside citations) and in the whole 259

web of science (total citations).3 Table 2.1 also presents a summary of the volume 260

of papers selected according to the sample of journals taken. The whole set of 137 261

documents selected as referring to mathematical models of science for 2005–2010 262

is available at the end of this chapter in Appendix 1. 263

The software HistCiteTM was used to build the inner-citation matrix of these 264

documents to illustrate their cognitive relatedness. Because they might be related in 265

a citation window larger than the years considered, the set was expanded to include 266

the most highly cited documents inside the set. 267

2 Query used: ts D (model* same (science or scientific or knowledge)).
3For comparable analysis, the whole data set can be requested from the authors.
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For the second part of the analysis, the diffusion trajectories of three different 268

models were chosen according to their relevance and impact in scientometric 269

studies. We chose Lotka’s law, Goffman’s epidemic model, and Price’s network 270

model. The three models differ in character. Lotka’s law is a statistical description 271

(a descriptive model) of certain structures in science. Goffman’s model departs from 272

assumptions of basic mechanisms of science on a micro level to reveal structures on 273

a macro level due to the dynamics imposed. It can be used for description as well as 274

for prediction. Price’s network model is a conceptual one that reflects upon possible 275

disciplinary meanings that emerge from the network structures formed by citation 276

relations between papers. It is empirically verified and exemplifies phenomena such 277

as obliteration, the relation between references and citations, and the emergence of 278

research fronts. However, there is only a small step between descriptive models 279

and predictive models. Distributions, as in the case of Lotka’s law, have been 280

explained from stochastic processes. Price has himself later proposed mathematical 281

models for the micromechanisms behind some of the features he explores in his 282

“Network” paper (Price 1976). The popularity of Lotka’s law as one of the few 283

basic laws of science and the fact that it operates at the border between descriptive 284

and predictive models were the reasons we included Lotka’s law in our selection. 285

In the case of Price’s network model, we chose an example of a comprehensive and 286

classical description of a basic pattern in scientific communication that has inspired 287

Table 2.2 Seed documents
t2.1Model Seed documents # cites

(papers
considered)

Citation
window (in
years)

t2.2Lotka–Volterra
model

Lotka, A.J. (1926). The frequency
distribution of scientific
productivity, J. Wash. Acad.
Sci., 16: 317

612 1939–2010

t2.3Price network
model

Price, D.J.D. (1965). Networks of
scientific papers. The pattern of
bibliographic references
indicates the nature of the
scientific front, Science, 149
(3683): 510-515

497 1978–2010

t2.4Goffman
epidemic
model

Goffman, W. (1966). Mathematical
Approach to Spread of
Scientific Ideas – History of
Mast Cell Research, Nature,
212 (5061): 449
Goffman, W., & Newill, V.A.
(1964). Generalization of
Epidemic Theory: An
Application to the
Transmission of Ideas, Nature
204: 225.

73 1975–2010

Source: ISI Web of Science, query May 25, 2010.
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many other reflections, some of them mathematical. We explain each model at the 288

beginning of the corresponding results section. 289

Table 2.2 depicts the documents that were used as seed documents for these 290

models. It shows the amount of times the chosen seed documents were cited 291

and the publication years of those citing documents. All documents citing these 292

seeding documents were downloaded and analyzed according to their modeling 293

characteristics. 294

The downloaded citing documents were content analyzed to identify the purpose 295

of the paper (if it was a mathematical approach, an application or refutation of 296

informetric laws with empirical evidence, an evaluation or assessment exercise in 297

a specific context, etc.). 298

2.4 Results 299

2.4.1 The Current Presence of Mathematical Modeling in 300

Library and Information Science – Following Traces 301

from the Present to the Past 302

To analyze the intellectual base of the papers that are currently applying mathemati- 303

cal models to study science, we started from our sample database (Table 2.1), which 304

consists of 137 documents published in leading journals in ISI’s subject category 305

of Library and Information Science from 2005 to 2010. These papers were taken 306

as seeds for a HistCiteTM analysis with the purpose of tracing the citation relations 307

inside the set. The resulting historiograph (Fig. 2.2) depicts documents as nodes, 308

where the size of the node represents the amount of citations it gets inside the 309

considered set (outside citations are not taken into account). The arrow represents a 310

citation relation. We start from the current papers, dig into their bibliographies and 311

look for cross-connections. We also try to see how persistent models are, and which 312

mathematical models we encounter. 313

Figure 2.2 shows the citation diagram for the current mathematical approaches to 314

science. The number of the nodes corresponds to the numbers of the 137 documents 315

in the first appendix. Most of the nodes are related to stochastic processes in 316

informetric data. 317

Already, one sees that the documents dealing with mathematical models belong 318

to different, isolated threads. We present a zoom of four of them in the subsequent 319

Fig. 2.2 HistCiteTM output of papers using mathematical approaches to understand the science
system – overview
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Fig. 2.3 First thread in the current HistCiteTM graph of mathematical model papers

figures and label the nodes that are cited inside the set with their bibliographic 320

references. 321

In the first group, from left, we find a paper by Van Raan (29) about statistical 322

properties of indicators. Some of the papers in our set emphasize modeling and 323

explaining through mathematical formulations citing behavior and growth (e.g., 324

Nodes 4, 10, 15, 21, 38, 42, 63, 64, 65, 83 and 108). 325

As we move in Fig. 2.2 from left to right (or from Figs. 2.3 to 2.6), more 326

sophistication is added to the approaches, going from explanations and refinements 327

based on the Hirsch index, to model impact and relevance of authors, to research 328

group behavior (e.g., Nodes 29, 70, 83). However, most of the papers explain the 329

static structure of science. In the last few years, the efforts that have been undertaken 330

to explain growth in the system of science seem unrelated to the rest of the papers 331

(e.g., Nodes 2, 13, 70, 76, 96). 332

In the second group, we find papers about network algorithms and approaches 333

to mapping science – particularly, old and new approaches (Small 48, Börner 46, 334

Klavans 47) and Chen’s citespace software (28). This thread interestingly binds 335

mapping and network approaches with predictive models on epidemics of idea 336

spreading (Bettencourt 76) and the peer review process (Bornmann 67). (A list of 337

all papers is given in Appendix 3.) All the nodes for the year 2009 correspond to the 338

“Science of Science” special issue of the Journal of Informetrics. 339

A third group entails a paper about statistical features of the Hirsh-index, the 340

newest challenge to bibliometric rankings (e.g., Nodes 34, 35, 56). 341
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Fig. 2.4 Second thread in the current HistCiteTM graph of mathematical model papers
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Fig. 2.5 Third thread in the current HistCiteTM graph of mathematical model papers

Comparing our analysis of the different threads with Fig. 2.7, one can see that 342

although many of the documents treat similar issues (especially stochastic behavior), 343

there is no clear relation between them. For instance, Node 76 (in Fig. 2.4) represents 344
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Fig. 2.6 Fourth thread in the current HistCiteTM graph of mathematical model papers

the paper by Bettencourt, Kaiser, Kaur, Castillo-Chávez & Wojick from 2008 that 345

reuses the model of epidemic approaches for the transmission of ideas; as can be 346

seen in the historiograph, this node does not have any citation relation with the 347

other papers in the set. 348

Strikingly, the bibliometric analysis seems indeed to confirm the historic narra- 349

tive. Mathematical models of the sciences are divided into different branches and 350

exist largely in isolation, as can be seen by the occurrence of many single points at 351

the right side of both Figs. 2.2 and 2.7. 352

The isolation of the sets might respond to functional differentiation that results 353

from the growth in scientific publications, and that allows scientists to reduce 354

the levels of complexity in different disciplines (Lucio-Arias and Leydesdorff 355

2009). This means that the apparent isolation between sets might be reduced when 356

looking at the bibliographic antecedents of these models. In Fig. 2.7, the most 357

cited documents outside the set of the 137 documents selected for treating science 358

with mathematical models and approaches were incorporated to construct a new 359

historiograph. 360

From Fig. 2.7, it can be deduced that, even if different papers are not closely 361

related to other contemporary approaches, they seem to have a common cognitive 362

historiography, and there is a consensus on classical or seminal approaches to 363

current modeling exercises to understand the sciences. In Fig. 2.7, the main path 364
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Fig. 2.7 HistCiteTM output of papers using mathematical approaches to understand the science
system, enhanced with their cognitive history

of the set is highlighted in gray. Lotka’s seminal paper, which originated Lotka’s 365

law on scientific productivity based on the skewed distributions of authors, is 366

the starting point; due to the interdisciplinary nature of the paper, the next two 367

documents highlighted in the main path – Barabási (1999) and Albert (2002)AQ2 – are 368

also foreign to the field of Library and Information Science and, more specifically, to 369

scientometrics. These papers deal with networks as random graphs from a physics 370

perspective; the next nodes in the main path (36, 77 and 90 – Van Raan (2006, 371

2008a, 2008b) reflect the discourse about the importance of impact upon research 372

groups and individuals. Interestingly, from this wider perspective, statistical physics 373

and complex networks, as well as rankings and indicators, seem to be interwoven 374

into one network of exchange of ideas. 375

The scattered impression depicted in Figs. 2.2–2.6 reflects the sparse relatedness 376

of mathematical approaches inside of Library and Information Science. It can also 377

be interpreted as a lack of consolidation around mathematical methods and as 378

competition between different threads of mathematical modeling that are related 379

in principle but divided in practice. Figure 2.7 shows that when overlooking larger 380

parts of the scientific landscape, these isolated branches or points are interconnected. 381

One could say that the generic and universal character of mathematical approaches 382

that can act as bridging and transporting structures of knowledge diffusion is more 383

visible in Fig. 2.7. In any case, the comparison of Figs. 2.2 and 2.7 shows the 384

relevance of the selection of the seed nodes. It also shows the restriction of a too 385

inner-field perspective. The position of mathematical modeling in scientometrics 386

cannot be fully understood from the field’s perspective only. We need to look at the 387

tension of evolution inside of one field and among different fields. “Neighboring 388

fields”4 of Library and Information Sciences might be seen as a relative constant 389

and as a neglected environment if it concerns threads inside of LIS that are mature. 390

For a rather marginal topic such as dynamic models of science, they gain importance 391

as a source of ideas travelling into LIS. 392

For Fig. 2.7, the set of 137 documents dealing with mathematical approximations 393

to science from the perspective of Library and Information Science was studied; 394

4Independently how we define neighborhood here.
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included in the set were the most highly cited documents (144 documents in total). 395

While the recent documents could be considered the research front of the field, the 396

highly cited ones can be considered the intellectual base (Chen 2006). The main 397

path has been acknowledged in scientometric studies to represent the backbone of 398

a journal or a field (Hummon and Doreian 1989; Carley et al. 1993). Nevertheless, 399

the main path depicted in Fig. 2.7, although highlighting important documents in the 400

topic of mathematical models of science, cannot be taken as the main achievements 401

of the field. The reason is that the set does not represent a cohesive specialty or 402

discipline. 403

We used bibliographic coupling of authors to measure cognitive cohesiveness 404

in terms of similarities between reference lists in the set of papers. This coupling 405

technique uses author names as variables and the references as cases. To correct for 406

productive authors with many papers, cosine normalization is applied. Figure 2.8 407

illustrates the results for 187 authors publishing mathematical models of science. 408

While Figs. 2.2–2.7 illustrate the citation network as a chronological network of 409

citation where documents are organized according to their publishing year and their 410

bibliographic antecedents and descendents, the coupling in Fig. 2.8 corresponds to 411

authors based on the similarities of the referenced works in their papers. It supports 412

the suggestion of Fig. 2.8 of a common cognitive history in these approaches to 413

modeling science. 414

2.4.2 The History of Mathematical Modeling of the Science 415

System – Following Traces from the Past to the Present 416

2.4.2.1 Lotka, Goffman, Price: Overall Growth and Diffusion of Reception 417

In this section, we present the diffusion trajectories of three specific models: Lotka’s 418

law (as discussed in Chap. 3 of this book), Goffman’s epidemic model (see also 419

Chap. 3), and the network model introduced by Derek de Solla Price (addressed also 420

in Chap. 7 of this book, Fortunato et al.). Even though the three models remain very 421

relevant in the information sciences, their impact measured in terms of citations 422

varies (see Fig. 2.8). Lotka and Price are still widely cited, while Goffman has 423

received less attention throughout the years. The total number of citations is 612 for 424

Lotka’s paper of 1926, 73 citations for Goffman’s two papers, and 497 for Price’s 425

paper from 1965. It should be noted that even though the four seminal papers chosen 426

for the analysis describe models applied specifically to the study and understanding 427

of the science system, none of them were published in Library and Information 428

Science journals. Additionally, only Price is considered a pioneer in the scientific 429

community. His influence results from a series of documents and papers that keep 430

him visible in the scientometric community. Both Derek de Solla Price and Alfred 431

J. Lotka have around 50 papers in the ISI Web of Science, while William Goffman 432

has little more than 25. 433
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Figure 2.9 shows the annual number of citations for three cases. In the case of 434

Lotka, we see that his model is still influential eight decades after its publication, 435

although it took some years for it to become popular in the scientific community. 436

The reception of Price and Lotka (at least of their papers of 1926 and 1965) seems 437

to be similar. Although there is also an underlying growth of the Web of Science, 438

the reception of both papers grows together with the consolidation of scientometrics 439

as a field (Lucio-Arias and Leydesdorff 2009). 440

For the case of Goffman, there are few documents citing the two selected papers. 441

Therefore, we have displayed the annual citation numbers in an additional figure 442

as an inlay in Fig. 2.9. From this bar chart, we can see that the annual numbers 443

are small, the papers disappear from the radar now and then, and there is a kind 444

of revival of popularity beginning around 2000. With its more robust growth of 445

perception, the Price model also seems to gain popularity after 2000. Actually, both 446

models – Goffman’s as well as Price’s – have also been discussed together with the 447

emergence of network science and the application of network science to the science 448

system (Börner et al. 2007). 449

We also display the HistCiteTM graphs for all three cases (four papers) for a visual 450

impression. As can be seen from Fig. 2.10, they are quite different in nature. While 451

the graphs are very dense for the case of Lotka’s and Price’s models, in the case of 452

Goffman’s model there are fewer nodes and a more sparsely connected network. We 453

will look into the diffusion pattern in all three cases separately in more detail. 454
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Fig. 2.10 Historiographs for Lotka (left), Goffman (middle), and Price (right) – overview

2.4.2.2 Physics of Evolution: From Biological Species to Productive 455

Actors – A.J. Lotka 456

Lotka’s law reflects a regularity concerning the productivity of scholars (measured 457

by the number of publications). Lotka found that a majority of authors (consisting 458

of a given set of authors) only produce one publication in a given period of time 459

and only very few authors publish larger amounts of articles. If the number of 460

authors with n publications is plotted against the aggregated volume of publications, 461

we find an inverted power law with an exponent that is in many cases near 2. 462

Lotka’s law is an empirical law with authors as the basic unit of analysis. It is 463

one of the fundamental bibliometric laws that, relatively speaking, can be easily 464

tested against very different bibliometric samples, which explains its overwhelming 465

success. Researchers have discussed how collaboration influences productivity (e.g. 466

Kretschmer and Kretschmer 2007) and how productivity patterns change between 467

different generations of researchers (e.g. Fronczak et al. 2007). But Lotka’s law 468

is more than just a statistical regularity. It belongs to a class of mathematical 469

distributions that are characteristic of complex processes not only in social systems, 470

but also in natural systems (Bak 1996). For information processes, even the label 471

of “Lotkaian informetrics” has been used by Egghe in his systematic mathematical 472

analysis of functions used to describe Lotka’s law. Lotka’s mathematical model is 473

a descriptive one. But it can be used as a litmus test for any predictive model of 474

scientific activity that also entails scientists and publications. For instance, in his 475

agent-based model, through which topics, papers and authors find each other and 476

form scientific fields, Gilbert (1997) calculated Lotka’s law to see if his artificial 477

science simulation reveals structures similar to real science. 478

Details about Lotka’s law are given in Chap. 3 of this book. The emphasis here is 479

on its diffusion through the years, the applications of the law, and the characteristics 480
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Fig. 2.11 Historiograph of documents citing Lotka’s law and main path

of those documents citing it. A total of 612 documents cite “The frequency 481

distribution of scientific productivity,” Alfred Lotka’s 1926 paper published in 482

the Journal of the Washington Academy of Sciences. The number of publications 483

dealing with the informetric law of the skewed distribution of publications is so 484

large that it is possible to verify Lotka’s law using a set of papers devoted to his law 485

of scientific productivity (Yablonsky 1980). 486

The reconstruction of the diffusion trajectories of Lotka using HistCiteTM (see 487

Fig. 2.10, right) illustrates cohesiveness in the set: authors citing Lotka are also both 488

aware of each other and citing each other. Figure 2.10 also gives an impression 489

of the size and density of the network of papers citing Lotka’s paper of 1926 (the 490

graph is not displayed for detailed inspection5). Lotka’s law is cited in more than 200 491

different journals, but more than 50% of them correspond to the ISI subject category 492

of Library and Information Science. This way, the graph also reflects the dominance 493

of Scientometrics as part of LIS disciplines inside the set. The graph illustrates 494

how Lotka’s law becomes a relevant “knowledge item” that binds papers together 495

in the flows of information and knowledge production and that contributes to a 496

consolidation of scientometrics as a scientific field, for which a high connectivity 497

of networks of citations is one important feature. For a slightly more detailed 498

inspection, we reproduce the historiograph using as a threshold at least five citations 499

from other documents of the set (91 nodes). 500

In Fig. 2.11, the nodes of the main path or backbone are highlighted and labeled. 501

There is an important volume of documents that either refers to Lotka’s formula in 502

a more rhetorical way or discusses mechanisms for and implications of this law in 503

the light of social theories. But most of the documents highlighted by the main path 504

5We will provide a on-line version for detailed inspection.
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Table 2.3 Main path of documents citing Lotka

First PY Journal Title
Author

t3.1Zunde, P 1969 JASIST Indexing consistency and quality
t3.2Fairthor, RA 1969 J.DOC. Progress in documentation –

empirical hyperbolic
distributions
(Bradford–Zipf–Mandelbrot)
for bibliometric description
and prediction

t3.3Price, DJD 1976 JASIST General theory of bibliometric and
other cumulative advantage
processes

t3.4Rao, IKR 1980 JASIST Distribution of scientific
productivity and social-change

t3.5Pao, ML 1985 IP&M Lotka law – a testing procedure
t3.6Pao, ML 1986 JASIS An empirical-examination of

Lotka law
t3.7Egghe, L 1990 J. INFORMATION

SCIENCE
The duality of informetric systems

with applications to the
empirical laws

t3.8Burrell, Ql 1993 JASIST Yes, the GIGP really does work –
and is workable

t3.9Huber, JC 1998 JASIST Cumulative advantage and
success-breeds-success: the
value of time pattern analysis

t3.10Huber, JC 1999 SCIENTOMETRICS Inventive productivity and the
statistics of exceedances

t3.11Huber, JC 2001 SCIENTOMETRICS Scientific production: a statistical
analysis of authors in
mathematical logic

t3.12Huber, JC 2002 JASIST A new model that generates
Lotka’s law

of Fig. 2.11 (dark circles) entail mathematical formulations or applications (e.g., for 505

descriptive statistics of research fields, journals, or specific regions or countries). 506

Most of the documents using Lotka’s law rely on empirical data at a meso level 507

of aggregation (101–10,000 records). A bibliographic description of the documents 508

belonging to the main path is available in Table 2.3. Most of these papers discuss 509

Lotka’s law in the context of specific distribution functions and stochastic processes 510

that lead to them. 511

2.4.2.3 The Case of Modeling the Spreading of Ideas 512

as a Disease – W. Goffman 513

Goffman’s model describes the spreading out of an idea as analogous to the 514

spreading of a disease. Similar to Lotka’s law, which is part of the long history in 515
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Table 2.4 Main path of documents citing Goffman

First PY Journal Title
Author

t4.1Bujdoso, E 1982 J. RADIOANAL CHEM Prompt nuclear analysis – growth and
trends – a scientometric study

t4.2Bruckner, E 1990 SCIENTOMETRICS The application of evolution models
in scientometrics

t4.3Wilson, CS 1999 ANNUAL REVIEW OF
INFORMATION
SCIENCE AND
TECHNOLOGY

Informetrics

t4.4Tabah, AN 1999 ANNUAL REVIEW OF
INFORMATION
SCIENCE AND
TECHNOLOGY

Literature dynamics: studies on
growth, diffusion, and epidemics

t4.5Bettencourt,
LMA

2006 PHYSICA A The power of a good idea:
Quantitative modeling of the
spread of ideas from
epidemiological models

t4.6Bettencourt,
LMA

2008 SCIENTOMETRICS Population modeling of the
emergence and development of
scientific fields

t4.7Lambiotte, R 2009 JOURNAL OF
INFORMETRICS

Communities, knowledge creation,
and information diffusion

t4.8Chen, CM 2009 JOURNAL OF
INFORMETRICS

Towards an explanatory and
computational theory of scientific
discovery

t4.9Bettencourt,
LMA

2009 JOURNAL OF
INFORMETRICS

Scientific discovery and topological
transitions in collaboration
networks

the study of statistical distributions, the epidemic model Goffman adopted has a long 516

history. In 1927, Kermack and McKendrick published a mathematical model that is 517

still known as the SIR model. This model describes the spreading out of a disease 518

in terms of the relative growth of three subpopulations: the number of susceptible 519

but uninfected individuals (S), the number of infected individuals (I) who carry 520

the disease and can spread it further to the S-group, and the number of recovered 521

individuals (R) who cannot be reinfected again. Obviously, the growth of infected 522

individuals depends on the number of available susceptible individuals and is slowed 523

down by recovering. Goffman applied this idea to science. The number of “infected” 524

researchers represents the researchers working at an idea or in a field. The R-group 525

has lost interest and the S-group forms the reservoir for further growth. Unlike 526

Lotka’s law, for which only one key publication can be found, Goffman published 527

work about this model over the course of several years, and also with different co- 528

authors (Harmon 2008). For our analysis, we identified two main publications that 529

still gain sufficient recognition (Table 2.4).AQ3 530

Goffman’s model entails many more variables (three instead of one) and 531

many more parameters than Lotka’s law. Although it has been tested empirically 532
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(Wagner-Döbler 1999), the number of “susceptible” researchers is not easy to 533

estimate (Burger and Bujdoso 1985). Nevertheless, one prediction of Goffman’s 534

model can easily be measured: the growth of a scientific field. Scientometrics has 535

produced a large amount of growth studies of new scientific fields. Correspondingly, 536

the literature about growth laws in science also makes references to Goffman’s 537

model as one possible explanation of such observed growth curves (Tabah 1999). 538

Consequently, Goffman’s model has been extended – from the growth of one field 539

(based on the interaction of researchers at three different stages) to the growth of a 540

group of fields (Bruckner et al. 1990). It has also been extended from a group-based 541

model, where the probability of being “infected” with an idea is the same for each 542

subgroup member, to a network-based model, in which the concrete transmission 543

path and the topology of all possible contacts matter (Bettencourt et al. 2009; 544

Lambiotte and Panzarasa 2009). 545

This history of perception is visible in the main path of the HistCiteTM graph 546

(darker nodes in Fig. 2.12). The 73 citing documents are published in 47 journals 547

illustrating a much more dispersed trajectory of diffusion. Although the Goffman 548

epidemic model is known in the scientometric community, the participation of 549

Library and Information Science journals among the documents citing the seed 550

papers is never as relevant as was the case for Lotka’s law. 551

The main-path analysis also reveals that there is nearly 10-year between the 552

documents in the main path, meaning that once in a decade a paper appears that 553

reminds us of or reviews epidemic models and related approaches. Beginning in 554

2000, however, the situation changes. Works by Bettencourt et al. (2008, 2009), 555

and later Lambiotte et al. (2009), mark the emergence of the theory of complex- 556

networks in statistical physics (Scharnhorst 2003; Pyka and Scharnhorst 2009). This 557

represents a solid hype, in which new attention from physicists was drawn to the 558

science system. 559

The science system is a social system for which large (digital) data sets are 560

available. These sets entail a lot of relational information from which different 561

networks can be built and analyzed (Havemann 2009). At the moment, the complex- 562

networks community has shifted its focus from analyzing the structure (as the 563

logical first step of a statistical analysis) to examining the evolution of the network 564

structure (Pastor-Satorras and Vespignani 2004), and further to studying dynamic 565

processes on complex-network topologies. Epidemic modeling has experienced an 566

important revival, and it has been accompanied by a revival of epidemic models of 567

science. The new network science has also influenced the reception of our last case. 568

2.4.2.4 Network Dynamics from Science and Beyond – Derek de Solla Price 569

Derek de Solla Price is considered one of the pioneers in the field of Sciento- 570

metrics. He has written about many different topics, and his work is still highly 571

cited in the scientometric community. In 1965, he published a relatively short 572

paper in the journal Science entitled “Networks of papers.” Although this paper 573

contains only a few formulas, it has established a foundation for further study of 574
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Fig. 2.12 Historiograph of documents citing Goffman’s epidemic model
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Fig. 2.13 Historiograph of documents citing Price’s network model of scientific papers and
main path

scientific communication, including mathematical models. Price begins his paper 575

with the observation that citations are skewed in their distribution. He examines 576

the consequences of the (exponential) growth of publications (one of his other 577

major findings) for the future distribution of citations, and he argues that although 578

references and citations form a balance, their distribution over papers differs 579

fundamentally. Citations are not homogeneously distributed over the growing body 580

of literature. Instead, they cluster in time and space (defined as sets of papers). 581

Based on these structures, we can identify research fronts. Citing is the recursive and 582

constitutive process that redefines, reshapes, and re-creates scientific knowledge for 583

each generation of scholars. Price visualizes the evolution of networks of papers. He 584

not only reflects upon fundamental bibliographic questions such as classification, he 585

also points to a number of unknown or unclear characteristics of the self-organized, 586

collective process of references, later addressed by measurements and models. 587
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Table 2.5 Main path of documents citing Price

t5.1First PY Journal Title
t5.2Author

t5.3Griffith, BC 1979 J.DOC Aging of scientific literature –
citation analysis

t5.4Vlachy, J 1985 SCIENTOMETRICS Citation histories of scientific
publications – the data sources

t5.5Marton, J 1985 SCIENTOMETRICS Obsolescence or immediacy –
evidence supporting Price
hypothesis

t5.6Vlachy, J 1986 CZECH J PHYSICS Scientometric analyses in physics –
where we stand

t5.7Macroberts,
BR

1989 JASIST Problems of citation analysis – a
critical review

t5.8Seglen, PO 1992 JASIST The skewness of science
t5.9Seglen, PO 1994 JASIST Causal relationship between article

citedness and journal impact
t5.10Wilson, CS 1999 ANNUAL REVIEW OF

INFORMATION
SCIENCE AND
TECHNOLOGY

Informetrics

t5.11Borner, K 2003 ANNUAL REVIEW OF
INFORMATION
SCIENCE AND
TECHNOLOGY

Visualizing knowledge domains

t5.12Moya-
Anegon, F

2004 SCIENTOMETRICS A new technique for building maps
of large scientific domains
based on the cocitation of
classes and categories

t5.13Boyack, KW 2005 SCIENTOMETRICS Mapping the backbone of science
t5.14Leydesdorff, L 2006 JASIST Can scientific journals be classified

in terms of aggregated
journal-journal citation relations
using the journal citation
reports?

t5.15Leydesdorff, L 2007 JASIST Betweenness centrality as an
indicator of the
interdisciplinarity of scientific
journals

Due to Price’s overall relevance to the scientometric community and his rich 588

trajectory of published papers relevant to this field, documents citing Price’s network 589

model are mostly published in journals of Library and Information Science. This is 590

similar to the case of Lotka’s law. In Price’s case, we also present the HistCiteTM
591

graph for visual inspection (Fig. 2.13). 592

The historiograph shown in Fig. 2.13 illustrates a cohesive set of documents 593

similar to the case of Lotka’s law. However, the authors citing Price do not possess 594

the same awareness of each other as was for the case for authors using the Lotka 595

model. For this reason, it was possible to lower the threshold used in Lotka’s case 596
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(citing at least five other documents) to all those documents citing at least three 597

other documents (96 nodes). The network is less dense, justifying a lower threshold. 598

The documents in the main path (dark labeled nodes in Fig. 2.13) are detailed in 599

Table 2.5. 600

A comparison of the backbone of Lotka and Price reinforces the impression that 601

comes with an inspection of all journals in the two data sets. Both authors and both 602

models are part of the knowledge base of scientometrics and are fully embraced by 603

the community. This can still not be said for Goffman, however. 604

2.5 Concluding Remarks 605

To a certain extent, the analysis from present to past and from past to present 606

complement each other. We found empirical evidence for the narrative drawn at 607

the beginning of this chapter. In particular, the scattered and partly isolated nature 608

of mathematical approaches could be made visible with the help of citation analysis. 609

We found different schools or threads of mathematical approaches and models in a 610

wide sense in LIS – led by statistical analysis and stochastic processes. But although 611

they all draw on a more widely connected network of mathematical approaches, 612

they do not communicate this among each other. We also found evidence for the 613

still relatively marginal role of dynamic models in the set of current papers in LIS, 614

as well as in the way Goffman (as one of the proponents of dynamic models) is 615

hardly recognized in the LIS community. 616

Concerning the relation between predictive and descriptive models of science, 617

which is one of the topics addressed by this book (see in particular Chap. 1), 618

our empirical analysis underlines once more that when mathematical models are 619

currently applied to describe the development of science at all, they rather focus on 620

an analysis of the current state in a descriptive way. However, each mathematical 621

model with a dynamic component also has the potential to be applied for prediction. 622

Let us give an example: Lotka’s law of productivity is just a mathematical function 623

between variables (number of scientists, number of their publications) that can be 624

empirically tested. This means it is predictive in its essence. However, any stochastic 625

process proposed to explain the establishment of Lotka’s law as a quasi-stationary 626

distribution of a dynamic process makes assumptions about micromechanisms of 627

behavior. One possible assumption is that the probability of producing an additional 628

article depends on the number of articles an author has already produced. Such a rule 629

can be implemented in models explicitly designed to test the collective outcome of 630

behavioral rules on the level of individuals (such as Gilbert’s model). We can also 631

use such assumptions about micromechanisms and the parameters of Lotka’s law 632

to predict the productivity of a certain scientific community. However, only a few 633

attempts have been made to turn mathematical models of science into predictive 634

models for scientific development (see Fronczak et al. 2007). This may have more 635

to do with the actual focus of research agendas than the potential of mathematical 636

models as such. 637
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When talking about “predictive modeling,” what is often expressed is the wish to 638

forecast a new idea or a new field. However, in the history of mathematical models 639

of science, one of the predictive models in posse (Goffman’s epidemic model) has 640

been mainly applied in esse to the history of scientific fields (e.g., (Wagner-Döbler 641

1999)). There are two reasons for this apparent mismatch. First, innovative ideas 642

and new fields representing “real” breakthroughs cannot be predicted by definition. 643

Otherwise, there would not be structural changes of the whole science system, only 644

minor alterations of existing knowledge. Now, what can be predicted also depends 645

on how we define innovation and new ideas. We might reasonably be able to suggest 646

the directions of incremental scientific progress, but not (as said before) radical 647

innovations. In this respect, predictive models are condemned to fail. Peter Allen 648

used to express it in this way: “The more ‘credible’ predictions are, the more likely 649

they are to NOT happen” (Cited in Ebeling and Scharnhorst (2009)). 650

Yet, while models might fail to predict actual innovations, they have a great and 651

often overlooked potential to analyze the circumstances under which innovations – 652

new ideas and new fields emerging independently of their essence – will most likely 653

arise. Only some of the modeling attempts in the past figuring in our analysis 654

have discussed this aspect (Bruckner et al. 1990). Understood in this way, the 655

potential of models to predict “innovative sciences” – their collaboration pattern, 656

their selection mechanisms, their institutional frames, and so on – is unlimited, and 657

still unexplored. Within such a frame, both descriptive (or, better, statistical) models 658

and predictive (or, better, dynamical) models can be applied. The first can depict 659

characteristics of successful science in the past and search for similar patterns in 660

the present; the second can formulate hypotheses about mechanisms for successful 661

science, test them empirically in the past, and shape them for the present by means 662

of science policy. 663

Having pointed to this need of modeling for forecasting conditions of events 664

rather than the events themselves, we immediately have to admit that differentiating 665

and tracing such a use of mathematical models is almost impossible by the analysis 666

of citations only. Again, citation analysis can point us to interesting areas to look at 667

more closely. But for the actual use, application, and interpretation of models, we 668

either have to rely on manual inspection or on other kind of references that relate 669

a model to a certain use. That seems to be even harder to trace semi-automatically 670

than the pure appearance of mathematical models. 671

What we have done in this analysis is to describe the current state of diffusion 672

of mathematical modeling ideas irrespectively of their actual use. Already, this 673

confronted us with a lot of problems. To trace an adoption pattern as sketched in 674

Fig. 2.1, we would need to be able to automatically extract all documents (across all 675

disciplines) that address the application of the mathematical models to the science 676

system. Moreover, we would also like to see in parallel the bibliometric traces of 677

the mathematical branches feeding these models. However, there is no consistent 678

indexing of documents (outside of knowledge-domain-specific databases) concern- 679

ing the methods they apply. We also found that there is no term-keyword-subject 680

combination that delivers a specific enough set of documents for mathematical 681

models in science over the whole Web of Science database. This is why we have 682
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chosen the combination of tracing known model approaches to science (over all 683

disciplines) with screening a set of established LIS journals for the appearance of 684

mathematical modeling. 685

Despite this limited-sampling approach and specific-citation perspective, we 686

found evidence both for the relatively isolated existence of mathematical modeling 687

and its implicit commonly shared knowledge base. We also saw the influence 688

of developments in other fields on the implementation of new methods in LIS. 689

The emergence of the so-called new network science (Barabási 2002) and the 690

interest from statistical physics and, in a wider sense, complexity research (all three 691

representing the mother disciplines for dynamic processes) do not remain without 692

resonance in scientometrics. Partly, we observe a diffusion of new researchers; 693

partly, we also observe a taking up of themes and methods by established scien- 694

tometricians who in some way received their primary academic forming in natural 695

sciences and mathematics. 696

Our experiments show that developments in scientometrics cannot be understood 697

from an inner-situated perspective only. The use of mathematical dynamic models 698

to describe the sciences is not restricted to LIS journals. Actually, some interesting 699

developments in this area take place at very different locations, such as in journals of 700

computational philosophy (see Chap. 4 of this book), sociology (see Chap. 6 of this 701

book), and physics. But the universal nature of mathematical dynamic approaches 702

– their variety in methods and topics addressed – makes it impossible to set up a 703

string of keywords with which one can easily extract a good sample of mathematical 704

models applied to the science system. The same holds for a past-to-present analysis. 705

Mathematical models applied to science can pop up in all places. We selected 706

three researchers – Lotka, Goffman, and Price – who performed pioneering work 707

relevant to scientometrics, who have been interested in dynamic processes, and 708

who have developed mathematical models and/or ideas that have been central 709

for modeling. There might be many other researchers who have done interesting 710

modeling experiments and might only be rediscovered by chance. But even for 711

our three “landmark” scholars, it is not easy for us to pick one publication from 712

their oeuvre that fully represents their “science model” and nothing else. The work 713

of an individual scholar is like a journey through a landscape of science. Partly 714

discovering the existing landscape for her/himself and partly creating this landscape, 715

the scholar leaves marks and traces and is marked and imprinted by their journey. 716

One might argue that there is a certain arbitrariness in the selection of our cases and 717

the seed nodes for the historiographic methods. Indeed, we are aware of this. We do 718

not claim comprehensiveness; instead, we aim for an insightful illustration of the 719

complexity of knowledge and model transfer in science. Our practical problems in 720

the selection of samples also reflect a more fundamental problem. 721

The diffusion of ideas and methods across the sciences is a combination 722

of the progress of knowledge inside specialties and a diffusion of knowledge 723

between specialties in which knowledge is not just transmitted but also altered. The 724

evolution of knowledge entails processes of specification as well as generalization. 725

Correspondingly, in the cognitive and social space, specialties and invisible colleges 726

emerge and disappear, merge and split up, take form, stabilize, transform, and 727



UNCORRECTED
PROOF

2 Mathematical Approaches to Modeling Science 51

Fig. 2.14 Models travelling between generic and specific levels

pass different stages of life cycles, all based on a constant flow of creation and 728

recombination of elementary units of knowledge. This eternal flow also influences 729

the travel of mathematical models. Approaches to mathematical modeling can 730

emerge on a generic mathematical level or inside of a specialty or knowledge 731

domain. Independently from where they appear first, they are embedded in a cycle 732

of (re)generalization and (re)specification (Fig. 2.14). One of these special fields can 733

be scientometrics. Mathematical models can be developed specifically for science. 734

However, they will always share a generic structural element with other models and 735

contribute to this pool. On the other side, from the general pool of models they 736

can expect entries of new model ideas along all possible lines of mathematical 737

modeling. Mathematical models and approaches to science can be the result of 738

applying different mathematical approaches that have been used in other disciplines. 739

For example, some models using entropy statistics stem from the Mathematical 740

Theory of Communications, which originally addressed an engineering problem but 741

which has been applied in more social sciences like economics. 742

This feature of the model-building process – the cycle between generalization 743

and specification – makes it very complicated to trace a model transfer bibliometri- 744

cally. It also makes it hard to produce an overview of possible dynamic models of 745

science, which in principle encompass all dynamic modeling approaches. 746

Therefore, we applied a practical approach by concentrating on LIS journals for 747

the analysis of the present situation and by depicting a few “classics” from the past. 748
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The combination of both approaches provides bibliometric evidence for less cited 749

mathematical approaches that have been fading away, for models that have been 750

only recently (re)discovered, and for a shared underlying cognitive reference space 751

that is not always visible in direct citations. Our study also illustrates the process of 752

spreading new ideas and demonstrates how these can eventually converge. It can be 753

expected that such a historiographic study can be used as a departure point for an 754

evaluation of certain mathematical models. What are the characteristics of the most 755

successful models? Do they tend to be more universal or domain specific? Are they 756

multi-leveled? We can also imagine applying some of the characteristics of models 757

discussed in the Introduction Chapter in a future analysis. For instance, one could 758

ask about the quantitative or qualitative nature of the models applied, the type of 759

behavior in science targeted, and the representation used for results. 760

Last but not least, one remark. In our historic narrative at the beginning of this 761

chapter, we argued that eventually there need to be researchers who are intrigued 762

and curious enough to test mathematical models. However, while researchers as 763

the source of ideas remain utterly important, mathematical modeling will still 764

remain ephemeral if it is to be an activity driven by curiosity and not by demand. 765

The creativity of the human imagination is triggered by curiosity as well as by a 766

societal demand for a certain type of knowledge, method, and models. There is no 767

sustainable modeling without a thorough theoretical foundation, and, in this respect, 768

models should be mainly guided by theory. 769

One could argue that, compared to other fields and disciplines, scientometrics is a 770

relatively young field and has therefore not yet penetrated or been open to complex 771

models very much. But dynamic modeling of the science system will not emerge 772

if there is not a need to apply relatively complex, computational-intensive models 773

that also require diverse collaborations. The pertinent growth of the science system, 774

the scarcity of resources (human and material), and the increasing complexity that 775

requires other mechanisms of control might all be decisive in triggering a collective 776

action for Modeling Science Dynamics. 777

Appendix 1: Papers Using Mathematical Approaches 778

to Understand the Science System (Fig. 2.1) 779

Table 2.6 Statistics of the search: PresentAQ4 to past

t6.1Node Bibliographic metadata Times cited

t6.21 Torvik VI, 2005, J AM SOC INF SCI TECHNOL, V56, P140 18
t6.32 Xekalaki E, 2005, SCIENTOMETRICS, V62, P293 1
t6.43 Santos JB, 2005, SCIENTOMETRICS, V62, P329 2
t6.54 Simkin MV, 2005, SCIENTOMETRICS, V62, P367 8
t6.65 Bailon-Moreno R, 2005, SCIENTOMETRICS, V63, P231 1

(continued)
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Table 2.6 (continued)

t7.1Node Bibliographic metadata Times cited

t7.26 Egghe L, 2005, J AM SOC INF SCI TECHNOL, V56, P664 2
t7.37 Egghe L, 2005, J AM SOC INF SCI TECHNOL, V56, P669 8
t7.48 Sombatsompop N, 2005, J AM SOC INF SCI TECHNOL, V56, P676 15
t7.59 Matia K, 2005, J AM SOC INF SCI TECHNOL, V56, P893 10
t7.610 Egghe L, 2005, J AM SOC INF SCI TECHNOL, V56, P935 13
t7.711 Efron M, 2005, J AM SOC INF SCI TECHNOL, V56, P969 4
t7.812 Liang LM, 2005, J AM SOC INF SCI TECHNOL, V56, P1045 10
t7.913 Burrell QL, 2005, SCIENTOMETRICS, V64, P247 5
t7.1014 Morris SA, 2005, J AM SOC INF SCI TECHNOL, V56, P1250 5
t7.1115 Burrell QL, 2005, INFORM PROCESS MANAGE, V41, P1317 8
t7.1216 Egghe L, 2005, INFORM PROCESS MANAGE, V41, P1330 2
t7.1317 Shan S, 2005, INFORM PROCESS MANAGE, V41, P1369 2
t7.1418 Lafouge T, 2005, INFORM PROCESS MANAGE, V41, P1387 3
t7.1519 Payne N, 2005, INFORM PROCESS MANAGE, V41, P1495 1
t7.1620 Coccia M, 2005, SCIENTOMETRICS, V65, P307 0
t7.1721 Burrell QL, 2005, SCIENTOMETRICS, V65, P381 11
t7.1822 Dominich S, 2006, INFORM PROCESS MANAGE, V42, P1 0
t7.1923 Zuccala A, 2006, J AM SOC INF SCI TECHNOL, V57, P152 14
t7.2024 Aksnes DW, 2006, J AM SOC INF SCI TECHNOL, V57, P169 13
t7.2125 Klavans R, 2006, J AM SOC INF SCI TECHNOL, V57, P251 33
t7.2226 Ackermann E, 2006, SCIENTOMETRICS, V66, P451 0
t7.2327 Martens BVD, 2006, J AM SOC INF SCI TECHNOL, V57, P330 1
t7.2428 Chen CM, 2006, J AM SOC INF SCI TECHNOL, V57, P359 67
t7.2529 van Raan AFJ, 2006, J AM SOC INF SCI TECHNOL, V57, P408 21
t7.2630 Choi J, 2006, INFORM PROCESS MANAGE, V42, P331 5
t7.2731 Wei CP, 2006, INFORM PROCESS MANAGE, V42, P350 12
t7.2832 Izsak J, 2006, SCIENTOMETRICS, V67, P107 2
t7.2933 Yoo SH, 2006, SCIENTOMETRICS, V69, P57 0
t7.3034 Egghe L, 2006, SCIENTOMETRICS, V69, P121 67
t7.3135 Glanzel W, 2006, SCIENTOMETRICS, V67, P315 73
t7.3236 Burrell QL, 2006, SCIENTOMETRICS, V67, P323 0
t7.3337 Rousseau R, 2006, J AM SOC INF SCI TECHNOL, V57, P1404 2
t7.3438 Burrell QL, 2006, J AM SOC INF SCI TECHNOL, V57, P1406 4
t7.3539 Samoylenko I, 2006, J AM SOC INF SCI TECHNOL, V57, P1461 7
t7.3640 Peng D, 2006, SCIENTOMETRICS, V69, P271 0
t7.3741 Roth C, 2006, SCIENTOMETRICS, V69, P429 5
t7.3842 Mingers J, 2006, INFORM PROCESS MANAGE, V42, P1451 6
t7.3943 Zitt M, 2006, INFORM PROCESS MANAGE, V42, P1513 17
t7.4044 Su Y, 2006, J AM SOC INF SCI TECHNOL, V57, P1977 0
t7.4145 Van Den Besselaar P, 2006, SCIENTOMETRICS, V68, P377 10
t7.4246 Borner K, 2006, SCIENTOMETRICS, V68, P415 8
t7.4347 Klavans R, 2006, SCIENTOMETRICS, V68, P475 15
t7.4448 Small H, 2006, SCIENTOMETRICS, V68, P595 23
t7.4549 Contreras C, 2006, SCIENTOMETRICS, V69, P689 3
t7.4650 Kretschmer H, 2007, J INFORMETR, V1, P308 1
t7.4751 Jarneving B, 2007, J INFORMETR, V1, P338 0
t7.4852 Burrell QL, 2007, J INFORMETR, V1, P16 22

(continued)



UNCORRECTED
PROOF

54 D. Lucio-Arias and A. Scharnhorst

Table 2.6 (continued)

t8.1Node Bibliographic metadata Times cited

t8.253 Leydesdorff L, 2007, J AM SOC INF SCI TECHNOL, V58, P25 14
t8.354 McDonald JD, 2007, J AM SOC INF SCI TECHNOL, V58, P39 4
t8.455 Koike A, 2007, J AM SOC INF SCI TECHNOL, V58, P51 2
t8.556 Egghe L, 2007, J AM SOC INF SCI TECHNOL, V58, P452 29
t8.657 Na SH, 2007, INFORM PROCESS MANAGE, V43, P302 1
t8.758 Lucio-Arias D, 2007, SCIENTOMETRICS, V70, P603 3
t8.859 Egghe L, 2007, J INFORMETR, V1, P115 5
t8.960 Shibata N, 2007, J AM SOC INF SCI TECHNOL, V58, P872 2
t8.1061 Zitt M, 2007, INFORM PROCESS MANAGE, V43, P834 0
t8.1162 Zhao DZ, 2007, J AM SOC INF SCI TECHNOL, V58, P1285 2
t8.1263 Rousseau R, 2007, J AM SOC INF SCI TECHNOL, V58, P1551 3
t8.1364 Nadarajah S, 2007, SCIENTOMETRICS, V72, P291 1
t8.1465 Simkin MV, 2007, J AM SOC INF SCI TECHNOL, V58, P1661 6
t8.1566 Morris SA, 2007, J AM SOC INF SCI TECHNOL, V58, P1764 4
t8.1667 Bornmann L, 2007, SCIENTOMETRICS, V73, P139 1
t8.1768 de Moya-Anegon F, 2007, J AM SOC INF SCI TECHNOL, V58, P2167 9
t8.1869 Lariviere V, 2008, J AM SOC INF SCI TECHNOL, V59, P288 12
t8.1970 van Raan AFJ, 2008, J AM SOC INF SCI TECHNOL, V59, P565 7
t8.2071 Bornmann L, 2008, J AM SOC INF SCI TECHNOL, V59, P830 38
t8.2172 Chavalarias D, 2008, SCIENTOMETRICS, V75, P37 3
t8.2273 Li XY, 2008, INFORM PROCESS MANAGE, V44, P991 0
t8.2374 Wan XJ, 2008, INFORM PROCESS MANAGE, V44, P1032 3
t8.2475 Molinari A, 2008, SCIENTOMETRICS, V75, P339 7
t8.2576 Bettencourt LMA, 2008, SCIENTOMETRICS, V75, P495 7
t8.2677 Kim H, 2008, SCIENTOMETRICS, V75, P535 2
t8.2778 Harmon G, 2008, INFORM PROCESS MANAGE, V44, P1634 0
t8.2879 Bornmann L, 2008, J INFORMETR, V2, P217 2
t8.2980 Yu HR, 2008, J INFORMETR, V2, P240 0
t8.3081 Egghe L, 2008, SCIENTOMETRICS, V76, P117 4
t8.3182 Egghe L, 2008, J AM SOC INF SCI TECHNOL, V59, P1608 13
t8.3283 van Raan AFJ, 2008, J AM SOC INF SCI TECHNOL, V59, P1631 3
t8.3384 Egghe L, 2008, J AM SOC INF SCI TECHNOL, V59, P1688 2
t8.3485 Ahlgren P, 2008, SCIENTOMETRICS, V76, P273 3
t8.3586 Burrell QL, 2008, INFORM PROCESS MANAGE, V44, P1794 1
t8.3687 Bornmann L, 2008, J INFORMETR, V2, P280 0
t8.3788 Ye FY, 2008, J INFORMETR, V2, P288 2
t8.3889 Quirin A, 2008, J AM SOC INF SCI TECHNOL, V59, P1912 2
t8.3990 Lucio-Arias D, 2008, J AM SOC INF SCI TECHNOL, V59, P1948 3
t8.4091 Levitt JM, 2008, J AM SOC INF SCI TECHNOL, V59, P1973 3
t8.4192 Cecchini RL, 2008, INFORM PROCESS MANAGE, V44, P1863 1
t8.4293 Egghe L, 2008, J AM SOC INF SCI TECHNOL, V59, P2133 0
t8.4394 Davis PM, 2008, J AM SOC INF SCI TECHNOL, V59, P2186 6
t8.4495 Egghe L, 2008, SCIENTOMETRICS, V77, P377 3
t8.4596 Szydlowski M, 2009, SCIENTOMETRICS, V78, P99 0
t8.4697 Wallace ML, 2009, J AM SOC INF SCI TECHNOL, V60, P240 1
t8.4798 Jensen P, 2009, SCIENTOMETRICS, V78, P467 0

(continued)
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Table 2.6 (continued)

t9.1Node Bibliographic metadata Times cited

t9.299 Costas R, 2009, J AM SOC INF SCI TECHNOL, V60, P740 3
t9.3100 Perez JM, 2009, INFORM PROCESS MANAGE, V45, P356 0
t9.4101 Sandstrom U, 2009, SCIENTOMETRICS, V79, P341 1
t9.5102 Borner K, 2009, J INFORMETR, V3, P161 0
t9.6103 Chen CM, 2009, J INFORMETR, V3, P191 2
t9.7104 Bettencourt LMA, 2009, J INFORMETR, V3, P210 4
t9.8105 Frenken K, 2009, J INFORMETR, V3, P222 2
t9.9106 Skupin A, 2009, J INFORMETR, V3, P233 2
t9.10107 Lucio-Arias D, 2009, J INFORMETR, V3, P261 6
t9.11108 Zhao YY, 2009, SCIENTOMETRICS, V80, P91 0
t9.12109 Elmacioglu E, 2009, SCIENTOMETRICS, V80, P195 0
t9.13110 Zhu SF, 2009, INFORM PROCESS MANAGE, V45, P555 1
t9.14111 Deineko VG, 2009, SCIENTOMETRICS, V80, P819 0
t9.15112 Egghe L, 2009, J INFORMETR, V3, P290 2
t9.16113 Wallace ML, 2009, J INFORMETR, V3, P296 2
t9.17114 Yu LP, 2009, J INFORMETR, V3, P304 0
t9.18115 Kwakkel JH, 2009, J AM SOC INF SCI TECHNOL, V60, P2064 0
t9.19116 He ZL, 2009, J AM SOC INF SCI TECHNOL, V60, P2151 0
t9.20117 Tseng YH, 2009, SCIENTOMETRICS, V81, P73 1
t9.21118 Egghe L, 2009, J AM SOC INF SCI TECHNOL, V60, P2362 1
t9.22119 Bornmann L, 2009, SCIENTOMETRICS, V81, P407 1
t9.23120 Ye FY, 2009, SCIENTOMETRICS, V81, P493 0
t9.24121 Egghe L, 2009, SCIENTOMETRICS, V81, P567 0
t9.25122 Lucio-Arias D, 2009, J AM SOC INF SCI TECHNOL, V60, P2488 0
t9.26123 Luk R, 2009, J AM SOC INF SCI TECHNOL, V60, P2587 0
t9.27124 Guan JC, 2009, SCIENTOMETRICS, V81, P683 0
t9.28125 Kiss IZ, 2010, J INFORMETR, V4, P74 0
t9.29126 Bornmann L, 2010, J INFORMETR, V4, P83 1
t9.30127 Guan JC, 2010, SCIENTOMETRICS, V82, P165 0
t9.31128 Egghe L, 2010, SCIENTOMETRICS, V82, P243 0
t9.32129 Yu G, 2010, SCIENTOMETRICS, V82, P249 0
t9.33130 Xu ZB, 2010, INFORM PROCESS MANAGE, V46, P143 0
t9.34131 Pepe A, 2010, J AM SOC INF SCI TECHNOL, V61, P567 0
t9.35132 Liang LM, 2010, J INFORMETR, V4, P201 0
t9.36133 Minguillo D, 2010, J AM SOC INF SCI TECHNOL, V61, P772 0
t9.37134 Zhang HZ, 2010, J AM SOC INF SCI TECHNOL, V61, P964 0
t9.38135 Egghe L, 2010, SCIENTOMETRICS, V83, P455 0
t9.39136 Wray KB, 2010, SCIENTOMETRICS, V83, P471 0
t9.40137 Schiebel E, 2010, SCIENTOMETRICS, V83, P765 0
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Appendix 2: Cognitive Historiography of Papers Using 780

