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Abstract This study presents a mixed model that combines different indicators to

describe and predict key structural and dynamic features of emerging research areas. Three

indicators are combined: sudden increases in the frequency of specific words; the number

and speed by which new authors are attracted to an emerging research area, and changes in

the interdisciplinarity of cited references. The mixed model is applied to four emerging

research areas: RNAi, Nano, h-Index, and Impact Factor research using papers published in

the Proceedings of the National Academy of Sciences of the United States of America
(1982–2009) and in Scientometrics (1978–2009). Results are compared in terms of

strengths and temporal dynamics. Results show that the indicators are indicative of

emerging areas and they exhibit interesting temporal correlations: new authors enter the

area first, then the interdisciplinarity of paper references increases, then word bursts occur.

All workflows are reported in a manner that supports replication and extension by others.

Keywords Burst detection � Prediction � Emerging trend � Temporal dynamics � Science

of science (Sci2) tool

Introduction and related work

The identification of emerging research trends is of key interest to diverse stakeholders.

Researchers are attracted to promising new topics. Funding agencies aim to identify
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emerging areas early to encourage their growth via interdisciplinary workshops, solicita-

tions, and funding awards. Industry monitors and exploits promising research to gain a

competitive advantage. Librarians need to create new categories and special collections to

capture emerging areas. The public at large has a general interest in understanding cutting-

edge science and its impact on daily life. While it is not recommendable to ‘‘oversell’’ or

‘‘over promise’’ new research, it is desirable to catch the attention of the media, graduate

students, and funding agencies.

Different approaches have been proposed to identify emerging research areas (Lee

2008; Takeda and Kajikawa 2009), their level of maturity (Serenko et al. 2010; Watts and

Porter 2003), and their speed of development (Van Raan 2000; Braun et al. 1997). The first

and perhaps most difficult task is the delineation of all research areas. Zitt and Basse-

coulard (2008) and Lewison (1991) studied how to define research areas. There are various

ways to define research areas such as grouping specialist journals, collecting a list of

authors, running topical queries according to the field terminology, etc. Hence, much work

on emerging areas of research has been done in hindsight—using a set of by then estab-

lished keywords, e.g., nano, neuro, or highly cited ‘‘pioneering’’ papers to run term based

or cited reference searches. Sometimes, all papers published in one or several journals are

analyzed. None of these approaches catch all work published on a topic, however, their

results can be a reasonable proxy for analysis. The method of using established words to

refine an emerging research area is taken in this study.

Science indicators have been deployed to examine the emergence or growth of scientific

fields, such as Price’s index (Price 1970), immediacy index (Garfield and Small 1989) and

currency index (Small 2006). Lucio-Arias and Leydesdorff (2007) explore the emergence of

knowledge from scientific discoveries and its disrupting effects in the structure of scientific

communication. They apply network analysis to illustrate this emergence in terms of journals,

words and citations. Work by Leydesdorff and Schank (2008) examines changes in journal

citation patterns during the emergence of a new area. Kajikawa et al. (2008) detects emerging

technologies by using citation network analysis, finding that fuel and solar cell research are

rapidly growing domains. Scharnhorst and Garfield (2010) proposed author- and text-based

approaches of historiography and field mobility to trace the influence of a specific paper of

Robert K. Merton (1968). The historiograph of the citation flows around Merton’s paper of 1968

reveals the emergence of the new field of Science and Technology Studies in the 1970s. They

show that studying a research area’s origin papers or following a scholar’s academic trajectory

are pragmatic ways to trace the spread of knowledge.

Many researchers use quantitative models to study how ideas spread within scientific

communities and how scientific fields develop over time. Goffman conducted several

studies (1966, 1971; Goffman and Harmon 1971; Goffman and Newill 1964) to mathe-

matically model the temporal development of scientific fields. He maintains that an epi-

demic model can predict the rise and fall of a particular research area. Luı́s M.

A. Bettencourt et al. (2008) analyze the temporal evolution of emerging areas within

several scientific disciplines according to numbers of authors and publications using

contagion models developed in epidemiology.