Mathematical Approaches to Understand the Science System 781

(Fig. 2.2) 782

Table 2.7 Statistics of the search: Present to past

t10.1Node Bibliographic metadata Times cited

t10.21 Lotka AJ, 1926, J WASHINGTON ACADEMY, V16, P317 317
t10.32 PRICE DJD, 1965, SCIENCE, V149, P510 664
t10.43 PRICE DJD, 1976, J AMER SOC INFORM SCI, V27, P292 332
t10.54 Barabási AL, 1999, SCIENCE, V286, P509 4818
t10.65 Albert R, 2002, REV MOD PHYS, V74, P47 4030
t10.76 Torvik VI, 2005, J AM SOC INF SCI TECHNOL, V56, P140 18
t10.87 Xekalaki E, 2005, SCIENTOMETRICS, V62, P293 1
t10.98 Santos JB, 2005, SCIENTOMETRICS, V62, P329 2
t10.109 Simkin MV, 2005, SCIENTOMETRICS, V62, P367 8
t10.1110 Bailon-Moreno R, 2005, SCIENTOMETRICS, V63, P231 1
t10.1211 Egghe L, 2005, J AM SOC INF SCI TECHNOL, V56, P664 2
t10.1312 Egghe L, 2005, J AM SOC INF SCI TECHNOL, V56, P669 8
t10.1413 Sombatsompop N, 2005, J AM SOC INF SCI TECHNOL, V56, P676 15
t10.1514 Matia K, 2005, J AM SOC INF SCI TECHNOL, V56, P893 10
t10.1615 Egghe L, 2005, J AM SOC INF SCI TECHNOL, V56, P935 13
t10.1716 Efron M, 2005, J AM SOC INF SCI TECHNOL, V56, P969 4
t10.1817 Liang LM, 2005, J AM SOC INF SCI TECHNOL, V56, P1045 10
t10.1918 Burrell QL, 2005, SCIENTOMETRICS, V64, P247 5
t10.2019 Morris SA, 2005, J AM SOC INF SCI TECHNOL, V56, P1250 5
t10.2120 Hirsch JE, 2005, PROC NAT ACAD SCI USA, V102, P16569 549
t10.2221 Burrell QL, 2005, INFORM PROCESS MANAGE, V41, P1317 8
t10.2322 Egghe L, 2005, INFORM PROCESS MANAGE, V41, P1330 2
t10.2423 Shan S, 2005, INFORM PROCESS MANAGE, V41, P1369 2
t10.2524 Lafouge T, 2005, INFORM PROCESS MANAGE, V41, P1387 3
t10.2625 Payne N, 2005, INFORM PROCESS MANAGE, V41, P1495 1
t10.2726 Coccia M, 2005, SCIENTOMETRICS, V65, P307 0
t10.2827 Burrell QL, 2005, SCIENTOMETRICS, V65, P381 11
t10.2928 Bornmann L, 2005, SCIENTOMETRICS, V65, P391 86
t10.3029 Dominich S, 2006, INFORM PROCESS MANAGE, V42, P1 0
t10.3130 Zuccala A, 2006, J AM SOC INF SCI TECHNOL, V57, P152 14
t10.3231 Aksnes DW, 2006, J AM SOC INF SCI TECHNOL, V57, P169 13
t10.3332 Klavans R, 2006, J AM SOC INF SCI TECHNOL, V57, P251 33
t10.3433 Ackermann E, 2006, SCIENTOMETRICS, V66, P451 0
t10.3534 Martens BVD, 2006, J AM SOC INF SCI TECHNOL, V57, P330 1
t10.3635 Chen CM, 2006, J AM SOC INF SCI TECHNOL, V57, P359 67
t10.3736 van Raan AFJ, 2006, J AM SOC INF SCI TECHNOL, V57, P408 21
t10.3837 Choi J, 2006, INFORM PROCESS MANAGE, V42, P331 5
t10.3938 Wei CP, 2006, INFORM PROCESS MANAGE, V42, P350 12
t10.4039 Izsak J, 2006, SCIENTOMETRICS, V67, P107 2
t10.4140 Yoo SH, 2006, SCIENTOMETRICS, V69, P57 0

(continued)
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Table 2.7 (continued)

t11.1Node Bibliographic metadata Times cited

t11.241 Egghe L, 2006, SCIENTOMETRICS, V69, P121 67
t11.342 Glanzel W, 2006, SCIENTOMETRICS, V67, P315 73
t11.443 Burrell QL, 2006, SCIENTOMETRICS, V67, P323 0
t11.544 Rousseau R, 2006, J AM SOC INF SCI TECHNOL, V57, P1404 2
t11.645 Burrell QL, 2006, J AM SOC INF SCI TECHNOL, V57, P1406 4
t11.746 Samoylenko I, 2006, J AM SOC INF SCI TECHNOL, V57, P1461 7
t11.847 Peng D, 2006, SCIENTOMETRICS, V69, P271 0
t11.948 Roth C, 2006, SCIENTOMETRICS, V69, P429 5
t11.1049 Mingers J, 2006, INFORM PROCESS MANAGE, V42, P1451 6
t11.1150 Zitt M, 2006, INFORM PROCESS MANAGE, V42, P1513 17
t11.1251 Su Y, 2006, J AM SOC INF SCI TECHNOL, V57, P1977 0
t11.1352 Van Den Besselaar P, 2006, SCIENTOMETRICS, V68, P377 10
t11.1453 Borner K, 2006, SCIENTOMETRICS, V68, P415 8
t11.1554 Klavans R, 2006, SCIENTOMETRICS, V68, P475 15
t11.1655 Small H, 2006, SCIENTOMETRICS, V68, P595 23
t11.1756 Contreras C, 2006, SCIENTOMETRICS, V69, P689 3
t11.1857 Kretschmer H, 2007, J INFORMETR, V1, P308 1
t11.1958 Jarneving B, 2007, J INFORMETR, V1, P338 0
t11.2059 Burrell QL, 2007, J INFORMETR, V1, P16 22
t11.2160 Leydesdorff L, 2007, J AM SOC INF SCI TECHNOL, V58, P25 14
t11.2261 McDonald JD, 2007, J AM SOC INF SCI TECHNOL, V58, P39 4
t11.2362 Koike A, 2007, J AM SOC INF SCI TECHNOL, V58, P51 2
t11.2463 Egghe L, 2007, J AM SOC INF SCI TECHNOL, V58, P452 29
t11.2564 Na SH, 2007, INFORM PROCESS MANAGE, V43, P302 1
t11.2665 Lucio-Arias D, 2007, SCIENTOMETRICS, V70, P603 3
t11.2766 Egghe L, 2007, J INFORMETR, V1, P115 5
t11.2867 Shibata N, 2007, J AM SOC INF SCI TECHNOL, V58, P872 2
t11.2968 Zitt M, 2007, INFORM PROCESS MANAGE, V43, P834 0
t11.3069 Zhao DZ, 2007, J AM SOC INF SCI TECHNOL, V58, P1285 2
t11.3170 Rousseau R, 2007, J AM SOC INF SCI TECHNOL, V58, P1551 3
t11.3271 Nadarajah S, 2007, SCIENTOMETRICS, V72, P291 1
t11.3372 Simkin MV, 2007, J AM SOC INF SCI TECHNOL, V58, P1661 6
t11.3473 Morris SA, 2007, J AM SOC INF SCI TECHNOL, V58, P1764 4
t11.3574 Bornmann L, 2007, SCIENTOMETRICS, V73, P139 1
t11.3675 de Moya-Anegon F, 2007, J AM SOC INF SCI TECHNOL, V58, P2167 9
t11.3776 Lariviere V, 2008, J AM SOC INF SCI TECHNOL, V59, P288 12
t11.3877 van Raan AFJ, 2008, J AM SOC INF SCI TECHNOL, V59, P565 7
t11.3978 Bornmann L, 2008, J AM SOC INF SCI TECHNOL, V59, P830 38
t11.4079 Chavalarias D, 2008, SCIENTOMETRICS, V75, P37 3
t11.4180 Li XY, 2008, INFORM PROCESS MANAGE, V44, P991 0
t11.4281 Wan XJ, 2008, INFORM PROCESS MANAGE, V44, P1032 3
t11.4382 Molinari A, 2008, SCIENTOMETRICS, V75, P339 7
t11.4483 Bettencourt LMA, 2008, SCIENTOMETRICS, V75, P495 7
t11.4584 Kim H, 2008, SCIENTOMETRICS, V75, P535 2
t11.4685 Harmon G, 2008, INFORM PROCESS MANAGE, V44, P1634 0
t11.4786 Bornmann L, 2008, J INFORMETR, V2, P217 2

(continued)
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Table 2.7 (continued)

t12.1Node Bibliographic metadata Times cited

t12.287 Yu HR, 2008, J INFORMETR, V2, P240 0
t12.388 Egghe L, 2008, SCIENTOMETRICS, V76, P117 4
t12.489 Egghe L, 2008, J AM SOC INF SCI TECHNOL, V59, P1608 13
t12.590 van Raan AFJ, 2008, J AM SOC INF SCI TECHNOL, V59, P1631 3
t12.691 Egghe L, 2008, J AM SOC INF SCI TECHNOL, V59, P1688 2
t12.792 Ahlgren P, 2008, SCIENTOMETRICS, V76, P273 3
t12.893 Burrell QL, 2008, INFORM PROCESS MANAGE, V44, P1794 1
t12.994 Bornmann L, 2008, J INFORMETR, V2, P280 0
t12.1095 Ye FY, 2008, J INFORMETR, V2, P288 2
t12.1196 Quirin A, 2008, J AM SOC INF SCI TECHNOL, V59, P1912 2
t12.1297 Lucio-Arias D, 2008, J AM SOC INF SCI TECHNOL, V59, P1948 3
t12.1398 Levitt JM, 2008, J AM SOC INF SCI TECHNOL, V59, P1973 3
t12.1499 Cecchini RL, 2008, INFORM PROCESS MANAGE, V44, P1863 1
t12.15100 Egghe L, 2008, J AM SOC INF SCI TECHNOL, V59, P2133 0
t12.16101 Davis PM, 2008, J AM SOC INF SCI TECHNOL, V59, P2186 6
t12.17102 Egghe L, 2008, SCIENTOMETRICS, V77, P377 3
t12.18103 Szydlowski M, 2009, SCIENTOMETRICS, V78, P99 0
t12.19104 Wallace ML, 2009, J AM SOC INF SCI TECHNOL, V60, P240 1
t12.20105 Jensen P, 2009, SCIENTOMETRICS, V78, P467 0
t12.21106 Costas R, 2009, J AM SOC INF SCI TECHNOL, V60, P740 3
t12.22107 Perez JM, 2009, INFORM PROCESS MANAGE, V45, P356 0
t12.23108 Sandstrom U, 2009, SCIENTOMETRICS, V79, P341 1
t12.24109 Borner K, 2009, J INFORMETR, V3, P161 0
t12.25110 Chen CM, 2009, J INFORMETR, V3, P191 2
t12.26111 Bettencourt LMA, 2009, J INFORMETR, V3, P210 4
t12.27112 Frenken K, 2009, J INFORMETR, V3, P222 2
t12.28113 Skupin A, 2009, J INFORMETR, V3, P233 2
t12.29114 Lucio-Arias D, 2009, J INFORMETR, V3, P261 6
t12.30115 Zhao YY, 2009, SCIENTOMETRICS, V80, P91 0
t12.31116 Elmacioglu E, 2009, SCIENTOMETRICS, V80, P195 0
t12.32117 Zhu SF, 2009, INFORM PROCESS MANAGE, V45, P555 1
t12.33118 Deineko VG, 2009, SCIENTOMETRICS, V80, P819 0
t12.34119 Egghe L, 2009, J INFORMETR, V3, P290 2
t12.35120 Wallace ML, 2009, J INFORMETR, V3, P296 2
t12.36121 Yu LP, 2009, J INFORMETR, V3, P304 0
t12.37122 Kwakkel JH, 2009, J AM SOC INF SCI TECHNOL, V60, P2064 0
t12.38123 He ZL, 2009, J AM SOC INF SCI TECHNOL, V60, P2151 0
t12.39124 Tseng YH, 2009, SCIENTOMETRICS, V81, P73 1
t12.40125 Egghe L, 2009, J AM SOC INF SCI TECHNOL, V60, P2362 1
t12.41126 Bornmann L, 2009, SCIENTOMETRICS, V81, P407 1
t12.42127 Ye FY, 2009, SCIENTOMETRICS, V81, P493 0
t12.43128 Egghe L, 2009, SCIENTOMETRICS, V81, P567 0
t12.44129 Lucio-Arias D, 2009, J AM SOC INF SCI TECHNOL, V60, P2488 0
t12.45130 Luk R, 2009, J AM SOC INF SCI TECHNOL, V60, P2587 0
t12.46131 Guan JC, 2009, SCIENTOMETRICS, V81, P683 0
t12.47132 Kiss IZ, 2010, J INFORMETR, V4, P74 0
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Table 2.7 (continued)

t13.1Node Bibliographic metadata Times cited

t13.2133 Bornmann L, 2010, J INFORMETR, V4, P83 1
t13.3134 Guan JC, 2010, SCIENTOMETRICS, V82, P165 0
t13.4135 Egghe L, 2010, SCIENTOMETRICS, V82, P243 0
t13.5136 Yu G, 2010, SCIENTOMETRICS, V82, P249 0
t13.6137 Xu ZB, 2010, INFORM PROCESS MANAGE, V46, P143 0
t13.7138 Pepe A, 2010, J AM SOC INF SCI TECHNOL, V61, P567 0
t13.8139 Liang LM, 2010, J INFORMETR, V4, P201 0
t13.9140 Minguillo D, 2010, J AM SOC INF SCI TECHNOL, V61, P772 0
t13.10141 Zhang HZ, 2010, J AM SOC INF SCI TECHNOL, V61, P964 0
t13.11142 Egghe L, 2010, SCIENTOMETRICS, V83, P455 0
t13.12143 Wray KB, 2010, SCIENTOMETRICS, V83, P471 0
t13.13144 Schiebel E, 2010, SCIENTOMETRICS, V83, P765 0

Appendix 3: Papers from Threads in Figs. 2.3–2.6 783

Table 2.8 Documents in Fig. 2.3

t14.1Node Author Year Journal Title

t14.24 Simkin, MV 2005 SCIENTOMETRICS Stochastic modeling of citation
slips

t14.310 Egghe, L 2005 JASIST Zipfian and Lotkaian continuous
concentration theory

t14.412 Liang, LM 2005 JASIST R-sequences: Relative indicators
for the rhythm of science

t14.515 Burrell, QL 2005 INFORMATION
PROCESSING &
MANAGEMENT

Symmetry and other
transformation features of
Lorenz/Leimkuhler
representations of informetric
data

t14.621 Burrell, QL 2005 SCIENTOMETRICS Are “sleeping beauties” to be
expected?

t14.729 van Raan, AFJ 2006 JASIST Statistical properties of
Bibliometric indicators:
Research group indicator
distributions and correlations

t14.838 Burrell, QL 2006 JASIST On Egghe’s version of continuous
concentration theory

t14.942 Mingers, J 2006 INFORMATION
PROCESSING &
MANAGEMENT

Modeling citation behavior in
Management Science journals

(continued)
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Table 2.8 (continued)

t15.1Node Author Year Journal Title

t15.263 Rousseau, R 2007 JASIST On Egghe’s construction of
Lorenz curves

t15.364 Nadarajah, S 2007 SCIENTOMETRICS Models for citation behavior
t15.465 Simkin, MV 2007 JASIST A mathematical theory of citing
t15.569 Lariviere, V 2008 JASIST Long-term variations in the aging

of scientific literature: From
exponential growth to
steady-state science
(1900–2004)

t15.670 van Raan, AFJ 2008 JASIST Self-citation as an
impact-reinforcing mechanism
in the science system

t15.783 van Raan, AFJ 2008 JASIST Scaling rules in the science
system: Influence of
field-specific citation
characteristics on the impact
of research groups

Table 2.9 Documents in Fig. 2.4

t16.1Node Author Year Journal Title

t16.225 Klavans, R 2006 JASIST Identifying a better measure
of relatedness for
mapping science

t16.328 Chen, CM 2006 JASIST CiteSpace II: Detecting and
visualizing emerging
trends and transient
patterns in scientific
literature

t16.445 Van Den
Besselaar, P

2006 SCIENTOMETRICS Mapping research topics
using word-reference
co-occurrences: A
method and an
exploratory case study

t16.546 Borner, K 2006 SCIENTOMETRICS Mapping the diffusion of
scholarly knowledge
among major US
research institutions

t16.647 Klavans, R 2006 SCIENTOMETRICS Quantitative evaluation of
large maps of science

t16.748 Small, H 2006 SCIENTOMETRICS Tracking and predicting
growth areas in science

t16.858 Lucio-Arias, D 2007 SCIENTOMETRICS Knowledge emergence in
scientific
communication: from
“fullerenes” to
“nanotubes”

(continued)



UNCORRECTED
PROOF

2 Mathematical Approaches to Modeling Science 61

Table 2.9 (continued)

t17.1Node Author Year Journal Title

t17.260 Shibata, N 2007 JASIST Topological analysis of citation
networks to discover the
future core articles

t17.367 Bornmann, L 2007 SCIENTOMETRICS Row-column (RC) association
model applied to grant peer
review

t17.472 Chavalarias, D 2008 SCIENTOMETRICS Bottom-up scientific field
detection for dynamical and
hierarchical science mapping,
methodology and case study

t17.576 Bettencourt, LMA 2008 SCIENTOMETRICS Population modeling of the
emergence and development
of scientific fields

t17.679 Bornmann, L 2008 JOURNAL OF
INFORMETRICS

Latent Markov modeling applied
to grant peer review

t17.790 Lucio-Arias, D 2008 JASIST Main-path analysis and
path-dependent transitions in
HistCite (TM)-based
historiograms

t17.8102 Borner, K 2009 JOURNAL OF
INFORMETRICS

Visual conceptualizations and
models of science

t17.9103 Chen, CM 2009 JOURNAL OF
INFORMETRICS

Towards an explanatory and
computational theory of
scientific discovery

t17.10104 Bettencourt, LMA 2009 JOURNAL OF
INFORMETRICS

Scientific discovery and
topological transitions in
collaboration networks

t17.11105 Frenken, K 2009 JOURNAL OF
INFORMETRICS

Spatial scientometrics: Towards a
cumulative research program

t17.12106 Skupin, A 2009 JOURNAL OF
INFORMETRICS

Discrete and continuous
conceptualizations of science:
Implications for knowledge
domain visualization

t17.13107 Lucio-Arias, D 2009 JOURNAL OF
INFORMETRICS

The dynamics of exchanges and
references among scientific
texts, and the autopoiesis of
discursive knowledge

Table 2.10 Documents in Fig. 2.5

t18.1Node Author Year Journal Title

t18.22 Xekalaki, E 2005 SCIENTOMETRICS Comments on the paper of Shan
et al.: The multivariate
Waring distribution

t18.37 Egghe, L 2005 JASIST The power of power laws and an
interpretation of Lotkaian
informetric systems as
self-similar fractals

(continued)
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Table 2.10 (continued)

t19.1Node Author Year Journal Title

t19.213 Burrell, QL 2005 SCIENTOMETRICS The use of the generalized
Waring process in modelling
informetric data

t19.334 Egghe, L 2006 SCIENTOMETRICS An informetric model for the
Hirsch-index

t19.435 Glanzel, W 2006 SCIENTOMETRICS On the h-index – A mathematical
approach to a new measure of
publication activity and
citation impact

t19.543 Zitt, M 2006 INFORMATION
PROCESSING &
MANAGEMENT

Delineating complex scientific
fields by an hybrid
lexical-citation method: An
application to nanosciences

t19.652 Burrell, QL 2007 JOURNAL OF
INFORMETRICS

Hirsch’s h-index: A stochastic
model

t19.756 Egghe, L 2007 JASIST Dynamic h-index: The Hirsch
index in function of time

t19.881 Egghe, L 2008 JASIST A Model for the Size-Frequency
Function of Coauthor Pairs

t19.995 Egghe, L 2008 SCIENTOMETRICS The mathematical relation
between the impact factor
and the uncitedness factor

Table 2.11 Documents in Fig. 2.3

t20.1Node Author Year Journal Title

t20.214 Morris, SA 2005 JASIST Manifestation of emerging
specialties in journal literature:
A growth model of papers,
references, exemplars,
bibliographic coupling,
cocitation, and clustering
coefficient distribution

t20.339 Samoylenko, I 2006 JASIST Visualizing the scientific world and
its evolution

t20.450 Kretschmer, H 2007 JOURNAL OF
INFORMETRICS

Lotka’s distribution and distribution
of co-author pairs’ frequencies

t20.553 Leydesdorff, L 2007 JASIST Visualization of the citation impact
environments of scientific
journals: An online mapping
exercise

t20.666 Morris, SA 2007 JASIST Manifestation of research teams in
journal literature: A growth
model of papers, coauthorship,
weak ties, authors,
collaboration, and Lotka’s law

t20.768 de Moya-
Anegon, F

2007 JASIST Visualizing the marrow of science
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Chapter 3 1

Knowledge Epidemics and Population Dynamics 2

Models for Describing Idea Diffusion 3

Nikolay K. Vitanov and Marcel R. Ausloos 4

3.1 Knowledge, Capital, Science Research, and Ideas Diffusion 5

3.1.1 Knowledge and Capital 6

Knowledge can be defined as a dynamic framework connected to cognitive 7

structures from which information can be sorted, processed and understood 8

(Howells 2002). Along economics lines of thought (Barro and Sala-I-Martin 9

2004; Leydesdorff 2006; Dolfsma 2008), knowledge can be treated as one of the 10

“production factors”, – i.e., one of the main causes of wealth in modern capitalistic 11

societies (Tables 3.1–3.5).AQ2 12

According to Marshall (Marshall 1920) a “capital” is a collection of goods 13

external to the economic agent that can be sold for money and from which an income 14

can be derived. Often, knowledge is parametrized as such a “human capital” 15

(Romer 1996, 1994a,b, 2002; Jaffe and Trajtenberg 2002). Walsh (1935) was one 16

pioneer in treating human knowledge as if it was a “capital”, in the economic sense; 17

he made an attempt to find measures for this form of “capital”. Bourdieu (1986); 18

Coleman (1988), Putnam Putnam (1993), Becker and collaborators have further 19

implanted the concept of such a “human capital” in economic theory (Becker and 20

Murphy 1988; Becker 1996; Stiglitz 1987). 21
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Table 3.1 Several questions and answers that should guide and supply useful and important
information for the reader

t21.110 Important questions raised in this chapter And their answers in the form of guidance

t21.21. What is the connection between knowledge
and capital?

Knowledge is often considered as a form of
human capital

t21.32. What happens in the case of knowledge
diffusion?

Knowledge is transferred when the subjects
interact

t21.43. Should quantitative research be
supplemented by qualitative research?

Yes, surely supplemented coordinated joint
aims are useful

t21.54. Who are the pioneers of scientometrics? Alfred Lotka and Derek Price
t21.65. What is the relation between epidemic

models and of population dynamics
models?

Epidemic models are a particular case of
population dynamics models

t21.76. What has to be done if fluctuations
strongly influence the system evolution?

Switch from deterministic to stochastic
models and think

t21.87. Why are discrete models useful? Often data is collected for some period of
time. Thus, such data is best described by
discrete models

t21.98. Around which statistical law are grouped
all statistical tools described in the
chapter?

Around Lotka law

t21.109. Are all possibly relevant models, presented
in this chapter?

NO ! Only an appropriate selection. For more
models, consult the literature or ask a
specialist

t21.1110. What is the strategy followed by the
authors of the chapter?

Proceed from simple to more complicated
models and from deterministic to
stochastic models supplemented by
statistical tools

Table 3.2 List of models described in the chapter with comments on their usefulness

t22.1Models described in this chapter Are useful for

t22.2Science landscapes Evaluation of research strategies. Decisions about
personal development and promotion

t22.3Verhulst Logistic curve Description of a large class of growth processes
t22.4Broadcasting model of technology

diffusion
Understanding the influence of mass media on

technology diffusion
t22.5Word-of-mouth model Understanding the influence of interpersonal contacts on

technology diffusion
t22.6

t22.7Mixed information source model Understanding the influence of both mass media and
interpersonal contacts on technology diffusion

t22.8Lotka–Volterra model of innovation
diffusion with time lag

Understanding the influence of the time lag between
hearing about innovation and its adoption

t22.9Price model of knowledge growth
with time lag

Modeling the growth of discoveries, inventions, and
scientific laws

t22.10SIR models of scientific epidemics Modeling the epidemic stage of scientific idea spreading
t22.11SEIR models of scientific epidemics Extends the SIR model by specifically adding the role of

a class of scientists exposed to some scientific idea



UNCORRECTED
PROOF

3 Knowledge Epidemics and Population Dynamics Models 71

Table 3.3 List of models described in the chapter with comments on their usefulness (Continuing
Table 3.2)

t23.1Models described in this chapter Are useful for

t23.2Discrete model for the change in the
number of authors in a scientific
field

Modeling and forecasting the evolution in the number of
authors and papers in a scientific field

t23.3Daley model Modeling the evolution of a population of papers in a
scientific field

t23.4Coupled discrete model for
populations of scientists and
papers

Modeling and forecasting the joint evolution of
population of scientists and papers in a research field

t23.5Goffman–Newill model for the joint
evolution of one scientific field
and one of its sub-fields

Epidemic model for the increase of number of scientists
from a research field who start work in a sub-field of
the scientific field. The model also describes the
increase in the number of papers in the research
sub-field

t23.6Bruckner–Ebeling–Scharnhorst
model for the evolution of n

scientific fields

Understanding the joint evolution of scientific fields in
presence of migration of scientists from one field to
another field

Table 3.4 List of models described in the chapter with comments on their usefulness (Continua-
tion of Table 3.2)

t24.1Models described in this chapter Are useful for

t24.2SI model for the probability of
intellectual infection

Modeling the spread of intellectual infection along a
scientific network

t24.3SEI model for the probability of
intellectual infection

Modeling the spread of intellectual infection along a
scientific network in the presence of a class of
scientists exposed to the intellectual infection

t24.4Stochastic evolution model Modeling the number of scientists in a research subfield
as a stochastic variable described by a master
equation

t24.5Stochastic model of scientific
productivity

Modeling the influence of fluctuations in scientific
productivity through differential equations for the
dynamics of a scientific community

t24.6Model of competition between
ideologies

Understanding the competition between ideologies with
possible migration of believers

t24.7Reproduction-transport model Modeling the change of research field as a migration
process

However, the concept of knowledge as a form of capital is an oversimplification. 22

This global-like concept does not account for many properties of knowledge strictly 23

connected to the individual, such as the possibility for different learning paths or 24

different views, multiple levels of interpretation, and different preferences (Davis 25

2003). In fact, knowledge develops in a quite complex social context, within possi- 26

bly different frameworks or time scales, and involves “tacit dimensions” (beside the 27

basic space and time dimensions) requiring coding and decoding (Dolfsma 2008). 28
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Table 3.5 List of laws discussed in the chapter with a few words on their usefulness (Continuation
of Table 3.2)

t25.1Laws described in this chapter Are useful for

t25.2Lotka law Describing the number distribution of scientists with
respect to the number of papers they wrote

t25.3Pareto distribution Writing a continuous version of Lotka law
t25.4Zipf law and Zipf–Mandelbrot law Ranking scientists by the number of papers they wrote
t25.5Bradford law Reflecting the fact that a large number of relevant

articles are concentrated in a small number of
journals

Key point Nr. 1
Knowledge is much more than a form of capital: it is a dynamic framework
connected to cognitive structures from which information can be sorted,
processed and understood.

3.1.2 Growth and Exchange of Knowledge 29

Science policy-makers and scholars have for many decades wished to develop 30

quantitative methods for describing and predicting the initiation and growth of 31

science research (Price 1951, 1971; Foray 2004). Thus, scientometrics has become 32

one of the core research activities in view of constructing science and technology 33

indicators (van Raan 1997). 34

The accumulation of the knowledge in a country’s population arises either from 35

acquiring knowledge from abroad or from internal engines (Nonaka 1994; Nonaka 36

and Konno 1998; Nonaka and Takeuchi 1995; Bernius 2010). The main engines 37

for the production of new knowledge in a country are usually: the public research 38

institutes, the universities and training institutes, the firms, and the individuals 39

(Dahlman 2009). The users of the knowledge are firms, governments, public 40

institutions (such as the national education, health, or security institutions), social 41

organizations, and any concerned individual. The knowledge is transferred from 42

producers to the users by dissemination that is realized by some flow or diffusion of 43

process (Dahlman et al. 2007), sometimes involving physical migration. 44

Knowledge typically appears at first as purely tacit: a person “has” an idea 45

(Saviotti 1999; Cowan and Foray 1997). This tacit knowledge must be codified 46

for further use; after codification, knowledge can be stored in different ways, as 47

in textbooks or digital carriers. It can be transferred from one system to another. 48

In addition to knowledge creation, a system can gain knowledge by knowledge 49

exchange and/or trade. 50
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In knowledge diffusion, the knowledge is transferred while subjects interact 51

(Jaffe 1986; Antonelli 1996; Morone and Taylor 2010). Pioneering studies on 52

knowledge diffusion investigated the patterns through which new technologies are 53

spread in social systems (Rogers 1962; Casetti and Semple 1969). The gain of 54

knowledge due to knowledge diffusion is one of the keys or leads to innovative 55

products and innovations (Kucharavy et al. 2009; Ebeling and Scharnhorst 1985). 56

Key point Nr. 2
An innovative product or a process is new for the group of people who are
likely to use it. Innovation is an innovative product or process that has passed
the barrier of user adoption. Because of the rejection by the market, many
innovative products and processes never become an innovation.

In science, the diffusion of knowledge is mainly connected to the transfer 57

of scientific information by publications. It is accepted that the results of some 58

research become completely scientific when they are published (Ziman 1969). Such 59

a diffusion can also take place at scientific meetings and through oral or other 60

exchanges, sometimes without formal publication of exchanged ideas.1 61

Key point Nr. 3
Scientific communication has specific features. For example, citations are
very important in the communication process as they place corresponding
research and researchers, mentioned in the scientific literature, in a way
similar to the kinship links that tie persons within a tribe. Informal exchanges
happening in the process of common work at the time of meetings, workshops,
or conferences may accelerate the transfer of scientific information, whence
the growth of knowledge.

3.2 Qualitative Research: Historical Remarks 62

3.2.1 Science Landscapes 63

Understanding the diffusion of knowledge requires research complementary to 64

mathematical investigations. For example, mathematics cannot indicate why the 65

1For example, at Gordon Research Conferences, it is forbidden to take written notes and to quote
participant interventions later.
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exposure to ideas leads to intellectual epidemics. Yet, mathematics can provide 66

information on the intensity or the duration of some intellectual epidemics. 67

Qualitative research is all about exploring issues, understanding phenomena, 68

and answering questions (Bryman 1988) without much mathematics. Qualitative 69

research involves empirical research through which the researcher explores relation- 70

ships using a textual methodology rather than quantitative data. Problems and results 71

in the field of qualitative research on knowledge epidemics will not be discussed 72

in detail here. However, through one example it can be shown how mathematics 73

can create the basis for qualitative research and decision making. This example is 74

connected to the science landscape concepts outlined here below. 75

The idea of science landscapes has some similarity with the work of Wright 76

(1932) in biology who proposed that the fitness landscape evolution can be treated 77

as optimization process based on the roles of mutation, inbreeding, crossbreeding, 78

and selection. The science landscape idea was developed by Small (1997, 1998), 79

as well as by Noyons and Van Raan (1998). In this framework, Scharnhorst 80

(1998, 2001) proposed an approach for the analysis of scientific landscapes, named 81

“geometrically oriented evolution theory”. 82

Key point Nr. 4
The concept of science landscape is rather simple: Describe the corresponding
field of science or technology through a function of parameters such as
height, weight, size, technical data, etc. Then a virtual knowledge landscape
can be constructed from empirical data in order to visualize and understand
innovation and to optimize various processes in science and technology.

As an illustration at this level, consider that a mathematical example of a 83

technological landscape can be given by a function C D C.S; v/, where C is the 84

cost for developing a new airplane, and where S and v represent the size and velocity 85

of the airplane. 86

Consider two examples concerning the use of science landscapes for evaluation 87

purposes: 88

(1) Science landscape approach as a method for evaluating national 89

research strategies 90

For example, national science systems can be considered as made of researchers 91

who compete for scientific results, and subsidies, following optimal research 92

strategies. The efforts of every country become visible, comparable and measurable 93

by means of appropriate functions or landscapes: e.g., the number of publications. 94

The aggregate research strategies of a country can thereby be represented by the 95

distribution of publications in the various scientific disciplines. In so doing, within 96
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a two-dimensional space,2 different countries correspond to different landscapes. 97

Various political discussions can follow and evolution strategies can be invented 98

thereafter. 99

Notice that the dynamics of self-organized structures in complex systems can 100

be understood as the result of a search for optimal solutions to a certain problem. 101

Therefore, such a comment shows how rather strict mathematical approaches, not 102

disregarding simulation methods, can be congruent to qualitative questions. 103

(2) Scientific citations as landscapes for individual evaluation 104

Scientific citations can serve for constructing landscapes. Indeed, citations 105

have a key position in the retrieval and valuation of information in scientific 106

communication systems (Scharnhorst 1998; Egghe 1998; Egghe and Rousseau 107

1990). This position is based on the objective nature of the citations as components 108

of a global information system, as represented by the Science Citation Index. 109

A landscape function based on citations can be defined in various ways. It can take 110

into account self-citations (Hellsten et al. 2006, 2007a,b; Ausloos et al. 2008), or 111

time-dependent quantitative measures (Hirsch 2005; Soler 2007; Burrell 2007). 112

113

Key point Nr. 5
Citation landscapes become important elements of a science policy (e.g., in
personnel management decisions), thereby influencing individual scientific
careers, evaluation of research institutes, and investment strategies.

3.2.2 Lotka and Price: Pioneers of Scientometrics 114

Alfred Lotka, one of the modern founders of population dynamics studies, was also 115

an excellent statistician. He discovered (Lotka 1926) a distribution for the number 116

of authors nr as a function of the number of published papers r , – i.e., nr D n1=r2. 117

However, Derek Price, a physicist, set the mathematical basis in the field of 118

measuring scientific research in recent times (Price 1963; Price and Gürsey 1975; 119

Price 1961). He proposed a model of scientific growth connecting science and time. 120

In the first version of the model, the size of science was measured by the number of 121

journals founded in the course of a number of years. Later, instead of the number 122

of journals, the number of published papers was used as the measure of scientific 123

growth. Price and other authors (Price and Gürsey 1975; Price 1961; Gilbert 1978) 124

considered also different indicators of scientific growth, such as the number of 125

authors, funds, dissertation production, citations, or the number of scientific books. 126

2For example, take the scientific disciplines and the number of publications as axes.



UNCORRECTED
PROOF

76 N.K. Vitanov and M.R. Ausloos

In addition to the deterministic approach initiated by Price, the statistical 127

approach to the study of scientific information developed rapidly and nowadays 128

is still an important tool in scientometrics (Chung and Cox 1990; Kealey 2000). 129

More discussion on the statistical approach will be given in sect. 3.6 of this chapter. 130

131

Key point Nr. 6
Price distinguished three stages in the growth of knowledge: (a) a preliminary
phase with small increments; (b) a phase of exponential growth; (c) a
saturation stage. The stage (c) must be reached sooner or later after the new
ideas and opportunities are exhausted; the growth slows down until a new
trend emerges and gives rise to a new growth stage. According to Price, the
curve of this growth is a S-shaped logistic curve.

3.2.3 Population Dynamics and Epidemic Models 132

of the Diffusion of Knowledge 133

Population dynamics is the branch of life sciences that studies short- and long-term 134

changes in the size and age composition of populations, and how the biological 135

and environmental processes influence those changes. In the past, most models 136

for biological population dynamics have been of interest only in mathematical 137

biology (Murray 1989; Edelstein-Keshet 1988). Today, these models are adapted 138

and applied in many more areas of science (Dietz 1967; Dodd 1958). Here below, 139

models of knowledge dynamics will be of interest as bases of epidemic models. 140

Such models are nowadays used because some stages of idea spreading processes 141

within a population (e.g, of scientists), possess properties like those of epidemics. 142

The mathematical modeling of epidemic processes has attracted much attention 143

since the spread of infectious diseases has always been of great concern and 144

considered to be a threat to public health (Anderson and May 1982; Brauer and 145

Castillo-Chavez 2001; Ma and Li 2009). In the history of science and society, 146

many examples of ideas spreading seem to occur in a way similar to the spread 147

of epidemics. Examples of the former field pertain to the ideas of Newton on 148

mechanics and the passion for “High Critical Temperature Superconductivity” at 149

the end of the twentieth century. Examples of the latter field are the spreading 150

of ideas from Moses or Buddha (Goffman 1966), or discussions based on the 151

Kermack–McKendrick model (Kermack and McKendrick 1927) for the epidemic 152

stages of revolutions or drug spreading (Epstein 1997). 153

Epidemic models belong to a more general class of Lotka–Volterra models 154

used in research on systems in the fields of biological population dynamics, social 155

dynamics, and economics. The models can also be used for describing processes 156
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connected to the spread of knowledge, ideas and innovations (see Fig. 3.1). Two 157

examples are the model of innovation in established organizations (Castiaux 2007) 158

and the Lotka–Volterra model for forecasting emerging technologies and the growth 159

of knowledge (Kucharavy et al. 2009). In social dynamics, the Lanchester model 160

of war between two armies can be mentioned, a model which in the case of 161

reinforcements coincides with the Lotka–Volterra–Gause model for competition 162

between two species (Gause 1935). Solomon and Richmond (2001, 2002) applied a 163

Lotka–Volterra model to financial markets, while the model for the trap of extinction 164

can be applied to economic subjects (Vitanov et al. 2006). Applications to chaotic 165

pairwise competition among political parties (Dimitrova and Vitanov 2004) could 166

also be mentioned. 167

To start the discussion of population dynamics models as applied to the growth 168

of scientific knowledge with special emphasis on epidemic models, two kinds 169

of models can be discussed (Fig. 3.2): (1) deterministic models, see Sect. 3.3, 170

appropriate for large and small populations where the fluctuations are not drastically 171

important, (2) stochastic models, see Sect. 3.4, appropriate for small populations. 172

In the latter case the intrinsic randomness appears much more relevant than in 173

the former case. Stochastic models for large populations will not be discussed. 174

The reason for this is that such models usually consist of many stochastic differential 175

equations, whence their evolution can be investigated only numerically. 176

Finally, let us mention that the knowledge diffusion is closely connected to the 177

structure and properties of the social network where the diffusion happens. This is 178

a new and very promising research area. For example, a combination can be made 179

Fig. 3.1 Relation among epidemic models, Lotka–Volterra models, and population dynamics
models

Fig. 3.2 Relationships
between system size,
influence of fluctuations, and
discussed classes of models
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between the theory of information diffusion and the theory of complex networks 180

(Boccaletti et al. 2006). For more information about the relation between networks 181

and knowledge, see the following chapters of the book. 182

3.3 Deterministic Models 183

Below, 13 selected deterministic models (see Fig. 3.3) are discussed. The emphasis 184

is on models that can be used for describing the epidemic stage of the diffusion of 185

ideas, knowledge, and technologies. 186

3.3.1 Logistic Curve and Its Generalizations 187

In a number of cases, the natural growth of autonomous systems in competition can 188

be described by the logistic equation and the logistic curve (S-curve) (Meyer 1994). 189
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population
of papers
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discrete
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Fig. 3.3 Discrete (3) and continuous (10) models discussed in the chapter. Two continuous models
account for the influence of time lag, three models are simple models of technological diffusion.
Two models are simple epidemic models and two models are more complicated models. In
addition, the basic logistic curve is discussedth
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In order to describe trajectories of growth or decline in socio-technical systems, one 190

generally applies a three-parameter logistic curve: 191

N.t/ D K

1 C expŒ�˛t � ˇ�
(3.1)

where N.t/ is the number of units in the species or growing variable to study; K 192

is the asymptotic limit of growth; ˛ is the growth rate which specifies the “width” 193

of the S-curve for N.t/; and ˇ specifies the time tm when the curve reaches the 194

midpoint of the growth trajectory, such that N.tm/ D 0:5 K . The three parameters, 195

K , ˛, and ˇ, are usually obtained after fitting some data (Meade and Islam 1995). 196

It is well known that many cases of epidemic growth can be described by parts of 197

an appropriate S-curve. As an example, recall that the S-curve was also used for 198

describing technological substitution (Rogers 1962; Mansfield 1961; Modis 2007), 199

ca: 60 years ago. 200

However, different interaction schemes can generate different growth patterns 201

for whatever system species are under consideration (Modis 2003). Not every 202

interaction scheme leads to a logistic growth (Ausloos 2010). The evolution of 203

systems in such regimes may be described by more complex curves, such as a 204

combination of two or more simple three-parameter functions (Meyer 1994; Meyer 205

et al. 1999). 206

3.3.2 Simple Epidemic and Lotka–Volterra Models 207

of Technology Diffusion 208

As recalled here above, the simplest epidemic models could be used for describing 209

technology diffusion, like considering two populations/species: adopters and non- 210

adopters of some technology. Such models can be put into two basic classes: either 211

broadcasting (Fig. 3.4) or word-of-mouth models (Fig. 3.5). In the broadcasting 212

models, the source of knowledge about the existence and/or characteristics of the 213

new technology is external and reaches all possible adopters in the same way. 214

In the word-of-mouth models, the knowledge is diffused by means of personal 215

interactions. 216

(1) The broadcasting model (Fig. 3.4) 217

Let us consider a population of K potential adopters of the new technology and 218

let each adopter switch to the new technology as soon as he/she hears about its 219

existence (immediate infection through broadcasting). The probability that at time 220

t a new subject will adopt the new technology is characterized by a coefficient of 221

diffusion �.t/ which might or might not be a function of the number of previous 222

adopters. In the broadcasting model �.t/ D a with .0 < a < 1/; this is considered 223

to be a measure of the infection probability. 224

Let N.t/ be the number of adopters at time t . The increase in adopters for 225

each period is equal to the probability of being infected, multiplied by the current 226
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Fig. 3.4 Schematic
representation of a
broadcasting model of
technology diffusion. The
number of adopters of
technology increases by mass
media influence
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Fig. 3.5 Schematic
representation of a
word-of-mouth model of
technology diffusion. The
number of adopters of
technology increases by
interpersonal interactions
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population of non-adopters (Mahajan and Peterson 1985). The rate of diffusion at 227

time t is 228
dN

dt
D aŒK � N.t/�: (3.2)

The integration of (3.2) leads to the number of adopters: i.e., 229

N.t/ D KŒ1 � exp.�at/�: (3.3)

N.t/ is described by a decaying exponential curve. 230
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(2) Word-of-mouth model (Fig. 3.5) 231

In many cases, however, the technology adoption timing is at least an order 232

of magnitude slower than the time it takes for information spreading (Geroski 233

2000). This requires another modelization than in (1): the word-of-mouth diffusion 234

model. Its basic assumption is that knowledge diffuses by means of face-to-face 235

interactions. Then the probability of receiving the relevant knowledge needed to 236

adopt the new technology is a positive function of current users N.t/. Let the 237

coefficient of diffusion �.t/ be bN.t/ with b > 0. The rate of diffusion at time t is 238

dN

dt
D b N.t/ ŒK � N.t/� : (3.4)

Then 239

N.t/ D K

1 C
�

K � N0

N0

�
e�bK.t�t0/

(3.5)

where N0 D N.t D t0/. N.t/ is described by an S-shaped curve. 240

A constraint exists in the word-of-mouth model: it explains the diffusion of an 241

innovation not from the date of its invention but from the date when some number, 242

N.t/ > 0, of early users have begun using it. 243

(3) Mixed information source model (Fig. 3.6) 244

In the mixed information source model, existing non-adopters are subject to two 245

sources of information (Fig. 3.6). The coefficient of diffusion is supposed to look 246

like a C bN.t/. The model evolution equation becomes 247

dN

dt
D .a C bN.t// ŒK � N.t/�: (3.6)

The result of (3.6) is a (generalized) logistic curve whose shape is determined by a 248

and b (Mahajan and Peterson 1985). 249

Fig. 3.6 Schematic
representation of mixed
information source model.
The number of adopters
increases by mass media
influence and interpersonal
contacts
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(4) Time lag Lotka–Volterra model of innovation diffusion (Fig. 3.7) 250

Let it be again assumed that the diffusion of innovation in a society is accounted 251

for by a combination of two processes: a mass-mediated process and a process 252

connected to interpersonal (word-of-mouth) contacts. Let N.t/ be the number of 253

potential adopters. Some of the potential adopters adopt the innovation and become 254

real adopters. The equation for the he rate of growth of the real adopters n.t/, in 255

absence of time lag, is 256

dn.t/

dt
D ˛ŒN.t/ � n.t/� C ˇn.t/ŒN.t/ � n.t/� � �n.t/; (3.7)

where ˛ denotes the degree of external influence such as mass media, ˇ accounts 257

for the degree of internal influence by interpersonal contact between adopters and 258

the remaining population; � is a parameter characterizing the decline in the number 259

of adopters because of technology rejection for whatever reason. 260

A basic limitation in most models of innovation diffusion has been the assump- 261

tion of instantaneous acceptance of the new innovation by a potential adopter 262

(Mahajan and Peterson 1985; Bartholomew 1982). Often, in reality, there is a finite 263

time lag between the moment when a potential adopter hears about a new innovation 264

and the time of adoption. Such time lags usually are continuously distributed (May 265

1974; Lal et al. 1988). 266

Fig. 3.7 Schematic representation of a Lotka–Volterra model with time lag. The model accounts
for the time lag between hearing about innovation and its adoptionth
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The time lag between the knowledge about the innovation and its adoption can be 267

captured by a distributed time lag approach in which the effects of time delays are 268

expressed as a weighted response over a finite time interval through appropriately 269

chosen memory kernels (Karmeshu 1982) (see Fig. 3.7). Whence (3.7) becomes 270

dn.t/

dt
D ˛

Z t

0

d� K�
1 .t � �/ ŒN.�/ � n.�/� C

ˇ

Z t

0

d� K�
2 .t � �/n.�/ŒN.�/ � n.�/� � �

Z t

0

d� K�
3 .t � �/n.�/: (3.8)

Equation (3.8) reduces to (3.7) when the memory kernels K�
i .t/ (i D 1; 2; 3) are 271

replaced by delta functions. 272

Two generic types of kernels are usually considered (Lal et al. 1988): 273

K�.t/ D � e��t (3.9)

K�.t/ D �2t e��t ; (3.10)

in which ��1 is some characteristic time scale of the system. 274

The number of potential adopters N.t/ changes over time. Several possible 275

functional forms of N.t/ are used (Sharif and Ramanathan 1981): 276

N.t/ D N0.1 C at/I N0 > 0; a > 0 (3.11)

277

N.t/ D N0 expŒgt�I N0 > 0; g > 0 (3.12)
278

N.t/ D b

1 C d exp.�ct/
I b > 0; d > 0; c > 0 (3.13)

279
N.t/ D b � q exp.�rt/I b > 0; q > 0; r > 0: (3.14)

Equation (3.12) represents an approximation for short- and medium-term forecast- 280

ing since for t large, N.t/ grows without bound, as in Keynes (1930). Equations 281

(3.13) and (3.14) are useful in long-term forecasting as N.t/ has an upper limit. 282

Such forms for N.t/ are valid within a deterministic framework. 283

However, a stochastic framework (see below) is more appropriate when the 284

carrying capacity N.t/ is governed by some stochastic process, as when the 285

influence of socioeconomic and natural factors are subject to “random” or hardly 286

explainable fluctuations. In such systems, N.t/ can be time-dependent: for example, 287

N.t/ � N0.1 C � cos.!t// where � << 1 and the periodicity takes into account 288

the influence of some (strong) cyclic economic factors. In presence of a strong 289

stochastic component, N.t/ can be stochastic: N.t/ D N0 C �.t/, where the noisy 290

component is �.t/ and N0 is the average value of the so-called carrying capacity 291

(Odum 1959). 292

293
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Key point Nr. 7
Time lags between observations and decisions lead to complicated dynamics.
Perform some preliminary careful analysis of system behavior based on time
lags before making a decision.

3.3.3 Price Model of Knowledge Growth: Cycles of Growth 294

of Knowledge 295

The Price evolution model of scientific growth ignited intensive research 296

(Fernandez-Camo et al. 2004; Szydlowski and Krawiez 2001) (see Fig. 3.8). 297

This model is in fact a dialectical addition to Kuhn’s idea (Kuhn 1962) about 298

the revolutionary nature of science processes: after some period of evolutionary 299

Fig. 3.8 Diagram of relationships between Price model and its modifications. The presence of
time lags can lead to much complication in the evolution dynamics of a scientific fieldth
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growth, a scientific revolution occurs. Price considered the exponential growth as 300

a disease that retards the growth of stable science, producing narrower and less 301

flexible specialists. 302

Key point Nr. 8
An interesting result of the research of Price can be read as follows:
if a government wants to double the usefulness of science, it has to
multiply by about eight the gross number of workers and the total
expenditure of manpower and national income.

The unreserved application of the Price model faces several difficulties: 303

• Many scientific products which seem to be new are not really new 304

• Creativity and innovation can be confused (Plesk 1997; Amabile et al. 1996) 305

• Creative papers with new ideas and results have the same importance as trivial 306

duplications (Magyari-Beck 1984) 307

• Two things are omitted: 308

– Quality (whatever that means, but it is an economic notion) of research 309

– The cost or measure of complexity. 310

In answer to this, Price formulated the hypothesis that one should be studying only 311

the growth of important discoveries, inventions, and scientific laws, rather than 312

both important and trivial things. In so doing, one might expect that any of such 313

studied growth will follow the same pattern. 314

A generalized version of the Price model for the growth of a scientific field 315

(Szydlowski and Krawiez 2009; Price 1956) is based on the following assumptions: 316

(a) the growth is measured by the number of important publications appearing at a 317

given time; (b) the growth has a continuous character, though a finite time period 318

T D const is needed to build up a result of the fundamental character; (c) the inter- 319

actions between various scientific fields are neglected. If, in addition, the number 320

of scientists publishing results in this field is constant, then the rate of scientific 321

growth is proportional to the number of important publications at time t minus the 322

time period T required to build up a fundamental result. The model equation is 323

dx

dt
D ˛x.t � T /; (3.15)

where ˛ is a constant. The initial condition x.t/ D 	.t/ is defined on the interval 324

Œ�T; 0�. 325

Let the population of scientists be varying and consider the evolution of the 326

average number of papers per scientist. In general, instead of the linear right-hand 327

side (3.15), a non-linear model can be used: 328

dx

dt
D f .x.t � T /; x.t//; (3.16)
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where f .t �T / is a homogeneous function of degree one. The simplest form of such 329

a function is a linear function. Let n.t/ represent the rate of growth of the population 330

of scientists and write L.t/ D expŒn.t/ t �. For simplicity, let the population of 331

scientists grow at the constant rate n D 1
L

dL
dt

and let z D x=L. Then the evolution 332

of the number of papers written by a scientist has the form 333

d z

dt
D ˛z.t � T / � nz.t/: (3.17)

If n D 0 and T D 0, the Price model of exponential growth is recovered. Equa- 334

tion (3.17) is linear, but a cyclic behavior may appear because of the feedback 335

between the delayed and non-delayed terms. 336

3.3.4 Models Based on Three or Four Populations: Discrete 337

Models 338

(1) SIR (Susceptible-Infected-Removed) model (Fig. 3.9) 339

In 1927, Kermack and McKendrick (1927) created a model in which they considered 340

a fixed population with only three compartments: S.t/, the susceptibles; I.t/, the 341

infected; R.t/, the recovered, or removed. 342

Following this idea, Goffman (1966); Goffman and Newill (1964) considered 343

the stages of fast growth of scientific research in a scientific field as “intellectual 344

epidemics” and developed the corresponding scientific research epidemic stage 345

based on three classes of population: (i) the susceptibles S who can become 346

infectives when in contact with infectious material (the ideas); (ii) the infectives 347

I who host the infectious material; and (iii) the recovered R who are removed from 348

the epidemics for different reasons (Fig. 3.9). 349

Fig. 3.9 SIR (susceptibles S , infectives I , recovered R) model of intellectual infection with
influxes of susceptibles and infectives to the corresponding scientific ideasth
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The epidemic stage is controlled by the system of differential equations 350

dS

dt
D �ˇSI � ıS C �; (3.18)

dI

dt
D ˇSI � 
I C �; (3.19)

dR

dt
D ıS C 
I (3.20)

where � and � are the rates at which the new supply of susceptibles and infectives 351

enter the population. A necessary condition for the process to enter the epidemic 352

state is dI
dt

> 0. Then 353

S >

 � �=I

ˇ
D � (3.21)

is the threshold density of susceptibles, i.e., no epidemics can develop from time 354

t0 unless S0, the number of susceptibles at that time, exceeds the threshold �: the 355

epidemic state cannot be maintained over some time interval unless the number 356

of susceptibles is larger than � through that interval of time. As I increases, �=I 357

converges to 0 and � converges rapidly to 
=ˇ. 358

In Goffman (1966), Goffman evaluated the rate of change of infectives �I=�t . 359

From the system equations, it is difficult to determine I.t/. Yet in the epidemic 360

stage, the behaviour of I.t/ is exponential. For small t close to t0, I.t/ can be 361

expanded into a power series: I.t/ D C0 C C1t C C2t
2 C : : : Cntn C : : : such 362

that the approximate rate of �I=�t can be obtained. On the basis of this rate and 363

the raw data, the development and peak of some research activity can be predicted, – 364

under the assumption that the research is in an epidemic stage. 365

(2) SEIR model for the spreading of scientific ideas (Fig. 3.10) 366

The SIR epidemic models can be further refined by introducing a fourth class, E, 367

i.e., persons exposed to the corresponding scientific ideas (Fig. 3.10). Such models 368

are discussed in Bettencourt et al. (2008, 2006); they belong to the class of so-called 369

SEIR epidemic models. One typical model goes as follows 370

dS

dt
D 
N � ˇSI

N
I dE

dt
D ˇSI

N
� �E � �EI

N
I (3.22)

dI

dt
D �E C �EI

N
� 
I I dR

dt
D 
I (3.23)

where S.t/ is the size of the susceptible population at time t , E.t/ is the size of the 371

exposed class, I.t/ is the size of the infected class. These individuals have adopted 372

the new scientific idea in their publications. Finally, R.t/ is the size of the population 373

of recovered scientists, i.e., those who no longer publish on the topic. The size of the 374

entire population is: N D S CE CI CR. An exit term is assumed to be very small, 375

and because of this, t is included in the recovered class. N grows exponentially with 376
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Fig. 3.10 SEIR model of intellectual infection with influxes of susceptibles and infectives to the
corresponding scientific ideas, thus extending the SIR model by including a class of scientists
exposed (E) to the specific scientific ideasth
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rate 
. The parameters of the model are: ˇ, the probability and effectiveness of a 377

contact with an adopter; 1=�, the standard latency time, (in other words, the average 378

duration of time after one has been exposed but before one includes the new idea 379

in one’s own publication); 1=
 , the duration of the infectious period, thus how long 380

one publishes on the topic and teaches others; �, the probability that an exposed 381

person has multiple effective contacts with other adopters. 382

This simple model can incorporate a wide range of behaviors. For many values of 383

the parameters 
,ˇ, �, 
 and �, the infected class grows as a logistic curve. For large 384

values of the contact rate ˇ or recruitment 
, I.t/ grows nearly linearly, as indeed 385

has been found empirically for some research fields (Bettencourt et al. 2008). 386

Key point Nr. 9
Epidemic models are the best suited for describing the expansion stage of a
process growth.

(3) SI discrete model for the change in the number of authors 387

in a scientific field (Fig. 3.11) 388

With the goal of predicting the spreading out of scientific objects (such as theories 389

or methods), Nowakowska (1973) discussed several epidemic discrete models for 390

predicting changes in the number of publications and authors in a given scientific 391

field. With respect to the publications, the main assumption of the models is that the 392

number of publications in the next period of time (say, 1 year) will depend: (i) on the 393
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Fig. 3.11 Schema of a
discrete SI evolution model of
the number of authors of
scientific papers. The model
takes into account that several
scientists stop their work in a
scientific field; it can be due
to different reasons as for
example death or losing
interest in particular questions

Infectives
(x)

Susceptibles
(y)

Died or
recovered

SI discrete model for change of
number of publications in a

scientific field
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number of papers which recently appeared, and (ii) on the degree at which the sub- 394

ject has been exhausted. The numbers of publications appearing in successive peri- 395

ods of time should first increase, then would reach a maximum, and as the problem 396

becomes more and more exhausted, the number of publications would decrease. 397

Let it be assumed (Fig. 3.11) that if at a certain moment t the epidemics 398

state is (xt ; yt ) (xt is the number of infectives (authors who write papers on the 399

corresponding research problems), yt is the number of susceptibles), then for a 400

sufficiently short time interval �t , one may expect that the number of infectives 401

xtC�t will be equal to xt � axt �t C bxt yt �t , while the number of susceptibles 402

ytC�t will be equal to yt � bxtyt �t ; a and b being appropriate constants. Let 403

the expected number of individuals who either die or recover, during the interval 404

(t; t C �t), be axt �t , and let bxt yt �t be the expected number of new infections. 405

The equations of this model are: 406

xtC�t D axt � axt �t C bxt yt �t (3.24)

ytC�t D yt � bxt yt �t: (3.25)

Note here that such discrete models are useful for the analysis of realistic situations 407

where the values of the quantities are available at selected moments (every month, 408

every year, etc.). 409

(4) Daley discrete model for the population of papers (Fig. 3.12) 410

Daley (1967) investigated the spread of news as follows: individuals who have 411

not heard the news are susceptible and those who heard the news are infective. 412

Recovery is not possible, as it is assumed that the individuals have perfect memory 413

and never forget. The Daley model can be applied also to the population of papers 414

(Nowakowska 1973) (see Fig. 3.12). For �t D 1 (year), the Daley model equation 415

reads 416

xtC1 D bxt

 
N �

tX
iD1

xi

!
(3.26)



UNCORRECTED
PROOF

90 N.K. Vitanov and M.R. Ausloos

Fig. 3.12 Daley model for
evolution of population of
papers on problems in a
scientific field. The
exhausting of the scientific
field is taken into account
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where x1, x2 .... are the numbers of papers on the subject which appear in successive 417

periods of time, b and N being parameters. The expected number xtC1 of papers in 418

year t C 1 is proportional to the number xt of papers which appeared in year t , and 419

to the number N �x1 �x2 � � ��xt D N �Pt
iD1 xi . N is the number of papers which 420

have to appear in order to exhaust the problem: the problem under consideration 421

may be partitioned into N sub-problems, such that solving any of them is worth a 422

separate publication; these subproblems are solved successively by the scientists. 423

The b and N parameters may be estimated by the method of least squares, e.g. from 424

a given empirical histogram. A parameter characterizing the initial growth dynamics 425

in the number of publications can also be introduced: � D bN . Therefore, (3.26) 426

can be used for short-time prediction, even when the corresponding research field 427

is in the epidemic stage of its evolution. 428

(5) Discrete model coupling the populations of scientists and papers (Fig. 3.13) 429

A discrete model coupling the populations of scientists and papers can be considered 430

(Fig. 3.13); it depends on four parameters: N , a, b and c. N as above denotes the 431

number of sub-problems of the given problem; a is the probability that a scientist 432

working on the subject in a given year abandons research on the subject for whatever 433

reasons; b is the probability of obtaining a solution to a given subproblem by one 434

scientist during one year of research; c denotes the coefficient of attractiveness of the 435

subject. The basic variables of the model are: ut , the number of scientists working 436

on the subject in year t , and xt , the number of publications on the subject which 437

appear in year t . 438

The model equations are 439

utC1 D .1 � a/ut C cxt (3.27)

440
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Fig. 3.13 Discrete model for
the joint evolution of
populations of scientists and
papers. The attractiveness of
the field, the exhaustion of the
field, and the possibility for
declining interest for working
in the scientific field are taken
into account through adequate
rate parameters
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xtC1 D Œ1 � .1 � b/ut �

 
N �

tX
iD1

xi

!
: (3.28)

The equation for the number utC1 of scientists working on the subject in year t C 1 441

tells that in year t C1, the expected number of scientists working on the subject will 442

be the number of scientists working on the subject in year t , ut , minus the expected 443

number of scientists who stopped working on the subject, aut , plus the expected 444

number of scientists, cxt , who became attracted to the problem by reading papers 445

which appeared in year t . The equation expressing the number of publications in 446

year t C 1 tells us that xtC1 equals the number of subproblems that were solved in 447

the year t . The probability that a given subproblem will be solved in year t by a given 448

scientist equals b. Then the probability of the opposite event, i.e. a given scientist 449
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will not solve a particular problem, equals 1 � b. As there are ut scientists working 450

on the subject in year t , the probability that a given subproblem will not be solved 451

by any of them is .1 � b/ut . Consequently, the probability that a given subproblem 452

will be solved in year t (by any of the ut scientists working on the subject) is equal 453

to 1 � .1 � b/ut . Next, in year t there remained N � Pt
iD1 xi subproblems to be 454

solved. The expected number of subproblems solved in year t is equal to the product 455

which gives the right-hand side of (3.28). 456

N.B. It is assumed, that the waiting time for publishing of the paper is one year. 457

A more realistic picture would be to assume that the unit of time is not 1 year, but 2 458

years, or that the publication has some other time delay. 459

Key point Nr. 10
In many cases, the data is available as one value per week, or one value per
month, or one value per 3 months, etc. For modeling and subsequent short-
range forecasting, so-called discrete (time) models are thus very appropriate.

3.3.5 Continuous Models of the Joint Evolution of Scientific 460

Sub-Systems 461

(1) Coupled continuous model for the populations of scientists and papers: 462

Goffman–Newill model 463

The Goffman–Newill model (Goffman and Newill 1964) (Fig. 3.14) is based on 464

the idea that the spreading process within a population can be studied on the basis 465

of the literature produced by the members of that population. There is a transfer 466

of infectious materials (ideas) between humans by means of an intermediate host 467

(a written article). Let a scientific field be F and SF a sub-field of F . Let the number 468

of scientists writing papers in the field F at t0 be N0 and the number of scientists 469

writing papers in SF at t0 (the number of infectives) be I0. Thus, S0 D N0�I0 is the 470

number of susceptibles; there is no removal at t0, but there is removal R.t/ at later 471

times t . The number of papers produced on F at t0 is N 0
0 and the number of papers 472

produced in SF at this time is I 0
0. The process of intellectual infection is as follows: 473

(a) a member of F is infected by a paper from I 0; (b) after some latency period, 474

this infected member produces ‘infected’ papers in N 0, i.e. the infected member 475

produces a paper in the subfield SF citing a paper from I 0; (c) this ‘infected’ 476

paper may infect other scientists from F and its sub-fields, such that the intellectual 477

infection spreads from SF to the other sub-fields of F . 478

Let ˇ be the rate at which the susceptibles from class S become ‘intellectually 479

infected’ from class I . Let ˇ0 be the rate at which the papers in SF are cited by 480

members of N who are producing papers in SF . As the infection process develops, 481
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Fig. 3.14 Schema of Goffman–Newill model for the evolution of a scientific field. Scientists are
attracted to a sub-field after being intellectually infected by papers from the sub-fieldth
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some susceptibles and infectives are removed, i.e. some scientists are no longer 482

active, and some papers are not cited anymore. Let 
 and 
 0 be the rates of removal 483

of infectives from the populations I and I 0 respectively, and ı and ı0 be the rates of 484

removal from the populations of susceptibles S and S 0. In addition, there can be a 485

supply of infectives and susceptibles in N and N 0. Let the rates of introduction of 486

new susceptibles be � and �0, i.e. the rates at which the new authors and new papers 487

are introduced in F , and let the rates of introduction of new infectives be � and � 0, 488

i.e. the rates at which new authors and new papers are introduced in SF . In addition, 489

within a short time interval a susceptible can remain susceptible or can become 490

an infective or be removed; the infective can remain an infective or can become a 491

removal; and the removal remains a removed. The immunes remain immune and 492
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do not return to the population of susceptibles. If, in addition, the populations are 493

homogeneously mixed, the system of model equations reads 494

dS

dt
D �ˇSI 0 � ıS C �I dI

dt
D ˇSI 0 � 
I C � (3.29)

dR

dt
D 
I C ıS I dS 0

dt
D �ˇ0S 0I � ıS 0 C �0 (3.30)

dI 0

dt
D ˇ0S 0I � 
 0I 0 C � 0I dR0

dt
D 
 0I 0 C ı0S 0: (3.31)

The conditions for development of an epidemic are as follows. If as an initial 495

condition at t0, a single infective is introduced into the populations N0 and N 0
0, 496

then for an epidemic to develop, the change of the number of infectives must be 497

positive in both populations. Then, for � D 
��

ˇ
and �0 D 
 0�� 0

ˇ0
; the threshold for 498

the epidemic arises from the conditions ˇSI 0 > 
I � � and ˇ0S 0I 0 > 
 0I 0 � � 0, 499

such that the threshold is 500

S0S
0
0 > ��0: (3.32)

The development of epidemics is given by the equation dI
dt

D D.t/. The peaks of 501

the epidemic occur at time points where d2I
dt2 D 0, while the epidemic’s size is given 502

by I.t ! 1/. 503

(2) Bruckner–Ebeling–Scharnhorst model for the growth of n subfields 504

in a scientific field 505

The evolution of growth processes in a system of scientific fields can be modeled 506

by complex continuous evolution models. One of them, the Bruckner–Ebeling– 507

Scharnhorst approach (Bruckner et al. 1990) (Fig. 3.15), is closely related to several 508

generalizations of Eigen’s theory of prebiotic evolution and is briefly discussed 509

here (see also Ebeling et al. 2006). In 1912, Lotka (Lotka 1912) published the 510

idea of describing biological epidemic processes, like malaria, as well as chemical 511

oscillations, with the help of a set of differential equations. These equations, known 512

as Lotka–Volterra equations (Lotka 1925; Volterra 1927), are used to describe 513

a coupled growth process of populations. However, they do not reflect several 514

essential properties of evolutionary processes such as the creation of new structural 515

elements. Because of this, one has to consider a more general set of equations for 516

the change in the number xi of the scientists from the i th scientific subfield (a 517

Fisher–Eigen–Schuster kind of model), i.e., 518

dxi

dt
D .Ai � Di /xi C

nX
j D1Ij ¤i

.Aij xj � Aj ixi / C
nX

j D1Ij ¤i

Bij xi xj � k0xi ;

i; j D 1; : : : ; n: (3.33)

519
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Fig. 3.15 Schema of Bruckner–Ebeling–Scharnhorst model of evolution of n scientific sub-fields.
Self-reproduction and decline of subfields as well as field mobility are taken into accountth
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The model based on (3.33) describes the coupled growth of n subfields, of a 520

scientific discipline. Three fundamental processes of evolution are included in 521

(3.33) : (a) self-reproduction: students and young scientists join the field and 522

start working on corresponding problems. Their choice is influenced mainly by 523

the education process as well as by individual interests and by existing scientific 524

schools; (b) decline: scientists are active in science for a limited number of years. 525

For different reasons (for example, retirement) they stop working and leave the 526

system; (c) field mobility: individuals turn to other fields of research for various 527

reasons or maybe open up new ones themselves. 528

The reasoning to obtain (3.33) goes as follows. The general form of the law for 529

growth of the i th subfield is supposed to be 530

dxi

dt
D fi .x/; x D .x1; : : : ; xn/: (3.34)

By separation, fi D wi xi , one obtains the replicator equation 531

dxi

dt
D wi xi ; i D 1; 2; : : : ; n: (3.35)
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Notice that when wi D const, the fields are uncoupled, i.e., there is an exponential 532

growth in science. Otherwise, wi itself is a function of x and of various parameters, 533

but can be separated into three terms according to the above model assumptions, i.e., 534

wi D Ai � Di C
nX

j D1;j ¤i

�
Aij

xj

xi

� Aij

�
: (3.36)

Equation (3.33) is thus obtained from (3.35) and (3.36) for Bij D 0, k0 D 0. To adapt 535

this model to real growth processes, it can be assumed that the coefficients Ai , Di , 536

and Aij themselves are functions of xi : 537

Ai D A0
i C A1

i xi C : : : I Di D D0
i C D1

i xi C : : : I Aij D A0
ij C A1

ij xj C : : :

(3.37)

Each of the three fundamental processes of change is represented in (3.33) with a 538

linear and a quadratic term only. For example, the terms A1
i and D1

i account for 539

cooperative effects in self-reproduction and decline processes respectively, while 540

D0
i accounts for a decline, because of aging. The contributions A0

ij assume a linear 541

type of field mobility behavior for scientists analogous to a diffusion process. On 542

the other hand, the terms A1
ij represent a directed process of exchange of scientists 543

between fields. The best way to obtain these parameters is to estimate them for 544

specific data bases using the method of least squares. 545

Key point Nr. 11
The Bruckner–Ebeling–Scharnhorst model does not belong to the class of
epidemic models which are best applicable only for describing the expansion
stage of a process. The Bruckner–Ebeling–Scharnhorst model is an evolution
model: it describes all stages of the evolution of a system.

3.4 Small-Size Scientific and Technological Systems: 546

Stochastic Models (Fig. 3.16) 547

The movement of large bodies in mechanics is governed by deterministic laws. 548

When the body contains a small number of molecules and atoms, stochastic effects 549

such as the Brownian motion become important. In the area of scientific systems, 550

the fluctuations become very important when the number of scientists in a certain 551

research subfield is small. This is typical for new research fields with only a few 552

researching scientists. 553

Several examples of stochastic models for the description of the diffusion of 554

ideas or technology and the evolution of science are: (a) the model of evolution of 555
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Fig. 3.16 Hierarchy of
stochastic models discussed
in this chapter
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scientific disciplines with an example pertaining to the case of elementary particles 556

physics (Kot 1987); (b) stochastic models for the aging of scientific literature 557

(Glänzel and Schoepflin 1994); c) stochastic models of the Hirsch index (Burrell 558

2007) and of instabilities in evolutionary systems (Bruckner et al. 1989); (d) models 559

of implementation of technological innovations (Bruckner et al. 1996), etc. (Braun 560

et al. 1985). In the following, see Fig. 3.16, two probabilistic and two stochastic 561

models are discussed. Some attention is devoted to the master equation approach 562

as well. 563

3.4.1 Probabilistic SI and SEI Models 564

Epidemiological models of differential-equation-based compartmental type have 565

been found to be limited in their capacity to capture heterogeneities at the individual 566

level and in the interaction between individual epidemiological units (Chen and 567

Hicks 2004). This is one of the reasons to switch from models in which the number 568

of individuals are in given known states to models involving probabilities. One 569

such model (Kiss et al. 2000) captures the diffusion of topics over a network of 570

connections between scientific disciplines, as assigned by the ISI Web of Science’s 571

classification in terms of Subject Categories (SCs). Each SC is considered as a 572

node of a network along with all its directed and weighted connections to other 573

nodes or SCs (Kiss et al. 2000, 2005). As with epidemic models, nodes can be 574

characterized in a medical way. SCs that are susceptible (S ) are either not aware of 575

a particular research topic or, if aware, may not be ready to adopt it. Incubating SCs 576

(E) are those that are aware of a certain topic and have moved to do some research 577

on problems connected with this topic. Infected SCs (I ) are actively working and 578

publishing in a particular research topic. 579

Two probabilistic models, i.e., (i) the Susceptible-Exposed-Infected (SEI) model 580

(Fig. 3.17) and (ii) a simpler Susceptible-Infected (SI) model (Fig. 3.18), are thereby 581

only discussed. 582
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Fig. 3.17 Schema of the probabilistic SEI model for epidemics in a network connecting scientific
disciplinesth
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Fig. 3.18 Schema of the
probabilistic SI model for
epidemics in a network
connecting scientific
disciplines
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(1) Susceptible-Exposed-Infected (SEI) model 583

The SEI model equations for the evolution of the node state probabilities are given 584

by (Kiss et al. 2000): 585

dSi.t/

dt
D �

X
j

Aj i Ij .t/Si .t/; (3.38)

586
dEi.t/

dt
D
X

j

Aj iIj .t/Si .t/ � 
Ei .t/; (3.39)

587
dIi.t/

dt
D 
Ei.t/; (3.40)

where 0 � Ii .t/ � 1 denotes the probability of node i being infected at time 588

t (likewise for Si.t/ and Ei .t/). The directed and weighted contact network is 589

represented by Aij D r�ij with �ij = .wij /i;j D1;:::;N denoting the adjacency matrix 590

that includes weighted links; r is the transmission rate per contact and 1=
 is the 591

average incubation or latent period. 592

This set of equations states that an increase in the probability Ei of a node i being 593

exposed to an infection is directly proportional to the probability Si of node i being 594

susceptible and the probability Ij of neighbouring nodes j being infected. The 595

number of such contacts and the per-contact rate of transmission are incorporated 596

in Aij . Likewise, Ei decreases if exposed/infected nodes become infected after an 597

average incubation time 1=
 . The number of infected SCs at time t , according to 598

the model, can be estimated as I.t/ D P
i Ii .t/. Since Si.t/ C Ei .t/ C Ii .t/ D 1, 599

for each t > 0, (3.38)–(3.40) are readily understood, in view of (3.39). 600

(2) Susceptible-Infected (SI) model 601

The above SEI model can be simplified to an SI model when the possibility of an 602

exposed period is excluded, i.e,. if dEi .t/

dt
D 0. The equations for this simpler SEI 603

model are reduced to 604

dSi.t/

dt
D �

X
j

Aj iIj .t/Si .t/I dIi.t/

dt
D
X

j

Aj iIj .t/Si .t/; (3.41)

where the probability Ii of a node i being infected and infectious only depends 605

on the probability Si of the node i being susceptible. The comparison of both 606

models with available data shows (Kiss et al. 2000) that while the agreement at 607

the population level is usually much better for the SEI model, for the same pair of 608

parameters, the agreement at the individual level is better when the simpler SI model 609

is used. 610
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3.4.2 Master Equation Approach 611

(1) Stochastic evolution model with self-reproduction, decline, and 612

field mobility 613

There exists a high correlation between field mobility processes and the emergence 614

of new fields (Bruckner et al. 1990). This can be accounted for by a stochastic model 615

(see Fig. 3.19), in which the system at time t is characterized by a set of integers 616

N1; N2; : : : ; Ni ; : : : ; Nn, with Ni being, e.g., the number of scientists working in the 617

subfield i , which is considered now as a stochastic variable. The three fundamental 618

types of scientific change mentioned in the discussion of the Bruckner–Ebeling– 619

Scharnhorst model (see above) here correspond to three elementary stochastic 620

processes with three different transition probabilities: 621

(a) For self-reproduction, the transition probability is given by W.Ni C 1 j Ni/ D 622

A0
i Ni D A0

i Ni C A1
i Ni.Ni � 1/. 623

(b) The transition probability for decline is W.Ni � 1 j Ni/ D D0
i Ni C D1

i Ni 624

.Ni � 1/. 625

Fig. 3.19 Schema of the master equation model of evolution of scientific fields in presence of
self-reproduction, decline, and field mobilityth
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(c) The transition probability for field mobility is W.Ni C 1; Nj � 1 j Ni Nj / D 626

A0
ij Nj C A1

ij NiNj . 627

The probability density P.N1; : : : ; Ni ; Nj ; : : : ; t/ is given by the so-called master 628

equation 629

@P

@t
D WP (3.42)

which can be solved analytically only in some very special cases (van Kampen 630

1981). 631

(2) The master equation as a model of scientific productivity 632

The productivity factor is a very important ingredient in mathematically simu- 633

lating a scientific community evolution. One way to model such an evolution is 634

through a dynamic equation which takes into account the stochastic fluctuations 635

of scientific community members productivity (Romanov and Terekhov 1997) 636

Fig. 3.20 Schema of the
master equation model for
scientific productivityth
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(Fig. 3.20). The main processes of scientific community evolution accounted for 637

by this model are, beside the biological constraints (like the self-reproduction, 638

aging of scientists, and death), their departure from the field due to mobility or 639

abandon of research activities. Call a the age of an individual and let a scientific 640

productivity index � be in incorporated into the individual state space; both a and � 641

are being considered to be continuous variables with values in Œ0; 1�. The scientific 642

community dynamics is described by a number density function n.a; �; t/, – another 643

form of scientific landscape, which specifies the age and productivity structure of 644

the scientific community at time t . For example, the number of individuals with 645

age in Œa1; a2� and scientific productivity in Œ�1; �2� at time t is given by the integral 646R a2

a1

R �2

�1
da d� n.a; �; t/. 647

A master equation for this function n.a; �; t/ can be derived (Romanov and 648

Terekhov 1997): 649

�
@

@a
C @

@t

�
n.a; �; t/ D �ŒJ.a; �; t/ C w.a; �; t/� n.a; �; t/ C

Z �

�1
d� 0 �.a; � � � 0; t/ n.a; � � � 0; t/; (3.43)

where w.a; �; t/ denotes the departure rate of community members. If x.t/ is a 650

random process describing the scientific productivity variation and if pa.x; t j y; �/ 651

(with � < t) is the transition probability density corresponding to such a process, 652

then 653

�.a; �; � 0; t/ D lim
�t!0

pa.� C � 0; t C �t j �; t/

�t
: (3.44)

The transition rate, at time t from the productivity level �, J.a; �; t/ is by definition: 654

J.a; �; t/ D R1
��

d� 0 �.a; �; � 0; t/. The increment � 0 may be positive or negative. 655

The balance equation for n.a; �; t/ reads as follows 656

n.a C �a; �; t C �t/ D n.a; �; t/ � J.a; �; t/ n.a; �; t/ �t

C
"Z �

�1
�.a; � � � 0; t/ n.a; � � � 0; t/d� 0

#
�t � w.a; �; t/ n.a; �; t/ �t: (3.45)

The term on the right-hand side, Œ1�J.a; �; t/�t�n.a; �; t/, describes the proportion 657

of individuals whose scientific productivity does not change in [t; t C �t]; the 658

integral term describes the individuals whose scientific productivity becomes equal 659

to � because of increasing or decreasing in [t; t C �t]; the last term corresponds 660

to the departure of individuals due to stopping research activities or death. After 661

expanding n.a C �t; �; t C �t/ around a and t , keeping terms up to the first order 662

in �t , one obtains the master equation (3.43). 663

As the master equation is difficult to handle for an elaborate analysis, it is 664

often reduced to an approximated equation similar to the well-known Fokker– 665

Planck equation (Risken 1984; Hänggi and Thomas 1982; Gardiner 1983). The 666

approximation goes as follows. Let 667
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�k.a; �; t/ D
Z 1

��

d� 0.� 0/k�.a; �; � 0; t/ D lim
�t!0

1

�t
< .� 0/k >I k D 1; 2; : : : ;

(3.46)
where the brackets denote the average with respect to the conditional probability 668

density pa.� C � 0; t C �t j �; t/. In addition, the following assumptions are made: 669

(i) �1; �2 < 1; �k D 0 for k > 3; (ii) n.a; �; t/ and �.a; �; � 0; t/ are analytic in 670

� for all a, t and � 0. The additional assumption �k D 0 for k > 3 demands the 671

productivity to be continuous in the sense that as �t ! 0, the probability of large 672

fluctuations j � 0 j must decrease so quickly that <j � 0 j3>! 0 more quickly than �t . 673

When the above assumptions hold, the function n satisfies the equation 674

(Romanov and Terekhov 1997): 675

�
@

@a
C @

@t

�
n D �@.�1n/

@�
C 1

2

@2.�2n/

@�2
� wn: (3.47)

If w D 0, (3.47) is converted to the well known Fokker–Planck equation. (3.47) 676

describes the scientific community evolution through a drift along the age com- 677

ponent and a drift and diffusion with respect to the productivity component. 678

The diffusion term characterized by the diffusivity �2 takes into account the 679

stochastic fluctuations of scientific productivity conditioned by internal factors 680

(such as individual abilities, labour motivations, etc.) and external factors (such 681

as labor organization, stimulation system, etc.). The initial and boundary condi- 682

tions for (3.47) are: (a) n.a; �; 0/ D n0.a; �/, where n0.a; �/ is a known function 683

defining the community age and productivity distribution at time t D 0; and (b) 684

n.0; �; t/ D �.�; t/ where the function �.�; t/ represents the intensity of input flow of 685

new members at age a D 0 being set �.�; 0/ D n0.0; �/. In addition, n.a; �; t/ ! 0 686

as a ! 1. 687

The general solution of equation (3.47) with the above initial condition (a) 688

and boundary condition (b) is still a difficult task. However, for many practical 689

applications, a knowledge of first and second moments of distribution function 690

n.a; �; t/ is sufficient. Equation (3.47) can be solved numerically or can be reduced 691

to a system of ordinary differential equations (Romanov and Terekhov 1997). 692

Finally, two additional problems that can be treated by the master equation 693

approach can be mentioned: 694

• Age-dependent models where the birth and death rates connected to the selection 695

are age-dependent (Ebeling et al. 1986, 1990) 696

• The problem of new species in evolving networks (Ebeling et al. 2006). On 697

the basis of a stochastic treatment of the problem, the notion of ‘innovation’ 698

can be introduced in a broad sense as a disturbance and/or an instability of a 699

corresponding social, technological, or scientific system. The fate of a small 700

number of individuals of a new species in a biological system can be thought 701

to be mathematically equivalent to some extent to the fate of a new idea, a new 702

technology, or a new model of behavior. The evolution of the new species can 703

be studied on evolving networks, where some nodes can disappear and new 704
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nodes can be introduced. This evolution of the network can change significantly 705

the dynamic behavior of the entire system of interacting species itself. Some of 706

the species can vanish in a finite time. This feature can be captured effectively 707

by the master equation approach. 708

Key point Nr. 12
In deterministic cases, the system is robust against fluctuations: it follows
some trajectory and the fluctuations are too weak to change it. When
the fluctuations are important, then different trajectories for the evolution
of the system become possible. To each trajectory, a probability can be
assigned. This probability reflects the chance that the system will follow
the corresponding trajectory. The collection of the probabilities leads to a
probability distribution which can be calculated, in many evolutionary cases,
on the basis of the master equation approach.

3.5 Space-Time Models: Competition of Ideas – Ideological 709

Struggle 710

A further level of complication is to include spatial variables explicitly in the above 711

models describing the diffusion of ideas. At this stage of globalization of economies, 712

with several of its concomitant features, like idea, knowledge, and technology 713

diffusion, to consider the spatial aspect is clearly a must. A large amount of research 714

on the spatial aspects of diffusion of populations is already available. As examples 715

of early work, papers by Kerner (1959); Allen (1975); Okubo (1980), and Willson 716

and de Roos (1993) can be pointed out. From the point of view of diffusion of 717

ideas and scientists, the previously discussed continuous model of research mobility 718

(Bruckner et al. 1990) has to be singled out. Moreover, the model presented below is 719

closely connected to the space-time models of migration of populations developed 720

by Vitanov and co-authors (Vitanov et al. 2009a,b). In addition, a reproduction- 721

transport equation model (see Fig. 3.21) can be discussed. 722

3.5.1 Model of Competition Between Ideologies 723

The diffusion of ideas is necessarily accompanied by competition processes. One 724

model of competition between systems of ideas (ideologies) goes as follows 725

(Fig. 3.22). Let a population of N individuals occupy a two-dimensional plane. 726

Suppose that there exists a set of ideas or ideologies P D fP0; P1; : : : ; Png and 727

let Ni members of the population be followers of the Pi ideology. The members N0 728
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Fig. 3.21 Relations between
space-time models discussed
in this chapter
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Fig. 3.22 Schema of the space-time model for describing competition between ideologiesth
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of the class P0 are not supporters of any ideology; in some sense, they have their 729

own individual one and do not wish to be considered associated with another one, 730

global or not. In such a way, the population is divided in n C 1 sub-populations of 731

followers of different ideologies. The total population is: N D N0 C N1 C : : : Nn. 732
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Let a small region �S D �x�y be selected in the plane. In this region there are 733

�Ni individuals holding the i th ideology, i D 0; 1; : : : ; n. If �S is sufficiently 734

small, the density of the i th population can be defined as �i .x; y; t/ D �Ni

�S
. 735

Allow the members of the i th population to move through the borders of the 736

area �S . Let ji .x; y; t/ be the current of this movement. Then .ji � n/ıl is the net 737

number of members of the i th population/ideology, crossing a small line ıl with 738

normal vector n. Let the changes be summarized by the function Ci .x; y; t/. The 739

total change of the number of members of the i th population is 740

@�i

@t
C divji D Ci : (3.48)

The first term in (3.48) describes the net rate of increase of the density of the i th 741

population. The second term describes the net rate of immigration into the area. The 742

r.h.s. of (3.48) describes the net rate of increase exclusive of immigration. 743

Let us now specify ji and Ci : ji is assumed to be made of a non-diffusion part j.1/
i 744

and a diffusion part j.2/
i where j.2/

i is assumed to have the general form of a linear 745

multicomponent diffusion (Kerner 1959) in terms of a diffusion coefficient Dik 746

ji D j.1/
I C j.2/

2 D j.1/
i �

nX
kD0

Dik.�i ; �k; x; y; t/r�k : (3.49)

Let some of the followers of the ideology Pi be capable of and interested in changing 747

ideology: i.e., they can convert from the ideology Pi to the ideology Pj . It can be 748

assumed that the following processes can happen with respect to the members of 749

the subpopulations of the property holders: (a) deaths: described by a term ri �i . 750

It is assumed that the number of deaths in the i th population is proportional 751

to its population density. In general ri D ri .��; x; y; t I p�/, where �� stands 752

for (�0; �1; : : : ; �N ) and p� stands for .p1; : : : ; pM / containing parameters of the 753

environment; (b) non-contact conversion: in this class are included all conversions 754

exclusive of the conversions by interpersonal contact between the members of 755

whatever populations. A reason for non-contact conversion can be the existence of 756

different kinds of mass communication media which make propaganda for whatever 757

ideologies. As a result, members of each population can change ideology. For the 758

i th population, the change in the number of members is:
Pn

j D0 fij �j , fii D 0. 759

In general, fij D fij .��; x; y; t I p�/; (c) contact conversion: it is assumed that 760

there can be interpersonal contacts among the population members. The contacts 761

happen between members in groups consisting of two members (binary contacts), 762

three members (ternary contacts), four members, etc. As a result of the contacts, 763

members of each population can change their ideology. For binary contacts, let 764

it be assumed that the change of ideology probability for a member of the j th 765

population is proportional to the possible number of contacts, i.e., to the density 766

of the i th population. Then the total number of “conversions” from Pj to Pi 767

is aij �i �j , where aij is a parameter. In order to have a ternary contact, one 768
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must have a group of three members. The most simple is to assume that such 769

a group exists with a probability proportional to the corresponding densities of 770

the concerned populations. In a ternary contact between members of the i th, j th, 771

and kth population, members of the j th and kth populations can change their 772

ideology according to Pi = bijk�i �j �k , where bijk is a parameter. In general, 773

aij D aij .��; x; y; t I p�/; bijk D bijk.�� ; x; y; t I p�/; etc. 774

On the basis of the above, the Ci term looks as follows (for more research of 775

these types of population models see (Dimitrova and Vitanov 2000, 2001a,b)): 776

Ci D ri�i C
nX

j D0

fij �j C
nX

j D0

aij �i �j C
nX

j;kD0

bijk�i �j �k C : : : ; (3.50)

and the model system of equations becomes 777

@�i

@t
C divj.1/

i �
nX

j D0

div.Dij r�j / D ri�i C
nX

j D0

fij �j

C
nX

j D0

aij �i �j C
nX

j;kD0

bijk�i �j �k C : : : (3.51)

The density of the entire population is � D Pn
iD0 �i . It can be assumed that it 778

changes in time according to the Verhulst law (but see the note after (3.56)!) 779

@�

@t
D r�

�
1 � �

C

�
(3.52)

where C.��; x; y; t I p�/ is the so-called carrying capacity of the environment 780

(Odum 1959) and r.��; x; y; t I p�/ is a positive or negative growth rate. When 781

pertinent sociological data are available, the same type of equation could hold for 782

any i th population with a given ri . 783

First, consider the case in which the current j.i/
i is negligible, i.e., j.i/

i � 0 (no 784

diffusion approximation). In addition, consider only the case when all parameters 785

are constants. The model system of equations becomes 786

@�i

@t
� Dij

nX
j D0

��j D ri �i C
nX

j D0

fij �j C
nX

j D0

aij �i �j

C
nX

j;kD0

bijk�i �j �k C : : : ; (3.53)

for 787

� D @2

@x2
C @2

@y2
; i D 0; 1; 2; : : : ; n: (3.54)
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Let plane-averaged quantities and fluctuations (linear or nonlinear) be enough 788

relevant. Let q.x; y; t/ be a quantity defined in an area S . By definition, a plane- 789

averaged quantity is q D 1
S

R R
S

dxdy q.x; y; t/. Call the fluctuations Q.x; y; t/ 790

such that q.x; y; t/ D q.t/ C Q.x; y; t/. If the territory is large and within the 791

stationary approximation, S can be assumed to be large enough such that each 792

plane-averaged combination of fluctuations vanishes, such that Qi D Qi Qj D 793

QiQj Qk D � � � D 0. In addition to S being large and
R R

S
dxdy�Qk assumed to 794

be finite, it can be also assumed that �Qk D 1
S

R R
S dxdy�Qk ! 0. 795

On the basis of the above (reasonable) assumptions, it is possible to separate 796

the dynamics of the averaged quantities from the dynamics of fluctuations. As a 797

result of the plane-average of (3.53), the following equations for the dynamics of 798

the plane-averaged densities are obtained 799

�0 D � �
nX

iD1

�i I
d�

dt
D r�

�
1 � �

C

�
(3.55)

800

d�i

dt
D ri�i C

nX
j D0

fij �j C
nX

j D0

aij �i �j C
nX

j;kD0

bijk�i �j �k C : : : (3.56)

Instead of (3.55) we can write an equation for �0 from the kind of (3.56). Then the 801

total population density � will not follow the Verhulst law. 802

Equations (3.55) and (3.56) represent the model of ideological struggle pro- 803

posed by Vitanov et al. (2010). There is one important difference between the 804

Lotka–Volterra models (Lotka 1912; Volterra 1927), often used for describing prey- 805

predator systems, and the above model of ideological struggle. The originality 806

resides in the generalization of usual prey-predator models to the case in which 807

a prey (or predator) changes its state and becomes a member of the predator pack 808

(or prey band), due to some interaction with its environment or with some other prey 809

or predator. Indeed, it can be hard for rabbits and foxes to do so, but it can be often 810

the case in a society: a member of one population can drop his/her ideology and can 811

convert to another one. 812

In order to show the relevance of such extra conditions on an evolution of 813

populations, consider a huge (mathematical) approximation – it might be a drastic 814

one in particular in a country with a strictly growing total population. (Recall that 815

the growth rate r could be positive or negative or time-dependent). Let r be > 0 816

and let the maximum possible population of the country be C . Consider more 817

convenient notations by setting � D N ; �0 D N0; �i D Ni and assume that the 818

binary contact conversion is much stronger than the ternary, etc. conversions. The 819

system equations become 820

N D N0 C
nX

iD1

Ni I dN

dt
D rN

�
1 � N

C

�
(3.57)

821
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dNi

dt
D ri Ni C

nX
j D0

fij Nj C
nX

j D0

bij Ni Nj : (3.58)

Reduce the discussion of (3.57) and (3.58) to a society in which there is the 822

spreading of only one ideology; therefore, the population of the country is divided 823

into two groups: N1, followers of the “invading” ideology and N0, people who are 824

at first “indifferent” to this ideology. Let only the non-contact conversion scheme 825

exist, as possibly moving the ideology-free population toward the single ideology; 826

thus f10 is finite, but b10 D 0. Let the initial conditions be N.t D 0/ D N.0/ and 827

N1.t D 0/ D N1.0/. The solution of the system of model equations is 828

N.t/ D CN.0/

N.0/ C .C � N.0//e�rt
; (3.59)

like the Verhulst law, but 829

N1.t/ D e�.f10�r1/t

�
N1.0/ C Cf10

r

�
˚

�
� C � N.0/

N.0/
; 1; �f10 � r1

r

�

�e.f10�r1/t˚

�
� C � N.0/

N.0/ert
; 1; �f10 � r1

r

��	
(3.60)

with 830

N0.t/ D N.t/ � N1.t/ (3.61)

in which ˚ is the special function ˚.z; a; v/ D P1
nD0

zn

.vCn/a ; j z j< 1. 831

The obtained solution describes an evolution in which the total population N 832

reaches asymptotically the carrying capacity C of the environment. The number 833

of adepts of the ideology reaches an equilibrium value which corresponds to the 834

fixed point ON1 D Cf10=.f10 � r1/ of the model equation for dN1

dt
. The number of 835

people who are not followers of the ideology asymptotically tends to N0 D C � ON1. 836

Let C D 1, f10 D 0:03, and r1 D �0:02, then ON1 D 0:6, which means that the 837

evolution of the system leads to an asymptotic state in which 60% of the population 838

are followers of the ideology and 40% are not. 839

Other more complex cases with several competing ideologies can be discussed, 840

observing steady states or/and cycles (with different values of the time intervals 841

for each growth or/and decay), chaotic behaviors, etc. (Vitanov et al. 2010). 842

In particular, it can be shown that accepting a slight change in the conditions 843

of the environment can prevent the extinction of some ideology. After almost 844

collapsing, some ideology can spread again and can affect a significant part of 845

the country’s population. Two kinds of such resurrection effects have been found 846

and described as phoenix effects in the case of two competing ideologies. In the 847

phoenix effect of the first kind, the equilibrium state connected to the extinction 848

of the second ideology exists but is unstable. In the phoenix effect of the so-called 849

second kind, the equilibrium state connected to extinction of the second ideology 850
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vanishes. In fine, the above model seems powerful enough to discuss many realistic 851

cases. The number of control parameters seems huge, but that is the case for many 852

competing epidemics in complex systems. However, it was observed that the values 853

of parameters can be monitored when enough data is available, including the time 854

scales (Vitanov et al. 2010). 855

Key point Nr. 13
Space-time models are very appropriate for modeling migration processes
such as the spatial migration of scientists, besides the diffusion of ideas
through competition without strictly physical motion.

3.5.2 Continuous Model of Evolution of Scientific Subfields: 856

Reproduction-Transport Equation 857

The change of subject of a scientist can be considered as a migration 858

process (Bruckner et al. 1990; Ebeling and Scharnhorst 2000). Let research 859

problems be represented by sequences of signal words or macro-terms Pi D 860

.m1
i ; m2

i ; : : : ; mk
i ; : : : ; mn

i / which are registered according to the frequency of their 861

appearance, joint appearance, etc., respectively, in the texts. Each point of the 862

problem space, described by a vector q, corresponds to a research problem, with 863

the problem space consisting of all scientific problems (no matter whether they 864

are under investigation or not). The scientists distribute themselves over the space 865

of scientific problems with density x.q; t/. Thus, there is a number x.q; t/dq 866

working at time t in the element dq. The field mobility processes correspond to a 867

density change of scientists in the problem space: instead of working on problem q, 868

a scientist may begin to work on problem q0. As a result, x.q; t/ decreases and 869

x.q0; t/ increases. This movement of scientists (see also Fig. 3.23) can be described 870

by means of the following reproduction-transport-equation: 871

@x.q; t/

@t
D x.q; t/ w.q j x/ C @

@q

�
f .q; x/ C D.q/

@x.q; t/

@q

�
: (3.62)

In (3.62), self-reproduction and decline are represented by the term w.q j x/ x.q; t/. 872

For the reproduction rate function w.q j x/, one can write 873

w.q j x/ D a.q/ C
Z

dq0 b.q; q0/ x.q0; t/: (3.63)

The local value of a.q/ is an expression of the rate at which the number of scientists 874

on field q is modified through self-reproduction and/or decline, while b.q; q0/ 875

describes the influence exerted on the field q by the neighbouring field q0. The field 876
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Fig. 3.23 Schema of the reproduction-transport equation model of joint evolution of scientific
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mobility is modeled by means of the term @
@q

�
f .q; x/ C D.q/ @

@q x.q; t/
�

. In most 877

cases, (3.62) can only be solved numerically. For more details on the model, see 878

Bruckner et al. (1990). 879

3.6 Statistical Approaches to the Diffusion of Knowledge 880

Solomon and Richmond (2001, 2002) have shown that the systems of generalized 881

Lotka–Volterra equations are closely connected to the Pareto–Zipf probability 882

distribution. Since such a distribution arises among other distributions and laws 883

connected to the description of the diffusion of knowledge, it is of interest to discuss 884

briefly the diffusion of knowledge within statistical approach studies. Lotka was its 885

pioneer; a large amount of research has followed. Just as examples, one can mention 886

the work of Yablonsky and Haitun on the Lotka law for the distribution of scientific 887
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Fig. 3.24 Statistical laws and their relationships as discussed in the chapterth
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productivity and its connection with the Yule distribution (Yablonsky 1980, 1985; 888

Haitun 1982), where the non-Gaussian nature of the scientific activities is empha- 889

sized. Interesting applications of the Zipf law are also presented in (Li 2002). The 890

connection to the non-Gaussian distributions concepts of self-similarity and fractu- 891

ality have been applied to the scientific system in (Katz 1999) and (van Raan 2000). 892

Several tools for appropriate statistical analysis are hereby discussed. At the center 893

of the discussion Lotka law shall receive some special attention (see Fig. 3.24).3 894

As part of this discussion on the statistical approach, the analysis of the 895

productivity of scientists can be considered. The information connected to new 896

ideas is thought to be often codified in scientific papers. Thus, the statistical aspects 897

of scientific productivity is of practical importance. For example, the Lotka law 898

reflects the distribution of publications over the set of authors considered as the 899

information sources. Bradford law describes the distribution of papers on a given 900

topic over the set of journals publishing these papers and ranked according to the 901

order in the decrease of the number of papers on a given topic in each journal. These 902

laws have a non-Gaussian nature and, because of this, possess specific features such 903

as a concentration and dispersal effect (Yablonsky 1980): for example, it is found 904

3Let us mention a curious and interesting fact connected to statistical indicators. Very interesting is
the conclusion in Gao and Guan (2009) that the scale-independent indicators show that in the fast
growing innovation system of China, research institutions financed by the government play a more
important role than the enterprises.
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that there is a small number of highly productive scientists who write most of the 905

papers on a given topic and, on the other hand, a large number of scientists with low 906

productivity. 907

In order to give an example of the connection between the deterministic and 908

statistical approaches, remember that the Goffman–Newill model, discussed here 909

above, presents a connection between the number of scientists working in a research 910

area and the number of relevant publications. In Bettencourt et al. (2008), it was 911

found that the number of new publications scale as a simple power law with the 912

corresponding number of new authors: �P D C.�T /˛ where �P and �T are the 913

new publications and the new authors over some time period (for an example 1 year). 914

C is a normalization constant, and ˛ is a scaling exponent. It has been demonstrated 915

(Bettencourt et al. 2008) that the latter relationship provides a very good fit to data 916

for six different research fields, but with different values of the scaling exponent ˛. 917

For ˛ > 1, a field would grow by showing an increase in the number of publications 918

per capita, i.e., in such a research field, the individual productivity increases as 919

the field attracts new scientists. A field with ˛ < 1 has a per capita decrease in 920

productivity. This can be a warning signal for a dying subject matter. It would be 921

interesting to observe whether the exponent ˛ is time-dependent, as is the case 922

in related characterizing scaling exponents of financial markets (Vandewalle and 923

Ausloos 1997) or in meteorology (Ivanova and Ausloos 1999). Policy control can 924

thus be implemented for shaking ˛, thus the field mobility. 925

Key point Nr. 14
There exist two different kinds of statistical approaches for the analysis of
scientific productivity: (i) the frequency approach and (ii) the rank approach.
The frequency approach is based on the direct statistical counting of the
number of corresponding information sources, such as scientists or journals.
The rank approach is based on a ranking of the sources with respect to their
productivity. The frequency and the rank approaches represent different and
complementary reflections of the same law and form.

3.6.1 Lotka Law: Distributions of Pareto and Yule 926

Pareto (Chen et al. 1993) formulated the 80/20 rule: it can be expected that 20% of 927

people will have 80% of the wealth. Or it can be expected that 80% of the citations 928

refer to a core of 20% of the titles in journals. The idea of the rule of Pareto is very 929

close to the research of Lotka who noticed the following dependence for the number 930

of scientists nk who wrote k papers 931

nk D n1

k2
I k D 1; 2; : : : ; kmax: (3.64)
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In (3.64), n1 is the number of scientists who wrote just one paper and kmax is the 932

maximal productivity of a scientist. 933

kmaxX
kD1

nk D n1

kmaxX
kD1

1

k2
D N (3.65)

where N is the total number of scientists. If we assume that kmax ! 1 and take 934

into account the fact that
P1

kD1 1=k2 D �=6, we obtain a limiting value for the 935

portion of scientists with the minimal productivity (single paper authors) in the given 936

population of authors: P1 D n1=N � 0:6. Then, if the left and the right hand sides 937

of (3.64) are divided by N, the frequency expression for the productivity distribution 938

is: p1 D 0:6=k2;
P1

kD1 pk D 1. Equation (3.64) is called Lotka law, or the law of 939

inverse squares: the number of scientists who wrote a given number of papers is 940

inversely proportional to the square of this number of papers. 941

It must be noted that, like many other statistical regularities, Lotka law is 942

valid only on the average since the exponent in the denominator of (3.64) is not 943

necessarily equal to two (Yablonsky 1980). Thus, Lotka law should be considered 944

as the most typical among a more general family of distributions: 945

nk D n1

k1C˛
I p1 D p1

k1C˛
(3.66)

where ˛ is the characteristic exponent of the distribution, n1 is the normalizing 946

coefficient which is determined as follows: 947

p1 D n1

N
D
 

kmaxX
kD1

1

1 C k˛

!�1

: (3.67)

Then the distribution of scientific output, (3.66), is determined by three parame- 948

ters: the proportion of scientists with the minimal productivity p1, the maximal 949

productivity of a scientist kmax , and the characteristic exponent ˛. If one of these 950

parameters is fixed, it is possible to study the dependence between two others. Let 951

us fix kmax in (3.67). Then, we obtain the proportion of “single paper authors” p1 as 952

a function of ˛: p1.˛/. When (3.67) is differentiated with respect to ˛, one can show 953

that the corresponding derivative is positive for any ˛ : dp1.˛/=d˛ > 0. On the basis 954

of a similar analysis of the portion of scientists with a larger productivity pk.˛/ as 955

a function of ˛, we arrive at the conclusion: the increase of ˛ is accompanied by 956

the increase of low-productivity scientists. This means that when the total number 957

of scientists is preserved the portion of highly productive scientists will decrease. 958

Let us show that the Lotka law is an asymptotic expression for the Yule 959

distribution. In order to obtain the Yule distribution, one considers the process of 960

formation of a collection of publications as a Markov-type stochastic process. In 961

addition, it is assumed that the probability of writing a new paper depends on the 962

number of papers that have been already written by the scientist at time t : the 963
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probability of the transition into a new state on the interval Œt; t C �t� should be 964

a function of the state in which the system is at time t . Moreover, the probability of 965

publishing a new paper during a time interval �t; p.x ! x C 1; �t/ is assumed to 966

be proportional to the number x of papers that have been written by the scientists, 967

introducing an intensity coefficient 
: p.x ! x C 1; �t/ / 
x�t . After solving 968

the corresponding system of differential equations for this process, the following 969

expression (the Yule distribution) for the probability p.x=t/ of a scientist writing x 970

papers during a time t is obtained (Yablonsky 1980): 971

p.x=t/ D exp.�
t/.1 � exp.�
t//x�1; x D 1; 2 : : : (3.68)

The mean value of the Yule distribution is xt D exp.
t/. Let us take into account the 972

fact that every scientist works on a given subject during a certain finite random time 973

interval Œ0; t � which depends on the scientist’s creative potential, the conditions for 974

work, etc. With the simplest assumption that the probability of discontinuing work 975

on a given subject is constant at any time, one obtains an exponential distribution 976

for the time of work of any author in the scientific field under study: p.t/ D 977

� exp.��t/, where � is the distribution parameter. The time parameter t which 978

characterizes the productivity distribution, (3.68), is a random number. Then in 979

order to obtain the final distribution of scientific output observed in the experiment 980

over sufficiently large time intervals, (3.68) should be averaged with respect to this 981

parameter t which is distributed according to the exponential law: 982

p.x/ D
Z 1

0

dt p.x=t/p.t/ D
Z 1

0

dt exp.�
t/.1 � exp.�
t//� exp.��t/:

(3.69)
After integrating (3.69), the distribution of scientific output reads 983

p.x/ D �



B
�
x;

�



C 1

�
D ˛B.x; ˛ C 1/; x D 1; 2; : : : (3.70)

where B.x; ˛ C 1/ D � .x/� .˛x C 1/=� .x C ˛ C 1/ is a Beta-function, � .x/ � 984

.x � 1/Š is a Gamma-function, and ˛ D �=
 is the characteristic exponent. For 985

instance, if ˛ � 1 then p.x/ D 1=Œx.x C 1/�. Let us assume that x ! 1 and 986

apply the Stirling formula. Thus, the asymptotics of the Yule distribution (3.70) is 987

like Lotka law (3.66) (up to a normalizing constant): p.x/ / � .˛ C 1/˛=x1C˛. 988

3.6.2 Pareto Distribution, Zipf–Mandelbrot and Bradford Laws 989

For large enough values of the total number of scientists and the total number of 990

publications, we can make the transition from discrete to continuous representation 991

of the corresponding variables and laws. The continuous analog of Lotka law, (3.66), 992

is the Pareto distribution 993
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p.x/ D ˛

x0

�x0

x

�˛C1 I x � x0I ˛ > 0 (3.71)

which describes the distribution density for a number of scientists with x papers; x0 994

is the minimal productivity x0 << x << 1, a continuous quantity. 995

Zipf law is connected to the principle of least effort (Zipf 1949): a person will 996

try to solve his problems in such a way as to minimize the total work that he 997

must do in the solution process. For example, to express with many words what 998

can be expressed with a few is meaningless. Thus, it is important to summarize an 999

article using a small number of meaningful words. Bradford law for the scattering 1000

of articles over different journals is connected to the success-breeds-success (SBS) 1001

principle (Price 1976): success in the past increases chances for some success in the 1002

future. For example, a journal that has been frequently consulted for some purpose 1003

is more likely to be read again, rather than one of previously infrequent use. 1004

In order to obtain the law of Zipf–Mandelbrot, we start from the following 1005

version of Lotka law : nx D C=.1 C x/1C˛ , where x is the scientist’s productivity, 1006

˛ is a characteristic exponent, C is a constant which in most cases is equal to the 1007

number of authors with the minimal productivity x D 1, i.e., to n1. On the basis 1008

of this formula, the number of scientists r who are characterized by productivity 1009

xr < x < kmax (kmax is the maximal productivity of a scientist) reads 1010

r D
kmaxX
xDxr

nr � C

Z kmax

xr

dx

x1C˛
D C

˛

�
1

x˛
r

� 1

k˛
max

�
: (3.72)

Depending on the value of xr , r can have values 1; 2; 3; : : : and in such a way the 1011

scientists can be ranked. If all scientists of a scientific community working on the 1012

same topic are ranked in the order of the decrease of their productivity, the place of 1013

a scientist who has written xr papers will be determined by his/her rank r . When 1014

the productivity of a scientist xr is found from (3.72) as a function of rank r , the 1015

relationship 1016

xr D
�

A

r C B

�


I A D .C=˛/1=˛I B D C=.˛k˛
max/I 
 D 1=˛: (3.73)

This is the rank law of Zipf–Mandelbrot, which generalizes Zipf law: f .r/ D cr�ˇI 1017

r D 1; 2; 3; : : : , where c and ˇ are parameters. Zipf law was discovered by counting 1018

words in books. If words in a book are ranked in decreasing order according to their 1019

number of occurrences, then Zipf law states that the number of occurrences of a 1020

word is inversely proportional to its rank r . 1021

Assuming that in Lotka law the exponent takes the value ˛ D 1 and that in most 1022

cases C D n1, one has xr D n1=.r C a/, where a D n1=kmax , r � 0. Integration 1023

of the last relationship yields the total productivity R.n/ of all scientists, beginning 1024

with the one with the greatest productivity kmax and ending with the scientist whose 1025

productivity corresponds to the rank n (the scientists are ranked in the order of 1026
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diminishing productivity; the rank is assumed to be a continuous-like variable): 1027

R.n/ D n1 ln
�n

a
C 1

�
: (3.74)

This is Bradford law. According to this law, for a given topic, a large number of 1028

relevant articles will be concentrated in a small number of journals. The remaining 1029

articles will be dispersed over a large number of journals. Thus, if scientific journals 1030

are arranged in order of decreasing published articles on a given subject, they may 1031

be split to a core of journals more particularly devoted to the subject and a shell 1032

consisting of sub-shells of journals containing the same numbers of articles as the 1033

core. Then the number of journals from the core zone and succeeding sub-shells will 1034

follow the relationship 1 W n W n2 W : : : . 1035

Key point Nr. 15
The Zipf–Pareto law, in the case of the distribution of scientists with respect
to their productivity, indicates that one can always single out a small number
of productive scientists who wrote the greatest number of papers on a given
subject, and a large number of scientists with low productivity. The same
applies also to scientific contacts, citation networks, etc. This specific feature
(so-called hierarchical stratification) of the Zipf–Pareto law reflects a basic
mechanism in the formation of stable complex systems. This can/must be
taken into account in the process of planning and the organization of science.

3.7 Concluding Remarks 1036

Knowledge has a complex nature. It can be created. It can lead to innovations 1037

and new technologies, and on this base, knowledge supports the advance and 1038

economic growth of societies. Knowledge can be collected. Knowledge can be 1039

spread. Diffusion of ideas is closely connected to the collection and spreading of 1040

knowledge. Some stages of the diffusion of ideas can be described by epidemic 1041

models of scientific and technological systems. Most of the models described 1042

here are deterministic, but if the internal and external fluctuations are strong, then 1043

different kinds of models can be applied taking into account stochastic features. 1044

Much information about properties and stability of the knowledge systems can 1045

be obtained by the statistical approach on the basis of distributions connected to the 1046

Lotka–Volterra models of diffusion of knowledge. Interestingly, new terms occur in 1047

the usual evolution equations because of the variability and flexibility in the opinions 1048

of actors, due to media contacts or interpersonal contacts, when exchanging ideas. 1049
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The inclusion of spatial variables in the models leads to new research topics, such 1050

as questions on the spreading of systems of ideas and competition among ideas in 1051

different areas/countries. 1052

In conclusion, the epidemiological perspective renders a piece of mosaic to a 1053

better understanding of the dynamics of diffusion of ideas in science, technology, 1054

and society, which should be one of the main future tasks of the science of science 1055

(Wagner-Döbler and Berg 1994). 1056
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Chapter 4 1

Agent-Based Models of Science 2

Nicolas Payette 3

4.1 What are Agent-Based Models? 4

This first section is mostly an introduction to ABMs in general. We will first take a 5

look at where they come from and what their main characteristics are. We will then 6

bring forward a few methodological considerations and illustrate some of those with 7

an actual agent-based model of science (Table 4.1).AQ1 8

4.1.1 A Little History 9

Agent-based models are intimately linked with computers and, perhaps unsur- 10

prisingly, we count John Von Neumann as a pioneer of both. In the late 1940s, 11

Von Neumann (with an eye towards artificial intelligence) was interested in self- 12

reproducing, self-regulating systems. Inspired by ideas from colleague Stanisław 13

Ulam, he designed the first cellular automaton. 14

What he came up with is a system made of “cells” laid out on a discrete, 15

orthogonal, grid (later described in von Neumann 1966). Time, in the system, is 16

also discrete, and at each time step, every cell updates its state according to a set of 17

rules based on its previous state and the state of its neighbors on the grid. Each 18

cell is a simple finite state machine, but the overall behavior of the system can 19

become quite complex. Von Neumann used that framework to design what he called 20

a “Universal Constructor”: a pattern of cells that can reproduce itself over time, 21

thereby providing a striking example of how an important system-level property 22

(self-reproduction) can be achieved through the interaction of individual parts that 23

behave independently from the whole (Fig. 4.1).AQ2 24

N. Payette (�)
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Table 4.1 Major questions and their answers

t26.1Model Major question(s) the Key answers/insights in lay terms
t26.2model aims to answer

t26.3Gilbert
(1997)

Is it possible to generate
some of the quantitative
features of science by
using simple
mechanisms, and if so,
what are those?

“it is possible to generate many of the quantitative
features of the present structure of science and
that one way of looking at scientific activity is
as a system in which scientific papers generate
further papers, with authors (scientists)
playing a necessary but incidental role.”

t26.4Edmonds
(2007)

What can we learn by
modeling the collective
scientific process as a
form of distributed
computing?

The collective scientific process, modeled as a
distributed theorem prover, “has the potential
to [serve as an] intermediate between
observations concerning how science works
and areas of distributed knowledge discovery
in computer science”

t26.5Zollman
(2007)

What is the relation
between the network
structures of a
community of scientists
and its ability to
converge on the right
hypothesis given
limited information?

A more connected network will converge much
more rapidly on an hypothesis, but is much
more likely to converge on the wrong
hypothesis: there is an important trade-off
between speed and accuracy.

t26.6Sun and
Naveh
(2009)

What is the relationship
between individual
cognitive factors and
some of the quantitative
features of the scientific
system?

“while different cognitive settings may affect the
aggregate number of scientific articles
produced by the model, they do not generally
lead to different distributions of number of
articles per author. ... using more cognitively
realistic models in simulations may lead to
novel insights.”

t26.7Weisberg
and
Muldoon
(2009)

Which project selection
strategies by individual
researchers lead to the
optimal distribution of
cognitive labor for the
scientific community?

“scientists need to really divide their cognitive
labor, coordinating in such a way to take
account of what other scientists are doing”
and “a mixed strategy where some scientists
are very conservative and others quite risk
taking, leads to the maximum amount of
epistemic progress in the scientific
community.”

t26.8Grim (2009) What is the relation
between the network
structures of a
community of scientists
and its epistemic
success in different
epistemic landscapes?

Mean path length in the giant cluster of an
epistemic network qualitatively matches the
epistemic success of a community.

t26.9Muldoon
and
Weisberg
(2010)

What is the effect of
idealizations about the
rationality of scientists
on analytic models of
the distribution of
cognitive labor?

Analytic models of the distribution of cognitive
labor are not robust against weakenings of
idealizations about the rationality of scientists
and the information available to them. Under
certain conditions, this can lead to the model
predicting outcomes that are qualitative
opposites of the original model outcomes.
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Fig. 4.1 Von Neumann’s “Universal Constructor”. Source: http://en.wikipedia.org/wiki/File:
Nobili Pesavento 2reps.pngth
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What really brought cellular automata to the forefront, though, is mathematician 25

John Conway’s Game of Life (Gardner 1970). While von Neumann’s cells could 26

be in 29 different states and dozens of different rules were needed to describe 27

transitions between them, Conway’s cells (he called them “counters”) are either 28

“alive” or “dead.” Only three rules are needed to describe their behavior: 29

1. Survivals. Every counter with two or three neighboring counters survives for the next 30

generation. 31

2. Deaths. Each counter with four or more neighbors dies (is removed) from overpopulation. 32

Every counter with one neighbor or none dies from isolation. 33

3. Births. Each empty cell adjacent to exactly three neighbors – no more, no fewer – is a birth 34

cell. A counter is placed on it at the next move. 35

(Gardner 1970, p. 120) 36

These simple rules, when applied to different initial patterns of cells, give rise to 37

an impressive (and well documented) menagerie of objects with complex behaviors: 38

blinkers, toads, beacons, pulsars, gliders, guns, puffers, etc. Again, this shows how 39

simple building blocks can be arranged in ways that lead to surprising (i.e., hard to 40

predict) results (Fig. 4.2). 41

The systems we have seen so far are only models of very general phenomena 42

(“life,” self-replication), but the idea of cellular automata is also readily applicable 43

to a lot of social phenomena. Notwithstanding debates around methodological 44

individualism, many problems in the social sciences can be modeled as sets of 45

individual agents locally interacting with each other in some explicit space. 46

The firsts of such models are Thomas Schelling’s “Models of Segregation” 47

(1969; 1971a; 1971b). In these, Schelling explores the mechanisms leading to the 48

formation of clusters of homogeneous agents (i.e., ghettos) in geographical space. 49

http://en.wikipedia.org/wiki/File:Nobili_Pesavento_2reps.png
http://en.wikipedia.org/wiki/File:Nobili_Pesavento_2reps.png
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Fig. 4.2 Example of a
complex pattern in Conway’s
Life. This is Bill Gosper’s
“glider gun”: it builds
“glider” patterns that move
away from it. The gun keeps
on generating gliders forever,
unless it is disturbed by
interference from another
pattern. Source: http://en.
wikipedia.org/wiki/File:
Gospers glider gun.gif
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Fig. 4.3 State of the
Schelling neighborhood
before the simulation: a
mixed neighborhood

Space is modeled as a discrete grid, just like in von Neumann and Conway’s 50

automata, but this time, each individual cell represents a human agent. These 51

agents can be either “stars” or “zeros” (taken to stand for different ethnicities), and 52

they have preferences regarding the group membership of their neighbors on the 53

grid. If they are not satisfied, they move to the closest location that satisfies their 54

requirements. Schelling explored the dynamics of the model for many different 55

initial patterns and many different distributions of preferences, but the general 56

conclusion is that even with agents that have very high tolerance for neighbors 57

different from themselves – just not wanting to be in too small a minority – 58

segregation occurs consistently. As he points out himself, the particular outcome 59

depends on details of a simulation run, but not the character of the outcome 60

(Figs. 4.3 and 4.4). 61

Skipping far ahead, another milestone model is the much more complex Sug- 62

arscape (Epstein and Axtell 1996). While most other models were designed to 63

investigate specific phenomena, the Sugarscape is a general framework for exploring 64

a wide range of issues: biological and cultural evolution, trading, warfare, disease 65

transmission, migration, pollution, etc. Agents in the Sugarscape are also situated 66

on a grid, but this time the environment is not an empty container: it contains 67

“sugar” and “spice,” generic resources that the agents need to survive. Agents move 68

around the grid, collecting these resources (which, afterwards, need to “grow back”). 69

http://en.wikipedia.org/wiki/File:Gospers_glider_gun.gif
http://en.wikipedia.org/wiki/File:Gospers_glider_gun.gif
http://en.wikipedia.org/wiki/File:Gospers_glider_gun.gif
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Fig. 4.4 State of the
Schelling neighborhood
after the simulation:
segregation has
occurred

Fig. 4.5 A view of the
Sugarscape. Taken from Tony
Bigbee’s open-source
reproduction of the Axtell
and Epstein model using
MASON (Bigbee et al. 2007)
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Agents also differ from one another in more than group membership: they have 70

different metabolic rates, vision, and life expectancy. These differences introduce 71

interesting opportunities for interaction between agents. Take metabolic rate, for 72

example: if you need more sugar and I need more spice, I can trade you sugar for 73

spice. 74

While it is interesting in its own right to analyse the behavior of individual agents 75

on the grid, it is the population-level patterns that are of most value to social science. 76

For example, the individual wealth of the agents in the Sugarscape – the amount 77

of resources they have accumulated – follows Pareto’s Principle: a power-law 78

distribution where very few agents control most of the wealth in the system. While 79

Pareto’s Principle has been observed in countless “real” social systems (starting with 80

land ownership in early twentieth century Italy), Sugarscape is acknowledged to be 81

the first computational generation of that pattern: it provides a set of micro-level 82

mechanisms that are sufficient to generate that macro-level phenomenum. As we 83

will see, the use of ABMs often follows that methodology (Fig. 4.5). 84
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We chose to follow the historical path of cellular automata to introduce agent- 85

based models, but other influences should also be acknowledged. Game theory 86

(see, e.g., Axelrod and Hamilton 1981), artificial life (Reynolds 1987), connection- 87

ism (McClelland and Rumelhart 1987), genetic algorithms (Holland 1975) and 88

artificial intelligence research in general also played important roles. 89

We opened the present section by stating that agent-based models are intimately 90

linked with computers. While true, that statement can be slightly misleading: von 91

Neumann’s design for his Universal Constructor was not fully implemented until 92

much later (Pesavento 1995), Conway designed Life on a Go board, and Schelling 93

“ran” most of his simulations using pennies and dimes. In many cases, the local 94

rules of behavior are simple enough that their results can be computed by hand. The 95

computer is needed when the number of agents and steps in the simulation becomes 96

overwhelming for the very limited computational resources of a human being. 97

The rise of computational resources in recent years has driven researchers to 98

implement increasingly detailed models that aim to capture the finer aspects of 99

social phenomena. A quick glance at the Journal of Artificial Societies and Social 100

Simulations or at the “Model Archive” section of the OpenABM website1 will reveal 101

many of those, and there is also a trend to review and compare different classes of 102

ABM (Cristelli et al. 2011). 103

4.1.2 Their Main Characteristics (and How They Apply 104

to Models of Science) 105

Before paying attention to particular agent-based models of science, we want to 106

say a few words about some general characteristics of ABMs. We will focus on 107

the features listed by Joshua M. Epstein (2006): heterogeneity, autonomy, explicit 108

space, local interactions and bounded rationality. These should not be taken as 109

necessary conditions for a model to be considered agent-based. They should only 110

be seen as establishing some kind of wittgensteinian family resemblance. They are 111

not orthogonal either: some of them, such as local interactions and explicit space, 112

for instance, overlap. 113

In this section, we will try to show that those features are well suited to the 114

modeling of the scientific process. 115

Heterogeneity states that agents are not, as Epstein says, “aggregated in a few 116

homogeneous pools” (2006, p. 6). Instead, they can differ from one another in as 117

many ways as the parameter range for each of their individual properties will allow. 118

While this is something that would be very hard to track with traditional analytical 119

models, the computer makes it possible to deal with millions of heterogeneous 120

agents. 121

1http://www.openabm.org/models/browse.

http://www.openabm.org/models/browse
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We can think of these varying properties as being either static or dynamic and 122

either internal or external. Static properties are those that won’t change through the 123

agent’s lifetime. It does not mean that they should be considered “innate,” just that 124

their value stays constant in the course of a simulation. Examples of such properties 125

for scientists could be things like creativity, communication skill, testing ability, 126

etc. Perhaps more interesting, though, are the dynamic properties of the agents: 127

those that change, and hence, can be tracked through a simulation run. A dynamic 128

property can be as simple as the amount of grant money a researcher currently has, 129

but it can also be more than a simple numeric value: a list of the propositions that 130

a scientist holds to be true, a memory of past interactions with other scientists, a 131

current research goal, etc. 132

The examples that we have given so far are all internal properties. What we 133

call external properties are relations between an agent and its environment. What 134

university/lab/research center is a scientist attached to? Who are his collaborators? 135

If space is represented, where is he? External properties are often dynamic but can 136

also be static, depending on what the model is trying to capture. 137

Autonomy refers to the absence of central control. In the context of social 138

simulation, this can be likened to a form of methodological individualism: while 139

institutions (and other macro-structures) can set policies (rules, values, etc.) that 140

will influence an agent’s behaviour, they are not directly coordinating the agents 141

or moving them around. At each time step in a simulation, agents make their own 142

decisions in order to achieve their individual goals. 143

Explicit space requires that agents be situated in some environment. The 144

behaviours available to an agent are partly determined by its position. In many 145

ABMs, like in those we have seen so far, this is a grid representing geographic 146

space, but it does not have to be. It can be something more abstract like (as we will 147

see later) a scientist’s position in an epistemic landscape or his position in a social 148

network of collaboration. To quote Epstein again, “The main desideratum is that the 149

notion of ‘local’ be well posed” (2006, p. 6). The reason for this is closely linked to 150

the next property. 151

Local interactions are typical of agent-based models. When agents interact with 152

other agents, it is usually with their neighbors – those that are close to them in 153

geographical space or in social space: their collaborators, colleagues, students, etc. 154

The fact that not everyone interacts with everyone can make a significant difference 155

in some situations. Simulations by Zollman (2007) and Grim (2009), for example, 156

show important epistemic effects related to the non-universality of communication 157

in scientific networks. 158

Bounded rationality, finally, states that: “Agents do not have global information, 159

and they do not have infinite computational power. Typically, they make use of 160

simple rules based on local information [. . . ]” (2006, p. 6). 161

Scientists have sometimes been portrayed as somewhat irrational, uninformed, 162

self-interested thinkers (e.g., Latour and Woolgar 1979; Hull 1988b). While this is 163

slightly unpalatable to epistemologists who are concerned with perfect rationality, 164

it has interesting consequences for models of science. Given agents that (like real 165

scientists) have limited information and reasoning power, how can we set up the 166

social structure of science for epistemic efficiency? 167
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4.1.3 Some Methodological Considerations 168

Most of what applies to formal models in general (and that is covered elsewhere in 169

this book) also applies to ABMs. In this section, we will focus on some issues that 170

are specific to ABMs. 171

4.1.3.1 Micro vs. Macro 172

As we have hinted above, ABMs are concerned with the micro-level processes that 173

give rise to observable, higher-level patterns. If an ABM can generate some macro- 174

phenomenon of interest, then it can at least be considered a candidate explanation 175

for it. When taken seriously, that possibility can become a requirement. This is what 176

Epstein calls the generativist motto: “If you didn’t grow it, you didn’t explain it” 177

(2006, p. 51). On this view, a pattern like Lotka’s law (Lotka 1926) stands in need of 178

explanation, and even an algebraic derivation of the law, like that of Herbert Simon 179

(1955, p. 148), is still not sufficient for a complete explanation. One needs to supply 180

the mechanism that generates the distribution. In the particular case of Lotka’s law, 181

that was achieved by Nigel Gilbert (1997), as we will see in Sect. 4.2.1. 182

Now this raises the question of what scale to choose for a model. The difference 183

between micro and macro is relative to that choice. After all, if we were to grow a 184

scientist from a collection of cells, the behavior of the scientist as a whole would be 185

the macro-level. Now, it is assumed in agent-based modeling that the agent should 186

be the micro-level, but what is an agent? Most models of science will focus on 187

individual researchers as agents, but nothing prevents a modeler from focusing 188

instead on research teams, labs, institutions or even whole countries. In Gilbert’s 189

model (oddly, perhaps) the papers themselves are the agents. In the end, it is left 190

to the researcher to identify what Claudio Cioffi-Revilla, in a recent methodology 191

paper, calls the “Cast of Principal Characters”: “the main social entities themselves 192

and their main interactions or causal dynamics” (2009, 30). 193

4.1.3.2 Details Matter 194

Once the target level has been chosen and the relevant entities identified, there 195

remains the question of the amount of detail in which they must be modeled. 196

The first ABMs usually had very simple agents. In Schelling’s models, an agent’s 197

only properties were its position and its tolerance level. The interesting features of 198

the model result from the relations and interactions between objects, not from the 199

properties of the objects themselves. It is important to make sure, however, that such 200

simplifications are not responsible for the behavior of the model. 201

To illustrate this caveat, we will use a model by Ryan Muldoon and Michael 202

Weisberg (2010) looking at the distribution of cognitive labor over scientific 203

projects. Given multiple projects, with different probabilities of success, there is 204
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an optimal assignment of scientists to projects: how can we ensure that the actual 205

distribution of scientists approximate that optimum? 206

That question was previously studied by Philip Kitcher (1990) and Michael 207

Strevens (2003) using analytical models. It is the purpose of Muldoon and Weisberg 208

(2010) to show that some of the idealizing assumptions made by Kitcher and 209

Strevens lead to results qualitatively different than if a more realistic model of the 210

way the agents behave had been used. In other words, they fulfill only the first of 211

these two requirements: 212

[M]odels of cognitive labor must be simple enough for us to understand their dynamics, 213

but faithful enough to reality that we can use them to analyze real scientific communities. 214

(Muldoon and Weisberg 2010) 215

Kitcher and Strevens built their models using what Muldoon and Weisberg 216

call the marginal contribution/reward (MCR) approach, in which each project 217

is assigned a success function, “which represents the ability of the project to 218

productively utilize the cognitive resources of scientists and turn those resources into 219

the possibility of a successful outcome” (Muldoon and Weisberg 2010). Scientists 220

working on a project that succeeds get a reward, according to a scheme that can be 221

varied, so each scientist chooses to work on the particular project that maximizes 222

his own expected reward. We are looking for the reward scheme that produces the 223

best allocation. 224

Muldoon and Weisberg (2010) claim that Kitcher and Strevens’ models rest on 225

at least two unrealistic assumptions: 226

1. Distribution assumption: “every scientist knows the distribution of cognitive 227

labor before she chooses what project to work on.” 228

2. Success function assumption: each project’s “success function, which takes 229

as input units of cognitive labor (work from scientists) and outputs objective 230

probabilities of success,” is “known by all of the scientists in the model.” 231

Both of these are assumptions of complete knowledge on the part of the scientists. 232

To make their own model more realistic, Muldoon and Weisberg introduce complex- 233

ifications in line with some of the characteristics we have seen in Sect. 4.1.2: agents 234

do not have perfect knowledge (bounded rationality) and not every agent knows or 235

believes the same things (heterogeneity). 236

Let us start with the distribution assumption. Muldoon and Weisberg’s scientists 237

are distributed on a grid (a torus, actually) of 35 	 35, where distance represents 238

“communication distance.” Scientists have a “radius of vision”: they “see” the 239

project choices of other agents within that radius. To mimic Kitcher and Strevens’ 240

perfect information scenarios, the radius of vision must be at least
p

578, the 241

distance at which everyone sees everyone.2 When Muldoon and Weisberg do that, 242

2For an agent standing exactly in the middle of a flattened 35�35 torus, euclidean distance to each
corner D p

172 C 172 D p
578 D 24:0416306.
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using Strevens’ Marge reward scheme, where payoff is divided equally between all 243

agents working on the successful project, they get the same results as Strevens: 244

As the number of agents was increased, an incentive was created for a minority of scientists 245

to work on the harder project. When the number of agents was increased further, scientists 246

allocated themselves to both projects, and eventually the number of scientists working 247

on the harder project overtook the number working on the easier project. (Muldoon and 248

Weisberg 2010) 249

When Muldoon and Weisberg decrease vision, however – i.e., they relax the 250

perfect knowledge distribution assumption – agents start to misallocate: when vision 251

drops below seven, no one works on the harder project. From a collective point of 252

view, this is far from optimal. 253

Now, for the success function assumption, Muldoon and Weisberg argue that it is 254

very unrealistic that every scientist would know the objective probability of success 255

of each project. Those probabilities should be subjective, and hence, vary from one 256

scientist to another. In their model, Muldoon and Weisberg use a success probability 257

function taken from Kitcher3 which has an “easiness” parameter, and evaluation of 258

that easiness is where agents differ. Muldoon and Weisberg assumed that the agents’ 259

beliefs about the easiness of a project follow a normal distribution where the mean 260

is the objective probability of success of the project. A variance of zero in that 261

distribution mimics the Kitcher/Strevens perfect information scenario and, again, 262

a simulation with two projects (one easier, one harder) confirms that. But as soon 263

as variance is introduced – i.e, as soon as some agents misjudge the probability of 264

success – the resulting allocation is suboptimal. 265

Part of the appeal of models of science (and models in the social sciences at large, 266

for that matter) is that once we have a good one, it can possibly be used to inform 267

policy making. That is part of what Strevens is trying to do when he compares the 268

Marge reward scheme (equal payoff for everyone on the successful project) to the 269

Priority scheme that we use in reality (first successful scientist gets all the credit). 270

In Strevens’ model, Priority produces a better distribution of cognitive labor. In 271

Muldoon and Weisberg’s more realistic model, Priority does worse than Marge. 272

The take home message is that it is important to get the details right. As the case of 273

Muldoon and Weisberg show, and as we will further try to show in the next section, 274

ABMs are a good way to do that. 275

4.2 What Has Been Done So Far? 276

We now move on to Gilbert’s original model (1997), which is arguably the most 277

well-known ABM of science. We will describe it in a fair amount of detail, and use 278

it afterward to contrast other models. 279

3That is the logistic growth equation: P D K
1Ce�rN , where K is the maximum probability of

success, N the number of scientists working on the project, and r the easiness of the project.
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4.2.1 Gilbert’s Original Model: Papers and Kenes 280

Gilbert’s explananda are the quantitative regularities traditionally found in science. 281

That includes Lotka’s law, but also many features of “little science” pointed out 282

by de Solla Price in Little Science, Big Science (1963): e.g., exponential growth of 283

the number of papers and the fact that references in a paper tend to be to recently 284

published literature. 285

Gilbert starts out with a simple model of a candidate mechanism for simulating 286

Lotka’s law (Lotka 1926). In Gilbert’s words, Lotka’s law states that “for scientists 287

publishing in journals, the number of authors is inversely proportional to the square 288

of the number of papers published by those authors” (1997, 4.1). Most authors 289

publish only one or two papers, some of them publish a little more, and only a few 290

publish more than 10. Herbert Simon (1955) describes the probability of a paper 291

being published by a scientist already having i publications as f .i/ D a=ik (where 292

a and k are constants). Simon also found a constant probability ˛ D n=p that 293

the next article in a journal is by a previously unpublished author (where p is the 294

number of papers in the journal and n is the number of authors4). Gilbert’s proposed 295

mechanism for generating that pattern is actually quite simple: 296

1. Select a random number from a uniform distribution from 0 to 1. If this number is less than 297

˛, give the publication a new (i.e., previously unpublished) author. 298

2. If the publication is not from a new author, select a paper randomly from those previously 299

published and give the new publication the same author as the one so selected. 300

(1997, 4.4) 301

Note that Gilbert does not actually make use of f .i/. If the publication is to be 302

assigned to a previously published author, all authors have an equal chance of being 303

selected. The data produced by Gilbert’s model approximate Simon’s estimates and 304

actual bibliometric data very closely, even if the simulation is completely agnostic 305

of the expected probability distribution of authors. 306

Note, also, that the model is centered on papers: they are, in a way, the “agents” 307

in his simulation. That stays the case when Gilbert moves on to a more complex 308

simulation, in which the papers actually have some sort of content. They each 309

contain a “quantum of knowledge” that is represented by what Gilbert calls a “kene.” 310

A kene is basically a sequence of bits that could, in theory, be of any length. To allow 311

display of kenes in a two-dimensional plane, however, Gilbert makes them 32 bits 312

long, encoding two 16-bit integers for x; y coordinates on a 65;536 	 65;536 grid, 313

allowing talk about the location of a kene or a paper (which is that of its kene). 314

“Kene” is chosen to sound like “gene,” and the reason for that is that there is 315

an “evolutionary” component in the process. At each time step, at least one paper 316

reproduces itself, and other existing papers5 also have a small constant probability 317

4There is actually a typo in Gilbert’s paper, where he states that ˛ D p=n (it should be the other
way around).
5Though Gilbert does not mention it explicitly, the simulation has to be initialised with a certain
number of seminal papers: e.g. 1,000.



UNCORRECTED
PROOF

138 N. Payette

! D 0:0025 of reproducing. The author of a new paper is either a new author (with 318

probability ˛) or the author of the parent paper. The new paper initially has the same 319

kene as its parent. The new paper also has references: it chooses, at random, other 320

papers located within a radius of � D 7;000. 321

It is supposed that each reference has an influence on the original kene, such that 322

the final kene of the new paper is a combination of the original kene and the kenes 323

of the references. If you think about kenes as points in space, you can think of each 324

of the references’ kenes as having a gravitational field that “pulls” the kene of the 325

new paper in its direction. More formally, given a random value m between 0 and 1, 326

increasing monotonically with each reference: 327

x0
p D xp C .xr � xp/

1 � m

2
and y0

p D yp C .yr � yp/
1 � m

2
: 328

This more detailed model still produces the Lotka’s law pattern for the distribu- 329

tion of papers per author, which is not surprising since the part of the mechanism that 330

generates that distribution is almost the same.6 The model also produces a highly 331

skewed distribution of citations per author, and that also matches empirical data. 332

The overall growth rate (driven by the probability ! of spawning a new paper) also 333

fits de Solla Price’s observations. 334

Finally, a new result of the more complex model is that we can now observe 335

different clusters of papers in the space of possible kenes. This is a consequence 336

of the evolutionary mechanism chosen by Gilbert, where each new paper falls in 337

the vicinity of his parent. Those clusters are interpreted by Gilbert as representing 338

different specialities in a field. A problem with that interpretation is that the position 339

of the kene is not taken into account when the paper “chooses” its author. It would 340

be fairly straightforward, however, to take that factor into account (for example, 341

by having the probability of a particular author being selected increase if he has 342

recently written a paper in the area of the new paper.) (Figs. 4.6 and 4.7) 343

4.2.2 Follow-Ups and Other Models 344

While fairly simple, Gilbert’s model is a striking example of the possibilities of 345

agent-based modeling of science. Gilbert himself, with collaborators Andreas Pyka 346

and Petra Ahrweiler, took the idea further in a series of papers on innovation 347

networks (Gilbert et al. 2001, 2007; Pyka et al. 2002, 2007, 2009; Ahrweiler et al. 348

2004). Börner et al. (2004) also have a model called TARL (for “topics, aging, and 349

recursive linking”) where they dynamically generate a network of co-authorship 350

relations in addition to a citation network similar to that of Gilbert, and which 351

they validated against a PNAS data set of significant size. Gilbert’s model also 352

6The only difference is that authors now “retire” after a random number of time steps (where the
maximum is 	 D 480).
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Fig. 4.6 The 2D landscape
of papers in Gilbert’s
simulation, showing the
clustering into “specialities”
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Fig. 4.7 Numerical relationships in a sample run of Gilbert’s simulation. Figure 4.7 shows the
approximation of Lotka’s law. The figures are taken from Gilbert’s NetLogo replication of his
original model, freely available at http://www.openabm.org/model-archive/ssas
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directly inspired models in fairly different areas (e.g., Boudourides and Antypas 353

2002). In this section, we will look at models by Sun and Naveh (2009) and 354

Edmonds (2007). We will then move on to models by Weisberg and Muldoon (2009) 355

http://www.openabm.org/model-archive/ssas
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and Grim (2009) that, while not concerned with the specific bibliometric patterns 356

explored by Gilbert, are closely related to an idea he almost touched on with his 357

spatial distribution of kenes: that of an epistemic landscape. 358

4.2.2.1 A View from Cognitive Science 359

The fact that scientists play only a very small role in Gilbert’s model can be a target 360

for criticism. It is hard to accept the idea that the only difference between the author 361

who published only one paper and the one who published 15 is that the latter got 362

lucky in that more papers selected her. 363

Cognitive scientists Sun and Naveh (2009), in particular, have been critical: 364

“Gilbert’s model lacks agents capable of meaningful autonomous action” (2007, 365

p. 142). They have attempted to provide a more realistic model, where “authors are 366

not merely passive placeholders, but cognitively capable individuals whose success 367

or failure depends on their ability to learn in the scientific world” (2006, p. 321). 368

In order to achieve that, they use a cognitive architecture they call CLARION, an 369

acronym that stands for “Connectionist Learning with Adaptive Rule Induction ON- 370

line.” The full name is actually a fairly good description of what CLARION does. 371

It is a hybrid architecture: it has a learning mechanism implemented in an artificial 372

neural network, but it can extract explicit symbolic rules from what it has learned 373

at the connectionist level and use these rules to drive its behavior. We will not go 374

into the details of CLARION (see Sun (2006) for an overview and Sun (2003) for 375

a detailed description), but it is meant to be cognitively realistic. Sun himself has 376

argued extensively for such hybrid systems (Sun 2002), and what has come to be 377

called “dual process theories” are increasingly prevalent in cognitive science (Evans 378

2008) (Fig. 4.8). 379

In Sun and Naveh’s model, as expected, it is now each scientist that selects 380

an idea to replicate, and not the other way around. The scientists also select the 381

neighboring ideas that they use to modify the original idea, but they do not stop 382

at that: they also optimize the resulting idea on their own, by searching the space 383

around it for slightly better positions. (We are still talking about ideas as vectors in a 384

multidimensional space, just like Gilbert’s kenes.) The fact that such an optimization 385

is going on implies that, as opposed to what we had in Gilbert’s model, some ideas 386

are better than others. Sun and Naveh name a few properties over which ideas 387

differ: clarity, insightfulness, empirical evidence, theoretical results and application 388

potential. Agents all have “subjective functions” for these different properties of 389

ideas: functions that they refine throughout the simulation, trying to approximate 390

the “communal” functions that determine if a paper gets published. No agent has 391

direct access to the communal functions: all they have is the feedback they get 392

from the submission of a paper: i.e., whether it is accepted or not. They use this 393

feedback to optimize two tasks: (1) choosing the focal idea and (2) choosing the 394

pull ideas. Agents that fail to publish enough are removed from the simulation and 395

replaced by new agents. In their model, it is that learning process, instead of luck, 396
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Fig. 4.8 Sun and Naveh’s CLARION architecture, showing the interaction between explicit
(symbolic) representations and implicit (connectionist) representations

Table 4.2 Number of
authors contributing to
Chemical Abstracts

t27.1# of Actual Simon’s Gilbert’s CLARION
t27.2Papers estimate simulation simulation

t27.31 3991 4050 4066 3803
t27.42 1059 1160 1175 1228
t27.53 493 522 526 637
t27.64 287 288 302 436
t27.75 184 179 176 245
t27.86 131 120 122 200
t27.97 113 86 93 154
t27.108 85 64 63 163
t27.119 64 49 50 55
t27.1210 65 38 45 18
t27.1311 or more 419 335 273 145

that is responsible for the difference in the number of publications by each agent 397

(Tables 4.2 and 4.3).AQ3 398

Sun and Naveh’s results also match the empirical data, but not as closely as 399

Gilbert’s model. There is, however, a good reason for that: 400

We put more distance between mechanisms and outcomes, which makes it harder to obtain 401

a match with the human data. Thus, the fact that we were able to match the human data 402

shows the power of our cognitive agent-based approach compared to traditional methods of 403

simulation. (Naveh and Sun 2007, p. 200–201) 404

Sun and Naveh’s model allows them to study the effect of cognitive differences 405

on the success of the whole community. The latter is measured by the total number 406

of papers published. In Gilbert’s model, that number was a direct result of the 407

parameter ! (the probability that a paper would spawn a new paper). Here, it is a 408
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Table 4.3 Number of
authors contributing to
Econometrica

t28.1# of Actual Simon’s Gilbert’s CLARION
t28.2Papers estimate simulation simulation

t28.31 436 453 458 418
t28.42 107 119 120 135
t28.53 61 51 51 70
t28.64 40 27 27 48
t28.75 14 16 17 27
t28.86 23 11 9 22
t28.97 6 7 7 17
t28.108 11 5 6 18
t28.119 1 4 4 6
t28.1210 0 3 2 2
t28.1311 or more 22 25 18 16

result of the ability of the agents to learn the communal rules of publication. Those 409

cognitive parameters are many (e.g., the learning rate of the agents, the probability 410

of using implicit vs. explicit learning, the randomness of the local search process), 411

and they all have significant effects on the overall number of papers. 412

4.2.2.2 Science as a Distributed Cognitive System 413

Cognition can also be conceived as going beyond the individual level. Some 414

philosophers (e.g., Thagard 1993b; Giere 2002; Cummins et al. 2004; Magnus 2007) 415

have been claiming that science as a whole should be thought of as a distributed 416

cognitive system. Joshua Epstein goes even further and claims that: 417

The agent-based approach invites the interpretation of society as a distributed computational 418

device, and in turn the interpretation of social dynamics as a type of computation. (Epstein 419

2006, p. 4) 420

Bruce Edmonds (2007) takes that idea seriously. He proposes an agent-based 421

model of science as a distributed theorem prover. In contrast to what we have seen 422

so far, the knowledge acquired by Edmond’s agents is something highly structured: 423

true sentences in a formal system, namely, propositional logic. In effect, agents are 424

trying to come up with new theorems by combining existing items of knowledge 425

(premises) into new ones by inference. In Edmond’s model, agents are confined to 426

using the modus ponens7 inference rule: i.e., ..p ! q/ ^ p/ ` q. Every agent has 427

a store of knowledge – sentences that can be used as premises for new inferences. 428

Those sentences come from inferences made by the agent, but also from a public 429

repository of knowledge: a “journal,” in which agents publish some of the theorems 430

they find. At each time step, every agent: 431

7In (almost) plain English, the modus ponens rule says that if you know some proposition p to be
true and you also know that if p, then q, you are allowed to deduce that q is true.
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Fig. 4.9 A representation of
Edmond’s agents interacting
with the knowledge store
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1. Replaces some of the sentences in its private store by sentences from the journal. 432

2. Tries to combine sentences from its private store and adds the result of successful 433

inferences to its private store. 434

3. Submits previously unpublished items from its private store to the journal. 435

At the end of a time step, the journal ranks the received submissions as a weighted 436

sum of “the extent to which a formula had the effect of shortening formula when 437

applied as the major premise in MP; the shortness of the formula itself; the past 438

publishing success of the author; and the fewness of the number of distinct variables 439

in the formula” (Edmonds 2007). 440

The success of the community is evaluated according to the number of useful 441

theorems it can find in a given number of time steps. “Useful,” here, means really 442

useful: the system is judged against a list of 110 target theorems taken from logic 443

textbooks (Fig. 4.9). 444

One of the interesting findings of Edmond is that the number of useful theorems 445

found is fairly independent from the publication rate of the journal (i.e., the number 446

of submission it accepts each turn). Another interesting finding is the disparity 447

between individual agents: some of them publish a lot more than others. While 448

not quite as “Lotka-like” as Gilbert’s or Sun and Naveh’s results, it is still a fairly 449

skewed distribution. 450

Notwithstanding the detailed dynamics of Edmond’s model, an important insight 451

is that ABMs of science can be made to work on “real world” science problems. 452

Of course, propositional calculus (especially the “one inference rule version” used 453

by Edmond) is somewhat of a toy problem, but we can imagine a system working 454

on more complicated, more realistic problems. These would have to be well-defined 455

formal problems as opposed to the open-ended research that scientists are usually 456

involved in. The idea is not to use ABMs of science to computationally solve 457
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new problems – that would be the job of computer scientists,8 not social science 458

modelers. Nonetheless, it seems conceivable that, if we pay close attention to the 459

analogues between computational problem-solving algorithms and the scientific 460

process, ideas from one could be used to improve the other, and vice versa. 461

4.2.2.3 Science as an Epistemic Landscape 462

Most of the models mentioned assume that there is some sort of (possibly highly 463

dimensional) space that the agents are trying to explore. Some positions in this 464

space are considered better than others and agents are trying to find these positions. 465

Different models assume different semantics for the space, the most common being 466

that proximity in the space corresponds to some sort of conceptual, theoretical, or 467

pragmatical similarity. 468

For that space to be interpreted as a landscape, however, one-dimension must 469

stand for “height.” Kenes in Gilbert’s model were situated on a two-dimensional 470

space, but no value was attached to them; the space was flat. In Sun and Naveh’s 471

model, ideas were also situated on a two-dimensional plane, but different ideas had 472

different values: some were clearer, better supported empirically, etc. If you collapse 473

all of these values in a single weighted sum, you get a third-dimension: the height 474

of the landscape. Of course, you can also have a n-dimensional space, as long as 475

there is one-dimension that you are trying to maximize.9 What Sun and Naveh did 476

not insist on, however, is how the shape of that landscape affects the dynamics of 477

science. To illustrate some of these dynamics, we will look at another model by 478

Weisberg and Muldoon (2009), one that builds on the work presented in Sect. 4.1.3.2 479

(Fig. 4.10). 480

Agents in Muldoon and Weisberg (2010) were10 situated in space, but distance in 481

that space represented communication distance between researchers, not the value 482

of the projects they were working on. Weisberg and Muldoon are still interested 483

in the division of cognitive labor, but this time, instead of looking at just two 484

projects with different probabilities of success, they look at the whole range of 485

different approaches available to scientists within a research topic. As you might 486

have guessed, these approaches are represented by the position of a scientist agent 487

8It has already been shown that some A.I. programs are capable of scientific reasoning. The classic
example would be BACON (Langley et al. 1981), which “rediscovered” Snail’s law of refraction,
conservation of momentum, Black’s specific heat law, and Joule’s formulation of conservation of
energy. The PI program (Thagard and Holyoak 1985) achieves similar results, but is perhaps more
suited to an agent-based approach (Thagard 1993a, ch. 10).
9You could also have many dimensions that you are trying to optimize. Those problems are known
as “multiobjective optimization problems” (Steuer 1986; Sawaragi et al. 1985) In those cases, you
are looking for the “pareto front”: the set of positions in space that are not “strictly dominated” by
any other. We will leave those complexities aside.
10Weisberg and Muldoon (2009) was published before Muldoon and Weisberg (2010), but the latter
reports on an earlier model.
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Fig. 4.10 The epistemic
landscape used in (Weisberg
and Muldoon 2009). The
vertical axis represents
“epistemic significance”
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in two-dimensional space.11 The third-dimension is what they call the “epistemic 488

significance” of the approaches. The goal of the agents is, of course, to find the 489

highest peaks of significance in the landscape. The landscape used by Weisberg 490

and Muldoon has two peaks, generated by two Gaussian functions. The way agents 491

move around the landscape depends on the strategies (i.e., the rules of behavior) they 492

adopt. Investigating the way populations with different mixes of strategies explore 493

the landscape is the authors’ purpose. They look at three different strategies. Here 494

they are, in very general terms: 495

• Controls are basically “hill climbers”: they set a direction and move forward as 496

long as they get better results. If they get worse results, they backtrack and set 497

a new, random, direction. They are “controls” in the sense that they do not take 498

into account what the other agents on the landscape are doing, and the authors 499

are mostly interested in the dynamics introduced by interactions between agents. 500

• Followers start by looking for all the squares in their Moore neighborhood (see 501

Fig. 4.11) that have previously been visited and have a greater significance than 502

their current approach. If there are such squares, they will move to the best among 503

those (breaking ties at random). If there are none, they will look for unvisited 504

squares and choose one at random. (In other words: they will only innovate if 505

they have to.) Finally, if all the neighborhood squares have already been visited 506

and none is better than their current one, they stop. 507

• Mavericks are a little bit like controls in that if their current location is worse 508

than their previous one, they will backtrack and change direction. But if their new 509

approach is equal or better to the previous one, they will move to an unvisited spot 510

11Weisberg and Muldoon, like Gilbert before them and, as we will see in Sect. 4.2.2.4, Patrick
Grim, leave the exploration of higher-dimensional space for “further research.” The main advantage
of 3D landscapes is, of course, that they can be visualised easily. They also simplify programming
and keep computations light. It would be interesting, nonetheless, to see a detailed study of the
impact of high-dimensionality on some models. The “curse of dimensionality” is a problem for
many optimization tasks, and computer scientists are developing special algorithms and techniques
to deal with it (e.g., Powell 2007), so it is conceivable that it would make a difference in the
results of the simulations we are looking at. Muldoon and Weisberg have both (independently)
been tackling that issue, but have not published about it yet.
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Fig. 4.11 A Moore
neighborhood simply consists
of the nine squares
surrounding a particular
position on a grid

Moore
neighborhood

Fig. 4.12 Initial (a) and later (b) position of followers on the epistemic landscape during a
simulation. The trails indicate the paths followed by agents
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in their Moore neighborhood (choosing one at random if there are many). Only if 511

there is no unvisited spot will they act like followers and choose the best-known 512

approach around them. 513

Controls by themselves are not very efficient. They eventually find the peaks, but 514

since they cannot learn from one another, it takes a lot of time steps before they get 515

there. Followers alone do even worse: they get stuck in low-significance areas pretty 516

quickly. Unless they are lucky, they will just follow each other around. Mavericks, 517

on the other hand, are very efficient: they always find the peaks, and they find them 518

a lot faster than controls (Figs. 4.12–4.14). 519
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Fig. 4.13 Number of agents vs epistemic progress in homogeneous populations

Things get more interesting when you start looking at mixed populations. Even 520

adding a single maverick in a population of followers makes a significant difference: 521

mavericks help the followers get unstuck. The more mavericks you add, the more 522

performance improves, until you reach 100% mavericks, which is the optimum. 523

In the real world, though, a balance between followers and mavericks is probably 524

needed. Followers seem well-suited to what Kuhn (1962) called “puzzle solving”: 525

finding solutions to very specific problems with well-defined methods. Being a 526

maverick is probably more risky for the individual: wandering off the beaten path 527

and possibly failing can be very costly for one’s career. 528

Weisberg and Muldoon’s work show that the way researchers deal with the 529

results of other agents around them makes a difference for the overall success of 530

the community. 531

4.2.2.4 Epistemic Networks 532

Kevin Zollman has done some pioneering work on simulating the effect of the social 533

structure of the scientific community on its epistemic performance. The matter is 534

important, he says, because: 535

Once one fully articulates a theory of individual epistemic rationality, it is still an open 536

question what the optimal community structure is for these agents – the individualistic 537

question is only part of the answer. (Zollman 2007) 538

To try to answer the question of “optimal community structure,” Zollman sim- 539

ulates the behavior of networks of scientists trying to choose between two distinct 540

hypotheses, given limited information. Individual scientists can only communicate 541

their results to their immediate neighbors. We will not go into detail about his 542
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Fig. 4.14 Ratio of mavericks and followers vs epistemic progress in mixed populations

experiment, but what he found was essentially that a more connected network 543

will converge much more rapidly on an hypothesis, but is much more likely to 544

converge on the wrong hypothesis: there is an important trade-off between speed 545

and accuracy. 546

Partly inspired by Zollman, Patrick Grim also did some work about how the 547

social structure of science affects its results: 548

How does an individual figure out the structure of the world? The truth is that no individual 549

does. It is cultures and communities that plumb the structure of reality; individuals figure 550

out the structure of the world only as they participate in the epistemic networks in which 551

they are embedded. (Grim 2009) 552

The main difference with Zollman is that Grim’s agents, much like Weisberg 553

and Muldoon’s, are looking for the best hypothesis on an epistemic landscape. 554

But, instead of seeing the results obtained by other agents around them on that 555

landscape (like Weisberg and Muldoon’s agents), Grim’s agents see the results of 556

those with whom they are connected in a social network (like Zollman’s agents). 557

At each time step, an agent has a 50% probability of modifying their current 558

hypothesis by moving it halfway towards the best hypothesis amongst those of their 559

connections. 560

That allows Grim to test for the best network structure amongst many that are 561

prevalent in the social network literature: ring, small world, wheel, random, and 562
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complete networks.12 What he finds is that the ring network performs the best, 563

while the complete network performs the worst. In general (and he shows this with 564

random networks), above a very low threshold, adding links to a network decreases 565

performance. That is consistent with Zollman’s results. 566

Analyzing his results, Grim speculates that for at least some problems, the 567

scientific network of the seventeenth century, where communications between 568

researchers were few and far between, might have been better adapted than the fully 569

connected, round the clock, social network of twenty-first century science. 570

In fact, what happens in the fully connected networks is similar to what happens 571

with Weisberg and Muldoon’s followers: researchers stay confined to regions of 572

the landscape that are already explored. That makes the community vulnerable to 573

getting stuck on peaks of non-optimal epistemic value (like the one on the left of 574

Fig. 4.15) because everyone will converge on the best initial hypothesis, and no 575

one will explore further once they have reached it. What Grim needs, it seems, is 576

a few mavericks: researchers who will deliberately avoid duplicating their peers’ 577

hypotheses (Fig. 4.16). 578

4.3 Where Should We Go From Here? 579

Having taken a look at a very diverse (but maybe not fully exhaustive) list of 580

agent-based models of science, we will end this chapter by trying to identify a few 581

questions that might benefit from agent-based modeling and, finally, point out a few 582

methodological issues faced by modelers today. 583

4.3.1 Directions for Future Research 584

While the details of the process are generally not agreed upon, many thinkers 585

concur that science, somehow, evolves (Popper 1959; Toulmin 1972; Campbell 586

1974; Hull 1988b). This is an important idea, as far as ABMs go, because they are 587

especially well suited for evolutionary models. The evolutionary notion of fitness 588

landscapes is closely related to the notion of epistemic landscapes that we have seen 589

in Sect. 4.2.2.3. Besides, evolutionary ABMs of science can draw heavily from the 590

field of genetic algorithms and related techniques (Holland 1975; Luke 2010). 591

Though Gilbert’s simulation has a small evolutionary component, in that each 592

kene is descended from a parent kene, an important element is missing: which 593

paper gets to “reproduce” is not a function of the content of the kene (papers are 594

just randomly selected for reproduction). If, on the other hand, you had differential 595

reproduction, based on the position of the kene in an epistemic landscape similar to 596

12Animations of the networks should be viewable on Grim’s website, at: http://www.pgrim.org/
ABMScience.

http://www.pgrim.org/ABMScience
http://www.pgrim.org/ABMScience
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Fig. 4.15 Different shapes of 2D epistemic landscapes in the Grim simulation. Notice how
landscape Fig. 4.15 is deceiving for the agents, and as such, considerably harder than the other twoth
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those used by Weisberg and Muldoon of Grim, then you would get adaptation: i.e., 597

the kenes (or papers, ideas, theories, etc.) with a higher position on the landscape 598

would tend to out-reproduce the others. To our knowledge, this idea has not been 599

fully explored yet. 600



UNCORRECTED
PROOF

4 Agent-Based Models of Science 151

(a) Ring (b) Small world (c) Random (d) Ring, radius 2

(e) Hub (f) Wheel (g) Complete

Fig. 4.16 Percentage of runs where the community finds the optimal hypothesis for different
network structures on the landscape Fig. 4.15. In general, the less connected the network, the better
its performance

Another potentially important evolutionary component in science is the teaching 601

process: a supervisor transmits his ideas to his students, which in turn (if they are 602

successful) will teach a subsequent generation of students, and so on. You can build 603

a genealogy of researchers just like you can build family trees. This can bring 604

interesting insights – for example, the idea that Hull (1988a) calls “conceptual 605

inclusive fitness,” which is based on Hamilton’s biological notion of “inclusive 606

fitness” (1964): just as altruistic behavior towards one’s relatives promotes the 607

replication of shared genes, altruistic behavior towards one’s graduate student (co- 608

authoring papers with her, sending her to conferences, helping her find a good 609

academic position) promotes the replication of ideas transmitted to her. Again, this 610

is something that an agent-based model would be well suited to explore. 611

Another interesting idea from David Hull is the trade-off between “credit” and 612

“support.” The main premise behind this one is that scientists’ primary motivation 613

is getting credit for their theories: that is, mostly, recognition from their peers. (That 614

credit can then be “cashed-in” in various ways.) Credit is mainly attributed by way 615

of citation: if you base part of your work on somebody else’s work, then you share 616

the credit by citing his work. But as Hull puts it: 617

One cannot gain support from a particular work unless one cites it, and this citation 618

automatically both confers worth on the work cited and detracts from one’s own originality. 619

Scientists would like total credit and massive support, but they cannot have both. Science is 620

so organized that scientists are forced to trade off credit for support. (2001, p. 100–101) 621

There is a whole continuum of strategies, between high risk/high reward and low 622

risk/low reward, which can be adopted by individual scientists. The distribution of 623

these strategies within a population of researchers should have an impact on the 624

scientific enterprise as whole, and what kind of impact is something that would be 625

interesting to assess using ABMs. One could also take into accounts feedback loops 626
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related to these phenomena: e.g., the more credit you already have, the more likely 627

you are to be cited, and thus, gain even more credit.13
628

A final suggestion as to what should be addressed by ABMs of science is the 629

dynamics of research networks. We have seen, with Grim (2009) and Zollman 630

(2007), that network structure has important effects on social epistemic processes, 631

but how do these networks form? How do they change over time? Does having a 632

lot of credit allow a researcher to attract good collaborators, which would, in turn, 633

provide him with even more credit? Can we simulate the formation of invisible 634

colleges? What about the rivalry between different communities of researchers? All 635

these, and many more questions, could potentially be studied using ABMs. 636

The questions raised in this section are just a (fairly arbitrary) sample of what 637

could potentially be done by using agent-based models of the scientific process, but 638

going forward, there are also methodological issues to be addressed. 639

4.3.2 Methodological Issues 640

Agent-based modeling in the social sciences is still a fairly immature field, and 641

ABMs of science even more so. Many researchers are writing about methodological 642

issues (e.g. Axtell et al. 1996; Cioffi-Revilla 2009; Epstein and Axtell 1996; Gilbert 643

and Troitzsch 2005), but a common methodological framework for model building 644

has yet to emerge. In the meantime, many concerns come to mind. 645

Most of the models we have seen in this chapter have overlapping but slightly 646

different features. We have compared them to one another, but from a very high- 647

level, qualitative point of view. There is no doubt that the field would benefit from 648

more systematic comparisons between models (see Axtell et al. 1996). Independent 649

replication of existing models is also a useful – but seldom undertaken – endeavor, 650

which can reveal incoherence (or at least ambiguity) in the original description of a 651

model. 652

One can also ask if it is time to try to integrate all of these models into a single 653

framework (maybe open source?) that everyone can thoroughly explore and even 654

extend? (In other words, should we continue to be mavericks, or are we ripe for 655

some followers?) 656

Agent-based modeling of science calls for knowledge from many different 657

disciplines: scientometrics, information science, economics, game theory, artificial 658

intelligence, social network analysis, evolutionary computation, cognitive science 659

in general and even cognitive anthropology, all have something to contribute. 660

This probably requires the assembling of interdisciplinary teams and that is a 661

challenge in itself. 662

13The author of the present chapter is currently working on a model trying to take these issues into
account as part of a PhD thesis entitled: “Simulating Science: an Agent-Based Model of Scientific
Evolution”. (Université du Québec à Montréal, Département de philosophie).
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Also, though we did not raise the issue in the previous sections, the fact is that 663

agent-based simulations are computer programs, and building one is by no means 664

trivial. There are many tools that one can use to build an ABM: it can be built 665

from scratch using any programming language, or it can use a powerful low-level 666

library like MASON (Luke et al. 2005)14 or a high-level framework like NetLogo.15
667

Other common frameworks are Repast16 and Swarm,17 but you will find many 668

others, with different degrees of simplicity, generality and popularity, in Nikolai 669

and Madey (2009). Lots of questions may be asked: Is this multiplicity of tools a 670

good or a bad thing? How does it affect collaboration between modelers? How does 671

it affect reproducibility of the results? Can the models be fully described in abstract, 672

mathematical language, or does implementation matter? Would we be better off with 673

a single framework (maybe targeted specifically for science modeling)? 674

Finally, agent-based modeling of science needs to find a place for itself amongst 675

traditional mathematical models and scientometrics. Just as it does for traditional 676

models, scientometrics provides explananda for ABMs. ABMs are able to generate 677

massive amount of data that can then be analyzed and visualized using the best 678

available tools from scientometrics. To our knowledge, this has not fully been done 679

yet, though Börner et al. (2004) took a significant step in the right direction. But 680

still, it is an area where ABMs of science are sorely lacking.18
681

As for the relationship between ABMs and traditional analytical models, we have 682

seen in Sect. 4.1.3.2 that ABMs can be used to challenge some idealizations made 683

by other models. Hopefully, this can lead to a process of back-and-forth exchange 684

that will be profitable for both types of models. 685

Key points
In their current state, agent-based models of science do not provide all that
much in the way of direct policy recommendations. Nonetheless, some of
the models we have seen point towards a few key insights that need to be
recognized:

• In all knowledge-seeking systems, there is a trade-off between exploitation
and exploration: a delicate balance between fine-tuning the knowledge you
already have and striving for completely new knowledge. As Weisberg and
Muldoon (2009) have shown, a population of scientists needs at least a few

14http://cs.gmu.edu/�eclab/projects/mason/
15http://ccl.northwestern.edu/netlogo/
16http://repast.sourceforge.net/
17http://www.swarm.org/
18To be fair, Gilbert et al. (2007) and Sun and Naveh (2009) do compare their results to
scientometric data, but it is a very small dataset.

http://cs.gmu.edu/~eclab/projects/mason/
http://ccl.northwestern.edu/netlogo/
http://repast.sourceforge.net/
http://www.swarm.org/
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“mavericks,” and that should be taken into account with things like funding
decisions.

• Closely related to that first point is the issue of the division of cognitive
labor: we want scientific resources to be allocated to different projects in a
way that is optimal for the community as a whole. Individual incentives
are a useful tool to try to achieve that, but as Muldoon and Weisberg
(2010) have shown, some of them might not be as efficient as we think
they are. The long reigning Priority Rule, for instance, might be due for a
reevaluation.

• Scientists are part of communities, and the structure of these communities
matter. The results we have so far regarding this question tend to show
that too much communication between scientists might lead to premature
agreement on some issues (Grim 2009). If that is indeed the case, the
pressure to publish early and often may be having adverse effects on the
performance of the science system.

• The concept of an “epistemic landscape” is probably a new one for most
policy-makers, but it has far reaching implications: different policies are
likely to have different effects on different epistemic landscapes, so the
shape of the landscape should be taken into account when trying to
influence the science system. It is not clear yet how to map the shape of
the landscape for any particular domain, but this is a question that is likely
to be at the forefront of “science of science” research in the coming years.

Those various insights show at least the potential of agent-based models of
science, so one last recommendation should be:

• Agent-based models should become part of the policy-maker’s toolbox, as
they enable us to capture a kind of complexity that is not easily tackled
using analytical models. While they are still in their infancy, they open up
a new range of possibilities for investigating the science system.
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Chapter 5 1

Evolutionary Game Theory and Complex 2

Networks of Scientific Information 3

Matthias Hanauske 4

5.1 Introduction 5

The encounter of information science with the theory of complex networks is the 6

main characteristic of a realistic model of science dynamics. Complex information 7

networks and the social dimension of the network of researchers are combined 8

in a multi-level network model which functions as the topological background 9

of the whole market of scientific information. A main goal of academic research 10

is the diffusion of new research results. This is achieved by interaction between 11

scientists through reading and citing other authors’ work (Bernius et al. 2010). 12

Complex citation, co-authorship, and semantic networks have been evolved in 13

reality, and the theoretical description of the dynamical behavior of these networks 14

has been addressed in several chapters of this book. The evolution of the market of 15

scientific information depends not only upon the researchers’ actions, but also upon 16

the actions of other actors involved in the knowledge-creation process (journals, 17

libraries, funding agencies, etc.). For some years, the market of scientific publishing 18

has been forced to make major changes in the process of distributing research 19

results among scientists. First, the increase in digitalization brought a shift towards 20

electronic publication, and second, shrinking library budgets in combination with 21

a constant rise of journal prices have resulted in massive cancellations of journal 22

subscriptions. In order to regain broad access to research findings, alternative ways 23

of publishing scientific literature have been developed and have received increased 24

attention. These new models are summarized under the term “Open Access (OA)” 25

(Bernius and Hanauske 2007) (Table 5.1).AQ1 26

Within this chapter, the market of scientific information is modeled as a game 27

between various actors involved in the knowledge-creation process. The main 28

M. Hanauske (�)
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Table 5.1 Major questions raised in this chapter and their answers

Major questions raised in
this chapter

And their answers

t29.11. Why should I deal with
game theory?

By analysing the game structure of a specific decision
problem, decision-makers can learn a lot about the
problem they are involved in.

t29.22. What is the difference
between game theory and
evolutionary game theory?

Evolutionary game theory uses game-theoretical concepts,
but focuses on the strategic decisions within a whole
population of players, and describes the evolutionary,
time-dependent dynamics of the population.

t29.33. What do I need for a
game-theoretical analysis
of my specific decision
problem?

You need only three things: The set of players, the set of
available actions (strategies), and the payoff structure of
the underlying game.

t29.44. What are Nash equilibria,
dominant strategies, and
evolutionary stable
strategies?

These different equilibrium concepts will be defined,
visualized, and explained in detail (see Sect. 5.2). They
are, for example, important for the definition of different
game classes.

t29.55. What types of games are
possible?

Symmetric and unsymmetric games. For symmetric games,
the three different game classes – “dominant games,”
“coordination games,” and “anti-coordination games,” are
possible. For unsymmetric games, there are three major
categories possible: “corner class,” “saddle class,” and
“center class”.

t29.66. How can evolutionary game
theory be applied to
science dynamics?

Two applications are discussed within this chapter.
Section 5.3.1: “Scientific communication and the open
access decision” and Sect. 5.3.2: “Evolution of
Hub-and-Spoke Communication Networks”.

t29.77. In the future, will scientific
information be free of
charge for everyone?

Scientists face a dilemma: Considering a potential loss in
reputation, incentives to perform open access are missing
(see Sect. 5.3.1). Scientific publishers also face a
dilemma, as they fear a profit loss within a totally
“green-open-access publishing market” (see Sect. 5.3.2).

t29.88. Evolutionary game theory
depends only on a few
open parameters. How can
that be? Isn’t nature very
complicated?

With the use of this simple model, one can learn a lot about
the underlying game. However, some aspects are not
included within classical evolutionary game theory. Some
amplifications of the classical theory (“Evolutionary
Game Theory on Complex Networks” and “Evolutionary
Quantum Game Theory”) are discussed in Sect. 5.4.

research goal of the chapter is to understand different publication norms within 29

the scientific community, especially the description of the time evolution of the 30

average strategic decision of different actor populations, using the framework of 31

the evolutionary game theory. How can one include group behavior and social 32

norms (which might be caused by cultural or moral standards) into the theory of 33

population dynamics formulated within the evolutionary game theory? Evolutionary 34

game theory on complex networks using agent-based computation methods and 35

quantum game theory are recently developed models, and they will be discussed 36

briefly at the end of this chapter (see Sect. 5.4). 37
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Within this chapter of the book Models of Science Dynamics–Encounters 38

between Complexity Theory and Information Science, the framework of evolution- 39

ary game theory (EGT) is described in detail. After a general introduction and a 40

discussion of a simple game-theoretical example, the grounding of EGT (Sect. 5.2) 41

and a brief literature review is presented. The formal mathematical model, different 42

concepts of equilibria, and various classes of evolutionary games will be defined, 43

explained, and visualized. In Sect. 5.3, two applications are presented. The first 44

one (see Sect. 5.3.1) focuses on the open-access game of scientific communication 45

and extends it to an evolutionary game (for details, see (Hanauske et al. 2007, 46

2010b)). The second application (see Sect. 5.3.2) focuses on the evolution of 47

the interconnected network of scientific journals and scientific authors within a 48

formal “Hub-and-Spoke Communication Network” model. The combination of 49

evolutionary game theory with the theory of complex networks and the description 50

of a new framework that includes group behavior and social norms into evolutionary 51

population dynamics are briefly explained in Sect. 5.4. The chapter ends with a short 52

summary. 53

5.2 Evolutionary Game Theory 54

In 1928, the main inventor of game theory – Johann (John) von Neumann – 55

published the first article on this important topic (von Neumann 1928).1 The first 56

book about game theory was published in 1944 by von Neumann and Morgenstern 57

(von Neumann and Morgenstern 1944). Evolutionary game theory (Smith and 58

Price 1973; Smith 1974, 1982; Schlee 2004; Miekisz 2008; Szabó and Fáth 2007; 59

Schlee 2004; Amann 1999; Hanauske 2009) was developed after J.M. Smith had 60

found that stationary solutions to evolutionary differential equations are connected 61

with game theory (Smith 1972). In the following years, applications in respect to 62

biological systems (Sinervo and Lively 1996; Turner and Chao 1999; Kerr et al. 63

2002; Fraser et al. 2002; Nowak and Sigmund 2002, 2003) and socio-economic 64

systems–e.g., “public good” games (Clemens and Riechmann 2006), cultural or 65

moral developments (Enquist and Ghirlanda 2007; Harms and Skyrms 2008), the 66

evolution of languages (Pawlowitsch 2007), social learning (Enquist and Ghirlanda 67

2007), the evolution of social norms (Axelrod 1997; Ostrom 2000), the financial 68

crisis (Hanauske et al. 2009), and the evolution of social networks (Szabó and Fáth 69

2007; Janssen and Ostrom 2006; Ostrom 2009) – came into the focus of research. 70

1In principle, the groundings of GT go back to 1800 (e.g. Antoine-Augustin Cournot (1801–
1877) and Francis Ysidro Edgeworth (1845–1926) (Söllner 2001)). Additionally, in the 1913,
Ernst Zermelo had discussed the chess game using a backward-induction method (Zermelo 1913).
However, the first formal, mathematical description of GT was developed by John von Neumann
in the year 1928 (von Neumann 1928).
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5.2.1 Game Theory: A Simple Example 71

The necessary definitions and fundamental basics of GT and EGT will be explained 72

in the next subsection; however, the following section explains the use of game- 73

theoretical concepts with one simple example: 74

Two persons (Emma and Hans) have to make a decision. Each of them has to 75

choose between two possible actions. For both of them it is an important decision, 76

as they might get a great benefit (or a punishment) if they choose the “right” (or 77

“wrong”) decision. The amount of the potential benefit depends on the decisions of 78

both persons and not only on the action of one. Unfortunately, they do not have any 79

possibility of communicating with the other one to coordinate their actions. 80

GT is a mathematical concept used to analyze such decision states. Every 81

quantitative mathematical model that tries to explain processes happening in nature 82

begins with a definition of the necessary parameters. In the following, the parameter 83

A or B (later also �) will be used to describe a person, a player, a decision-maker, 84

or even a firm or an animal. In the above example, the parameter A means “Emma” 85

and the parameter B means “Hans”. The parameter SA will be used to describe the 86

set of possible strategies (actions) available to Emma, whereas SB describes the set 87

of available actions of player “Hans.” In the above example, this would be written 88

as SA D ˚
sA

1 ; sA
2



, as Emma can only choose between two possible actions namely, 89

strategy one (sA
1 ) and strategy two (sA

2 ). The strategy space of Hans is written in a 90

similar form: SB D ˚
sB

1 ; sB
2



. The parameter U is used to quantify the potential 91

benefit (or the amount of punishment) given to players after they have announced 92

their final decisions. 93

In principle, to define a game � , one needs three things: 94

• Who is playing the game? Definition of the set of players: I D fA; B; : : : ; g D 95

fEmma; Hans; : : : ; g 96

• What can the players do? Definition of the set of actions (strategies) available for 97

each player: SA D SEmma D ˚
sA

1 ; sA
2 ; : : : ;



and SB D SHans D ˚

sB
1 ; sB

2 ; : : : ;



98

• How much can the players win or lose? Definition of the payoff structure of the 99

game: OUA D OUEmma and OUB D OUHans
100

Every decision-maker who wants to analyse her/his decision problem (her/his 101

game) with game-theoretical concepts has to define these three things – therefore, 102

the simple example is extended with the use of an additional little story. The binary 103

decision of Emma (Player A) and Hans ( Player B) could be “To stay” or “To go,” 104

or it could be simply to choose between two strategies (e.g., fbuy, don’t buy g, f left, 105

rightg, fabove; belowg, fs1; s2g). The benefit if both choose the strategy s1 is very 106

good for both of them, and the parameter U11 is used in the following to quantify this 107

benefit. If Emma and Hans choose the strategy s2, it will be bad for both of them, 108

and the parameter U22 quantifies the value of punishment for both players. If Emma 109

decides to stay (sA
1 ) and Hans goes, the outcome for Hans will be even slightly better 110

than the situation for him if both stay (U B
11 < U B

12); the same holds true for Emma: 111

(U A
11 < U A

21). However, if Emma chooses the strategy sA
2 and Hans stays (strategy 112
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Fig. 5.1 Game tree of a (2 person)–(2 strategy) game with payoff for player A (UA) and player
B (UB )th

is
fig

ur
e

w
ill

be
pr

in
te

d
in

b/
w

sA
1 ), the outcome for Hans will be extremely bad .U B

21 
 U B
22/; the same holds 113

true for Emma: .U A
12 
 U A

22/. Figure 5.1 visualizes this (two player)–(two strategy) 114

game as a game tree with four possible payoff outcomes. 115

GT analyses such decision states, using mathematically defined equilibrium 116

concepts. The most famous concept of this kind is called the “Nash equilibrium” 117

(NE). As player B does not know for sure what player A will do, he starts to think 118

what would be the best for him, if player A chose the strategy sA
1 (staying): “It would 119

be good for me if player A stays and I stay, but in this case it would be even better 120

for me to go.” After remaining a moment at this thought, player B starts to think 121

in the other direction: “If player A goes and I stay, it will be extremely bad for 122

me – it is really advisable for me to go!” Within the framework of classical GT, the 123

predicted outcome of this example is that both players decide to go. In the language 124

of game theory, the strategy s2 is the only NE of this example, and as the game is 125

a (two player)–(two strategy) normal-form game, s2 is even a dominant strategy. To 126

be more precise: 127

The strategy combination .sA
2 ; sB

2 / is a Nash equilibrium because: 128

Nash equilibrium at .sA
2 ; sB

2 /:

UA.sA
2 ; sB

2 / D U A
22 � UA.sA; sB

2 / 8 sA 2 SA D ˚
sA

1 ; sA
2



UB.sA

2 ; sB
2 / D U B

12 � UB.sA
2 ; sB/ 8 sB 2 SB D ˚

sB
1 ; sB

2



(5.1)

The tragedy of this game is that after both players have made their decision, they 129

are in a worse situation than when they had chosen the strategy s1 (U A
22 < U A

11 130

and U B
22 < U B

11) – therefore, the game belongs formally to the class of prisoner’s 131

dilemma games (class of dominant games with a dilemma). 132
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Depending on the payoff structure of the game ( OUA and OUB ), different game 133

classes and outcomes are possible. By analysing the game structure of a specific 134

decision problem, decision makers can learn a lot about the problem they are 135

involved in. 136

The simple example within this subsection was used to explain game-theoretical 137

concepts. EGT uses these concepts, but focuses on the strategic decisions within 138

a whole population of players. There exist not only one Emma and one Hans, but 139

a whole group of players like Emma (group A) and a whole group of players like 140

Hans (group B). They do not play the game only once – at each time increment 141

the Emma’s and the Hans’s come together, play the game, receive their payoffs, 142

and search the next game partner for the next time increment. The framework of 143

EGT only needs one piece of additional information about the game � : What is 144

the fraction of players within group A (group A) choosing strategy sA
1 (choosing 145

strategy sB
1 ) at time zero – the initial value of the strategic decision of the whole 146

population. Knowing the game � and the initial value, the framework of EGT is 147

able to show the evolutionary dynamics of the population, and it gives answers about 148

the thing everybody wants to know: “How is it going to the end?” 149

5.2.2 Definition and Key Aspects of Evolutionary Game Theory 150

EGT is a time-dependent dynamical extension of “Game Theory” (GT), which itself 151

is a mathematical toolbox to explain interdependent decision processes happening in 152

biological or socio-economic systems. As the variety of different concepts in GT is 153

very large, and the article is not meant to summarize only GT, the game-theoretical 154

concepts presented in this article will only focus on “strategic-form games”,2 and 155

the article does not discuss “extensive-form games” nor “cooperative games.” In 156

the following, the formal framework of the mixed extension of a (N player)– 157

(m strategy) game in strategic form will be defined: 158

N-person game: � WD �I; QS; QU�
Set of players: I D f1; 2; : : : ; N g
Pure strategy space: S D S1 	 S2 	 : : : 	 SN

Pure strategy space of player � 2 I: S� D
n
.s

�
1 ; s

�
2 ; : : : ; s�

m�
/
o

Mixed-strategy space: QS D QS1 	 QS2 	 : : : 	 QSN

Mixed-strategy space of player � 2 I:

QS� D
(

.Qs�
1 ; Qs�

2 ; : : : ; Qs�
m�

/ j
m�X
iD1

Qs�
i D 1; Qs�

i � 0; i D 1; 2; : : : ; m�

)
(5.2)

2The category of “strategic-form games” is often also called “non-cooperative games”.
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Number of strategies available for player � 2 I m�

Mixed-strategy profile of player � 2 I: Qs� D
�

Qs�
1 ; Qs�

2 ; : : : ; Qs�
m�

�T 2 QS�

Vector function of mixed payoffs: QU D � QU1; QU2; : : : ; QUN
� W QS ! RN

Mixed payoff for player � 2 I:

QU�.Qs1; Qs2; : : : ; QsN / D
m1X

i1D1

m2X
i2D1

: : :

mNX
iN D1

U�.s1
i1

; s2
i2

; : : : ; sN
iN

/

NY
�D1

Qs�
i�

Definition (5.2) expresses that three main quantities are necessary to define a (N 159

player)–(m strategy) game in strategic form. The first quantity, the set of players I, 160

includes all of the actors involved in the underlying game. In respect to the focus of 161

this book, I could be understood as the set of entities involved in the knowledge- 162

creation process (subsets of I: researchers, journals, libraries, funding agencies, 163

etc.). The second quantity, the set of pure strategies QS , expresses all of the available 164

strategies of all of the actors involved in the game. In principle, each actor � 2 I 165

could have her/his own set of available strategies (S�). If we focus again on a model 166

of science, the different subgroups of I will have similar strategy spaces (strategy 167

space of scholars, strategy space of journals, etc.). The set of mixed strategies of 168

player � ( QS�) is a mathematical amplification of the set of pure strategies ( QS�). The 169

elements belonging to the set of mixed strategies (Qs� D .Qs�
1 ; Qs�

2 ; : : : ; Qs�
m�/ 2 S�) 170

consist of m� real numbers (Qs�
i 2 Œ0; 1� 8 i 2 f1; 2; : : : ; m�g) and can be interpreted 171

as the probability of player � for choosing the pure strategy s
�
i . The third quantity, 172

the mixed strategy payoff function QU , is used to quantify the potential benefit (or 173

the amount of punishment) given to the persons. The amount of the potential benefit 174

(punishment) given to a player � ( QU�) depends on the actions of all players and not 175

only on the strategy decision of player �. 176

To be more precise, the following part is constrained to the strategic form of 177

an unsymmetric (or symmetric) (2 player)–(2 strategy) game � (for details, see 178

(Hanauske 2009; Szabó and Fáth 2007)): 179

(2 	 2) game: � WD
�
fA; Bg ;SA 	 SB; OUA; OUB

�

Set of pure strategies of player A and B:

SA D ˚
sA

1 ; sA
2



; SB D ˚

sB
1 ; sB

2



Set of mixed strategies of player A and B:

QSA D ˚QsA
1 ; QsA

2



; QSB D ˚QsB

1 ; QsB
2



Mixed payoff of player � 2 fA; Bg: QU� W � QSA 	 QSB

� ! R

QU�..QsA
1 ; QsA

2 /; .QsB
1 ; QsB

2 // D U
�
11 QsA

1 QsB
1 C U

�
12 QsA

1 QsB
2 C U

�
21 QsA

2 QsB
1 C U

�
22 QsA

2 QsB
2

Payoff matrix for player A and B: OUA D
�

U A
11 U A

12

U A
21 U A

22

�
; OUB D

�
U B

11 U B
12

U B
21 U B

22

�
(5.3)
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The set of mixed strategies of player A ( QSA) and player B ( QSB ) is a mathematical 180

amplification of the set of pure strategies (SA and SB ). The elements belonging to 181

the set of mixed strategies (Qs� D .Qs�
1 ; Qs�

2 / 2 S�) of player � D A; B consist of two 182

real numbers (Qs�
1 2 Œ0; 1� and Qs�

2 2 Œ0; 1�) and can be interpreted as the probability 183

of player � for choosing the strategy 1 (Qs�
1 ) or 2 (Qs�

2 ). For two-strategy games, the 184

following normalization condition has to be fulfilled: Qs�
1 C Qs�

2 D 1 8 � D A; B . 185

Due to the normalizing condition, it is possible to simplify the functional 186

dependence of the mixed-strategy payoff function: 187

QU� W .Œ0; 1� 	 Œ0; 1�/ ! R

QU�.QsA; QsB/ D U
�
11 QsA QsB C U

�
12 QsA.1 � QsB/ C

C U
�
21.1 � QsA/QsB C U

�
22.1 � QsA/.1 � QsB/ ; (5.4)

where QsA WD QsA
1 , QsB WD QsB

1 , QsA
2 D 1 � QsA

1 and QsB
2 D 1 � QsB

1 . 188

In the following, two fundamental equilibrium concepts are defined, namely the 189

equilibrium in dominant strategies and the Nash equilibrium. 190

A strategy combination .QsA�; QsB�/ is an equilibrium in dominant strategies if the 191

following conditions are fulfilled: 192

Equilibrium in dominant strategies:

QU�.QsA�; QsB�/ � QU�.QsA; QsB/ 8 � D A; B and QsA; QsB 2 Œ0; 1� (5.5)

A strategy combination .QsA�; QsB�/ is called a Nash equilibrium if: 193

Nash equilibrium: QUA.QsA�; QsB�/ � QUA.QsA; QsB�/ 8 QsA 2 Œ0; 1�

QUB.QsA�; QsB�/ � QUB.QsA�; QsB/ 8 QsB 2 Œ0; 1� (5.6)

An interior (mixed-strategy) NE .QsA?; QsB?/ is a special case of the Definition 5.6, 194

as the partial derivative of the mixed-strategy payoff function vanishes at the value 195

of the interior NE: 196

Interior Nash equilibrium:

@ QUA.QsA; QsB/

@QsA

ˇ̌̌
ˇ̌
QsB DQsB?

D 0 8 QsA 2 Œ0; 1� ; QsB? 2�0; 1Œ

@ QUB.QsA; QsB/

@QsB

ˇ̌
ˇ̌
ˇQsADQsA?

D 0 8 QsB 2 Œ0; 1� ; QsA? 2�0; 1Œ (5.7)

The defined equilibrium concepts will be used in Sect. 5.2.3 to classify games 197

into different classes. The hitherto defined mathematical constructs can be used to 198

analyze one-shot (2	2) games, while the following equations will describe the time 199



UNCORRECTED
PROOF

5 Evolutionary Game Theory and Complex Networks of Scientific Information 167

evolution of the strategic behavior of a large group of players (population). At each 200

time increment all of the individual players of the population search randomly for a 201

partner to play a (2	2) game. Then, after the players have chosen their strategies and 202

have received their payoffs, they search again for the next game partner. To describe 203

the time evolution of such a repeated version of the game � , replicator dynamics has 204

been developed. As the payoff matrices ( OUA and OUB/ of the two persons playing the 205

game are in general unsymmetric, the whole population of players separates into the 206

two subpopulations “A” and “B.” Replicator dynamics, formulated within a system 207

of differential equations, defines in which way the population vector x� D .x
�
1 ; x

�
2 / 208

evolves in time. Each component x
�
i D x

�
i .t/ (i D 1; 2 and � D A; B) describes 209

the time evolution of the fraction of different player types i in the �-subpopulation, 210

where a type-i player is understood as an actor � playing strategy s
�
i . Similar to the 211

normalizing condition of the mixed strategies, the two population vectors xA and xB
212

have to fulfill the normalizing conditions of a unity vector: 213

x
�
i .t/ � 0 and

2X
iD1

x
�
i .t/ D 1 8 i D 1; 2 ; t 2 R; � D A; B: (5.8)

The structure of the time evolution of the components of the two population 214

vectors xA.t/ D .xA
1 .t/; xA

2 .t/ and xB.t/ D .xB
1 .t/; xB

2 .t// is formulated through 215

a system of differential equations, known as the equation of Replicator Dynamics 216

(Amann 1999; Schlee 2004; Miekisz 2008; Hanauske 2009; Szabó and Fáth 2007): 217

dxA
i .t/

dt
D xA

i .t/

"
2X

lD1

U A
il xB

l .t/ �
2X

lD1

2X
kD1

U A
kl xA

k .t/ xB
l .t/

#

dxB
i .t/

dt
D xB

i .t/

"
2X

lD1

U B
li xA

l .t/ �
2X

lD1

2X
kD1

U B
lk xA

l .t/ xB
k .t/

#
(5.9)

As the number of available strategies in our approach is restricted to two, it is 218

possible to substitute the second strategy by using condition 5.8: xA
2 D 1 � xA

1 and 219

xB
2 D 1�xB

1 . The system of differential equations (5.9) can therefore be formulated 220

as follows (x.t/ WD xA
1 .t/, y.t/ WD xB

1 .t/): 221

dx.t/

dt
D

0
B@U A

11 � U A
21„ ƒ‚ …

WDaA

C U A
22 � U A

12„ ƒ‚ …
WDbA

1
CA
�
x.t/ � .x.t//2

�
y.t/

� �U A
22 � U A

12

�
„ ƒ‚ …

WDbA

�
x.t/ � .x.t//2

�

D �
aA C bA

� �
x.t/ � .x.t//2

�
y.t/ � bA

�
x.t/ � .x.t//2

�
DW gA.x; y/
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dy.t/

dt
D

0
B@U B

11 � U B
21„ ƒ‚ …

WDaB

C U B
22 � U B

12„ ƒ‚ …
WDbB

1
CA
�
y.t/ � .y.t//2

�
x.t/

� �U B
22 � U B

12

�
„ ƒ‚ …

WDbB

�
y.t/ � .y.t//2

�

D �
aB C bB

� �
y.t/ � .y.t//2

�
x.t/ � bB

�
y.t/ � .y.t//2

�
DW gB.x; y/

(5.10)

Equation (5.10) describes the time evolution of the strategic behavior of two 222

separate subpopulations playing an unsymmetric bimatrix game. The fraction of 223

players choosing strategy s1 at time t of the subpopulation “A” is quantified by 224

x.t/, whereas y.t/ describes the average strategic choice of subpopulation “B.” The 225

time evolution of the coupled system of differential equations (5.10) depends on the 226

properties of the two functions gA.x; y/ and gB.x; y/ and on the initial conditions 227

x.t D 0/ and y.t D 0/. 228

If we focus on a model of science, the two different subpopulations playing the 229

evolutionary game could be, for example, the group of scholars (subpopulation “A”) 230

and the group of journals (subpopulation “B”). The two pure strategies of a member 231

of the group A of researchers could be based on any relevant, recurring binary deci- 232

sion a scholar has to decide during her/his research lifetime (e.g., does she/he want 233

to put her/his new article on a open-access repository). The two pure strategies of a 234

member of the group B of journals could be any recurring binary decision a journal 235

has to make (e.g., does the journal allow the authors to put their submitted article 236

version on an open-access repository). The fraction of researchers choosing strategy 237

sA
1 OD (put the article on an open-access repository) at time t is quantified by x.t/, 238

where x D 1 corresponds to a situation where every scholar uses open-access 239

repositories, and x D 0 means nobody uses them. Similarly, the fraction of journals 240

choosing strategy sA
1 OD (allowing open-access repositories) at time t is quantified 241

by y.t/, where y D 1 corresponds to a situation where every journal allows open- 242

access repositories and y D 0 means no journal allows it. The two payoff matrices 243

finally quantify the potential benefit to the researchers ( OUA) and journals ( OUB ). This 244

particular bimatrix game will be discussed in more detail within Sect. 5.3.2. 245

By restricting the underlying payoff matrix to be symmetric ( OUA �
� OUB

�T

, 246

Ulk WD U A
lk D U B

kl ), the two separate subpopulations (A and B) cannot be 247

distinguished any more and the system of differential equations (5.9) simplifies as 248

follows: 249

dxA
i .t/

dt
D xA

i .t/

"
2X

lD1

Uil xB
l .t/ �

2X
lD1

2X
kD1

Ukl xA
k .t/ xB

l .t/

#

dxB
i .t/

dt
D xB

i .t/

"
2X

lD1

Uil xA
l .t/ �

2X
lD1

2X
kD1

Ukl xA
l .t/ xB

k .t/

#
(5.11)
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Equation (5.11) indicates that the mathematical structures of the two population 250

vectors xA and xB are identical, which simply means that a symmetric evolutionary 251

game can be described by a single population vector x WD xA D xB . In respect to 252

a model of science, this means that (5.11) can only be used for subgames with 253

strategic decisions involving only one set of knowledge entities. Therefore the 254

system of differential equations (5.11) reduces to one single equation: 255

dxi .t/

dt
D xi .t/

2
666664

2X
lD1

Uil xl .t/

„ ƒ‚ …
WDfi .t/

�
2X

lD1

2X
kD1

Ukl xk.t/ xl .t/

„ ƒ‚ …
WD Nf .t/

3
777775

(5.12)

where fi .t/ is the fitness of type i and Nf .t/ D P2
iD1 fi .t/ is the average fitness of 256

the whole population. Again, the overall vector x D .x1.t/; x2.t// has to fulfill the 257

normalizing conditions of a unity vector: 258

xi .t/ � 0 8 i D 1; 2 and
2X

iD1

xi .t/ D 1 8 t 2 R: (5.13)

For a symmetric game, (5.12) can therefore be simplified as follows: 259

dx

dt
D x



U11.x � x2/ C U12.1 � 2x C x2/ C U21.x

2 � x/ C U22.2x � x2 � 1/
�

D x

2
4.U11 � U21/„ ƒ‚ …

WDa

.x � x2/ � .U22 � U12/„ ƒ‚ …
WDb

.1 � 2x C x2/

3
5

D x


a.x � x2/ � b.1 � 2x C x2/

�
DW g.x/with: x D x.t/ WD x1.t/ and x2.t/ D .1 � x.t// (5.14)

The function x.t/, describing the fraction of players choosing the strategy s1 at 260

time t , depends on the function g.x/ and on the initial starting value x.t D 0/. The 261

stationary solution of the asymptotic behavior lim
t!1.x.t// depends also on g.x/ and 262

on the initial condition, and it is formalized within the mathematical concept of the 263

Evolutionary Stable Strategy (ESS). For a general 2-player game � with the mixed 264

payoff functions QUA and QUB , a strategy combination .QsA�; QsB�/ 2 .Œ0; 1� 	 Œ0; 1�/ is 265

defined as an (ESS) if: 266

a) .QsA�; QsB�/ is a Nash equilibrium of the game 267
268

b) QUA.QsA; QsB/ � QUA.QsA�; QsB/ 8 QsA 2 rA.QsB�/ ; QsB ¤ QsB�
269

QUB.QsA; QsB/ � QUB.QsA; QsB�/ 8 QsB 2 rB.QsA�/ ; QsA ¤ QsA� . 270
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Let rB.QsA/ and rA.QsB/ signify the best response functions of players B and A 271

to the strategy QsA and QsB , respectively. An ESS .QsA�; QsB�/ therefore needs to be a 272

Nash equilibrium of the game, and also the inequations b) should be fulfilled for any 273

strategy combination .QsA; QsB/ belonging to the set of best responses to .QsA�; QsB�/. 274

This survey has focused on deterministic evolutionary game dynamics and 275

has specially concentrated on replicator dynamics. Stochastic evolutionary game 276

dynamics and adaptive or rational learning processes have not been discussed (for 277

a detailed analysis, see e.g., Sandholm 2010). The discussed evolutionary dynamics 278

uses only the revision protocol of replicator dynamics and other possible types of 279

dynamics (nonlinear payoff functions, general imitation dynamics, best-response 280

dynamics, logit dynamics and Brown-von Neumann–Nash dynamics) were not 281

discussed within this chapter either (for a detailed analysis, see e.g., (Sandholm 282

2010; Hofbauer and Sigmund 2003)). The conjunction of evolutionary game theory 283

with the theory of complex networks using concepts from agent-based modeling is 284

a new and interesting scientific topic, but it is not addressed within this chapter (for 285

a detailed analysis, see e.g., (Szabó and Fáth 2007; Hofbauer and Sigmund 2003)). 286

5.2.3 Classes of Evolutionary Games 287

Within this subsection, the possible classes of (2 player)–(2 strategy) games are 288

defined. The first part of this subsection focuses on classes of the symmetric version 289

of the game � (see (5.14)), whereas the second part deals with the bimatrix version 290

of the game (see (5.10)). 291

5.2.3.1 Classes of Symmetric Games 292

Following the classification scheme of (Weibull 1995) (see also Szabó and Fáth 293

2007), only three classes of symmetric (2 player)–(2 strategy) games are possible, 294

namely the dominant game class, the class of anti-coordination games, and the 295

coordination game class. For a < 0 and b > 0 (see (5.14)), the game belongs 296

to the class of dominant games having only one pure NE (sA
1 ; sB

1 ), which is also the 297

dominant strategy and the only ESS of the game. For a; b < 0, the game � is an anti- 298

coordination game, having two pure, non-symmetric Nash equilibria ((sA
1 ; sB

2 ) and 299

(sA
2 ; sB

1 )), and one symmetric interior mixed strategy NE .QsA?; QsB?/ D . b
aCb

; b
aCb

/, 300

which is the only ESS of the game. For a; b > 0, the game belongs to the 301

coordination game class, having two pure symmetric Nash equilibria ((sA
1 ; sB

1 ) and 302

(sA
2 ; sB

2 )), which are the two possible ESSs, and one symmetric interior NE at 303

.QsA?; QsB?/ D . b
aCb

; b
aCb

/. For b < 0 and a > 0, the game is again a dominant 304

game, having only one pure NE and ESS at (sA
2 ; sB

2 ). 305

To illustrate these formal results and visualize the outcomes of the different game 306

classes, this section presents the numerical simulations with different parameter 307
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Table 5.2 Parameter values of the three different sets of symmetric games

t30.1Parameter
setting

Game class U11 U12 U21 U22 a b Nash equilibria

t30.2Set1 Dominant
class

10 4 12 5 �2 1 One pure Nash
equilibrium (sA

2 ; sB
2 )

t30.3Set2 Coordination
class

10 4 9 5 1 1 Two pure Nash
equilibria and one
interior NE at
s? D 1

2

t30.4Set3 Anti-
Coord.
class

10 7 12 5 �2 �2 Two pure asymmetric
Nash equilibria and
one interior NE at
s? D 1

2
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Fig. 5.2 Mixed-strategy payoff function QUA.QsA; QsB/ for player A within parameter set Set1 as a
function of the mixed strategies of player A (QsA) and B (QsB )th
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settings of symmetric games. The parameter setting Set1 belongs to the class of 308

dominant games, parameter setting Set2 belongs to the coordination game class, 309

whereas the setting Set3 describes an anti-coordination game. Table 5.2 summarizes 310

the different parameters of the three sets. 311

Dominant Games 312

Figure 5.2 visualizes the mixed-strategy payoff function QUA.QsA; QsB/ (see (5.4)) for 313

player A within parameter set Set1. The right picture shows a special projection of 314

the surface in which the observer looks in the direction of the QsA-axis. The figure 315
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shows that the parameter set Set1 belongs to the class of dominant games and that 316

only one pure NE exists ((sA
2 ; sB

2 ) OD.QsA D 0; QsB D 0)), which is the dominant 317

strategy of the game. This property can be seen in the left picture of Fig. 5.2 if 318

one fixes the mixed strategy of player B to an arbitrary value (QsB 2 Œ0; 1�). The best 319

response for player A will always be the dominant strategy sA
2 OD .QsA D 0/. However, 320

a dilemma appears within Set1, as the payoff for the dominant strategy combination 321

( QUA.QsA D 0; QsB D 0/ D 5) is far below the highest point of the surface. If both 322

players had chosen the strategy combination (sA
1 ; sB

1 ) OD.QsA D 1; QsB D 1), it would 323

have been much better for them ( QUA.QsA D 1; QsB D 1/ D 10). The structure of the 324

game within parameter set Set1 is comparable to a “prisoner’s dilemma” game. As 325

no interior NE is present within parameter set Set1, the partial derivative (see (5.7)) 326

of QUA does not vanish within the given boundaries. The right picture of Fig. 5.2 327

visualizes this fact as no cord-up point was found within the special QsA-projection. 328

The right picture of Fig. 5.3 shows the function g.x/ within parameter set 329

Set1, whereas the left picture visualizes the numerical results of replicator dynam- 330

ics (x.t/, see (5.14)) for several initial conditions of the population function 331

(x.t D 0/ D 0; 0:05; 0:1; :::; 0:95). As the function g.x/ is negative for all x 2�0; 1Œ, 332

the fraction of players choosing the strategy s1 (x.t/) will always decrease until 333

everybody chooses the strategy s2, independently of the initial condition. 334

Coordination Games 335

Within parameter set Set2, the payoff U21 D 9 has decreased compared to the 336

value of Set1 (U21 D 12). Due to this decrease, the game class has shifted 337

from the class of dominant games to the coordination game class. The game 338

has now two pure, symmetric Nash equilibria ((sA
1 ; sB

1 ) OD.QsA D 1; QsB D 1) and 339

(sA
2 ; sB

2 ) OD.QsA D 0;QsB D 0)) and one interior mixed-strategy Nash equilibrium 340
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(.QsA?; QsB?/ D . 1
2
; 1

2
/). The apparency of the two pure Nash equilibria is visualized 341

within the left picture of Fig. 5.4. If player B is expected to choose a mixed strategy 342

QsB > s?, the best response for player A is the pure strategy s1 ODQsA D 1, whereas 343

if player B is expected to choose a mixed-strategy QsB < s?, the best response for 344

player A is the pure strategy s2 ODQsA D 0. The mixed-strategy Nash equilibrium 345

is visualized within the right picture of Fig. 5.4. Due to the fact that the partial 346

derivative of the payoff surface for player A vanishes at the value of the mixed 347

strategy NE, the whole surface shrinks to one point, if one projects the viewpoint in 348

the direction to the QsA-axis (see the right picture of Fig. 5.4). 349

The value of the mixed-strategy Nash equilibrium is equal to the zero point 350

of the function g.x/ (see right picture of Fig. 5.5). The function g.x/ (which 351

determines the dynamical behavior of the population function x.t/) has, beside 352

its negative region .g.x/ < 0 8 x 2�0; s?Œ /, also a region where its value is 353

positive (g.x/ > 0 8 x 2�s?; 1Œ). Due to this property, two evolutionary stable 354

strategies emerge (x.t ! 1/ D 0 and x.t ! 1/ D 1). To which of these ESSs 355

the population will evolve depends on the initial condition. If the fraction of s1- 356

player types at the initial time t D 0 is below the value of the mixed strategy 357

NE (x.0/ < s? D 0:5), the population will evolve to the ESS lim
t!1.x.t// D 0, 358

which corresponds to a population solely choosing the s2-strategy. Only if the initial 359

fraction is above the mixed strategy threshold (x.0/ > s?), the population will end 360

in the ESS lim
t!1.x.t// D 1. The horizontal population path at x.0:5/ D 0:5 is an 361

artefact of the numerical simulation and is not an ESS, as the solution is unstable in 362

respect to infinitely small perturbations. 363



UNCORRECTED
PROOF

174 M. Hanauske

1

0.8

0.6

0.4

0.2

0

0.1

–0.1

0.05

0
0.2 0.4 0.6 0.8 1

–0.05

1 2
t

x

x (t ) g (x)

3 4 5 6 7

Fig. 5.5 Function x.t/, the fraction of players choosing the strategy s1 at time t , for different initial
conditions within parameter set Set2 (left picture). The picture on the right shows the function g.x/,
which determines the dynamical behavior of x.t/
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Anti-Coordination Games 364

Within parameter set Set3, the payoff U12 D 7 has increased above the U22-value 365

(Set3: U22 D 5). Due to this increase, the game class has shifted towards the class 366

of anti-coordination games. Such games have two asymmetric pure Nash equilibria 367

((sA
1 ; sB

2 ) and (sA
2 ; sB

1 )) and one interior mixed-strategy Nash equilibrium, which is 368

the only ESS of such games. The apparency of the two asymmetric Nash equilibria 369

is visualized within the left picture of Fig. 5.6, whereas the mixed-strategy Nash 370

equilibrium (Set3: s? D 0:5) is visualized within the right picture. 371

The value of the mixed-strategy NE is again equal to the zero point of the function 372

g.x/ (see right picture of Fig. 5.7). The function g.x/ has now a positive region 373

at (g.x/ > 0 8 x 2�0; s?Œ) and a negative region at (g.x/ < 0 8 x 2�s?; 1Œ). 374

Independently of the specific value of the initial condition, the population will 375

always asymptotically end in the ESS x D s? D 0:5 (see the left picture of Fig. 5.7). 376

It was shown within this subsection that symmetric (2 	 2)-games can be 377

separated into three classes. However, if the number of available strategies increases, 378

the number of possible classes also needs to be extended. Zeeman has defined 19 379

different game classes of symmetric (2 	 3)-games (Zeeman 1980). 380

5.2.3.2 Classes of Bimatrix Games 381

This subsection summarizes the numerical results of the unsymmetric model, 382

where two separate subpopulations play an evolutionary bimatrix game. 383

Following the bimatrix classification scheme of Cressman (2003) (see also 384
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(Szabó and Fáth 2007)), again only three major3 classes are possible within the 385

unsymmetric version of the game � , namely the corner class, the center class and 386

the saddle class. The game belongs to the saddle class if all of the parameters are 387

positive (aA; bA; aB ; bB > 0). Saddle-class games have an interior mixed-strategy 388

3Beside the three major (generic) classes there exist also degenerate cases, where one ore more of
the parameters aA; bA; aB and bB are zero (see Szabó and Fáth 2007).
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Table 5.3 Parameter values of the four different sets of unsymmetric games

t31.1Parameter
setting

� Class of
Game �

U
�
11 U

�
12 U

�
21 U

�
22 a� b� Nash equilibria

of game �

Game class
NE and ESS

t31.2Setus
1 A: Dominant

class
10 4 14 5 �4 1 One pure NE

(sA
2 ; sB

2 )
Corner class

t31.3B: Dominant
class

10 12 2 5 �2 3 One pure NE
(sA

2 ; sB
2 )

One NE
being
ESS
(sA

2 ; sB
2 )

t31.4Setus
2 A: Coord.

class
10 4 9 5 1 1 Two pure NE,

one int. NE
(s? D 1

2 )

Saddle class

t31.5B: Coord.
class

10 7 4 5 3 1 Two pure NE,
one int. NE
(s? D 1

4
)

Two ESSs
(sA

1 ; sB
1 ),

(sA
2 ; sB

2 )

t31.6Setus
3 A: Anti-Co.

class
10 7 12 5 �2 �2 Two pure NE,

one int. NE
(s? D 1

2
)

Saddle class

t31.7B: Anti-Co.
class

10 12 9 5 �2 �4 Two pure NE,
one int. NE
(s? D 2

3 )

Two ESSs
(sA

1 ; sB
2 ),

(sA
2 ; sB

1 )

t31.8Setus
4 A: Coord.

class
10 4 7 5 3 1 Two pure NE,

one int. NE
(s? D 1

4
)

Center class

t31.9B: Anti-Co.
class

10 12 9 5 �2 �4 Two pure NE,
one int. NE
(s? D 2

3
)

No NE nor
ESS

Nash equilibrium at .QsA?; QsB?/ D . bB

aB CbB ; bA

aACbA / and two pure, symmetric Nash 389

equilibria ((sA
1 ; sB

1 ) and (sA
2 ; sB

2 )), which are the two ESSs of the game. For 390

aA; bA > 0 and aB; bB < 0 (or aA; bA < 0 and aB; bB > 0), the game describes 391

a center-class game, having only one NE, namely the interior mixed-strategy NE 392

at .QsA?; QsB?/ D . bB

aB CbB ; bA

aACbA /. Center-class games do not have any ESS, and 393

the population trajectories are closed cycles. Corner-class games emerge if the 394

parameters fulfill the following conditions: aA < 0 < bA; bB > 0; aB ¤ 0 395

(or aB < 0 < bB; bA > 0; aA ¤ 0). Such games have only one pure Nash 396

equilibrium (sA
2 ; sB

2 ) (or (sA
1 ; sB

1 )), which is the dominant strategy and the only ESS 397

of the game. 398

To illustrate these theoretical results and visualize the outcomes of the different 399

game classes, the parameters were fixed within four different game settings (see 400

Table 5.3). The parameter setting Setus
1 belongs to the corner class of bimatrix games, 401

the sets Setus
2 and Setus

3 are saddle-class games, and the last setting (Setus
4 ) describes 402

a game that belongs to the center class. 403
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Fig. 5.8 Left picture: Mixed-strategy payoff function for player A ( QUA.QsA; QsB /, colored surface)
and player B ( QUB .QsA; QsB /, wired grey surface) within parameter set Setus

1 as a function of the
mixed strategies of player A (QsA) and B (QsB ). Right picture: gx.x; y/ (colored surface) and
gy.x; y/ (wired grey surface) as functions of the strategic population fractions of group A (x)
and group B (y)th
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Corner class 404

The left picture of Fig. 5.8 visualizes the mixed-strategy payoff function for player 405

A– QUA.QsA; QsB/: colored surface, see (5.4) – and player B – QUB.QsA; QsB/: wired 406

grey surface–within parameter set Setus
1 . The set Setus

1 is similar to the symmetric 407

parameter set Set1 of a prisoner’s dilemma game. In contrast to the set Set1, the two 408

game matrices for player A and B are unsymmetric (U A
12 D 4 ¤ 2 D U B

21 and U A
21 D 409

14 ¤ 12 D U B
12). The structure of the surfaces indicates that both groups have again 410

only one NE, which is the dominant strategy (sA
2 ; sB

2 ) OD.QsA� D 0; QsB� D 0/. 411

The right picture of Fig. 5.8 displays the two functions gx.x; y/ (colored surface) 412

and gy.x; y/ (wired grey surface) that determine the dynamical behavior of the 413

strategical decisions of group A (x.t/) and group B (y.t/) (see (5.10)). The amount 414

of players choosing strategy s1 will in both groups monotonically decrease and 415

will – independently of the initial value – finally reach the only ESS .x D 0; 416

y D 0/, because the two surfaces are always below or equal to zero (gx.x; y/ � 0; 417

gy.x; y/ � 0 8 x; y 2 Œ0; 1�). 418

The evolution of the strategic behavior of the two groups is visualized in 419

Fig. 5.9. The plot describes the numerical results of (5.10) for three different initial 420

conditions, displayed through the three colored curves (xy-trajectories). The three 421

trajectories are embedded in a field-plot phase diagram, where the little grey arrows 422

describe the direction of a “strategic wind” the population has to follow during its 423

time evolution. The three initial conditions (x.0/; y.0/) are marked with colored 424

circles at the beginning of the three curves. The several colored arrows which are on 425

top of the trajectories describe the population movement for some intermediate time 426

steps, where the length of arrows indicate the absolute value of the strategic change 427
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Fig. 5.9 Phase diagram of the xy-trajectories for three different initial conditions within parame-
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velocity within the population. Within Fig. 5.9, the difference in the intermediate 428

time steps (ıt D 0:125) is equal for all three trajectories. The unsymmetric behavior 429

of the trajectories is due to the unsymmetry of the parameter set. The green curve, 430

for example, starts at a symmetric initial value (x.0/ D 0:9; y.0/ D 0:9), but as 431

time evolves, it follows an unsymmetric evolution. 432

The interpretation of the results of Fig. 5.9 is comparable to the results for the 433

parameter set Set1 of the symmetric model. Both population subgroups play a 434

prisoner’s dilemma game and the evolution of their strategical choice will finally – 435

independently of the initial condition – reach a state where everybody chooses the 436

dominant strategy s2. Similar to the symmetric model, the players face a dilemma, 437

as the two populations evolve towards a low-payoff ESS ( QU�.0; 0/ D 5 < 10 D 438

QU�.1; 1/). The game category belongs formally to the corner class. The velocity of 439

the strategic change (length of the colored arrows) of the three trajectories differs 440

slightly during the evolution. In the middle region of the trajectories, the velocity is 441

the highest, whereas at the end (near to the ESS), the strategic change slows down 442

very much. 443

Saddle class 444

Within the parameter set Setus
2 , both subpopulations play a coordination game. 445

A bimatrix game that is composed of two coordination games always results in a 446

saddle-class game. The structure of the payoff surfaces (see left picture in Fig. 5.10) 447
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Fig. 5.10 Payoffs and functions gx.x; y/ and gy.x; y/ within set Setus
2 ; similar to the description

in Fig. 5.8
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Fig. 5.11 Phase diagram for three different xy-trajectories within set Setus
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indicates that both groups have now two pure Nash equilibria ((sA
1 ; sB

1 ) and (sA
2 ; sB

2 )). 448

Additionally, there exists an interior mixed strategy NE (.QsA?; QsB?/ D . 1
2
; 1

4
/). 449

To indicate the zero-level, an additional white plane was added to Fig. 5.10 (right 450

hand side). Within this parameter set, the two surfaces have regions where they 451

have positive values (gx.x; y/ > 0 8 y 2�QsB?; 1� and gy.x; y/ > 0 8 x 2 452

�QsA?; 1�) and regions where they are negative (gx.x; y/ < 0 8 y 2�0; QsB?Œ and 453

gy.x; y/ > 0 8 x 2�0; QsA?Œ). The interior mixed strategy NE is exactly at the point 454
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where all of the three surfaces intersect. As all of the parameters (aA; aB; bA; bB ) 455

are positive, the game category belongs to the saddle class of bimatrix games and it 456

has two symmetric ESSs. 457

The results of the evolutionary game of parameter set Setus
2 are visualized in 458

Fig. 5.11. As the strategic change velocities of the three different trajectories are 459

quite different, the time steps (ıt) between the colored arrows are not the same for 460

the three different population paths. The red and green trajectories have the same 461

time increment (ıt D 0:35), whereas the arrows on the blue path are separated by a 462

time lag of ıt D 2. The strategic change of the blue population path is the slowest; 463

starting from an initial condition (x.0/ D 0:7; y.0/ D 0:1), the fraction of players 464

who choose the s1-strategy monotonically decreases within group B (y.t/), while 465

within group A (x.t/), the s1-fraction first decreases and then increases until the 466

whole population finally ends in the ESS (sA
1 ; sB

1 ) OD.QsA� D 1; QsB� D 1/ (all players 467

choose the s1-strategy). The red trajectory, which starts at the initial condition 468

(x.0/ D 0:1; y.0/ D 0:8), also ends within the ESS (sA
1 ; sB

1 ). Its strategic change 469

velocity, however, slows down very much at the region near the interior NE. The 470

initial condition of the green trajectory (x.0/ D 0:6; y.0/ D 0:1) is only slightly 471

different from the initial value of the blue curve; its evolution, however, is totally 472

different. The s1-fraction monotonically decreases within group A (x.t/), while 473

within group B (y.t/), the s1 fraction first increases and then decreases, until the 474

whole population finally ends in the ESS (sA
2 ; sB

2 ) OD.QsA� D 0; QsB� D 0/ (all players 475

choose the s2-strategy). Similar to the red curve, the strategic change velocity slows 476

down very much at the region near to the interior NE. 477

Parameter set Setus
3 is a saddle-class bimatrix game in which both subpopulations 478

play an anti-coordination game. The structure of the payoff surfaces (see left picture 479

in Fig. 5.12) indicates that both groups have two asymmetric pure Nash equilibria 480
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Fig. 5.13 Phase diagram for three different xy-trajectories within set Setus
3 ; similar to the

description in Fig. 5.9
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((sA
1 ; sB

2 ) and (sA
2 ; sB

1 )) and one interior mixed strategy NE (.QsA?; QsB?/ D . 1
2
; 2

3
/). 481

As all of the parameters (aA; aB; bA; bB) are negative, the game category belongs to 482

the saddle class of bimatrix games, and it has two asymmetric ESSs. 483

The results of the evolutionary game of parameter set Setus
3 are visualized in 484

Figs. 5.12 and 5.13. The time steps (ıt) between the colored arrows are the same for 485

all three population paths (ıt D 0:125). 486
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Center class 487

Finally, the last parameter set (Setus
4 ) belongs to the category of center-class games. 488

Within parameter set Setus
4 , the subpopulation A plays a coordination game, while 489

subpopulation B plays an anti-coordination game. The structure of the payoff 490

surfaces (see left picture in Fig. 5.14) indicates that there is only one interior mixed- 491

strategy NE (.QsA?; QsB?/ D . 1
4
; 2

3
/). 492

The results of the evolutionary game of parameter set Setus
4 are visualized in 493

Fig. 5.15 and show that all of the trajectories cycle around the interior NE, which 494

indicates the absence of an ESS. The time needed for one cycle is larger for bigger 495

cycles and, as a result, the time steps (ıt) between the colored arrows are the 496

smallest for the blue trajectory (ıt D 6:5) and the biggest for the red closed curve 497

(ıt D 14:5) (green: ıt D 8). 498

5.3 Applications 499

In recent years, the market of scientific publishing faces several forces that may 500

cause a major change of traditional market mechanisms. Currently, two main 501

approaches have emerged. On the one hand, new open-access journals are brought 502

to being, either through transformation of traditional journals or through creation 503

of new titles. This approach is often called the “Golden Road to Open Access.” On 504

the other hand, authors may self-archive their articles in institutional or subject- 505
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Table 5.4 Researchers’
open-access payoff matrix

t32.1AnB o ø

t32.2o (r C ı,r C ı) (r � ˛,r C ˇ)
t32.3ø (r C ˇ,r � ˛) (r ,r)

based repositories, a model referred to as the “Green Road to Open Access” 506

(Harnad 2005; Guedon 2004). The digital revolution of the information age and, 507

in particular, the sweeping changes of scientific communication brought about 508

by computing and novel communication technology, potentiate global, high-grade 509

scientific information for free. The arXiv, for example, is the leading scientific 510

communication platform, mainly for mathematics and physics, to which everyone 511

in the world has free access on. In the following, we understand open-access 512

publishing as the electronic publication of scientific information on a platform 513

that provides access to this information for all potential users, without financial 514

or other barriers. In contrast, most other scientific disciplines do not make use of 515

open-access publishing, even though they support this model if asked for (Deutsche 516

Forschungsgemeinschaft 2006; Schroter et al. 2005). Instead, they submit research 517

papers to traditional journals that do not provide free access to their articles. 518

Considering that the majority of scientists regard open-access publishing as superior 519

to the traditional system, one may question why it is adopted only by a few 520

disciplines. 521

5.3.1 Scientific Communication and the Open-Access Decision 522

Based on the assumption that the main goal of scientists is the maximization of their 523

reputation, we try to answer this question from the perspective of the producers of 524

scientific information by using a game-theoretical approach. Scientific reputation 525

originates mainly from two different sources: on the one hand, the citations to the 526

articles of a scientist, and on the other hand, the reputation of the journals in which 527

she/he publishes her/his articles (Dewett and Denisi 2004). Starting from a general 528

symmetric (2 player)–(2 strategy) game � (see definition (5.3)), where two authors 529

have to decide whether they publish open access or not, different possible game 530

settings are developed. This application focuses on a one-population model of an 531

open-access game of scientific communication and extends it to an evolutionary 532

game (for details, see Hanauske et al. 2007, 2010b). 533

To describe the underlying open-access game, we use a normal-form representa- 534

tion of a two-player game � where each player (Player 1 OD A, Player 2 OD B) can 535

choose between two strategies (SA D fsA
1 ; sA

2 g, SB D fsB
1 ; sB

2 g). In our case, the 536

two strategies represent the authors’ choice between publishing open access (o) or 537

not (ø). The whole strategy space S is composed with use of a Cartesian product of 538

the individual strategies of the two players (scientists): 539

S D SA 	 SB D f(o,o); (o,ø); (ø,o); (ø,ø)g (5.15)
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As outlined before, it is assumed that the main objective of scientists is the 540

maximization of their reputation. In the following, we focus on a situation where the 541

two scientists belong to a scientific community in which the open-access paradigm 542

is not yet broadly adopted, and the publishers decline the acceptance of articles that 543

are already accessible on an open access server. The payoff structure of this game is 544

modeled by the following payoff matrix (Table 5.4).AQ2 545

The actual reputation of the two scientists is represented by a single parameter r .4 546

If both players decide to publish their papers only in traditional journals (ø,ø), their 547

reputation r does not change. If only one of the two players chooses the open- 548

access strategy ((ø,o) or (o,ø)), the parameters ˛ and ˇ (˛; ˇ � 0) describe the 549

decrease and the increase of the scientists’ reputation, depending on the selected 550

strategy. By modeling the payoff in this way, it is assumed that the reputation of 551

the player who performs open access decreases if the other player simultaneously 552

decides not to publish open access. This can be explained by the fact that in “non- 553

open-access communities,” reputation is mainly defined through the reputation of 554

the journals in which a scientist publishes. Thus, if performing open-access (making 555

publication in traditional journals impossible), the scientist has no chance to gain 556

journal-related reputation anymore. On the other hand, the parameter ˇ describes the 557

potential increase of reputation of a scientist who refuses to perform open-access, 558

while the other player selects the open-access strategy. The parameter ı represents 559

the potential benefit in the case that both players choose the open-access strategy 560

(o,o). The payoff for each player then is r C ı. In this case, it is assumed that if both 561

players choose the open-access strategy, the publishers are forced to accept articles 562

for publication even if they are already accessible (see also the application discussed 563

in Sect. 5.3.2). Then, scientists can gain reputation both through the reputation of 564

the journal they publish in and through the increase of citations due to a broader 565

accessibility (Lawrence 2001; Harnad and Brody 2004; Eysenbach 2006). 566

As the presented open-access game is a symmetric game and the parameter 567

b D ˛ is positive, the underlying game class depends only on the sign of the 568

parameter a D ı � ˇ. For ı > ˇ, the game belongs to the class of coordination 569

games, whereas for ı < ˇ, the game has the structure of a dominant game with 570

a dilemma. For example, if the payoff parameters are fixed to the values ˛ D 1, 571

ˇ D 2:25, and ı D 0:25 (a D �2 and b D 1), the results of the open-access game 572

would be identical to the parameter setting Set1 of the dominant game presented in 573

Sect. 5.2.3.1. Although the payoff for both players would be higher if they chose the 574

strategy set (o,o), they are stuck within the Nash equilibrium (ø,ø). This outcome 575

describes the paradox situation of many scientific disciplines: On the one hand, 576

scientists realize that they would benefit if all players adopt open access, but on 577

the other hand, no player has an individual incentive to change. For ˛ D 1, 578

ˇ D 0:25, and ı D 1:25 (a D 1 and b D 1), the game belongs to the class of 579

coordination games, and its corresponding results are also discussed in Sect. 5.2.3.1 580

4By using this formalization, we assume that both scientists are on a similar level of reputation. If
they would have different “starting” reputation values, the game would be unsymmetric.
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Table 5.5 Payoff matrix of
the “Author(A)–Journal(B)”
open-access bimatrix game

t33.1AnB o ø

t33.2o (r C ı C I , r � �) (r C ı , 0)
t33.3ø (r C I , r) (r � P C I , r C P )

(see parameter setting Set2). In contrast to set Set1, this game has two pure Nash 581

equilibria ((o,o) and (ø,ø)) and one mixed-strategy Nash equilibrium 1
2
(o,o). (o,o) 582

is payoff dominant, whereas (ø,ø) is the risk-dominant pure Nash equilibrium. The 583

mixed-strategy Nash equilibrium 1
2
(o,o) implies that one scientist has the incentive 584

to choose non-open-access if she/he expects the probability of the other player to 585

choose non-open-access to be higher than 50 % (for further details see (Hanauske 586

et al. 2007)). As b D ˛ > 0, the class of the open-access game cannot be 587

parameterized as an anti-coordination game. 588

5.3.2 Evolution of Hub-and-Spoke Communication Networks 589

Within this subsection, the interconnected network of scientific journals and 590

researchers is modeled as an unsymmetric bimatrix game. This application is 591

an example of a more general analysis of a “Hub-and-Spoke Communication 592

Network,” which is currently under investigation (Hanauske et al. 2010a). The main 593

actors within the scientific communication network are the authors of scientific 594

articles (Spokes, population group A) and the scientific journals (Hubs, population 595

group B). Following the approach of Habermann (Habermann and Habermann 596

2009), but restricting the focus to green open access, the researchers have two possi- 597

ble strategies fsA
1 ; sA

2 g D fo,øg ODfpublishing open access, conventional publishingg. 598

Within the underlying game, the group of scientific journals have the following two 599

strategies: fsB
1 ; sB

2 g D fo,øg ODfaccept open access, decline open accessg. Table 5.5 600

describes one possible way of a parameterization of the “Author(A)–Journal(B)” 601

open-access bimatrix game (see also (Habermann and Habermann 2009) for another 602

kind of parameterization). Similar to what was introduced in Sect. 5.3.2, the 603

parameter r describes the reputation of the scientist and the parameter ı quantifies 604

the author’s potential benefit if she/he chooses the open-access strategy o. The 605

parameter I describes the author’s additional increase in reputation if she/he 606

publishes her/his new article within the journal (e.g., the journal’s impact factor). 607

Parameter � is meant as a quantity that measures the journal’s hypothetical payoff 608

decrease due to fears of a totally green-open-access publishing market. Finally, the 609

parameter P quantifies the possibility of an extraordinary journal price increase due 610

to the journal’s market power in a totally conventional publishing market. Taking 611

the parameterization of Table 5.5, the underlying class is only dependent on the 612

following parameters: aA D ı, bA D I � P � ı, aB D r � �, and bB D P . Because 613

aA D ı > 0 and bB D P > 0, the game category cannot belong to the center-class 614
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Fig. 5.16 bA D I � 2 (solid, colored surface) and aB D 3 � � (wired surface) as a function of
the parameters I and �. The other parameters are fixed to the values: ı D 1, r D 3 and P D 1th
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games.5 For bA; aB > 0 (r > �; I > P C ı), the game’s category belongs 615

to the saddle-class having two pure, symmetric Nash equilibria (.sA
1 ; sB

1 / OD(o,o) 616

and .sA
2 ; sB

2 / OD(ø,ø)) and one mixed strategy NE at (.QsA?; QsB?/ D �
P

r��CP
; I�P �ı

I�P

�
). 617

The outcome of such a parameterization is comparable to the results discussed in 618

Sect. 5.2.3.2 (parametration set Setus
2 ). For all other parameterizations, the category 619

of the author-journal open-access game belongs to the corner class. For (bA < 0 and 620

aB > 0), the only NE is (o,o), for (bA > 0 and aB < 0), the only NE is (ø,ø), and 621

finally for (aB; bA < 0), there exists only the asymmetric NE (o,ø). 622

To visualize these outcomes, Fig. 5.16 shows the different possible classes within 623

the author-journal open-access game for a certain parameterization. The solid, 624

colored surface depicts the parameter bA as a function of the two payoff parameters 625

� and I (the other parameters were fixed to the following values: ı D 1, r D 3 626

and P D 1). The wired grey surface depicts the parameter aB , and the solid white 627

surface indicates the zero level. The point where all of the three surfaces intersect 628

(bA.�ı; I ı/ D aB.�ı; I ı/ D 0 ! �ı D 3 ; I ı D 2) defines the class boundary. 629

Only for � > �ı ; I > I ı is a saddle-class game is realized, whereas in all of 630

the other parameterizations, only one NE and ESS is possible, as the game belongs 631

under such parametrisations to the corner class (for details see (Hanauske et al. 632

2010b)). 633

5Other parameterizations do, however, result in open-access center-class games (Habermann and
Habermann 2009).
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5.4 Summary and Outlook 634

One of the main criticism of EGT is the fact that the theory is based on a totally 635

connected network of an infinitely large number of actors, where every player (in 636

each time interval) chooses her/his game partner randomly. In reality, the players 637

are often organized in groups, and even within these groups the players often are 638

not fully connected to all of the group members. The theory of social grouping 639

in decision-based interacting complex networks is one of the most interesting 640

topics within the presented research field. Evolutionary Game Theory on Complex 641

Networks is a more realistic framework to simulate population dynamics; however, 642

it often needs a variety of additional parameters to classify the network topologies 643

and updating rules (see e.g., (Szabó and Fáth 2007; Miekisz 2008)). 644

A second, more recently developed model that tries to implement social grouping 645

into classical6 evolutionary game theory is Evolutionary Quantum Game Theory. 646

Quantum game theory is a mathematical and conceptual amplification of classical 647

game theory. The space of all conceivable decision paths is extended from the purely 648

rational, measurable space in the Hilbertspace of complex numbers. Through the 649

concept of a potential entanglement of the imaginary quantum strategy parts, it 650

is possible to include corporate decision paths, caused by cultural or moral group 651

standards. In quantum game theory, players may cooperate, depending on the degree 652

of entanglement 
 among players. The notion of entanglement is perhaps most 653

clearly expressed in terms of Adam Smith’s classical concept of sympathy or “fellow 654

feeling,” which is a cornerstone of Smith’s understanding of individual behavior 655

(Hanauske and Schäfer 2009). In his “Theory of Moral Sentiments” (1759) (Sugden 656

2002), Smith claims that there is a general tendency for fellow-feeling among human 657

beings, whereas the greater the strength of fellow-feeling is, the more closely related 658

the individuals are. For example, there tends to be more fellow-feeling between 659

friends than between acquaintances, and more between close relatives than between 660

distant ones. Fellow-feeling as the human capacity to emphasize and become 661

entangled with others is inversely related to the perceived and felt distance, whereas 662

distance has been interpreted in terms of psychological and physical distance (Sally 663

2001). It can be shown that Emma and Hans are able to escape the dilemma if 664

their strength of fellow-feeling (strength of strategic entanglement) is high enough 665

to overcome the game’s 
 -threshold. If this strategy entanglement is large enough, 666

then additional Nash equilibria can occur, previously present dominant strategies 667

could become nonexistent, and new evolutionary stable strategies might appear (see 668

e.g., (Hanauske 2011)). 669

Within this chapter, the framework of classical EGT has been described in 670

detail. After a general introduction and a brief literature review, the groundings 671

of EGT (Sect. 5.2) have been explained in detail. The formal mathematical model, 672

6Following the scientific classification of the physical literature, the notation “classical” is used to
describe the scientific sub-discipline that do not use “quantum” concepts to describe the underlying
natural processes (example in physics: Classical Mechanics vs. Quantum Mechanics).
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the different concepts of equilibria, and the various classes of evolutionary games 673

have been defined, explained, and visualized to understand the main ideas of EGT. 674

Additionally, in Sect. 5.3 two applications have been discussed: 675

• Application 1: Scientific communication and the open-access decision (see 676

Sect. 5.3.1) 677

• Application 2: Evolution of Hub-and-Spoke Communication Networks (see 678

Sect. 5.3.2) 679

Key points By analysing the game structure of a specific decision problem,
policy-makers can learn a lot about the problems they attempt to address. To
analyse the problem game theoretically, you need only three things:

• Who is playing the game? Definition of the set of players.
• What can the players do? Definition of the set of actions (strategies)

available for each player.
• How much can the players win or lose? Definition of the payoff structure

of the underlying game.

If the decision problem can be modelled as a symmetric (two player)–(two
strategy) game and you know the payoff structure (define the parameters U11,
U12, U21 and U22 and calculate a WD U11 � U21 and b WD U22 � U12), your
game belongs to the following class:

• b < 0 and a > 0 (or b > 0 and a < 0): Dominant class
• a; b > 0: Coordination class
• a; b < 0: Anti-coordination class

If your game belongs to the dominant class and there is no dilemma, use
the dominant strategy. If your game belongs to the dominant class and there
is a dilemma (or it belongs to the coordination class with a high and low
Nash equilibrium, or to the anti-coordination class with a dilemma), you have
to think about how much fellow-feeling you have with your game partner –
perhaps your socio-economic system is strong enough to escape the game’s
dilemma.
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Amann E (1999) Evolutionäre Spieltheorie: Grundlagen und neue Ansätze. Studies in Contempo- 681

rary Economics. Physica-Verlag, Heidelberg 682

Axelrod R (1997) The complexity of cooperation: Agent-based models of conflict and cooperation. 683

Princeton Studies in Complexity. Princeton University Press, Princeton, NJ 684

Bernius S, Hanauske M (2007) Open access. Wirtschaftsinformatik 49(6):456–459 (DOI: 685

10.1007/s11576-007-0098-2) 686

http://dx.doi.org/10.1007/s11576-007-0098-2


UNCORRECTED
PROOF

5 Evolutionary Game Theory and Complex Networks of Scientific Information 189

Bernius S, Hanauske M, Dugall B, König W (2010) Exploring the effects of a transition to open 687

access: Insights from a simulation study. Unpublished manuscript, submitted to the Journal of 688

the American Society for Information Science and Technology (JASIST) 689

Clemens C, Riechmann T (2006) Evolutionary dynamics in public good games. Comput Econ 690

28(4):399–420 (DOI: 10.1007/s10614-006-9044-4) 691

Cressman R (2003) Evolutionary dynamics and extensive form games. Economic Learning and 692

Social Evolution, vol 5. MIT Press, Cambridge, MA 693

Deutsche Forschungsgemeinschaft (2006) Publication strategies in transformation? Results of a 694

study on publishing habits and information acquisition with regard to open access. Wiley-VCH 695

Verlag, Weinheim, available online at the URL: http://www.dfg.de/download/pdf/dfg im profil/ 696

evaluation statistik/programm evaluation/studie publikationsstrategien bericht en.pdf 697

Dewett T, Denisi AS (2004) Exploring scholarly reputation: It’s more than just productivity. 698

Scientometrics 60(2):249–272 (DOI: 10.1023/B:SCIE.0000027796.55585.61) 699

Enquist M, Ghirlanda S (2007) Evolution of social learning does not explain the origin of human 700

cumulative culture. J Theor Biol 246(1):129–135 (DOI: 10.1016/j.jtbi.2006.12.022) 701

Eysenbach (2006) Citation advantage of open access articles. PLoS Biol 4(5):e157 (DOI: 702

10.1371/journal.pbio.0040157) 703

Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the 704

protein interaction network. Science 296(5568):750–752 (DOI: 10.1126/science.1068696) 705
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Szabó G, Fáth G (2007) Evolutionary games on graphs. Phys Rep 446(4–6):97–216 (DOI: 792

10.1016/j.physrep.2007.04.004), also available as arXiv preprint arXiv:cond-mat/0607344 793

http://www.ariadne.ac.uk/issue42/harnad/intro.html
http://www.ariadne.ac.uk/issue42/harnad/intro.html
http://dx.doi.org/10.1090/S0273-0979-03-00988-1
http://dx.doi.org/10.1016/S1574-0021(05)02030-7
http://dx.doi.org/10.1038/nature00823
http://dx.doi.org/10.1038/35079151
http://dx.doi.org/10.1007/978-3-540-78362-6_5
http://arxiv.org/abs/q-bio/0703062
http://dx.doi.org/10.1038/418138a
http://dx.doi.org/10.1126/science.1093411
http://www.iiasa.ac.at/Admin/PUB/Documents/IR-04-013.pdf
http://dx.doi.org/10.1257/jep.14.3.137
http://www.jstor.org/stable/2646923
http://dx.doi.org/10.1126/science.1172133
http://dx.doi.org/10.1016/j.jtbi.2007.08.009
DOI: 10.1016/S0167-2681(00)00153-0
DOI: 10.1016/S0167-2681(00)00153-0
http://dx.doi.org/10.1136/bmj.38359.695220.82
http://dx.doi.org/10.1038/380240a0
http://dx.doi.org/10.1016/0022-5193(74)90110-6
http://dx.doi.org/10.1038/246015a0
http://journals.cambridge.org/abstract_S0266267102001086
http://journals.cambridge.org/abstract_S0266267102001086
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://arxiv.org/abs/cond-mat/0607344


UNCORRECTED
PROOF

5 Evolutionary Game Theory and Complex Networks of Scientific Information 191

Turner P, Chao L (1999) Prisoner’s dilemma in an RNA virus. Nature 398(6726):441–443 (DOI: 794

10.1038/18913) 795

von Neumann J (1928) Zur Theorie der Gesellschaftsspiele. Mathematische Annalen 100(1):295– 796

300 (DOI: 10.1007/BF01448847) also available online at the URL: http://resolver.sub.uni- 797

goettingen.de/purl?GDZPPN002272717. Reprinted in: Taub AH (ed) (1963) Collected works 798

of John von Neumann. Volume VI: Theory of games, astrophysics, hydrodynamics and 799

meteorology. Pergamon Press, Oxford, pp 1–26. English translation: (1959) On the theory 800

of games of strategy. In: Tucker AW, Luce RD (eds) Contributions to the theory of games: 801

Volume IV. Annals of Mathematics Studies, vol 40. Princeton University Press, Princeton, NJ, 802

pp 13–42 803

von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton 804

University Press, Princeton, NJ 805

Weibull J (1995) Evolutionary game theory. MIT Press, Cambridge, MA 806

Zeeman EC (1980) Population dynamics from game theory. In: Nitecki Z, Robinson C (eds) Global 807

theory of dynamical systems. Proceedings of an international conference held at Northwestern 808

University, Evanston, Illinois, June 18–22, 1979. Lecture Notes in Mathematics, Vol 819. 809

Springer, Berlin, pp 471–497 (DOI: 10.1007/BFb0087009) 810
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Chapter 6 1

Dynamic Scientific Co-Authorship Networks 2

Franc Mali, Luka Kronegger, Patrick Doreian, and Anuška Ferligoj 3

6.1 Introduction 4

Network studies of science greatly advance our understanding of both the 5

knowledge-creation process and the flow of knowledge in society. As noted in 6

the introductory chapter, science can be defined fruitfully as a social network 7

of scientists together with the cognitive network of knowledge items (Börner et al. 8

2010).AQ1 The cognitive structure of science consists of relationships between scientific 9

ideas, and the social structure of science is mostly manifested as relationships 10

between scientists. Here, we confine our attention to these relations. In particular, 11

co-authorship networks among scientists are a particularly important part of the 12

collaborative social structure of science. Modern science increasingly involves 13

“collaborative research”, and this is integral to the social structure of science. 14

Ziman argues that the organizational units of modern science are groups and not 15

individuals (Ziman 1994, p. 227).1 Namely, co-authorship in science presents a 16

1Co-authorship in science is not the only form of scientific collaboration. de Haan (1997)
suggests six operationalized indicators of collaboration between scientists: co-authorship; shared
editorship of publications; shared supervision of PhD projects; writing research proposal together;
participation in formal research programs; and shared organization of scientific conferences. As
this list suggests, there are many cases of scientific collaborations that do not result in co-authored
publications (Katz and Martin 1997; Melin and Persson 1996; Laudel 2002). Laudel (2002) reports
that about half of scientific collaborations are invisible in formal communication channels either
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more substantial indicator than just scientific communication in one way or another. 17

In continuation, we focus on the dynamics of different kinds of co-authorship 18

networks. 19

Over the last 50 years, the study of the dynamics of co-authorship networks has 20

been conditioned by the development of quantitative methodological approaches 21

in various forms that include relatively simple descriptive statistics presented in 22

time-series form, deterministic approaches, and stochastic agent-based modeling of 23

network dynamics. We provide a brief overview of these approaches in this chapter. 24

Many studies of co-authorship networks are typically described and understood in 25

terms of very large networks involving tens of thousands of nodes. Science can 26

be understood as social phenomena involving large numbers of scientists regularly 27

performing specific actions that are consciously coordinated into large schemes 28

(Ziman 2000, p. 4). Different disciplinary approaches allow the use of different 29

statistical quantities to explain the topology of scientific networks. Some of the 30

statistical quantities typically used to describe these networks are purely local. The 31

other statistical quantities correspond to global descriptions. For example, the local 32

property of a unit in the network is vertex degree, defined as the number of ties 33

relating this unit to other units in the network. Corresponding global descriptions 34

of the degree distribution, which is known to have a long tail for a wide range of 35

different networks, can be constructed (see, for example, Lambiotte and Panzarasa 36

2009.). 37

Although co-authorship networks may provide a window on patterns of col- 38

laboration within science, they have received far less attention than have citation 39

networks in bibliometrics (Newman 2004, p. 5200). There is a basic difference 40

between co-authorship networks and citation networks. Citation networks are not 41

personal social networks, even though they are, in part, the product of social 42

network phenomena involving scientists. They do not capture the social interaction 43

structure usually described in works on co-authorship networks. These social 44

interaction structures are best described by co-authorship networks. The vertices 45

of co-authorship networks represent authors, and two authors are connected by a tie 46

if they co-authored one or more publications. These ties are necessarily symmetric. 47

In citation networks, the vertices represent scientific productions,2 and the links 48

between them are directed citation ties from one scientific document to other 49

such documents. In that sense, co-authorship networks contain much important 50

information about cooperation patterns among authors as well as the status and 51

locations of authors in the broader scientific community structures. The study 52

of community structures through scientific co-authorship is particularly important 53

because they do not result in co-authored publications or in formal acknowledgments in scientific
texts. In this chapter, we will use the term collaboration primarily to designate research that results
in co-authored publications and other publicly available documents.
2We include papers, monographs, short articles, conference presentations, databases and patents
within the term ‘scientific production.’
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Table 6.1 List of major questions and models presented in this section

t34.1Major issues addressed Key answers/insights

t34.2Barabási and
Albert (1999)

Ways of modeling cumulative
advantage principle in
co-authorship networks.

Using the preferential attachment
model where a scale-free
power-law distribution of the
number of co-authors is a
consequence of two generic
mechanisms: (i) networks expand
continuously by the addition of
new vertices, and (ii) new vertices
attach preferentially to sites that
are already well connected.

t34.3Watts and Strogatz
(1998)

Ways of modeling the clustered
structure of co-authorship
networks at the macro level.

Small-world model overcomes the
gap in clustering of real-world
networks in comparison to random
networks. Such constructed
networks have small average
shortest paths and incorporate
clusterings (small dense parts of
the network) which emerge in
social networks.

t34.4Lorrain and White
(1971), Doreian
et al. (2005)

Ways of clustering the units in
co-authorship networks
regarding the structure of
collaboration and
representing the obtained
clusters with their
connections at the macro
level.

The procedural goal of blockmodeling
is to identify, in a given network,
clusters (classes) of units (actors)
that share structural characteristics
defined in terms of some relation.
Each such cluster forms a position.
The units within a cluster have the
same or similar connection
patterns.

t34.5Snijders (1996),
Snijders et al.
(2010)

Ways of modeling the effects of
actor characteristics and
network positions on
network evolution. Ways of
modeling network dynamics
and testing results using the
inferential methods.

Stochastic actor-based modeling for
network dynamics is based on
longitudinally observed network
data. It is meant to represent and
model co-evolution of longitudinal
network data and actor attributes,
and evaluate the results within the
framework of statistical inference.

because scientific (sub)disciplines might often display local properties that differ 54

greatly from the properties of the scientific network as a wholeAQ2 (Table 6.1). 55

This chapter is structured in the following way. Given that we treat co-authorship 56

networks as social networks, we continue this introduction with a definition of a 57

network. In the next section, we offer a brief historical overview of social network 58

analysis with a focus on the dynamics of social networks. Section 6.3 contains an 59

organizing typology of both the content and units of analysis for the topics we 60

consider. Section 6.4 is the core of the chapter and provides an overview of known 61

methodological approaches for studying dynamic scientific co-authorship networks. 62

In the final section, we outline some benefits and limitations of each approach and 63

finish with a statement of some open problems. 64
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6.1.1 Networks as Graphs 65

A network consists of observed units and the relationships among them. Units can 66

be represented as vertices and relationships (ties) as links. When using this skeleton 67

representation, each network is a graph. 68

But this is a simplification of a network. Units (vertices) in the network can have 69

properties. There can be multiple types of vertices in the network. An example is 70

a social network where the vertices represent people and the groups to which they 71

belong. Units also have many different properties (e.g. gender, age, income). 72

The links in networks can also be of different relational types and, further, 73

strength of relationships can be indicated by adding weights. The vertices and links 74

of networks studied in time have additional properties when time is considered. 75

The timing of relational formations and dissolutions can be recorded and modeled. 76

Duration of relational ties becomes another important property of relations when 77

they are present. 78

The information of a graph can also be presented in a matrix form. The most 79

common presentation is with the adjacency matrix in which there is a row and 80

a column for each vertex. Non-zero entries in the matrix are present when links 81

between two corresponding vertices exist. 82

Adjacency matrices can be extended further if we want to present more complex 83

graphs. For example, if we want to present a graph with multiple links between 84

the vertices, we associate the entry of a single cell aij in the adjacency matrix with 85

the number of links between the vertices i and j . For the representation of valued 86

graphs, which are graphs with values on the links, the value of a single cell aij in 87

the adjacency matrix corresponds to the value on the link between vertices i and j . 88

6.2 A Brief History of Social Network Analysis 89

Histories of most entities usually have starting dates. However, establishing a 90

starting date for an academic field is difficult because the contributing strands of 91

ideas and methods for a field begin in different times and different places. Modern 92

social network analysis (SNA) started when four distinct features were explicitly 93

brought together (Freeman 2004). These features are: (i) a focus on structural 94

matters by looking at actors embedded within a set of social relations and ties; (ii) 95

the extensive use of systematic empirical data; (iii) heavy use of graphical imagery; 96

and (iv) having foundations in formal, mathematical, and computational models. 97

Recognizing the combination of these elements as defining social network analysis 98

renders the establishment of a precise date of origin less than important. But, based 99

on Freeman’s narrative, a start date in the 1930s for what was to become SNA seems 100

reasonable. What matters far more for the field are the operational ways in which 101

the four core components are combined to help us understand network structures 102

and processes. 103
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Academic fields also require some social organization to support them in order 104

to provide an accepted arena for the exchange of ideas and the development of an 105

identity that nurtures a discipline. These were created for SNA within a span of 106

4 years. Barry Wellman established the International Network of Social Networks 107

Analysts (INSNA) in 1976. He founded Connections a year later as a newsletter 108

to distribute news, ideas, and information to members of the field. Lin Freeman 109

established the flagship journal, Social Networks, in 1978. Finally, Russ Bernard and 110

Alvin Wolfe started the annual Sunbelt Social Network Conference in 1980. All four 111

entities have grown in size and influence since they were established. The European 112

Network Conference was started in 1989, and in 1995 the two conferences were 113

combined to form the Annual Sunbelt International Social Network Conference. 114

If we allow that SNA is what social network analysts do, it does not follow 115

automatically that the field is coherent. Hummon and Carley (1993) examined all 116

of the papers in the first 12 volumes of Social Networks to assess the state of the 117

field and established that SNA was an integrated scientific community with a shared 118

paradigm. They used ‘main-path analysis,’ a technique pioneered by Hummon and 119

Doreian (1989, 1990) that helps study the citation patterns of a field. Hummon 120

and Carley (1993) identified 6 main paths in the literature: (i) Role analysis and 121

blockmodeling; (ii) Methods for network analysis; (iii) Concern with network data; 122

(iv) Biased networks; (v) Attention to structure; and (vi) Analyses of personal 123

networks. Of course, these paths for the movement of SNA intellectual ideas through 124

the literature are linked. Hummon and Carley (1993) noted other features of the 125

field. One was the heavy use of formal, mathematical, and quantitative methods. 126

Another was the creation of substantive network ideas, and a third was the presence 127

of prominent collaborative groups of social network analysts. All are consistent with 128

the practice of ‘normal science’ in the sense of Kuhn (1996). 129

On looking at that list of main paths as intellectual foci for SNA, one feature 130

leaps out by its absence: There is little about temporal issues3 even though main 131

path analysis is an explicitly temporal approach. Up until the beginning of the 1990s, 132

SNA appeared to have had a profoundly static bias. The field’s concern was centered 133

primarily – but not exclusively – on social structure and patterns of social structures. 134

Given this, four event streams that can be dated as starting in the 1990s have changed 135

the field dramatically. 136

The first was a series of three special issues of the Journal of Mathematical 137

Sociology (JMS) that appeared in 1996, 2001, and 2003. All three issues, edited 138

by Frans Stokman and Patrick Doreian, were devoted to “network evolution.” Based 139

on the intuition that “network processes are series of events that create, sustain and 140

dissolve social structures” (Doreian and Stokman 1997, p. 3), the three special issues 141

had a series of papers that looked at network dynamics and network evolution using 142

a variety of different formal models, simulation methods and statistical models.4 143

3This is consistent with the observations of Powell et al. (2005).
4Volume 30(1) of Social Networks (2010) was a special issue devoted to network dynamics that
noted the importance of the three JMS special issues with papers building upon some of the earlier
work.
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The second event was the take-off of exponential random graph models (ergms) 144

for the study of change in social networks. The origins of these models date from 145

an earlier time, including the work of Holland and Leinhardt (1981) and Frank and 146

Strauss (1986). One strand of this line work is founded on Wasserman and Pattison 147

(1996) and Pattison and Wasserman (1999) and takes the form of p*-models. This 148

forms the core of the software called Pnet (Wang et al. 2009), used for estimating 149

ergms. Another strand features the work of Snijders (2001) and takes the form 150

of SIENA (Snijders et al. 2010), also used for estimating ergms for studying the 151

co-evolution of social actors and social networks. Yet another strand of related work 152

is present in Statnet (Handcock et al. 2003) that includes the estimation of ergms. 153

There has been a lively debate and an extensive cross-fertilization and collaboration 154

between the groups centered at the University of Melbourne, the University 155

of Groningen, Oxford University, and the University of Washington regarding 156

ergms. 157

The third event is the movement of physicists into the realm of social networks, 158

which also started in the 1990s. Bonacich (2004) labeled this as “the invasion of the 159

physicists “in his review of Watts (2003) and Barabási (2002). To the extent that the 160

physicists are inattentive to the substantive content of the SNA and reinvent old – 161

and/or even square – wheels, this is an invasion. However, they also bring with them 162

a variety of new modeling strategies and additional conceptualizations of network 163

phenomena that include ‘small-world’ networks and ‘preferential attachment,’ two 164

terms that have made fruitful entrances into SNA. The physicists have focused 165

attention primarily on large networks with a view to delineating and understanding 166

network topologies and dynamics. 167

The final event started in the early 1990s and resulted in the establishment of 168

generalized blockmodeling (Doreian et al. 2005) as both a generalization and an 169

extension of traditional blockmodeling, the main path in the SNA literature through 170

1992 identified by Hummon and Carley (1993). Thus far, this approach has been 171

deterministic and not that attuned to network dynamics. Designed to delineate 172

network structures through the use of an expanding collection of block types and 173

types of blockmodels, it has the potential to contribute to the temporal delineation 174

of fundamental network structures. 175

At face value, the four ‘events’ and the lines of active research that have followed 176

them are different and could even be viewed as potential rivals. However, it will 177

be unfortunate if they are seen in this fashion. Some of the ideas of physicists 178

can be used to conceptualize mechanisms that can be incorporated into ergms to 179

test these ideas with social network data. It is clear that the efforts of physicists to 180

identify communities in networks have the same intent as blockmodeling. The work 181

of Handcock et al. (2007) on discerning network structure through model-based 182

clustering is also related, in intent, to blockmodeling, and it seems reasonable 183

to couple, in some way, ergms and blockmodels. All of these four strands of 184

research for understanding networks have been mobilized extensively since their 185

first appearance. They have all emerged since Hummon and Carley’s (1993) 186

assessment and have the potential to be combined fruitfully in future research. While 187



UNCORRECTED
PROOF

6 Dynamic Scientific Co-Authorship Networks 201

these streams of research are changing SNA to focus on network dynamics and 188

network evolution, they do so while embodying all of the four defining features of 189

SNA identified by Freeman (2004). 190

6.3 Levels of Analysis of Scientific Collaboration 191

6.3.1 Introduction 192

Understanding science as a social system implies considering science as fundamen- 193

tally relational, and as a community-based social activity. “The collegian circles 194

around a scientist refer to those local and distant peers or professional colleagues” 195

(Schott 1993, p. 201). These collegian circles have several properties that vary 196

from one scientist to another. Within social studies of science, there has been a 197

strong interest in the spatial range of the collegian circle with attention given to 198

local, national, or transnational scientific communities. These professional collegian 199

circles in science have several other characteristics that are analytically distinct but, 200

in reality, may be intertwined. Co-authorship networks in science have a “modular 201

structure” (Lambiotte and Panzarasa 2009, p. 181). Understanding this modular 202

structure of scientific networks is especially important because it helps account 203

for the progress of science and the organization of scientific production within 204

disciplinary frameworks. In reality, science never operates as a single community 205

with hundreds of thousands of individual scientists. It is organized by many different 206

networks that cut across the formal boundaries dividing science with regard to 207

disciplinary, sectoral, and geographical levels. Of course, the membership of various 208

networks overlaps considerably. These research networks are also in continuous 209

processes of growth, decline, and dissolution (see, for example, Ziman 2000, p. 46 210

or Mulkay 1975, p. 519). 211

Classification of co-authorship networks can be done in several ways. Rogers 212

et al. (2001) suggested a typology based on three features: (1) according to 213

the units of the analysis, including individuals, teams of researchers, and R&D 214

organizations; (2) according to the type of information used to develop the links 215

between units – these might be based on interactions or information sharing or they 216

could be based on positions of people in the social hierarchy; and (3) according 217

to the institutionalized domains to which the authors belong, with an emphasis 218

on intra-organizational or inter-organizational links between them. Sonnenwald 219

(2007) suggested a more general classification to categorize various types of 220

co-authorship networks: between researchers in university and industry sectors, 221

between researchers in various scientific disciplines, and between researchers of 222

various countries. In this section, we prefer to use another categorization, one 223

adapting a suggestion by Andrade et al. (2009) who focused on three dimen- 224

sions of co-authorship networks with their associated sub-dimensions of intra- 225

and inter-dimensional co-authorship collaboration. The suggested dimensions are: 226



UNCORRECTED
PROOF

202 F. Mali et al.

Table 6.2 Classification of levels of analysis of scientific collaboration

Dimension of the study Examples of studies

Main
dimension

Sub-dimension

t35.1Cross-
Disciplinary

Disciplinarity Interaction links between Australian research networks
(Rigby 2005), (see also: Wray 2002; Glänzel and
Schubert 2004; Laband and Tollison 2000; Hornbostel
1997)

t35.2Inter-
disciplinarity

Interdisciplinary research analysis in French laboratories
(Sigogneau et al. 2005) (see also Gibbons et al. 1994;
Etzkowitz and Leydesdorff 2001; Qin et al. 1997;
Braun and Schubert 2003)

t35.3Cross-Sectoral Intramural Academic research networks analysis (Lowrie and
McKnight 2004; Wray 2002)

t35.4Extramural R&D cooperation models between industry and
universities in Belgium (Veugelers and Cassiman 2005)

t35.5Cross-
National

National The interaction between immunology research institutes in
Germany, due to their geographical location
(Havemann et al. 2006)

t35.6International Comparative analysis of several countries of their
international/national collaborated publications
(Glänzel and Schubert 2005)

disciplinary with sub-dimensions of interdisciplinary and intradisciplinary, sector 227

with intersector and intrasector, and geographic with international and intranational 228

sub-dimensions. These are presented in Table 6.2. 229

6.3.2 The Cross-Disciplinary Level 230

For the cross-disciplinary level, given the presence of disciplinarity, there is a 231

basic distinction between collaboration inside discipline (intra-disciplinarity) and 232

collaboration between disciplines (inter-disciplinarity). 233

6.3.2.1 Disciplinarity 234

As stated in the introductory chapter of this book (see page xi et sqq.), “an 235

academic discipline, or field of study, is a branch of knowledge which is taught 236

and researched at the college or university level. Disciplines are defined (in part) 237

and recognized by the academic journals in which research is published, and the 238

learned societies and academic departments or faculties to which their practitioners 239

[researchers] belong” (Börner et al. 2010). Many theorists of science have noted 240

that all scientific disciplines are intellectually (cognitive) and socially structured 241

(Fuchs 1992; Whitley 1984). Scientific disciplines represent institutional and 242
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organizational frameworks within which their intellectual products and cognitive 243

styles are connected to the social structures, mode, and organization of the pro- 244

duction of that knowledge. One of the basic characteristics of modern academic 245

scientific communities is that they are still sharply differentiated and structured in 246

terms of disciplines. Individual scientific disciplines can thus be seen as distinct 247

intellectual and social organizational contexts. 248

Although co-authorship publishing is more common in the natural sciences than 249

in the social sciences, it is continuously increasing in all main scientific areas (Wray 250

2002; Glänzel and Schubert 2004; Laband and Tollison 2000; Hornbostel 1997). 251

Collaboration, operationalized through co-authorship, is now normative behavior 252

and ubiquitous for practically all scientific disciplines (e.g., over 95% of articles in 253

major periodicals in physics, biochemistry, biology and chemistry are co-authored 254

(Braun-Munzinger 2009)). 255

6.3.2.2 Interdisciplinarity 256

In the last two decades, interdisciplinary collaboration has increased dramati- 257

cally (see, for example, Gibbons et al. 1994; Etzkowitz and Leydesdorff 2001). 258

This phenomenon is broadly discussed in Chap. 1 with attention focused on 259

a tendency of modern science to form heterogeneous (interdisciplinary) teams 260

of researchers solving pressing social problems and with higher accountability 261

requirements (Börner et al. 2010). These attempts have been made to bridge 262

narrow disciplinarities in science. An important feature stimulating interdisciplinary 263

collaboration in modern science is the demand for innovations resulting from the 264

juxtaposition of ideas, tools, and scholars from different scientific domains. Today, 265

there is an overall agreement that inter-disciplinary links are vital for scientific 266

progress because they have the potential to bring unprecedented intellectual and 267

technical power. For example, the converging technologies of the NBIC fields (i.e. 268

nanotechnology, biotechnology, information sciences, and cognitive sciences) are 269

an example of new interdisciplinary research from fields that previously showed 270

limited interdisciplinary connections (see, for example, Buter et al. 2010). 271

We know that different organizational and cognitive problems make the devel- 272

opment of interdisciplinary research particularly challenging. Interdisciplinarity 273

requires extensive networks of scientists and concepts, considerable time invest- 274

ments, and a need for researcher mobility between disciplines. As noted by 275

Bordons and her collaborators, while collaboration among scientists from different 276

disciplines is widespread, measuring it is not easy (Bordons et al. 2004, p. 441). 277

Using bibliometrics, measurement of interdisciplinarity in publications can be 278

approached from different perspectives that include co-authored publications among 279

scientists from different disciplines, co-occurrence of several classification codes 280

in publications, the interdisciplinary nature of journals, and the presence of cross- 281

disciplinary references or citations. The most often used bibliometric indicator of 282

such collaboration is the percentage of co-authored interdisciplinary publications. 283

Yet, computing this percentage is affected by many factors, including the nature of 284
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the organization of scientific communities, R&D policy orientations, and the chosen 285

operationalization of concepts (e.g., the classification scheme of disciplines that is 286

used (Qin et al. 1997; Braun and Schubert 2003)). 287

6.3.3 The Cross-Sectoral Level 288

There is a basic difference between collaborations inside the academic scientific 289

community (intramural cooperation) and collaborations between academic science, 290

industry, and governmental bodies (extramural collaboration). Intramural networks 291

in science are usually defined by collaboration within one department, research 292

group, or institute. Extramural collaborations, on the other hand, consider also coop- 293

eration between different sectors (see, for example, Glänzel and Schubert 2004). 294

6.3.3.1 Intramural Collaborations (Intra-Sectoral Collaboration) 295

In modern science, the establishment of intra-mural networks is the result of the 296

increased processes of professionalization of recent scientific activity. This has 297

led to a large change in the organizational structure of science, and it’s worth 298

repeating Ziman’s insight: “the organizational units of modern science are not 299

individuals but groups” (Ziman 1994, p. 227). The organization of R&D activity 300

in academic scientific institutions has created typical team structures – for example, 301

modern research groups consist of principal investigators, co-principal investigators, 302

junior researchers, post-docs, and doctoral students. Price suggested that research 303

collaboration is, in part, a response to the shortage of scientists, which allows them 304

to become “fractional” scientists (Price and Beaver 1966). 305

6.3.3.2 Extramural Collaborations (Cross-Sectoral Collaboration) 306

Cooperation between different sectors – academic science, industry and govern- 307

ment – is now understood as the most important type of extra-mural collaboration. 308

The concepts of ‘Mode 2’ and the ‘Triple Helix’ have extended the idea of research 309

networking within and across sectoral borders. Both concepts were developed in 310

the theory of science and R&D policy discussions after 1990. It seems that the 311

concept of Mode 2 knowledge production presented in The New Production of 312

Knowledge (Gibbons et al. 1994) became, in the mid-90s, the symbolic banner of 313

new viewpoints regarding scientific collaborations across sectors. The authors of the 314

new (Mode 2) production of knowledge linked the classical concept of transdisci- 315

plinarity, defined by common axioms that transcend the narrow scope of disciplinary 316

worldviews through an overarching synthesis, with two additional factors: problem- 317

driven research and research in applied contexts. Similarly, the concept of the 318

Triple Helix has been developed as a neoinstitutional and neoevolutionary model 319

for studying the networks across academic science, industry science, industry, and 320
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government sectors. In these networks, more important than the presence of the 321

agents is the quality of their relationships in a given configuration (Etzkowitz and 322

Leydesdorff 2001). Although there exists already an extensive expert literature on 323

this type of cross-sectoral networks, there is still a lack of bibliometric studies 324

dealing with co-authorship publications between academic and business-enterprise 325

sectors (Lowrie and McKnight 2004, p. 436). 326

6.3.4 Cross-National Level 327

Networks of international collaboration have undergone dramatic structural changes 328

in the last few decades. This is in contrast to intranational networks, where the 329

intensity of collaborations have decreased (Hoekman et al. 2010; Glänzel and 330

Schubert 2004; Katz 1994, see, for example). 331

6.3.4.1 National Collaborations 332

National collaboration, while visible in domestic contexts, is often regarded as 333

less visible and treated as less important than international collaborations. Often, 334

the observed (relative) high visibility and high citation attractiveness of interna- 335

tionally co-authored publications result in a kind of operational rule: international 336

co-publications appear in high-impact journals and receive more citations than 337

national papers (Glänzel and Schubert 2004). However, the overall visibility and 338

international relevance sometimes does not necessarily reflect the impact of specific 339

papers in solving specific problems at the local level. The results of national collab- 340

orations are often incorporated into publications dealing with trans-institutional and 341

international co-authorship (e.g. Munshi and Pant 2004), and are focused directly on 342

collaboration within a specific country (Gossart and Ozman 2009; Mali et al. 2010). 343

Another important aspect of national collaboration results from the international 344

orientation of bibliographic databases like the Web of Science or Scopus. Often, 345

the results of national co-authorship and the resulting citation patterns, especially 346

for smaller national scientific systems, are less visible in international bibliographic 347

databases. This can be linked to inter-sectoral collaboration within nations. National 348

collaborations across sectors have an additional complexity because they include the 349

involvement of different administrative units. As a result, such research projects are 350

complex and involve a wide range of different outputs of scientific production. Such 351

complex information can only be reported qualitatively or measured through local 352

information systems and electronic bibliographic systems; the Slovenian COBISS5
353

and SICRIS databases6 or the Turkish ULAKBIM database.7 354

5Co-operative Online Biographic System and Services, www.cobiss.si.
6Slovenian Current Research Information System, sicris.izum.si
7TURKISH ACADEMIC NETWORK and INFORMATION CENTER, www.ulakbim.gov.tr/eng/.

www.cobiss.si
sicris.izum.si
www.ulakbim.gov.tr/eng/
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6.3.4.2 International Collaborations 355

In thinking about the spatial range of collaboration, there is an important differ- 356

ence between geographic distance and crossing international boundaries. While 357

geographical distances between collaborative units in large nations can be long, 358

the geographical distances between collaborating units in different countries can 359

be short. Of the two, crossing international boundaries is more consequential than 360

geographical distance with regard to scientific collaboration. While international 361

scientific collaborations are important generally, they are especially important 362

for small scientific communities such as, for example, the Slovenian scientific 363

community. Isolated and parochial scientific communities are no longer a suitable 364

environment for recognized scientific excellence. Indeed, it can be argued that they 365

never were important in the history of science. Even in the early days of science, 366

different forms of cooperation between scientists of different nations became 367

important elements in the internationalization of science. Even so, because of the 368

new forms of the globalized connections of science, “the traditional cosmopolitan 369

individualism of science is rapidly being transformed in what might be described as 370

transnational collectivism” (Ziman 1994, p. 218). 371

This trend of increasing international scientific collaboration through co- 372

authorship is especially strong in recent decades. The number of internationally 373

co-authored articles has risen at a faster rate than traditional ‘nationally co- 374

authored’ articles (Wagner 2005). As noted in the expanding bibliometric literature, 375

the level of international co-authorship is determined by many factors: the size 376

of the country, ‘proximity’ between countries, either physical (geographical) 377

proximity or immaterial proximity stemming from cultural affinity in a broad 378

(historical, linguistic) sense, socioeconomic factors, changes in electronic forms of 379

communication, and last but not least, the dynamics created by the self-interest of 380

individual scientists pursuing their own careers. 381

6.4 Methodological Perspectives 382

6.4.1 Introduction 383

The development of methodological approaches for analyzing and modeling tem- 384

poral scientific co-authorship networks has been founded on developments in graph 385

theory and in SNA. To enable the discussion on temporal analysis of network 386

properties, we describe some of the most relevant basic definitions of network 387

properties that we need for understanding the content of coming sections (extensive 388

explanations of SNA terminology and concepts can be found in Wasserman and 389

Faust (1994)): 390

• Degree The degree of a vertex is defined as the number of ties linking this vertex 391

to other vertices in the network. In lay terms, the degree represents the number of 392
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co-authors for each researcher. As a global measure of the whole network, both 393

the average degree or centralization can be considered. 394

• Network density is the proportion of ties in a network relative to the total number 395

possible (sparse vs. dense networks). 396

• Path A path is a sequence of vertices and lines from initial vertex to the terminal 397

vertex where all vertices different. 398

• Path length This is the number of ties it contains. 399

• A shortest path or a geodesic distance between two vertices u and v, denoted 400

as luv, is the shortest path length between these two vertices. In co-authorship 401

networks, the distance between two authors who collaborate is 1. As a global 402

network characteristic, the average shortest path is usually considered. 403

• The global clustering coefficient can be viewed as the average probability of a tie 404

between co-authors of a selected author. Technically, it measures the density of 405

triangles in the network and therefore measures the extent of densely connected 406

subgroups of vertices in the network. 407

Another important factor in the development of the field has been access to 408

data sources on scientific collaboration. Before the development of electronic 409

bibliographic databases and, especially, before the implementation of the scientific 410

citation indexes initiated by Garfield (1955) this was a very difficult and time- 411

consuming task. Some of the most visible electronic databases with academic 412

content are the Web of Science, SCOPUS and Google Scholar. A broader discussion 413

on databases and citation indexes can be found in Chap. 7 of this book. 414

The study of temporal networks, both with regard to network dynamics and 415

network evolution, gained increasing attention since 1996. As noted in Sect. 2, 416

special issues of the Journal of Mathematical Sociology (1996, 2001, 2003) were 417

of value. We distinguish three basic approaches for studying dynamic scientific co- 418

authorship networks: (i) basic analysis of network properties using temporal data 419

(usually in the form of a time-series of snapshots, (ii) deterministic approaches to 420

the analysis of scientific co-authorship networks, and (iii) statistical modeling of 421

network dynamics. 422

6.4.2 Basic Analyses of Network Properties 423

One of the first analyses of temporal co-publication was presented by Zuckerman 424

(1967) who studied the patterns of productivity, collaboration and co-authorship 425

among Nobel Laureates. While her analysis was quite narrow, in the sense of 426

focusing on a small elite among scientists, this was due to the limitations of the 427

data available at the time. More than 20 years later, (Bayer and Smart 1991) focused 428

on publication patterns of US PhD recipients in chemistry in 1960–1962. They 429

used a longitudinal data set spanning from 1962 to 1985 to follow the careers 430

of these researchers through time. Besides single-authored and multi-authored 431

publications, they also distinguished dual-authorship and proposed a typology of 432
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publication patterns of scientists, including six categories which are highly corre- 433

lated with co-authorship patterns. Researchers were categorized into groups of: Low 434

producers, Burnouts, Singletons, Team Leaders, Team Players, Doubletons, and 435

Rank-and-File types. With the development of electronic bibliographic databases, 436

simple longitudinal analysis of network characteristics (including average vertex 437

degrees, clustering coefficients, and density) became a common part of most studies 438

of temporal co-authorship networks (see Babchuk et al. 1999; Glänzel et al. 1999; 439

Kronegger et al. 2011a). 440

6.4.3 Deterministic Analysis of Dynamic 441

Co-Authorship Networks 442

Although the time dimension is often included in the analysis of co-authorship 443

networks, it has been mostly restricted to simple temporal time-series descriptions 444

of some network characteristics and actor attributes. Such basic analyses can be 445

found in a wide range of publications since results of practically every method for 446

social network analysis can be represented in time as a series of snapshots. The 447

most common goal of these methods is delineating structures within co-authorship 448

networks and accounting for network properties by using some external parameters. 449

Efforts of researchers to push the methodology further from simple description of 450

differences between time snapshots are therefore rare and hard to find. 451

A fruitful way of delineating structures within co-authorship networks is to use 452

blockmodeling procedures: Let U be a finite set of units and let the units be related 453

by a binary relation R � U 	 U that determines a network N D .U; R/. One 454

of the main procedural goals of social network analysis is to identify, in a given 455

network, clusters of units that share structural characteristics defined in terms of the 456

relation R. The units within a cluster have the same or similar connection patterns to 457

the units of other clusters. Result of clustering C D fC1; C2; : : : Ckg is a partition of 458

units U and relations R into blocks R.Ci ; Cj / D R\Ci 	Cj . Each block is defined 459

in terms of units belonging to clusters Ci and Cj and consists of all arcs from units 460

in cluster Ci to units in cluster Cj . If i D j , the block R.Ci ; Ci / is called a diagonal 461

block. 462

A blockmodel consists of structures obtained by shrinking all units from the same 463

cluster of the clustering C. For an exact definition of a blockmodel, we must be 464

precise about which blocks produce an arc in the reduced graph and which do not. 465

The reduced graph can be presented also by a relational matrix, called an image 466

matrix. 467

The partition is constructed by using structural information contained in R only, 468

and units in the same cluster are equivalent to each other in terms of R alone. These 469

units share a common structural position within the network. 470

Blockmodeling, as a set of empirical procedures, is based on the idea that units 471

in a network can be grouped according to the extent to which they are equivalent, in 472
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terms of some meaningful definition of equivalence. In general, different definitions 473

of equivalence usually lead to distinct partitions. 474

Lorrain and White (1971) provided a definition of structural equivalence: Units 475

are equivalent if they are connected to the rest of the network in identical ways. From 476

this definition it follows that only four possible ideal blocks can appear (Batagelj 477

et al. 1992b; Doreian et al. 2005) 478

479Type 0. bij D 0 Type 2. bij D 1 � ıij

480Type 1. bij D ıij Type 3. bij D 1

where ıij is the Kronecker delta function and i; j 2 C . The blocks of types 0 and 1 481

are called the null blocks and the blocks of types 2 and 3 the complete blocks. For 482

the nondiagonal blocks R.Cu; Cv/; u ¤ v, only blocks of type 0 and type 3 are 483

admissible. 484

Attempts to generalize the structural equivalence date back at least to Sailer 485

(1978) and have taken various forms. Integral to all formulations is the idea that 486

units are equivalent if they link in equivalent ways to other units that are also 487

equivalent. Regular equivalence, as defined by White and Reitz (1983), is one such 488

generalization. 489

As was the case with structural equivalence, regular equivalence implies the exis- 490

tence of ideal blocks. The nature of these ideal blocks follows from the following 491

theorem (Batagelj et al. 1992a): Let C D fCig be a partition corresponding to a 492

regular equivalence � on the network N D .U; R/. Then each block R.Cu; Cv/ is 493

either null or it has the property that there is at least one 1 in each of its rows and 494

in each of its columns. Conversely, if for a given clustering C, each block has this 495

property, then the corresponding equivalence relation is a regular equivalence. 496

Until now, a definition of equivalence was assumed for the entire network and the 497

network was analyzed in terms of the permitted ideal blocks. Doreian et al. (2005) 498

generalized the idea of a blockmodel to one where the blocks can conform to more 499

types beyond the three mentioned above, and one where there is no single a priori 500

definition of ‘equivalence’ for the entire network. 501

The problem of establishing a partition of units in a network, in terms of a 502

considered equivalence, is a special case of the clustering problem – such that 503

the criterion function reflects the considered equivalence. Such criterion functions 504

can be constructed to reflect the considered equivalence. They measure the fit of 505

a clustering to an ideal one with perfect relations within each cluster and between 506

clusters, according to the selected type of equivalence. 507

For the direct clustering approach, where an appropriate criterion function that 508

captures the selected equivalence is constructed, a relocation approach can be used 509

to solve the given blockmodeling problem (Doreian et al. 2005). 510

Inductive approaches for establishing blockmodels for a set of social relations 511

defined over a set of units were discussed above. Some form of equivalence is 512

specified, and clusterings are sought that are consistent with a specified equivalence. 513

Another view of blockmodeling is deductive in the sense of starting with a 514
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Fig. 6.1 An example of a blockmodel of a network with multi–core–semi–periphery–periphery
structure.
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blockmodel that is specified in terms of substance prior to an analysis. In this case, 515

given a network, a set of types of ideal blocks, and a family of reduced models, a 516

clustering can be determined which minimizes the criterion function. (For details, 517

see, Batagelj et al. 1998; Doreian et al. 2005). Some prespecified blockmodels are 518

designed as hierarchical models with the positions on paths linked by directed ties 519

in a consistent direction. A core-periphery model is such a model where there is one 520

(or several) core position that is strongly connected internally. Peripheral positions 521

are all connected to core positions but not connected to each other, and they are 522

not internally cohesive. There are variations of the core-periphery model; e.g., in 523

which the periphery is not even connected to the core positions. All described 524

blockmodeling approaches are implemented in the program Pajek (Batagelj and 525

Mrvar 2010). 526

An example of the multi–core–semi–periphery–periphery structure is presented 527

in Fig. 6.1. This specific structure, found in co-authorship networks, consists of: 528

(i) simple cores comprised of scientists co-authoring with all, or most, colleagues 529

in their core (units R3 to R5 and R13 to R16); (ii) bridging cores composed 530

of researchers who connect two or more other simple cores (units R1 and R2); 531

(iii) a semi-periphery made up of authors who co-author with proportionately fewer 532

others in their position and have no systematic patterns of ties to scientists in other 533
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positions, and periphery of authors who do not co-author with other researchers 534

from the network. 535

Several applications of blockmodeling of co-authorship networks have been 536

published in recent years. For example, Said et al. (2008) distinguished several 537

styles of co-authorship, including solo models (no co-authors), mentor models, 538

entrepreneurial models, and team models. They conjectured that certain styles of 539

co-authorship lead to the possibility of group-thinking, reduced creativity, and the 540

possibility of less rigorous reviewing processes. Nooraie et al. (2008) examined 541

co-authorship networks in three Iranian academic research centers in order to 542

find an association between scientific productivity and impact indicators with 543

network features. The collaboration networks within centers shared many structural 544

features, including a “star-like” pattern of relations. Centers with more successful 545

scientific profiles showed denser and more cooperative networks. Kronegger et al. 546

(2011a) distinguished different co-authoring cultures in four scientific disciplines 547

and delineated typical structures of scientific collaboration. They also extended 548

blockmodeling by tracking locations, and hence positions, of authors across dif- 549

ferent time points. 550

Another effort to combine a static analysis of complexity at separate time 551

moments with a dynamic analysis was presented by Erten et al. (2004) and by 552

Gansner et al. (2005). They introduced a dynamic extension of multidimensional 553

scaling (Richardson 1938; Torgerson 1952). Multidimensional scaling (MDS) is 554

a set of data analysis techniques designed to display the structure of data in a 555

geometrical picture. The algorithm of dynamic MDS is driven by the minimization 556

of stress measured both within each analyzed year and over consecutive years 557

by optimizing the resulting stress for a three dimensional array. This algorithm 558

was recently implemented in Visone (Leydesdorff and Schank 2008) and used by 559

Leydesdorff (2010) to study co-authorship networks, with additional information 560

on co-word appearance and journal citation indexes. In this paper, he analysed the 561

complete bibliography of Eugene Garfield for the years 1950–2010, graphically 562

presenting its collaboration structure and citation dynamics around Garfields’ work 563

mainly dealing with the Science Citation Index. 564

6.4.4 Modeling Dynamic Scientific Co-Authorship Networks 565

Here, we present only an overview of modeling temporal co-authorship networks. 566

Static models of macro-level network properties, which are based on stochastic rules 567

of network generation, are discussed first. These have been mainly developed from 568

graph theory by mathematicians and physicists who, with the development of the 569

Internet in 1990, were interested in modeling accessible large real-world networks. 570

The developments led from purely random graphs, built according to the Erdös and 571

Rényi (1959) model, to small-world networks (Watts and Strogatz 1998), and to a 572

range of models based on the concept of preferential attachment (Barabási et al. 573

2002; Newman 2000). 574
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The idea of finding the rules fostering the growth and development of social 575

networks, or as it was stated, modeling the real world graphs, was widely captured 576

(mostly) by physicists. The basics for any kind of modeling of social networks 577

were provided by the Erdös–Rényi random graph model, which is determined by a 578

number of vertices (n) and the probability (p) that a link exists between two arbitrary 579

vertices. Therefore, each random graph has approximately p �n.n�1/=2 undirected 580

links. A single vertex is linked to a binomially distributed number of neighbors. The 581

limiting degree probabilities are Poisson distributed.8 582

The first generalization of the Erdös–Rényi random graph took the form of 583

a configuration model where specific degrees are assigned (usually from a pre- 584

specified distribution) to all the vertices which are then randomly linked according 585

to their degree. The construction of the model was proposed by Molloy and Reed 586

(1995) and studied by many authors (see the overview provided in Newman 2003). 587

This solved the problem of degree distribution in real-world graphs usually not 588

having a Poisson distribution, as in the Erdös–Rényis random graph, but not the 589

inability to model the clustered nature of empirical networks. 590

We consider also a very different approach to modeling social network dynamics, 591

one which returned to and is founded upon ideas within social science. The approach 592

of the physicists has been intent on reproducing the topological form of real- 593

world networks, and it proposes some generic processes of growth and change 594

while ignoring an extensive tradition of sociological and psychological knowledge 595

regarding the behavior of individuals. This alternative (more sociological) approach 596

focuses on single actors and their involvement in the smallest possible social unit 597

of analysis, the dyad. This type of modeling is labeled ‘stochastic actor-based 598

modeling’ (Snijders 1996). Its purpose is to represent network dynamics on the 599

basis of observed longitudinal data in the form of explicit models and to evaluate 600

them (or a family of models) within the paradigm of statistical inference. This 601

implies that the models are able to represent network change as the result of 602

dynamics being driven by many different tendencies, especially structurally based 603

micro-mechanisms. These mechanisms can be theoretically derived and/or based 604

on empirically established properties in earlier research. Of great importance is that 605

these mechanisms may well operate simultaneously (Snijders et al. 2010). One lim- 606

itation of these models is that they are restricted to a smaller predetermined number 607

of actors and do not directly consider more global mechanisms of network growth. 608

6.4.4.1 Modeling “Real-World” Networks 609

Social studies of science have long had an interest in linking scientific production 610

to the network structures of scientific communities. Different models have been 611

proposed as representations of processes driving co-authorship (as collaboration) in 612

8Mathematical notations of models in this section are based on those used by Kejžar (2007).
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science that help account for the form of large-scale scientific networks and predict 613

scientific production. One contains an argument that if scientists from particular sci- 614

entific disciplines (specialties) collaborate with others inside their disciplines, then 615

we would expect to find distinct clusters in the knowledge-production network – 616

exactly the clustering noted in many empirical networks – and this would correspond 617

to small-world network structure (as described below). Alternatively, if the network 618

was generated by preferential attachment (see below) as a mechanism – where young 619

scientists publish with well-established scientific stars – then we would expect to 620

find a scale-free network structure whose degree distribution satisfies a power-law. 621

If the network is based on a cross-topic collaboration, then we would not expect to 622

find strong fissures in the network, but instead find a structurally cohesive network 623

(Moody 2004). All of the above-mentioned network structural processes lead to 624

specific dynamics for scientific networks that, in turn, generate distinctive network 625

structures or topologies. These models for generating the structures of large-scale 626

and complex networks can be expected to hold also for co-authorship networks 627

in science. Large-scale co-authorship networks can have local (such as clustering) 628

structural properties as well as global (such as average distance between nodes) 629

structural features. Local and global characteristics of networks help to define 630

network topologies such as “scale-free networks” and “small-world networks.” 631

These network topologies are the result of network-generating processes and can 632

lead to further dynamics of these networks in different ways. For example, the 633

principle of preferential attachment to vertices of higher degree leads to a dynamic 634

where “the-rich-get-richer. “In the case of science, this implies that those scientists 635

who experience early success gain higher shares of subsequent rewards. We next 636

consider scale-free and small-world science network structures in more detail. 637

6.4.4.2 The Small-World Model 638

The small-world network structure of scientific co-authorship implies network 639

forms where the level of local clustering (one’s collaborators are also collaborators 640

with each other) is high, but the average number of steps between clusters is small. 641

In these small-world networks, internal ties to clusters tend to form more cohesive 642

clusters within boundaries, as compared to the more extensive and less cohesive 643

overall networks that include their external ties. According to various social network 644

analysts, the small-world model was inspired by the work of de Sola Pool and 645

Kochen (1978) who partially formalized the much more famous application of 646

Travers and Milgram (1969). It expresses the simple idea that any two individuals, 647

selected randomly from almost anywhere on the planet, are ‘connected’ via a path of 648

no more than a small number of intermediate acquaintances. The (limited) empirical 649

evidence suggested that this small number is about 6. This notion became a popular 650

idea in the Broadway play named Six Degrees of Separation. The first practical 651

evidence for the existence of a small-world phenomenon was first provided by 652

the psychologist Milgram (Berg 2005, p. 46). Milgram’s experimental result was 653
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Fig. 6.2 Small-world structure simulation with different levels of randomness

regarded as a good starting point for analyzing the underlying structure of scientific 654

co-authorship. 655

Later, Watts and Strogatz (1998) formally defined the small-world model in 656

order to construct networks with the following properties that mirror some observed 657

social networks: (i) having short paths between any two vertices (and hence, smaller 658

average lengths for the shortest paths) and (ii) also incorporates clustering (small 659

dense parts of the network). Knowing that geographical proximity of vertices plays 660

a role in the formation of links (especially for humans), they considered a ring-lattice 661

with n vertices. Each vertex had msw edges to its neighbors. Then they rewired each 662

edge with a probability psw by relinking the second end of the edge to a randomly 663

chosen vertex. The probability psw enables this network to vary from an ordered, 664

finite dimensional lattice to a completely disordered network. The ring-lattice does 665

not show a small-world effect since the average shortest path grows faster than a 666

logarithmic rate of increase with the number of vertices, but it has strong local 667

clustering. When the edges are rewired, Watts and Strogatz noticed that replacing a 668

few long-distance connections hugely reduced the network’s average shortest path 669

and, as a result, a small-world effect appears. When psw D 1, the network becomes 670

completely disordered where local clustering is no longer present and the average 671

shortest path is small. Watts and Strogatz showed, by numerical simulation, that 672

there is a relatively large psw interval in between the two extremes, for which the 673

model exhibits both low path lengths and clustering (Fig. 6.2).AQ3 674

Newman (2001, 2004) provides an excellent overview of the analysis on the 675

topology of small-world network structures, highlighting key organizing principles 676

that guide ties among the nodes in the network. According to Moody (2004), 677

an archetypal small-world network will have many distinct clusters, connected to 678

each other by a small number of ties. An analysis dealing with the dynamics 679

of co-authorship publication networks in Slovenian sociology (Mali et al. 2010) 680

showed that, to some extent, they conform to the small-world network structure: 681

there are groups of sociologists that are very connected inside small groups but 682

connected with others in non-systematic ways. Further results, obtained by using 683

the blockmodeling approach, pointed to a publication strategy of those sociologists 684

in Slovenia who are included in these small-world structures and are more oriented 685
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to parochial scientific reports or publications in Slovene. Consistent with this, they 686

publish less in the international peer-reviewed journals than the sociologists outside 687

this small-world structure. The results of these empirical analyses of Slovenian 688

sociologists suggest that the presence of a too ‘closed’ and dense co-authorship 689

network in science can have negative effects on the international orientations of 690

scientists in a small scientific community. This implies that, for scientific perfor- 691

mance and scientific excellence, it is much more important to have ‘open’ networks 692

that have many structural holes (gaps between actors that create opportunities for 693

brokerage). This is especially important for linking micro-level interactions (coop- 694

eration inside internal scientific organizations) to macro-level patterns (cooperation 695

in the international scientific community). Burt provided evidence suggesting that 696

new ideas in society emerge from selection and synthesis processes that operate 697

across structural holes between groups. Positive performance evaluations and good 698

ideas are disproportionately in the hands of people whose networks span structural 699

holes. The ‘between-group brokers’ are more likely to have ideas viewed as valuable 700

(Burt 2004) within the community. 701

6.4.4.3 The Preferential Attachment Model 702

The scale-free network structure, in one version or another, corresponds fairly 703

closely to the sociological model of cumulative advantage in science. The first 704

systematic representation of this model was provided by Merton (1973). Following 705

Merton, there was a research stream in the literature that invoked the idea of 706

cumulative advantage as a central explanatory principle for the social stratification 707

of science. Merton’s studies were concerned with both organizational and functional 708

aspects of science as an institution capable of self-regulation. This approach found 709

its most significant (or at least most famous) expression in the description of 710

the normative structure of science. Merton focused his attention on four insti- 711

tutional imperatives: universalism, communism, disinterestedness, and organized 712

skepticism. Merton and other scholars working within institutional approaches 713

(including Barber, Zuckerman, and Hagstrom) analyzed how norms regulate sci- 714

entific activity. They studied the ways in which resources and rewards (including 715

scientific prestige and opportunities to publish) are assigned and distributed within 716

the scientific community (see, for example, Matthew 2005; Bucchi 2004). 717

The idea of cumulative advantages comes from the passage in Matthew’s Gospel: 718

“For unto every one that hath shall be given, and he shall have abundance: but 719

from him that hath not shall be taken away even that which he hath.” (Hence 720

the term “the Matthew effect.”) Translating the idea of cumulative advantage in 721

science implies that those scientists who already occupy a position of excellence are 722

rewarded far more than others in their field. Scientists who are rich in recognition 723

find it easier to obtain additional recognition. In contrast, scientists who receive little 724

recognition for their research efforts have reduced chances for future recognition. 725
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Merton argued that cumulative advantage is a primary mechanism in modern science 726

for the creation of scientific stars.9 727

A more quantitative and bibliometric basis for assessing the phenomenon of 728

unequal distribution of publications (in connection with the unequal distribution 729

of awards) in modern science has been provided also by Price (1976; 1963) in the 730

form of his measure of scientific productivity. According to Price’s law of scientific 731

productivity, “...half of the scientific papers published in a given sector are signed 732

by the square root of the total number of scientific authors in that field” (Price 1963, 733

p. 67). This means that a relatively small number of highly productive researchers 734

are responsible for most scientific publications. Price’s law is founded on the same 735

probabilistic basis as the earlier established Lotka Law,10 the Bradford Law,11 and 736

Pareto and Zipf12 distributions. 737

Both Price’s law and the Matthew effect depict the scientific community as a 738

structure characterized by marked inequality and a heavily pyramidal distribution of 739

scientific rewards and publications. They are linked by the principle of preferential 740

attachment which contains, for the case of scientific co-authorship networks, two 741

generic aspects: (1) the continuous addition of new vertices into the network 742

system and (2) preferential connectivity of new vertices. It means that a common 743

feature of the models of scientific co-authorship networks, based on the rationale 744

of preferential attachment, continuously expands by the addition of new vertices 745

that are connected to the vertices already present in the networks. Additionally, in 746

these models a new actor is, at best, most likely to be cast in a supporting role with 747

more established and better-known actors. Further, no scientific field expands with 748

9Merton and his sociological followers (see Allison et al. 1982; Cole and Cole 1973) have analyzed
several other similar mechanisms with regard to science networks, collaboration structures, and
recognition in science:

1. The “halo effect” in science denotes the advantage of scientists in more favorable institutional
locations.

2. The “Matilda effect” points to the discrimination against the participation of women in scientific
activity.

3. The “gatekeeper” labels those scientists who can influence the distribution of resources such
as research funds, teaching positions, or publishing opportunities because they occupy key
decision-making positions within scientific institutions.

4. The idea of an “invisible college” was introduced on the basis of a seventeenth century
expression denoting informal communities of researchers that cluster around specific projects or
a research theme and that often turn out to be more influential in terms of knowledge production
than formal communities (departments, research centers, scientific committees).

10Lotka’s law states: The number of authors making n contributions is about 1=na of those making
one contribution, where a is often about 2.
11Bradford’s law states: Journals in a field can be divided into three parts: (1) a core of a few
journals, (2) a second zone, with more journals, and (3) a third zone, with the bulk of journals. The
number of journals in these three parts is 1 W n W n2.
12Zipf’s law states: The probability of occurrence of words or other items starts high and tapers off.
Thus, a few occur very often while many others occur rarely. The formal definition is: Pn � 1=na ,
where Pn is the frequency of occurrence of the nth ranked item and a is close to 1.
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an endless growth of new vertices but is constrained by the operation of feedback 749

effects.13 It follows that there exist nodes, called “hubs” or “Angelpunkten oder 750

Naben” (Berg 2005, p. 53), that acquire more links than another nodes. In such 751

types of networks, preferential attachment and the system feedback dynamics play 752

very important roles. 753

Crane (1972) provided an analysis of (global) scientific networks where informal 754

members of scientific elites (in Moody’s terminology, scientific stars) through whom 755

the communication of scientific information both within scientific disciplines and 756

across scientific disciplines is directed have the position of “hubs”. Namely, they 757

are central scientists in the network from where the information is transferred to all 758

other scientists in the network. They also communicate intensively with each other. 759

The idea of scientific networks with hubs can be used as a starting point to relate 760

micro-level interactions (for example, in a local/national scientific community) to 761

macro-level patterns (for example, the global scientific community). Through the 762

informal groups of scientific elites, the small-scale interactions become translated 763

into large-scale patterns. These large-scale patterns (international science) also have 764

feedback effects on small groups (parochial/national science). The production and 765

diffusion of the most creative and excellent scientific ideas in the world arise from 766

the brokered networks (Granovetter 1973, p. 1360). 767

Albert and Barabási (2001) provide examples of many real-world networks 768

whose degree distributions are far from a Poisson distribution. They showed that 769

distributions can be approximated with a power-law function. They proposed a 770

new evolving network model – PA or preferential attachment model (Barabási and 771

Albert 1999). The model was presented as one that “shifts from modeling network 772

topology to modeling the network assembly and evolution” (Albert and Barabási 773

2001). The idea behind the model was to capture the construction (development) of a 774

network that could possibly explain the large number of observed power-law degree 775

distributions in real networks. Before, there existed mostly network models with a 776

fixed number of vertices among which links were added according to a particular 777

procedure (process). Since real networks typically grow with the addition of new 778

links and vertices that are not added randomly, Albert and Barabasi included the 779

following ideas in their model. 780

The algorithmic statement of their model, given a set of vertices in a network, 781

consists of the following two processes in a sequence of steps: 782

• At every time step, a new vertex v is added to the network. 783

• mba edges are created from the new vertex v to the vertices that are already in the 784

network. These vertices are chosen with a probability proportional to their current 785

13(Berg 2005, p. 54) points out that “the effect of the positive feed-backs, namely, the advantages
of old nodes against new ones as well as the attractiveness of the already networked nodes for
newly added ones are leading to the growth of networks based on the preferential attachment”,
(“...doch in einem bestimmten Bereich sind positiven Rueckkopplungen feststellbar. Beide Effekte
zusammen, der Vorteil, den alte Knoten gegenueber neuen haben sowie die Attraktivitaet besonders
vernetzter Knoten fuer neu hinzukommende, fuehren dazu, dass das Wachstum des Netzes einer
bevorzugehenden Verbindungswahl folgt.”)
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Fig. 6.3 Degree distribution in a co-authorship network of Slovenian researchers (Kronegger et al.
2011a) presented on a log-log scale. A large number of researchers with a small number of co-
authors and a small number of researchers with a high number of co-authors indicates the existence
of a preferential attachment mechanism in the process of network growth

degree. The probability of choosing vertex u can be written by ku=
P

j kj (where 786

ku represents the current degree of vertex u). 787

After t time steps, there are t C m0 vertices in the network (where m0 denotes 788

the number of vertices at the beginning of the process) and tmba edges. It was first 789

shown with simulations that the degree distribution of the whole network resulting 790

from the operation of this model follows a power-law distribution with an exponent 791


 D 3 (Fig. 6.3). 792

Such scale-free networks as these generated through the principle of preferential 793

attachment, in addition to not having a Poisson distribution of links around nodes, 794

also have the interesting property of being very resistant to random attack. Almost 795

80% of the links can be cut before a scale-free network is destroyed, while the 796

corresponding percentage for an exponential network is less than 20%. 797

Many generalizations about preferential attachment models have been made 798

(Albert and Barabási 2001; Newman 2003). Systematic divergence from the power- 799

law distribution at small degrees can be seen in many real-world networks. 800

Therefore, Pennock et al. (2002) proposed incorporating a mixture (weighted 801

addition) of preferential attachment and random attachment in the model. A further 802

refinement of this model, where a directed version of the model was taken into 803

account, is implemented in Pajek (Batagelj and Mrvar 2010). There, at each step 804

of the growth a new vertex is selected according to its weighted in-/outdegree and 805

some uniform attachment. 806
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Another generalization about both small-world and preferential attachment, 807

developed for two-mode networks, comes from Latapy et al. (2008) who present 808

a nice overview of method developments for two-mode networks. Opsahl (2010) 809

provides another attempt to overcome the issues of higher clustering coefficients in 810

projections of two-mode to one-mode networks by redefining both the global and 811

local clustering coefficients so that they can be calculated directly for two-mode 812

structures. 813

6.4.4.4 Applications Featuring Co-Authorship Networks 814

Newman (2001) showed that collaboration networks form small-worlds in which 815

randomly chosen pairs of scientists are typically separated by only a short path 816

of intermediate acquaintances. He further provided information on the distribution 817

of the number of collaborators, demonstrated the presence of clustering in the 818

networks, and highlighted the number of apparent differences in the patterns of col- 819

laboration between fields. Also, Newman (2004) used data from three bibliographic 820

databases for biology, physics, and mathematics to construct networks in which the 821

nodes were scientists. He used these networks to answer a broad variety of questions 822

about collaboration patterns, how many papers did authors write and with how many 823

people, what is the typical distance between scientists through the network, and how 824

do patterns of collaboration vary between subjects and over time. 825

Barabási et al. (2002) analyzed co-authorship data from electronic databases 826

containing all relevant journals in mathematics and neuroscience for the period 827

between 1991 and 1998. They found that network evolution is governed by 828

preferential attachment. However, contrary to their predictions, the average degree 829

in the networks they analyzed increased, and the node separation decreased in time. 830

They also proposed a model that captured the network’s time evolution. 831

Moody (2004) made an important contribution by identifying several types 832

of individual scientific collaboration behavior that leads to the development of 833

co-authorship networks that resemble networks generated according to the prin- 834

ciples of small-world and preferential attachment. Recently, several articles that 835

test the principles of small-world and preferential attachment have been published. 836

Some are based on local databases like the Slovenian COBISS (Mali et al. 2010), 837

while others use general databases like Web of Science (Perc 2010; Wagner and 838

Leydesdorff 2005; Tomassini and Luthi 2007). 839

6.4.4.5 Developments of Models for Longitudinal Network Data 840

After the pioneering work of Erdös and Rényi on random graphs, and after the first 841

applications of graph theory appeared in the sociological community (de Sola Pool 842

and Kochen 1978), one group within the scientific community moved away from the 843

idea of merely reproducing some global properties of “real-world” network proper- 844

ties. Instead, they focused on an approach designed to include micro-mechanisms 845
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that generate local changes in networks that also help account for the macro- 846

structure of networks. Moreover, these efforts were designed to treat the micro- 847

mechanisms as hypotheses that could be evaluated through statistical inference. The 848

basics for these models of network change are (as already mentioned in the pre- 849

vious section) random graphs and random graph processes which incorporate the 850

probabilistic uncertainty into the models. Uncertainty is present because there are 851

many potential generators for observed graph structures, including co-authorship. 852

From a methodological perspective, modeling the dynamics in social networks led 853

to several obstacles. Probably the most persistent one was the interdependencies of 854

the units comprising the networks. This problem remained untouched for almost 20 855

years. Indepth overview of approaches and methods to modeling network changes 856

in time can be found in Frank (1991), Snijders (1996), and Snijders et al. (2010). 857

There are two distinct approaches to modeling network changes in time: models 858

that implement change in discrete time steps, and more advanced models where time 859

is modeled by continuous flows. Success in modeling change in social networks 860

began in 1959 when Katz and Proctor showed that change in preferences for 861

making ties in the network could be represented by a stationary, discrete-time 862

Markov model. Of course, they assumed the independence of dyads within which 863

all the modeling took place. In 1981, Holland and Leinhardt published a very 864

influential article on log-linear models of network change which initiated a vigorous 865

research stream devoted to the development of a broad class of models. One 866

basic model, called p1, was developed by Fienberg and Wasserman (1981) and 867

Wasserman and Weaver (1985). Authors also provided efficient algorithms to find 868

the maximum-likelihood estimators of parameters defining appropriate probability 869

functions. Fienberg et al. (1985) showed how to handle social network data with the 870

Holland-Leinhardt model and its extensions in contingency tables by using basic 871

log-linear models. The longitudinal dimension to the log-linear approach was added 872

by Wasserman (1987) and Wasserman and Iacobucci (1988). 873

Conditionally uniform models (Holland and Leinhardt 1975) are often used for 874

modeling directed graphs where the probability distribution for forming new ties is 875

uniform, conditional upon a certain set of attributes. In these models, the conditional 876

statistics are defined by attribute variables and contain the most relevant effects of 877

the studied phenomena, while the rest is explained by random factors. Conditionally 878

uniform models become very complicated when more informative conditioning on 879

attribute variables is included into the model. Such models for longitudinal binary 880

network data at 2 time points – conditional upon the entire network at the first time 881

point, and upon the numbers of newly formed and dissolved ties for each actor – 882

were developed by Snijders (1990). The idea of conditioning the changes in the 883

network on the first measured network resolves most of the unexplained factors that 884

determined the development of network before its first measurement. 885

Modeling changes in continuous time with Markov chains was adapted by 886

Coleman (1964) to tackle some classical sociological problems. Holland and 887

Leinhardt (1977) extended this idea to model networks of interpersonal affect 888

between actors. They developed a valued Markov chain approach to model the 889

process by which social structure based on affect influenced individual behavior. 890
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The basic assumptions underlying the use of the continuous time Markov chain 891

model are: 892

1. Between the observation moments, time runs continuously. Changes can be made 893

(but are likely to be unobserved) at any moment, t . 894

2. The network X.t/ is the outcome of a Markov process. 895

3. At each single moment, only one relational tie or variable attribute may change. 896

Wasserman (1978, 1980a,b) continued this approach and provided estimators for 897

parameters of various models. He started with a simple model of reciprocity in 898

directed graphs, but without complicated dependencies between ties such as those 899

generated by transitive closure. 900

The breakthrough in modeling the dynamics in social networks was the relax- 901

ation of the assumption of conditional independence between dyads (Mayer 1984). 902

This was an important step since most sociological theories assume at least some 903

kind of dependence structure between dyads. Another important step came in the 904

form of dropping the stationarity assumption (Leenders 1995). Leenders also 905

developed a mechanism to allow changing rates for all dyads to be dependent on 906

arbitrary covariates, with the assumption that these remain constant between the 907

observations. 908

In recent years, these models became known as stochastic actor-oriented mod- 909

els which have been developed to consider a variety of micro-mechanisms for 910

generating network structure. These models are based on an assumption that 911

each actor has his/her own goals which he/she tries to advance in accordance 912

with his/her constraints and possibilities. Snijders (1995) referred to this approach 913

as ‘methodological individualism’ where the driving force behind the network 914

dynamics comes in the form of actions by actors. 915

Each attempt to model specific sociological problems or theories produced a 916

new mathematical model that filled the gaps along the way to obtaining a better 917

representation of reality. Yet an important feature still had to be addressed because 918

most of these models lacked an explicit estimation theory. 919

The first models addressed some basic questions. A baseline of development 920

can be followed through the work of several authors. Jackson and Wolinsky (1996) 921

presented a model where the benefits and costs of ties affected the evolutionary 922

trajectories of networks and the form of equilibrium structures. Hummon (2000) 923

constructed actor-oriented simulation models of ‘Jackson and Wolinsky actors’ to 924

study temporal network dynamics. He specified choices under four combinations of 925

tie formation and deletion rules: unilateral and mutual tie formation, and unilateral 926

and mutual tie deletion. This process generated eight types of networks: Null, 927

near-Null, Star, near-Star, Shared, near-Shared, Complete and near-Complete as 928

equilibrium structures. Doreian (2006) provided a formal proof via exhaustive 929

examinations of the structures identified by Hummon (but only for tiny networks), 930

and this line of work was extended by Xie and Cui (2008a,b). In another line of 931

development, Marsili et al. (2004) presented a simple model using the creation of 932

links to friends of friends, a mechanism that was introduced by Vázquez (2003) 933

in the context of growing networks. This model is similar to the one proposed by 934
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Davidsen et al. (2002) which explained the emergence of the small-world property 935

in some social networks. 936

In the model of Skyrms and Pemantle (2000), individual agents begin to interact 937

at random, with the interactions modeled as games. The game payoffs determine 938

which interactions are reinforced, and network structures emerge as a consequence 939

of the dynamics of the agents’ learning behavior. 940

More complex network dynamic models with larger but still quite restricted 941

numbers of tendencies were presented by Jin et al. (2001). They propose some 942

simple models for the growth of social networks based on three general principles: 943

(i) meetings take place between pairs of individuals at a rate that is high if a pair has 944

one or more mutual friends and low otherwise; (ii) acquaintances between pairs 945

of individuals who rarely meet decay over time; (iii) there is an upper limit on 946

the number of friendships an individual can maintain. Their models incorporate 947

all of these principles and reproduce many of the features of real social networks, 948

including high levels of clustering or network transitivity and strong community 949

structure in which individuals have more links to others within their community 950

than they have to individuals from other communities. The important feature of 951

their models is the inclusion of a time scale on which people make and break social 952

connections. 953

6.4.4.6 Simulation Investigation for Empirical Network Analysis – Siena 954

The problem of inference in modeling dynamics of social networks on the basis 955

of the observed longitudinal data was addressed by Snijders (1996) and extended 956

further by Snijders et al. (2010). These models are based on longitudinal data and 957

include representations of network dynamics as being driven by many different ten- 958

dencies. These include micro-mechanisms, which have been theoretically derived 959

and/or empirically established in earlier research, and which may well operate 960

simultaneously. One of the most important characteristics of these models is the 961

evaluation of their results within the paradigm of statistical inference, which 962

makes them suitable for testing hypotheses and estimating tendencies that drive 963

tie formation and dissolution at the level of individual units using reciprocity, 964

transitivity, homophily, etc. 965

The model assumptions are: 966

• The model is basically defined for directed relations. In the case of undirected 967

networks (e.g., co-authorship networks) the tie formation is additionally modeled 968

using different mechanisms (e.g., a unilateral forcing model, unilateral initiative, 969

and reciprocal confirmation, etc.) 970

• The network is observed in 2 or more discrete timepoints. But the underlying 971

time parameter in the model is continuous. 972

• Changes in the network are outcomes of a Markov process, which means that the 973

change in the network from one state in time point ti to new state in time point 974
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tiC1 is conditioned only to the state of the network in time point ti . The process 975

does not take into account any other historical events. 976

• The actors control their ties, which means that changes in ties are made by actors 977

who send the tie on the basis of their and others’ attributes, their position in the 978

network, and their perceptions about the rest of the network. Regarding the last, 979

it is assumed that actors have full information about the network and the other 980

actors. 981

• At any given moment, only one probabilistically selected actor may get the 982

opportunity to change only one tie. 983

The actor-based process is decomposed into two stochastic sub-processes: 984

1. The change-opportunity process models the frequency of the tie changes by 985

actors. The opportunity to change the tie depends on the network locations of 986

the actor (e.g., his or her centrality) and on actor covariates (e.g., gender or age). 987

2. The change-determination process models the change of the tie when an actor 988

gets an opportunity to make a change. The change of the tie can be made 989

with equal probabilities or with probabilities depending on attributes or network 990

positions. Perceived attributes and position (the environment) of the actor is 991

included into the actor’s objective function, which expresses how likely it is for 992

the actor to change his or her network environment in specific way (i.e., initiate, 993

withdraw tie, or keep the present situation). 994

To use this model with observed data means that parameters have to be estimated 995

by some statistical procedure. Since the model is too complicated for classical 996

estimation methods such as maximum likelihood, Snijders (1996, 2001) proposed a 997

procedure using the method of moments implemented by a computer simulation of 998

the network change process. The procedure he proposed uses the first observation 999

of the network as the (unmodeled) starting point of the simulations. This implies 1000

the estimation procedure is conditioned on the first observed network of a series of 1001

observations of that network. 1002

The limitation of such models is that they are limited to a predetermined 1003

and rather small number of actors (between 100 and 200 actors) and do not 1004

directly consider the mechanisms of network growth. The methods and algorithms 1005

developed by Snijders et al. (2008) are implemented in the computer package 1006

SIENA. 1007

Stochastic actor-based modeling of network dynamics was initially developed 1008

for modeling the change in directed networks. The undirected networks such as 1009

co-authorship networks are a special case where reciprocity cannot be used as 1010

a mechanism of network change. Although several articles have been published 1011

using SIENA models, to our knowledge, only Kronegger et al. (2011b) dealt with 1012

undirected networks to study the dynamics of co-authorship networks of Slovenian 1013

researchers working in physics, mathematics, biotechnology, and sociology in the 1014

time period from 1991 to 2005. In their study, they operationalized the modeling of 1015

global network parameters used in the preferential attachment and the small-world 1016

models with stochastic actor-oriented modeling. 1017
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6.5 Summary 1018

Access to bibliographic databases and the availability of powerful quantitative social 1019

network approaches increased the number of studies of co-authorship networks in 1020

different scientific fields. There are several classification schemes for analytical 1021

approaches to analyzing the dynamics of co-authorship networks. We decided to 1022

classify them according to the types of models. The first type of model provides the 1023

basic analysis of whole co-authorship network properties. Such network character- 1024

istics are degrees, clustering coefficients, and density. The usual statistical approach 1025

used in these models is time-series analysis of listed properties. 1026

Deterministic models (the second type) and stochastic models (the third type) are 1027

usually used to analyze actor-based co-authorship networks and attribute charac- 1028

teristics. To study the structure within the co-authorship networks, blockmodeling 1029

approaches are recommended. To model dynamic co-authorship networks, sev- 1030

eral approaches can be used according to the chosen level of analysis. Models on 1031

the macro level (whole network level) were mostly developed by mathematicians 1032

and physicists. These are models of “real-world” networks, small-world models, 1033

and preferential attachment models. The alternative stochastic actor-based model 1034

(implemented in SIENA) was developed by social scientists and statisticians. This 1035

model focuses on single units and on dyads. This powerful model studies network 1036

change in time as the result of micro-mechanisms for generating the network 1037

structure. 1038

There are several indicators that show a huge development of analytical 1039

approaches to studying social networks through time. The powerful stochastic 1040

actor-based networking model has one disadvantage in that it can only be used to 1041

analyze a few hundred units in the network. Therefore, there is a need for similar 1042

models to analyze large networks. 1043

Key points
Modeling of co-authorship networks can be approached in terms of the
different perspectives and goals that have been outlined in this chapter. As
a partial summary, the following items are important:

1. Level of the analysis: the macro level (whole network) or the micro level
(unit). Which one is used depends on the goal(s) of the study. There are the
following three variants:

a. Describing the topology of the macro structure
b. Understanding the micro-level changes at the actor level
c. Coupling the micro-level processes to the generation of the network’s

macro structure.

2. Size of the network: some models can process only a limited number
of units (e.g. stochastic actor-based modeling and direct blockmodeling),
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while others can handle large networks (e.g., preferential attachment, the
small-world model, and indirect blockmodeling).

3. Discrete-time models (e.g., blockmodeling) or continuous-time models
(e.g., stochastic actor based modeling).

4. The analysis of the evolution of co-authorship networks only (e.g., small-
world model, preferential attachment, blockmodel) or including external
characteristic of network (e.g., scientific field) and/or actor attributes (e.g.,
age or gender of researcher) using modeling approaches (e.g., stochastic
actor based modeling).

5. Needs of graphical representation of co-authorship network evolution (e.g.,
preferential attachment, blockmodeling, multidimensional scaling).
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Chapter 7 1

Citation Networks 2

Filippo Radicchi, Santo Fortunato, and Alessandro Vespignani 3

7.1 Introduction 4

BibliographicAQ1 databases represent the starting point for any empirical study of 5

the evolution and dynamics of scientific activity, citation patterns, and the ensu- 6

ing analysis of the importance of specific contributions, journals, and scientists. 7

Bibliographic datasets were first analyzed by Lotka (1926) and Shockley (1957) 8

in order to quantitatively measure the productivity of individual scientists and 9

research laboratories, respectively. Since the pioneering work of Derek de Solla 10

Price (1965), who realized that bibliographic data have a natural mathematical 11

representation in terms of directed graphs, the study of co-authorship and citation 12

networks has become the starting point for the formulation of key hypotheses such 13

as the mechanism of cumulative advantage (Price 1976) to explain the dynamical 14

pattern of citation accumulation. The mathematical description of social systems in 15

terms of networks or graphs has a long tradition in social sciences (Wasserman 16

and Faust 1994). However, it is only in the last decade that the analysis of 17

bibliographic data has received a boost from advances in information technology
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and the massive digitalization of documents. For the first time, data collection 18

and mining capabilities allow for systems-level analysis of huge bibliometric 19

datasets that are regularly collected in digital format. The data collected in digital 20

bibliographic databases report a wealth of information for each article, including: 21

title, journal, date of publication, a list of authors and their affiliations, a list of 22

bibliographic references, keywords, and an abstract. In this context, the use of 23

multipartite networks as the natural abstract mathematical representation of the 24

data is particularly convenient, and several studies have recently focused on the 25

study of co-authorship networks, paper citation networks, etc. In general, each 26

of these networks is an appropriate bipartite or unipartite network projection 27

of the original bibliographic dataset where authors and papers are nodes, and 28

citations, authorship, and other bibliographic information define the links between 29

nodes. 30

Nowadays, computational power allows us to generate and analyze citation 31

networks consisting of hundreds of thousands or millions of nodes and links. 32

On one hand, the sheer size of the networks under consideration challenges us 33

with new problems concerning the mathematical characterization of systems that 34

preserve the undeniable intricacies and, in some cases, haphazard sets of elements 35

and relations involved. On the other hand, the large size of the resulting networks 36

empowers us with a systems-level view of the citation dynamics that was not 37

accessible in previous years. Indeed, in large systems, asymptotic regularities 38

cannot be detected by looking at local elements or properties: one has to shift 39

attention to statistical measures that take into account the global behavior of these 40

quantities. 41

The possibility of analyzing large-scale network data is one of the central 42

elements that has characterized the recent developments in network science and the 43

increased interest in complex networks (Albert and Barabási 2002; Dorogovtsev and 44

Mendes 2002; Newman 2003; Pastor-Satorras and Vespignani 2004; Boccaletti et al. 45

2006; Caldarelli 2007; Barrat et al. 2008). For this reason, citation networks in the 46

last several years have become one of the prototypical examples of complex network 47

evolution. Indeed, the new modeling and analysis techniques emerging in the area 48

of complex networks have provided new insights into citation networks, which have 49

facilitated understanding of the dynamical processes governing their evolution. In 50

this chapter, we will review the main structural characteristics of citation networks 51

and we will frame some of their properties in the language of complex networks. 52

We will also review the basic descriptive and generative models used to represent 53

citation networks and the use of dynamical processes to rank papers and authors 54

(Table 7.1).AQ2 55

Table 7.1 List of major questions and models addressed in this chapter

t36.1Major questions addressed Major models

t36.2Structure and dynamics of citation networks De Solla Price model
t36.3Citation distributions Barabási-*Albert model
t36.4Ranking criteria Model by Karrer & Newman
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7.2 Bibliographic Databases and the Construction 56

of Citation Networks 57

In the last two decades, bibliographic databases have completely changed in terms 58

of accessibility and completeness. Most of these databases are now online and their 59

records can be searched by simple web queries. The Web of Science (WoS) database 60

of Thomson Reuters1 is the largest and most complete commercial source of 61

bibliographic data. WoS indexes papers from every part of the world and from every 62

scientific discipline. Like WoS, other databases store large sets of bibliographic data: 63

CrossRef,2 Scopus,3 GoogleScholar,4 Citebase,5 CiteSeer,6 Spires,7 and the Eprint 64

archive at www.arxiv.org are just a few examples. These databases do not offer 65

the same coverage of WoS (different journals and conference proceedings are listed 66

depending on the database), but, with the exception of CrossRef and Scopus, they 67

are accessible free of charge. 68

From the raw data, various kinds of citation graphs can be generated. The 69

simplest ones are citation networks between papers. Taking the list of references 70

appearing at the end of each article, one can draw directed connections from citing 71

articles to cited ones. In this case, the graph is directed, but no weight appears on 72

the arcs since it is natural to assume that each reference has the same importance. 73

The same information can be used to construct citation networks between scientists, 74

journals, and institutions. For example, the citation network between journals is 75

obtained by substituting each article with its journal of publication. Weighted 76

connections can be drawn in this case by assigning to the arcs a weight equal to 77

the number of times that a journal cites another journal. In Fig. 7.1, we show the 78

construction of an author citation network. Starting from the network of citations 79

between papers, the construction can be performed locally by translating the citation 80

from a paper i to a paper j into a set of citations between all ni co-authors of 81

paper i to all nj co-authors of article j . The weight of each of these directed 82

connections is simply w D 1=
�
ni � nj

�
, by naturally assuming that the citation 83

between papers carries a unit of weight and that this quantity is evenly split among 84

the involved scientists. The total weight of a connection between two authors is then 85

given by the sum of each of these elementary contributions over the entire network 86

of citations between papers. Furthermore, the longitudinal nature of bibliographic 87

datasets (expressed by the publication dates of the papers) allows one to follow the 88

evolution of citation networks. 89

1WoS: Web of Science, URL: http://isiknowledge.com/WOS.
2Crossref, URL: http://www.crossref.org.
3Scopus, URL: http://www.scopus.com.
4Google Scholar, URL: http://scholar.google.com.
5Citebase, URL: http://www.citebase.org.
6Citeseer, URL: http://citeseer.ist.psu.edu.
7SPIRES, URL: http://www.slac.stanford.edu/spire.

http://isiknowledge.com/WOS
http://www.crossref.org
http://www.scopus.com
http://scholar.google.com
http://www.citebase.org
http://citeseer.ist.psu.edu
http://www.slac.stanford.edu/spires
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Fig. 7.1 (a) In the network of citations between papers, the article i , written by two authors i1 and
i2, cites two papers j and k, written by one author j1 and two co-authors k1 and k2, respectively.
(b) The author citation projection is generated by simply connecting with a directed link both i1 and
i2 to j1, each with weight 1=2, and to k1 and k2, each with weight 1=4. From Radicchi et al. (2009)

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

It is important to mention that in the construction of citation (and collaboration) 90

networks between scientists, possible problems may arise. First, there is a problem 91

of identification for the authors. Unfortunately, scientists do not always sign their 92

papers using the same name and this has as a consequence the impossibility of 93

automatically relating different names to the same physical person. This fact may 94

happen for several reasons: different order between first and last name; possible 95

presence or absence of middle names; and change of last names (especially after 96

marriage). The second problem is basically the reverse of the formerly described 97

source of error. Generally in bibliographic databases, scientists are identified by 98

their full last name plus the initials of their first and middle names. Therefore, 99

disambiguation errors occur due to the impossibility of distinguish authors having 100

the same initials and the same last name. The solution for deleting these source of 101

errors is to use a unique identifier for each scientist as recently proposed by the 102

project ResearcherID8 of Thomson Scientific. 103

It is worth remarking that citation networks can also be constructed by consider- 104

ing data, and not concerning the scientific bibliography. For instance, there is a large 105

number of electronic databases collecting information on technological patents. 106

Examples are: NBER U.S. Patent Citations Data,9 containing all patents registered 107

in the United States from 1963 to 1999; Google patents,10 which collects patents 108

8URL: http://www.researcherid.com.
9NBER: The National Bureau of Economic Research, U.S. Patent Citations Data at the URL: http://
www.nber.org/patents.
10Google Patents, URL: http://www.google.com/patents.

http://www.researcherid.com
http://www.nber.org/patents
http://www.google.com/patents
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Fig. 7.2 Author citation network of scientists working on complex networks. The graph is derived
from the citation network of papers published in the journals of the American Physical Society14

whose titles contain the keywords “complex networks,” “small-world networks,” etc. A citation
by paper A to paper B turns into a set of citations from each author of paper A to each author of
paper B. Each edge of the author citation network is weighted, as an author may cite any other
author multiple times in the same or different papers. From Radicchi et al. (2009)th
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registered in many countries; and the database of the European Patent Office,11 in 109

which all patents registered in the European Community are stored. An additional 110

example is represented by legal citation networks. These are networks that can be 111

constructed by using data obtained from United States Supreme Court decisions 112

dating from 1789.12
113

Citation networks (see Fig. 7.2) immediately convey a sense of complexity, and, 114

in order to understand the organizing principles underlying these networks, it is 115

necessary to utilize statistical analysis. The first quantity to be scrutinized since the 116

early work of De Solla Price has been degree centrality. The degree ki of a vertex i 117

is defined as the number of edges in the graph incident on the vertex i . While this 118

definition is clear for undirected graphs, it needs some refinement for the case of 119

directed graphs. Thus, we define the in-degree kin
i of the vertex i as the number 120

11EPO: European Patent Office, URL: http://www.epo.org/patents/patent-information.html.
12Supreme Court of the United States, URL: http://www.supremecourt.gov.

http://www.epo.org/patents/patent-information.html
http://www.supremecourt.gov
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of edges arriving at i , while its out-degree kout
i is defined as the number of edges 121

departing from i . The degree of a vertex in a directed graph is defined by the sum 122

of the in-degree and the out-degree, ki D kin
i C kout

i . In the case of paper citation 123

networks, the in-degree kin
i corresponds to the number of papers citing the paper i 124

and the out-degree kout
i corresponds to the number of citations to other papers. In 125

large-scale graphs, a first statistical characterization is provided by the normalized 126

histogram of the in-degree and out-degree of the nodes that for a large number 127

of nodes (documents) can be considered analogous to the probability distributions 128

P
�
kin
�

and P .kout/ that a randomly chosen vertex has in-degree kin and out-degree 129

kout, respectively. While these two quantities have been considered extensively 130

in the literature, it is clear that many other indicators and metrics characterizing 131

the structure of networks are equally important in defining the ordering principles 132

of citation networks. In the next section, we will discuss some of the structural 133

features that characterize citation networks. However, it is important to stress that 134

the analysis of the degree distributions of citation networks immediately reveals a 135

high level of heterogeneity exemplified by the fact that many vertices have just a 136

few connections, while a few hubs collect hundreds or even thousands of edges. For 137

instance, this feature is easily discerned from Fig. 7.2. The same arrangement can 138

easily be perceived in many other networks where the presence of “hubs” is a natural 139

consequence of different factors such as popularity, strategies, and optimization. 140

For instance, in the World Wide Web, some pages become hugely popular and are 141

pointed to by thousands of other pages, while, in general, the majority of pages are 142

almost unknown. The presence of hubs and connectivity define degree distributions 143

P.kin/ with heavy-tails (Barabási and Albert 1999) that are highly variable in the 144

sense that degrees vary over a broad range, spanning several orders of magnitude. 145

This behavior is very different from the case of bell-shaped, exponentially decaying 146

distributions. In distributions with heavy tails, vertices with degrees much larger 147

than the average hkini are found with a significant probability. In other words, the 148

average behavior of the system is not typical. 149

The heterogeneity found in citation networks is common to many other networks 150

in very different domains. This evidence, first pointed out by Barabási and Albert 151

(1999), is at the root of the huge body of work aimed at uncovering general 152

dynamical principles explaining the structure and evolution of complex networks. 153

It is necessary however to clarify the distinction between what is “complex” 154

and what is merely complicated, in addition to what is conceptually relevant to 155

citation networks. A first point which generally characterizes complex systems 156

is that they are emergent phenomena in the sense that they are the spontaneous 157

outcome of the interactions of many constituent units. In other words, complex 158

systems are not engineered systems put in place according to a definite blueprint. 159

Indeed, loosely speaking, complex systems consist of a large number of elements 160

capable of interacting with each other and their environment in order to organize 161

within specific emergent structures. From this perspective, another characteristic 162

of complex systems is that decomposing the system and studying each component 163

in isolation does not allow for an understanding of the whole system and its 164

dynamics since the self-organization principles reside mainly in the collective and 165
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unsupervised dynamics of the many elements. It is easy to see that citation networks 166

are this type of systems. Another main feature characterizing many complex systems 167

concerns the presence of complications on all scales possible within the physical 168

constraints of the system. In other words, when facing complex systems, we are 169

in the presence of structures whose fluctuations and heterogeneities extend and 170

are repeated at all scales of the system. In the case of citation networks, the 171

all-scales complication is statistically encoded in the heavy-tail distributions that 172

characterize network structural properties. The larger the size of a system, the larger 173

its heterogeneity and the variability of its properties. 174

The question of the existence of some general organizing principles that might 175

explain the emergence of complex networks architecture in very different contexts 176

leads naturally to a shift of focus in the area of network modeling where the empha- 177

sis is on the microscopic processes that govern the appearance and disappearance of 178

vertices and links. In this context, citation networks have acquired a role that goes 179

beyond the specific interest of bibliometrics and the so-called “science of science”; 180

they are prototypical systems for the study of dynamical principles that could apply 181

in very different domains. 182

7.3 Structural Features of Citation Networks 183

7.3.1 Citation Distribution 184

The primary goal of a large number of empirical studies about citation networks 185

is represented by the characterization of the probability distribution function of 186

citations. This is the probability P
�
kin
�

that a paper has been cited kin times. In the 187

language of network science, measuring the number of citations of a paper means 188

counting the number of incoming links (in-degree) kin of a node. In the 1960s, 189

de Solla Price (Price 1965) was already in the middle of performing empirical 190

measurements on a relatively small subset of papers and was able to observe that 191

the number of articles with a given number of citations had a broad distribution. 192

Price conjectured a power law scaling P
�
kin
� � �

kin
��


with a decaying exponent 193


 ' 3. This result was confirmed much later in 1998 by Redner (1998). Redner 194

studied much larger datasets (all papers published in Physical Review D up to 195

1997 and all articles indexed by Thomson Scientific in the period from 1981– 196

1997) and found again that the right tail of the distribution (corresponding to highly 197

cited papers) shows a power law scaling with 
 D 3. At the same time, Redner 198

realized that the left part of the distribution was more consistent with a stretched 199

exponential. However, different conclusions were drawn by Laherrére and Sornette 200

(1998) in the same year. They studied the dataset of the top 1,120 most cited 201

physicists during the period from 1981–1997, finding that the whole distribution of 202

citations is more compatible with a stretched exponential P
�
kin
� � exp

h
� �kin

�ˇi
, 203

with ˇ ' 0:3. The puzzle was seemingly solved by Tsallis and de Albuquerque 204
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(2000). By analyzing the same datasets as Redner’s plus an additional one composed 205

of all the papers published up to 1999 in Physical Review E, the authors found that 206

the Tsallis distribution P
�
kin
� D P.0/=



1 C .ˇ � 1/ 
 kin

�ˇ=.ˇ�1/
, with 
 ' 0:1 207

and ˇ ' 1:5, consistently fits the entire distribution of citations. However, a new 208

functional form was again attributed to Redner a little later. Redner performed an 209

analysis over all papers published in the 110-years-long history of journals in the 210

Physical Review collection (Redner 2005), finding that the distribution of citations 211

is best fitted by a log-normal distribution 212

P
�
kin
� D 1

kin
p

2��2
exp

n
� 
ln �kin

� � �
�2

=
�
2�2

�o
: (7.1)

In subsequent studies, depending on the particular dataset taken under consideration, 213

distributions of citations have been fitted with various functional forms: power- 214

laws (Seglen 1999; Vazquez 2001; Lehmann et al. 2003; Bommarito and Katz 215

2009), log-normals (Bommarito and Katz 2009; Stringer et al. 2008; Radicchi et al. 216

2008; Castellano and Radicchi 2009; Stringer et al. 2010), Tsallis distributions 217

(Wallace et al. 2009; Anastasiadis et al. 2009), modified Bessel functions (van Raan 218

2001a,b), and more complicated distributions (Kryssanov et al. 2007). 219

A typical bias present in many empirical results is the fact that citation distri- 220

butions are computed without taking into consideration any possible discipline- 221

or age-dependence of the statistics. Older papers may have more citations than 222

recent ones, not necessarily because of their merits, but because they stayed in 223

the literature longer and had more time to be cited. Even more serious is the bias 224

related to discipline dependence: papers in mathematics and biology are part of two 225

almost non-interacting citation networks, which follow different citing behaviors. 226

In Stringer et al. (2008); Radicchi et al. (2008); Castellano and Radicchi (2009); 227

Stringer et al. (2010), the authors accounted for these distinctions by analyzing a 228

large number of papers and classifying them according to the date and the journal 229

of publication (Stringer et al. 2008, 2010) and the scientific discipline to which 230

they belong (Radicchi et al. 2008; Castellano and Radicchi 2009). By restricting 231

the statistic to these subsets, the probability that a paper has received kin citations 232

is a log-normal distribution. Even more surprisingly, the authors of Radicchi et al. 233

(2008) realized that the only significant difference between different disciplines and 234

years of publication is the average value hkini. When the raw number of citations 235

is replaced by the relative quantity kin=hkini, a universal behavior is found and 236

no distinction between curves corresponding to different publication years and 237

scientific disciplines is visible (Fig. 7.3). 238

7.3.2 Other Topological Features of Citation Networks 239

Citation networks are directed graphs, and typical measurements used for undirected 240

networks must be adapted. Directions are naturally defined, since the arrows on the 241

arcs of the graph point from citing to cited articles. In good approximation, paper 242
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Fig. 7.3 Universality of citation distributions. Each curve refers to papers published in a given
year in journals belonging to the same discipline. The disciplines are those identified by ISI Web
of Science. The score on the x-axis is the ratio of the number of cites c of a paper by the average
number of cites c0 collected by all papers in that discipline. From Radicchi et al. (2008)

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

citation networks are also acyclic graphs. The lack of cycles is due to the natural 243

order underlying the network: papers are chronologically sorted, and citations only 244

go backward in time. However, this feature is not generally present in citation 245

networks, as, for example, in citation graphs between scientists and journals. 246

Moreover, though in rare cases, paper citation networks are not strictly acyclic since 247

special issues of journals often contain articles citing each other. 248

Triangles (important for computing local correlation properties like the clustering 249

coefficient (Watts and Strogatz 1998)) can be still observed, but only of the 250

type i ! j , i ! l , and j ! l . These local structures abound in scientific citation 251

networks (Chen et al. 2007; Wu and Holme 2009): generally speaking, in 50% of the 252

cases the presence of the citations i ! j and j ! l also implies the existence of the 253

arc i ! l . This means that there is a general tendency to copy the references of cited 254

papers. An interesting consequence of this mechanism is the spreading of errors 255

in referenced papers (Simkin and Roychowdhury 2005), due to the fact that often 256

citations are copied from other papers without paying attention to their correctness. 257

Another general difference with respect to undirected networks is the presence in 258

citation graphs of “sinks”: i.e., papers that do not cite any article and have therefore 259

zero out-degree. The presence of sinks is generally due to the incompleteness of 260

the datasets; the oldest papers indeed cite other articles, but those cited articles are 261

not included in the analysis as they are even older than the citing article. Similarity 262

indexes and distances can be formulated despite this. In Bommarito et al. (2010b) for 263

example, the distance between two nodes is quantified in terms of common ancestors 264

(sinks). The degree of similarity can be used for classification purposes through the 265

application of data clustering algorithms. 266
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7.3.3 Community Structure of Citation Networks 267

Real networks typically display an internal organization of clusters (communities). 268

Communities are intuitively defined as sets of vertices characterized by a density of 269

internal connections higher than the density of links between vertices of different 270

communities. The identification of communities in complex networks is a non- 271

trivial problem, originally considered in social science (Scott 2000) and later 272

analyzed in theoretical computer science in the context of the data clustering 273

problem (Jain et al. 1999). Recently, concepts and tools typical of statistical physics 274

have played a fundamental role for the detection of topological communities in 275

complex networks (Fortunato 2010). 276

Citation networks represent a difficult challenge for community detection. Since 277

they are directed (sometimes weighted) graphs with an internal natural ordering 278

Fig. 7.4 Community structure of a network of scientific journals. Communities, indicated by
the circles, were detected via Infomap, an algorithm based on the study of diffusion flows in the
network. Each circle is named after the discipline of the journals grouped in the corresponding
community. The thickness of the arcs is proportional to the size of the citation flows between
disciplines. From Rosvall and Bergstrom (2008)th
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(publication time), standard tools of community detection, generally developed for 279

undirected and unweighted graphs, require modification, and in most cases this is 280

not possible. Fortunately, some new techniques for community detection have been 281

developed and applied for the identification of clusters in citation networks. 282

One interesting approach is the one proposed by Rosvall and Bergstrom (2008). 283

Using an information-theoretic framework, based on coding of diffusion processes 284

on graphs, the authors were able to determine the community structure in the citation 285

network between the scientific journals indexed by Thompson Scientific, identifying 286

the main divisions of journals in scientific disciplines (Fig. 7.4). A different kind 287

of analysis is the one recently performed by Chen and Redner (2010). The authors 288

studied the community structure of the citation network between papers published in 289

the collection of Physical Review by means of maximization of the directed version 290

of the modularity function (Leicht and Newman 2008). The study by Chen and 291

Redner leads to the observation of the surprising presence of strong connections 292

between fields of physics that are prima facie very different with respect to research 293

topic or that are well-separated in time (Fig. 7.5). Other interesting approaches are 294

those proposed for the study of the community structure of the legal citation network 295

of the Supreme Court of the United States (Leicht et al. 2007; Bommarito et al. 296

2010a). In Leicht et al. (2007), an expectation-maximization algorithm is used for 297

monitoring the evolution of communities. In Bommarito et al. (2010a), communities 298

are found through different detection algorithms and their stability along time is 299

controlled. 300

Fig. 7.5 Time evolution of the community structure of the network of citations between papers
published in journals of the American Physical Society (APS). Time is divided into nine decades,
from 1927 until 2006. In each decade, the most cited papers were selected (about 3;000). The
communities are classified based on the APS journal where the largest relative fraction of papers in
the community were published (indicated by the symbols). While links between different decades
usually involve consecutive periods, there are five links connecting well-separated scientific ages
(thick edges in the figure). From Chen and Redner (2010)th

is
fig

ur
e

w
ill

be
pr

in
te

d
in

b/
w



UNCORRECTED
PROOF

244 Filippo Radicchi, Santo Fortunato, and Alessandro Vespignani

7.4 Modeling Citation Networks 301

7.4.1 Dynamical Models 302

Networks of citations between papers are growing systems with complex topolog- 303

ical features: the rate at which new papers are added (published) to the network 304

is almost exponential, while the number of references per paper (out-degree) and 305

the number of citations received (in-degree) are broadly distributed. One of the 306

most surprising features of the growth of citation networks, discovered already 307

by de Solla Price (Price 1976), is related to the mechanism ruling the assignment 308

of citations: the probability that a paper gets cited is proportional to the number 309

of citations it already has received. This mechanism is the so-called “cumulative 310

advantage,” based on which the “rich get richer,” already developed by Yule (1925) 311

and Simon (1957) in different contexts. The criterion, now widely referred to 312

as “preferential attachment,” was recently made popular by Barabási and Albert 313

(1999), who proposed it as a general criterion for the emergence of heterogeneous 314

connectivity patterns in networks generated for the description of systems belonging 315

to different scientific domains. 316

The model by Price (1976) anticipated the modern models of network growth. 317

It is very simple: one node (paper) is introduced (published) at each stage of 318

the growth carrying new connections (citations). The average number of citations 319

(mean degree) is m. The rate at which older nodes receive incoming connections 320

is assumed to be linearly proportional to the number of arcs already incident on 321

them and can be simply indicated by ˘
�
kin
� � �

1 C kin
�
. When a sufficiently large 322

number of papers has been published, the probability that an article has received kin
323

citations becomes stable and, in the limit of large in-degrees, equals 324

P
�
kin
� � �

kin
��2�1=m

; (7.2)

which means a power law (or “scale free”) distribution with exponent 2C1=m. The 325

exponent of the distribution 
 depends on the mean degree m and can therefore be 326

tuned rather arbitrarily. 327

The Barabási–Albert model (Barabási and Albert 1999), in its standard version, 328

considers the total degree, not the in-degree, and yields a power law degree 329

distribution with 
 D 3. Its extension to the directed case is essentially equivalent 330

to the Price model: the attachment rate is ˘
�
kin
� � �

A C kin
�
, where A > 0 is a 331

parameter that can be tuned (Krapivsky et al. 2000; Dorogovtsev et al. 2000b). In 332

this case, one has 
 D 2 C A=m, where m indicates the number of new citations 333

introduced by each new paper. The exponent 
 D 3 is recovered by setting A D m. 334

The preferential attachment model and its subsequent generalizations not only can 335

predict that the tail of the probability distribution for citations follows a power law, 336

but also that the tail will be predominantly composed of the earliest published 337

papers. This effect, supported by empirical evidence and nicely denominated as 338
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“first-mover advantage” (Newman 2009), reveals that in order to be well cited, it 339

is often more convenient to write one of the first papers in a particular topic than the 340

best article in that area. 341

However, the predominant weakness of the preferential attachment model and 342

its variants is the sensitivity to the assumption that the probability of being cited 343

is simply proportional to the number of citations previously collected. One might 344

consider the general ansatz ˘
�
kin
� � �

kin
�ˇ

for the attachment probability, with a 345

generic ˇ. The scale-free behavior of P
�
kin
�

is observed only for ˇ D 1: for ˇ < 1, 346

the distribution of citations turns out to be a stretched exponential, and for ˇ > 1, 347

a condensation of citations is observed and few papers are cited by nearly all other 348

articles (Krapivsky et al. 2000; Dorogovtsev et al. 2000b). 349

The preferential attachment hypothesis has undergone empirical validation. 350

Jeong et al. (2003) considered papers published in Physical Review Letters in 351

1988 and all citing articles published later. They divided the time axis into several 352

bins and tested whether the number of citations received up to a certain time 353

was influencing the number of citations received later (Fig. 7.6). They found that 354

papers are cited with a probability that is nearly a linear function of the number 355

of already-received citations, ˘
�
kin
� � �

kin
�
. A similar result was also observed 356

Fig. 7.6 Empirical verification of the validity of the preferential attachment mechanism for

citation networks. The cumulative attachment probability �.k in/ D R kin

0 ˘
�
k in
�

should scale as
.k in/˛C1 if the original attachment probability ˘

�
k in
�

scales like .k in/˛ (and vice versa). The
cumulative probability �.k in/ is more suitable than ˘

�
k in
�

for the empirical analysis because the
integral considerably reduces the fluctuations. The two empirical curves correspond to citations
received in 1991 and 1995, respectively, by papers published in Physical Review Letters in 1988. In
both cases �.k in/ � .k in/2 , so ˛ � 1, as in linear preferential attachment. From Jeong et al. (2003)
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by Redner (2005) by analyzing the whole dataset of publications in journals of the 357

American Physical Society. Therefore, a linear attachment probability seems to be 358

a typical characteristic of the evolution of citation networks. 359

An important effect not included in the preferential attachment mechanism is 360

the fact that the probability of receiving citations is time dependent. In the Price 361

model, papers continue to acquire citations independently of their age, while it is 362

reasonable to think and has been empirically observed (Hajra and Sen 2004a,b, 363

2005; Wang et al. 2008) that the probability for an article to be cited decreases 364

as the age of the same article increases. Some recent papers about growing network 365

models include the aging of nodes as a key feature (Hajra and Sen 2005; Wang et al. 366

2008; Dorogovtsev and Mendes 2000a, 2001; Zhu et al. 2003). The probability 367

that a paper receives a citation from a new article can be written as ˘
�
kin; t

�
, 368

with explicit dependence not only on the number of citations kin already received 369

but also on the publication time t . For simplicity, the two effects are generally 370

considered independent of each other, and the rate at which papers receive citations 371

becomes separable ˘
�
kin; t

� � K
�
kin
� � f .t/. Various models have been studied 372

by assuming different functional forms for K
�
kin
�

and f .t/. In Dorogovtsev and 373

Mendes (2000a) for example, K
�
kin
� D kin and f .t/ D t˛ . When ˛ < 0, the 374

aging effect competes with the preferential attachment mechanism, while for ˛ > 0, 375

older nodes are more favored and the age dependence enhances the “rich get richer” 376

effect. The distribution of the number of citations received continues to be a power 377

law for values of ˛ � �1. In Zhu et al. (2003), K
�
kin
� D kin and f .t/ D e˛t . 378

The model produces power law distributions for the citations only for ˛ � 0. 379

A more complicated situation is studied in Dorogovtsev and Mendes (2001), where 380

K
�
kin
� D �

kin
�ˇ

and f .t/ D t˛ . The limiting distributions for the number of 381

citations are studied in the ˛–ˇ plane: scale-free distributions arise only along the 382

line ˇ D 1; for ˇ > 1, condensation phenomena happen and a few nodes acquire 383

almost all the citations; for ˇ < 1 and ˛ � �1, the distribution is a stretched 384

exponential. 385

7.4.2 Static Models 386

Citation networks are directed and, in good approximation, acyclic graphs. The 387

simultaneous presence of directions and a lack of cycles requires the introduction of 388

specific models able to capture the topological properties of citation networks. 389

These two ingredients are the basis of the theoretical formulation developed by 390

Karrer and Newman (2009a,b), where the statistical properties of static acyclic and 391

directed graphs are analyzed in detail. Suppose we have a network composed of 392

N articles (nodes) and that the indices of the nodes are chronologically sorted 393

according to their publication date: j < i means that paper j has been published 394

before paper i . Imagine that both the in- and out-degree sequences of the network are 395

given. This means that the number kin
i of papers citing the i th article as well as the 396
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number kout
i of publications cited by paper i are completely specified. The study by 397

Karrer and Newman focuses on the statistical properties of the ensemble of networks 398

that can be constructed by preserving the constraint that all incoming and outgoing 399

stubs are paired, with the restriction that only connections of the type i ! j 400

with i > j are allowed. This static model is very similar to the one represented 401

by the popular configurational model (Molloy and Reed 1998). A natural variable, 402

fundamental for the analytical treatment of the model by Karrer and Newman, is 403


i D
i�1X
j D1

kin
j �

iX
j D1

kout
j ; (7.3)

which represents the number of incoming stubs “below” node i still available 404

for connections with outgoing stubs exiting from vertices “above” i . In other words, 405


i counts the number of edges that flow “around” the node i . A necessary and 406

sufficient condition for the construction of the model, assuming that all incoming 407

and outgoing stubs are paired in a way that preserves ordering, is that 
i � 0, 408

8 1 < i < N , while 
1 D 
N D 0 arise as the natural boundary conditions of 409

the problem. The expected number of connections between nodes i and j can be 410

estimated to be 411

Pij D kin
i kout

j

Qj �1

lDiC1 
lQj

lDiC1

�

l C kout

l

� ; (7.4)

for any pair i < j , while Pij D 0 otherwise. When the network size grows, Pij 412

becomes small and can be considered equal to the probability of observing a citation 413

from j to i . 414

The model by Karrer and Newman can reproduce some non-trivial properties of 415

real citation networks (Fig. 7.7) and may provide a useful null model for testing 416

topological properties of real citation networks including correlations and modular 417

structures. The model by Karrer and Newman is not able to reproduce a very 418

important topological feature of citation networks, represented by a high occurrence 419

of local triangular structures (Milo et al. 2002). A simple modification of the rules 420

governing the way in which connections are introduced in the network is able to 421

correct this problem. The model by Wu and Holme (2009) is very similar in spirit 422

to the one by Karrer and Newman, but adds two new fundamental ingredients. 423

First, the probability that paper i cites paper j is no longer dependent only on 424

topological and time constraints, but is inversely proportional to the age difference 425

between the two papers (aging effect). Second, once the connection between i 426

and j has been established, there is a finite probability that i copies citations 427

from j and therefore creates triangles. The simultaneous presence of these very 428

intuitive and natural ingredients makes the model more representative of real citation 429

networks. 430
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Fig. 7.7 Comparison of the static model by Karrer and Newman with empirical data. One focuses
on the function fij , which is proportional to the connection probability of vertices i and j . The
dataset is a citation network of papers on high-energy theory posted on the online eprint archive
ArXiv16 between 1992 and 2003. Papers are ordered from the oldest to the newest. The time of
paper i is i=N , and N is the total number of papers. The left panel deals with citations from papers
at time t > 0:1, the right panel with citations from papers at time t < 0:9. From Karrer and
Newman (2009a)th
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7.5 Dynamics on Citation Networks 431

Traditional citation metrics, which are used to assess the relevance or popularity of 432

papers, scientists, and journals, rely only on local properties of citation networks. 433

These measures are based on the number of incoming connections of a paper. 434

Simple citation counts quantify the popularity or success of a paper. The number 435

of citations acquired by papers are then transferred to journals and scientists for 436

judgments on their quality. The relevance of journals is quantified by the number of 437

citations received by articles published in them, while the scientific reputation of 438

scientists is measured by the number of citations their articles have received. Even 439

very popular bibliometric indicators, such as the impact factor (Garfield 1955) or 440

the h-index (Hirsch 2005), are based only on purely local properties of citation 441

networks. 442

Since complete citation networks are currently at our disposal, we can use their 443

entire structure for the formulation of more sophisticated bibliometric measures. 444

Citation networks basically contain information about the dissemination of notions 445

and theories in science, so they may therefore be used as the underlying structures 446

of diffusion processes, where the diffusing particles are nothing more than scientific 447

ideas. The process can be formulated in a straightforward manner where units 448

of scientific credit, carried by papers, diffuse over the network. The generic 449

paper i distributes its credit homogeneously among its kout
i outgoing connections, 450



UNCORRECTED
PROOF

7 Citation Networks 249

corresponding to its cited articles. The cited articles will increment their scientific 451

credit by a factor proportional to 1=kout
i , but then each of these papers will 452

redistribute its total credit to all cited articles, and so on. The entire diffusion process 453

can be mathematically described at the local level, by the following equation 454

Pi D q

N
C .1 � q/

X
j

aj i

kout
j

Pj ; (7.5)

valid for all i D 1; : : : ; N , with N total number of papers in the network. Pi stands 455

for the fraction of scientific credit present on the node i . The increment of Pi is 456

due to two different contributions, one having weight q and the other 1 � q. The 457

first contribution is global and does not depend on the network structure; each paper 458

receives an equal fraction, 1=N , of scientific credit from the system. Even if by 459

an infinitesimal amount, each and every paper contributes to the scientific advance 460

of a field and is entitled to an infinitesimal (1=N ) scientific credit. The second 461

contribution is represented by the flux of credit arriving from the citing papers 462

(the matrix element aj i is one only if j is citing i , while it is zero otherwise). 463

Under general conditions, there is a unique solution for (7.5). The solution can be 464

obtained by starting from suitable initial conditions and then iterating the set of 465

the N equations until each Pi converges to a stable value within an a priori fixed 466

precision. The solution depends on the model parameter q, ranging in the interval 467

Œ0; 1� and generally called the “damping” or “teleportation” factor. The quantity Pi 468

can be interpreted as a popularity score to be attributed to the paper i in the network. 469

The method described so far is the same as PageRank (Brin and Page 1998), 470

currently used by the Web search engine Google in order to quantify the popularity 471

of web pages. The score assigned to papers is on average linearly proportional to the 472

number of citations received (Fortunato et al. 2008), but large deviations from the 473

average are possible. Papers with high citation counts may have low ranks, while 474

articles with few citations may have high ones. Since the entirety of information of 475

the citation network is used, it is not important merely to be cited many times; the 476

source of citations becomes much more relevant. A single citation from a paper with 477

a high score can be much more important than many citations received by papers 478

with low scores. 479

In the following, we list the main applications of PageRank’s style algorithms to 480

citation networks. It should be stressed that there are not fundamental differences 481

between the various methods since all of them are based on a diffusion process, 482

i.e., (7.5). The differences regard mainly the type of elements ranked according to 483

the diffusion algorithm and, therefore, the application of PageRank algorithm to 484

different types of citation networks. 485

7.5.1 Ranking of Papers 486

Chen et al. (2007) applied the former idea to the citation network between papers 487

published in journals from the collection of Physical Review from 1893 to 2003. 488
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Using the score obtained from (7.5) with damping factor q D 0:5, they were able to 489

identify “gems” among physics papers, not visible from the mere citation count. 490

A more sophisticated method, based on the same bibliographic dataset, led 491

Walker et al. (2007) to formulate the so-called “CiteRank” score.17 In CiteRank, 492

the approach based on (7.5) is enriched. Credits still diffuse among the nodes of 493

the citation network, but the diffusion probability has an exponential suppression 494

in time, which prevents credits originating in recent papers from diffusing to much 495

older papers. 496

7.5.2 Ranking of Journals 497

The diffusion approach is also the key feature of the so-called “Eigenfactor” score,18
498

based on which the influence of scientific journals is assessed. In the original 499

formulation of Eigenfactor (Bergstrom 2007; Bergstrom et al. 2008), the authors 500

considered the dataset of Journal Citation Reports and constructed the network 501

of citations between all journals indexed by Thompson Scientific. The Eigenfactor 502

score of a journal is an estimation of the percentage of time that library users spend 503

on that journal. The diffusion process of (7.5) here is interpreted as a simple model 504

of bibliographic search, in which readers follow chains of citations as they move 505

from journal to journal. The Eigenfactor score has started to be widely accepted in 506

the scientific community and is at the moment one of the most concrete alternatives 507

to the impact factor. 508

Analogous to the Eigenfactor, the Science Journal Ranking (SJR) indica- 509

tor (González-Pereira et al. 2009) represents a bibliometric measure, based on a 510

diffusion algorithm, for the quantification of the prestige of scientific journals. The 511

main difference with respect to the Eigenfactor is the source of bibliographic data, 512

provided in this case by the database Scopus of Elsevier. The SJR indicator is 513

part of the SCImago project, which uses similar bibliometric measures also for the 514

scientific ranking of countries.19
515

7.5.3 Ranking of Scientists 516

A recent approach, still based on a diffusion process, is the Science Author Rank 517

Algorithm (SARA) proposed by Radicchi et al. (2009). The focus of SARA is 518

to assess the impact of scientists and monitor their evolution over time. Given a 519

weighted network of citations between scientists, the score assigned to each author i 520

17Citerank, URL: http://www.cmth.bnl.gov/�maslov/citerank/index.php.
18URL: http://www.eigenfactor.org.
19SCImago, URL: http://www.scimagojr.com.

http://www.cmth.bnl.gov/~maslov/citerank/index.php
http://www.eigenfactor.org
http://www.scimagojr.com
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is calculated by iterating the set of equations 521

Pi D .1 � q/
X

j

wj i

sout
j

Pj C qzi C .1 � q/
X

j

Pj ı
�
sout

j

�
: (7.6)

Equation (7.6) represents the analogue of (7.5) in the case of weighted networks. 522

The first term of the r.h.s. represents the diffusion contribution in the weighted 523

network. Here, the unweighted matrix element aj i is replaced by its weighted 524

version wj i , and the number of outgoing connections kout
j is replaced by the out- 525

strength sout
j D P

i wout
j i . Instead of being redistributed homogeneously, the scientific 526

credits here are drawn back to scientists with probability (zi ) proportional to their 527

scientific productivity (i.e., number of papers published). The last term of the r.h.s. 528

corrects the boundary effects by redistributing the credits of scientists with no 529

outgoing connections to the rest of the network [ı .x/ D 1 if x D 0 and ı .x/ D 0 530

for any x ¤ 0]. 531

The evolution of SARA scores can be monitored by constructing time-dependent 532

networks, where only papers published in a certain time range are used for the 533

construction of the weighted network of citations between scientists. In order to 534

suppress time dependencies in the bare numbers Pi , the rank is constructed on the 535

relative quantity Ri D 1=N
P

j �
�
Pj � Pi

�
, which quantifies the probability of 536

finding another author with a SARA rank higher than Pi [� .x/ D 1 if x > 0 and 537

� .x/ D 0 for x < 0]. 538

Radicchi et al. consider the practical application of their ranking procedure in the 539

case of papers published in journals of the American Physical Society between 1893 540

and 2006.20 The authors quantitatively tested the performances of SARA against 541

those of more traditional ranking schemes, such as citation counts. The test was 542

performed on the list of winners of the major prizes in Physics: Nobel Prize, Wolf 543

Prize, Boltzmann Medal, Planck Medal, and the Dirac Medal. By comparing the 544

ranks of these famous scientists based on their SARA scores with those obtained 545

with other measures, the SARA score appears to have a higher predictive value than 546

standard bibliometric indicators like (e.g., citation counts). 547

7.6 Summary 548

The massive citation datasets currently available and the need to assess quantita- 549

tively the scientific performance of scholars, departments, and universities make 550

the study of citation networks more pressing and germane than ever (even though 551

the assumption that citations represent a proxy for the quantification of scientific 552

relevance may be questionable (Adler et al. 2009)). Citations may occur for many 553

different reasons (Bornmann and Daniel 2008), and papers may stop to receive 554

20Phys Author Rank Algorithm, URL: http://physauthorsrank.org.

http://physauthorsrank.org
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citations because they become obsolete or textbook material. These factors clearly 555

play important roles and impact the structure and dynamics of citation networks. 556

Since the seminal paper by Price (1965), this field has witnessed an explosive 557

growth, especially in the last decade, and a number of features are now quite well 558

understood. 559

The distribution of the number of citations received by a paper is broad, although 560

there is still much debate about the actual shape of the distribution. In fact, the shape 561

of the distribution is probably an ill-defined issue, as the distribution may depend 562

on the specific dataset at hand, and the way data are put together. For instance, 563

distributions may be different if one considers papers of the same age or spanning 564

a long period of time, in which case productivity trends may play a role in the final 565

distribution of citations. Furthermore, one has to distinguish the citation habits of 566

different scientific communities. Scholars working on citation networks are now 567

well aware of these issues and important advances are to be expected in the next 568

few years. 569

The main models for the evolution of citation networks, based on the cumulative 570

advantage rule originally proposed by Price (1976), and cast in a broader perspective 571

by Barabási and Albert (1999), seem to capture the basic features of citation 572

networks. Still, refined models are needed to reproduce real networks in more 573

detail. The attractivity of a paper does not depend only on the number of citations 574

collected by the paper, but also on the age of the paper. Moreover, models based on 575

cumulative advantage usually underestimate the number of (undirected) cycles that 576

one observes in citation networks, as well as the degree correlations between the 577

citing paper and the cited paper. Careful empirical analyses may disclose the origin 578

of such features and how they can be implemented in realistic network models. 579

Citation networks could also be used to classify papers by topic and subtopic, 580

based on their community structure. The latest developments of community detec- 581

tion in networks may in the near future enable one to analyze even the huge networks 582

that can be constructed with the largest citation databases (e.g., Web of Science). 583

One may reveal not only the communities, but also their hierarchical organizations, 584

from the most focused fields to the broadest categories. The resulting classification 585

necessarily will be dynamical, given the rapidly evolving structure of the underlying 586

networks. Processes like the birth, growth, and death of topics may be carefully 587

investigated and modeled. 588

The sheer number of citations is quite poor as a quantitative indicator of per- 589

formance. One can do much better by exploiting the full structure of the citation 590

network. Prestige measures based on dynamical processes taking place on citation 591

networks, like PageRank (Brin and Page 1998), are promising alternatives and 592

can still be fast and efficiently computed. In the future, one should consider 593

processes that take into account the specific nature of citation networks (e.g., their 594

approximately acyclic structure and the effect of papers’ age). 595

In general, we expect that the main feature characterizing the future investiga- 596

tions of citation networks will be the time dimension. The analyses of empirical 597

datasets will focus more and more on the evolution of networks, and, consequently, 598
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it will be possible to perform comparisons of dynamic network models with data to 599

a level of detail yet unreached. 600

Key points

1. Statistical laws governing citation distributions; dataset dependence and
parametrization.

2. Principle of cumulative advantage, characterization of the network struc-
ture.

3. Definition of algorithms for the classification of papers into topics and
subtopics based on the community structure of citation networks.

4. Definition of PageRank-like algorithm to achieve system-level ranking
measures for papers/authors and topics.

5. Dynamics and time evolution singled out as a crucial feature to achieve
understanding and predictive power on knowledge diffusion.
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Chapter 8 1

Science Policy and the Challenges 2

for Modeling Science 3

Peter van den Besselaar, Katy Börner, and Andrea Scharnhorst 4

8.1 Challenges and Opportunities 5

This book seeks to advance the modeling science to improve our collective 6

understanding of the functioning of science systems and of the dynamics of science. 7

It also attempts to make the modeling of science relevant from the perspective of 8

societal use – an issue that is increasingly important in scientificAQ1 research. 9

In the last decade, we have witnessed a renewed interest among science policy- 10

makers in the science of science and of science policy (Executive Office 2008). 11

In several countries, new programs and institutes have been established to study 12

the dynamics of science with an explicit application orientation.1 The results of 13

these research activities are expected to inform science policy-makers in different 14

positions: within national government, within research councils and other agencies 15

1For example, the center for Science System Assessment in the Netherlands, the Institute for
Research Information and Quality Assurance (IFQ) in Germany, the NSF Science of Science and
Innovation Policy program in the US, the former Prime Network of Excellence in the EU.
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active in research agenda setting and research funding, and within universities and 16

public research institutes. 17

What type of knowledge would science policy-makers need, and what is the role 18

of modeling in this context? Three broad classes of questions can be distinguished. 19

Firstly, science policy has a need for the dynamic monitoring and forecasting of 20

scientific developments and technological breakthroughs. They are interested in 21

recognizing promising developments in existing and new research fields early in 22

support of agenda setting and investment decisions. Secondly, there is a need for 23

better understanding the institutional and organizational conditions for a healthy and 24

high-performing research system. How should the research system be organized to 25

realize the heterogeneous goals that come with research? What funding arrange- 26

ments function effectively under which conditions? How should research evaluation 27

be organized in order to improve performance of the research system, organizations, 28

and researchers? Thirdly, scientific knowledge is increasingly crucial for innovation 29

and societal problem solving. This, together with the rising investments in research, 30

increases the pressure on researchers, research organizations, and research funders 31

to show that their activities do have a societal impact. How should the interaction 32

between knowledge producers and (potential) knowledge users be organized in 33

order to maximize societal impact? What incentives may be implemented to 34

improve these interactions, without destroying the independence and autonomy of 35

science that are crucial for the long-term growth of knowledge? And, what metrics 36

could be developed to measure and show this impact? 37

These three domains of science policy problems (forecasting the dynamics of 38

science, accelerating research, and improving and measuring the societal impact of 39

research) can be translated into a broad research agenda for the science of science. 40

To be truly useful for informing science policy, such a research agenda should 41

not only be analytically divided into a large set of research questions focusing 42

on specific issues. There is also a strong quest for synthesis, for integrating the 43

knowledge obtained about the various different relevant mechanisms. From a policy 44

perspective, one is not primarily interested in the individual mechanisms, or in the 45

relations between small sets of variables, but in the working of the research system 46

as a whole with its many heterogeneous relations between many heterogeneous 47

agents. This asks for mixed-method, multi-level models of the science systems 48

(Börner et al. 2010) that help to understand the relevant processes, dynamics, and 49

complex interactions and their outcomes. Science policy needs a synthetic approach 50

next to analytical approaches to study separate dimensions of science, science 51

dynamics, and the science system. 52

Such a systems approach to science and science policy studies is becoming 53

possible because of three developments: 54

1. Firstly, new methodologies of modeling the dynamics of networks of scientific 55

information have been developed. Detailed models of science are becoming 56

available that help to understand the relevant processes, dynamics, and complex 57

interactions and their outcomes. 58
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2. Secondly, testing complex models requires large amounts of high-quality and 59

high-coverage data. Fortunately, new types of digital data are becoming available 60

for studying the structure, organization, and development of science. Among 61

them are survey datasets, and also new bibliographic and other databases, leading 62

to a growing system of “linked open data” and semantic web technologies 63

that enable the integration and use of these data for research (Berners-Lee and 64

Fischetti 1999; Berners-Lee et al. 2001; Heath and Bizer 2011). Many datasets 65

are crowd-sources by thousands using collaborative tools such as CiteULike2 or 66

Mendeley,3 but also more generally the WWW and a large variety of existing 67

data sources. 68

3. Finally, complex models and large-scale data analysis require new methodologies 69

and tools for visualizing and communicating results. Major progress has been 70

made over the last decade (Börner 2010), among others tools for data analysis 71

and visualization available in researcher networking support sites such as VIVO4
72

and Collexis,5 as well as in Scholarometer6 and author-mapping tools.7 73

8.2 Contributions of this Book 74

This book provides a review of major methodologies of modeling the dynamics 75

of networks of scientific information, many of which seem to have promising 76

applications in science and science policy studies. The chapters in this book review 77

major models, but not all modeling branches and possible approaches have been 78

covered. Although the team of editors and authors underwent extensive efforts to 79

link the chapters to each other and to use re-occurring elements – such as listings 80

of covered models and their main contributions in the beginning of the chapter and 81

take-away boxes at the end – each chapter comes with its own style and language 82

expressing the different epistemic cultures and traditions in which each specific 83

author feels at home. A variety of knowledge- domain-specific vocabulary and 84

mathematical languages can be found. 85

This points to an open problem that this first review of major models of science 86

does not manage to solve: the necessity of translation and mutual mapping. The 87

mathematical translation of the different models is as challenging as their conceptual 88

translation and integration. Possible dimensions along which the models presented 89

in the book can be related to each other comprise: 90

2URL: http://www.citeulike.org.
3URL: http://www.mendeley.com.
4URL: http://www.vivoweb.org.
5URL: http://www.collexis.com.
6URL: http://scholarometer.indiana.edu.
7URL: http://www.authormapper.com.

http://www.citeulike.org
http://www.mendeley.com
http://www.vivoweb.org
http://www.collexis.com
http://scholarometer.indiana.edu
http://www.authormapper.com
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• Units/parts of the science system that a model aims to reproduce. 91

• Questions that the model aims to answer. 92

• Mathematical approaches used. 93

• Visualizations employed to communicate results. 94

• Insights gained. 95

The comparison of different models for means of validation and their synergistic 96

combination to increase the quality and coverage of models for capturing the science 97

system require future research. 98

8.3 Future Work 99

The various models of science and science dynamics not only use different 100

mathematical approaches to model science, but they also capture different aspects of 101

science and its dynamics. Therefore, integrating models is not only a mathematical 102

task, but is also at the same time an effort to define and combine the different 103

conceptual and theoretical mechanisms specified by individual models. 104

Most efforts to model aspects of science focus on modeling knowledge spaces 105

and information spaces, and their dynamics – missing are the social and organiza- 106

tional aspects of knowledge production (van den Besselaar 2011). Social behavior 107

of agents in the models is often (but not always) very stylized, and does not represent 108

the richness of aims, interests, strategies, resource distributions, and rules that 109

characterize science. As argued above, from a science policy perspective one is not 110

only interested in modeling and mapping scientific information and the dynamics 111

of science. A second important and still open problem this book only addresses 112

marginally is modeling (i) those social and organizational factors influencing 113

knowledge production and knowledge dynamics, and (ii) the interactions between 114

knowledge growth and knowledge use, including the social characteristics of these 115

links between researchers and research institutions on the one hand, and the users 116

of knowledge on the other. 117

This leads to a second challenge for future science modeling research. There 118

is a need not only for integrating the existing models that focus on knowledge 119

dynamics and co-author patterns, but also for capturing the different processes in the 120

science system. It is useful to distinguish three dimensions of the science system: 121

researching, codifying, and organizing. Researching refers to the everyday practice 122

of doing research, of collaborating and communicating. Codifying refers to the 123

output of research, to the publication process where research results are integrated 124

into the existing body of knowledge. Finally, organizing refers to all processes for 125

creating the conditions for research at various levels, including but not restricted to 126

science policy. 127

Most existing models focus on the codifying dimension of science – the 128

communication processes in the formal (journal) literature. Thus, the focus is on the 129

output side, neglecting the underlying processes. Knowledge dynamics is modeled, 130
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and generally this only takes into account the underlying social processes of research 131

collaboration – operationalized as co-authoring. The processes of researching, 132

however, are only marginally covered (Gilbert 1997; Payette 2011). Here, different 133

kinds of researchers’ behavior become relevant, such as collaboration in informal 134

and more formal (projects) ways, and informal communication in a multitude of 135

forms, such as face-to-face and a variety of social media (research blogs, email 136

lists, etc.). Data about this dimension of researchers’ behavior becomes increasingly 137

accessible, as much behavior leaves digital traces in the used social media. This 138

refers to the second of the three developments mentioned in the first section: new 139

types of data are becoming available for the science of science. 140

Models that aim to capture the research process might help answer questions 141

such as “How to create productive teams?” or “Where do innovations come from?” 142

and not only where they are located in the formal communication spaces of 143

journals and papers. They will make it possible to study the interaction between 144

research communication and collaboration on the one hand and the formal scholarly 145

communication and publication on the other. If successful, this line of modeling 146

might be able to relate performance indicators, such as counts of publications 147

and citations, Crown-indicators and H-indices, to the underlying research process 148

Wallace (2009). And, an improved understanding of research processes may help 149

to develop new indicators, which are not necessarily based on publications and 150

citations Alt-metrics (Mendeley Group).8 151

The next challenge is to include processes of organizing research (in a broad 152

sense) in modeling efforts: the different modalities of research funding, agenda 153

setting, research evaluation, and selecting researchers and shaping academic careers. 154

Differences within and between science systems impact the behavior of individual 155

researchers and result in vastly different outcomes that have a strong impact on the 156

research profiles and strengths of different organizations and countries. 157

Thirdly, future science models should study the interactions between researchers 158

and their organizations on the one hand, and (potential) users of knowledge on 159

the other, in order to better understand the processes of uptake and societal use 160

of scholarly knowledge. They should attempt to capture how knowledge flows 161

through complex networks of researchers and knowledge users, and what attributes, 162

behaviors, incentives, and organizational forms have what effects on these flows. 163

8.4 Conclusions 164

In this outlook, we sketched briefly a broad agenda for the future development of 165

models of science, an agenda that combines scholarly and science policy relevance. 166

Traditionally, science models have aimed to answer isolated questions about specific 167

aspects of the science system. In the future there is a need for a more synthetic 168

8URL: http://www.mendeley.com/groups/586171/alt-metrics.

http://www.mendeley.com/groups/586171/alt-metrics
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approach that integrates different models to capture multiple interacting levels of the 169

science system. The research approach has to be multi-theoretical and multi-level – 170

spanning the individual decision making of researchers to the national science policy 171

decisions – to validate these models using the growing availability of (digital) data 172

about the science system, and use increasingly sophisticated methods and tools for 173

visualizing results. 174

Last but not least, we hope that the different research streams of science modeling 175

in economics, physics, social science, science of science, and other fields of science 176

will get interlinked not only along the arrow of time, through the historical roots 177

they share, but also in the current time slice in which they are located. 178
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Wallace ML, Lariviére V, Gingras Y (2009) Modeling a century of citation distributions. 203

J Informetr 3(4):296–303 (DOI: 10.1016/j.joi.2009.03.010), also available as arXiv preprint 204

arXiv:0810.1426 205

http://dx.doi.org/10.1126/scitranslmed.3001399
http://ivl.slis.indiana.edu/km/pub/2010-borner-et-al-multi-level-teamsci.pdf
http://www.whitehouse.gov/files/documents/ostp/NSTC Reports/39924_PDF Proof.pdf
http://www.socresonline.org.uk/2/2/3.html
http://dx.doi.org/10.2200/S00334ED1V01Y201102WBE001
http://dx.doi.org/10.1016/j.joi.2009.03.010
http://arxiv.org/abs/0810.1426


UNCORRECTED
PROOF

AUTHOR QUERIES

AQ1. Non-bibliographic references have been moved as text footnote. Please
check.

AQ2. Please provide page range for reference Payette (2011).
AQ3. Please update reference van den Besselaar (2011).



UNCORRECTED
PROOF

Index

Academic tribe, 73
Adaptation, 150
Adjacency matrix, 99, 198
Age, 102, 103, 223, 240, 247, 252
Agents, researchers

Typology, 145, 208
Autonomy, 132

Basic unit of modeling
Institution, 262

Basic units of modeling, 12
Countries, 75, 202, 250
Discipline, 37, 95, 199, 202, 240–242
Document, 24, 37, 71, 89, 128, 183, 234,

235, 244
Innovation, 73
Institution, 72, 204, 215
Journals, 72, 112, 161, 165, 205, 240, 242,

248, 250
Kenes, 137, 140, 150
Researcher, agent, actor, 9, 26, 69, 160,

170, 197, 208
Team, group, 43, 107, 130, 160, 204, 211

Bibliographic databases, 12, 28, 205, 233, 263
Blockmodeling, 208
Bounded rationality, 128, 133
Bruckner, Eberhard, 26, 94, 100

Cellular automata, 9, 129, 132
Citations, 28, 75, 233
CLARION, 140
Cluster, 4, 46, 128, 197, 208
Co-authorship, 9, 159, 194
Codification, 264
Cognitive labor, 128

Cohesion, 37, 210
Collaboration, 4, 40, 133, 195

Typology, 202, 236
Community structure, 147, 222, 242
Competition, vii, 71
Complex networks, 36, 78, 234
Conway, John, 132
Cumulative advantage, 44, 197, 215, 233, 252

Daley, Daryl J., 71, 89
Decision problem, 162
Degree centrality, 237
Diffusion

Knowledge, 13, 36, 70, 77
multicomponent diffusion, 106
of ideas, 50
of topics, results, 97
Technological substitution, 79

Digital revolution, 183
Distribution

Degree, 196, 238
Non-Gaussian, 112
Poisson, 212
Yule, 112, 114

Ebeling, Werner, 94
Edmonds, Bruce, 128, 142
Elites, scientific, 217
Emergence, 5, 14, 26, 60, 239
Equilibrium, 109, 160, 221

Nash, 163
Erdös, Paul, 212

Fokker–Planck equation, 103
Forecasting, 49, 83, 262

A. Scharnhorst et al. (eds.), Models of Science Dynamics, Understanding Complex 267
Systems, DOI 10.1007/978-3-642-23068-4, © Springer-Verlag Berlin Heidelberg 2012



UNCORRECTED
PROOF

268 Index

Game of life, 129
General principles, 9, 222
Genetic algorithm, 149
Gilbert, Nigel, 26, 40, 128
Globalization, 9, 104
Goffman, William, 9, 42, 71
Grim, Patrick, 128, 148
Growth

Logistic curve, 70, 78, 136
scientific, 75, 84

Heterogeneity, 9, 132, 203, 238
Hirsch index, 33, 97, 265
HistCite, 28
Historical narrative, 26
Historiography, algorithmic, 28

Innovation, xv, 49, 82, 138, 203, 262
Invisible college, 50, 152, 216

Knowledge
as human capital, 69
production, 9, 23, 204, 213
Tacit knowledge, 72
tree of knowledge, 24

Kuhn, Thomas, 26, 84, 147

Landscape
Epistemic, 144, 145, 149, 154
Fitnesslandscape, 74, 149
of knowledge, 36, 74, 102

Law, bibliometric, 8
Bradford’s law, 72, 112, 117, 216
Lotka’s law, 31, 40, 72, 113, 137, 216
Pareto’s law, 113, 115, 131
Price law, 84, 216
Zipf-Mandelbrot law, 72

Markov process, 114, 220, 221
Master equation, 26, 100
Matthew effect, 215
Membership, 130, 131, 201
Model

Broadcasting model, 79
Core-periphery, 210
Mixed information source model, 81
Translation, 263

Models
epidemic, 27
Population dynamics models, 77

Models of science, typology, 5
Descriptive, 8, 31
Deterministic model, 8, 77, 224
Dynamic model, 6, 48, 222
Multi-level model, 10, 159
Predictive, 11, 12, 31, 49
Process model, 8, 223
Static model, 211, 247
Stochastic model, 8, 77, 96, 224

Muldoon, Ryan, 128
Multidimensional scaling, 211

Naveh, Isac, 128
Neighborhood, 36, 130, 145
Network density, 207
Networks

Algorithms, 33
fully connected, 149, 187
Main path analysis, 44, 199
Multipartite, 234
of papers, 44
Scale free, 213
Scale-free, 9
Semantic, 159
Small world, 9, 148, 197, 213
Topology, 44, 196, 224

Networks, graphs, 5, 194, 233
Neumann, John von, 27, 127, 170
Newill, Vaun A., 31, 71

Open access, 161, 183

Peer review, 20

Rank, 33, 113, 116, 251
Redner, Sid, 239
Replicator dynamics, 167
Reproduction-transport equation, 110
Reputation, scientific, 6, 160, 183, 184
Research evaluation, 23, 74, 215, 262
Research front, 13, 31, 46
Resources, 11, 52, 130, 135, 216
Reward, scientific, 216
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