Several studies identify emerging topic trends using Kleinberg’s (2003) burst detection

algorithm. This algorithm employs a probabilistic automaton whose states correspond to

the frequencies of individual words and state transitions correspond to points in time

around which the frequency of the word changes significantly. Given a set of time stamped

text, e.g., abstracts and publication years of papers, the algorithm identifies those abstract

words that experience a sudden increase in usage frequency and outputs a list of these

words together with the begin and end of the burst and the burst strength that indicates the
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change in usage frequency. Mane and Börner (2004) applied the burst algorithm to identify

highly bursting words as indicators of future trends in a Proceedings of the National
Academy of Sciences (PNAS) dataset covering biomedical and other research in

1982–2001. Chen (2006) applied the same algorithm to identify emergent research-front

concepts in datasets retrieved via term search. Later work by Chen et al. (2009) combines

burst detection as a temporal property with betweenness centrality as a structural property

to evaluate the impact of transformative science and knowledge diffusion.

‘‘Mixed indicators model’’ section of this paper introduces a mixed model approach to

the identification of emerging research areas. ‘‘Data acquisition and preparation’’ section

introduces two datasets used to exemplify and validate the model. ‘‘Model application to

h-Index, impact factor for Scientometrics and RNAi, Nano* for PNAS’’ section applies the

mixed model approach to four research areas and the interdisciplinarity indicator to the two

datasets from section ‘‘Data acquisition and preparation’’ and discusses the results. ‘‘Model

validation’’ section compares and validates the different indicators. ‘‘Discussion and out-

look’’ section concludes this paper with a general discussion and an outlook to future work.

Mixed indicators model

This paper introduces, applies, and validates a combination of partial indicators to identify

emerging research areas. Specifically, the following three hypotheses are examined as indicators:

1. Word bursts precede the widespread usage of words and indicate new research trends,

2. Emerging areas quickly attract new authors, and

3. Emerging areas cite interdisciplinary references.

The first indicator utilizes prior research by Mane, Börner, and Chen (see ‘‘Introduction

and related work’’ section). The second indicator was inspired by the work of Kuhn (1970)

and Menard (1971). Kuhn argued that scientific revolutions are begun and adopted by new

scientists in the field. Menard’s work on the growth of scientific areas showed that an area

does not grow by ‘‘old scientists’’ accepting and working on new ideas but by attracting

new, typically young scientists. The third indicator was inspired by the fact that emerging

research areas grow out of existing research, i.e., expertise taught in school and practice,

and it cites existing relevant work from diverse lines of research. Intra-area citation is not

possible as no research yet exists on the new topic. The two following datasets will be used

to introduce, exemplify, and validate the proposed set of indicators.

Data acquisition and preparation

The study uses two datasets: all 75,389 papers published in the Proceedings of the National
Academy of Sciences in 1982–2009 and all 2,653 papers published in Scientometrics from

its creation in 1978 to 2009. PNAS is highly interdisciplinary and unlikely to capture the

entire work of any single author. Scientometrics is domain specific, might capture main

works of single authors, and is much smaller in size.

PNAS data and statistics

PNAS data was downloaded from Thomson Reuters’s Web of Science (WoS) (Thomson

Reuters 2010) on 2/18/2010 with the publication name query Proceedings of the National
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Academy of Sciences of the United States of America or Proceedings of the National
Academy of Sciences of the United States of America Physical Science or Proceedings of
the National Academy of Sciences of the United States of America Biological Science.

The retrieval resulted in 95,715 records. Using WoS’s ‘‘Refine Results’’ function, the

dataset was restricted to those 75,389 records published in 1982–2009. It comprises 69,939

articles, 1,892 editorial materials, 1,112 proceedings papers, 1,060 corrections, 770 cor-

rection additions, 206 reviews, 181 letters, 157 biographical items, 60 notes, 2 reprints, and

1 tribute to Roger Revelle’s contribution to carbon dioxide and climate change studies.

Employing the Science of Science (Sci2) Tool (Sci2 Team 2009a), the number of new

unique authors per year, unique references (CR), unique ISI keywords, and unique author

keywords were calculated (see Fig. 1). As no author or ISI keywords existed before 1991,

184,246 MeSH terms were added using the procedure introduced by Boyack (2004). All

terms from the paper titles, author keywords, ISI keywords, and MeSH terms were merged

into one ‘‘ID’’ field. The ‘‘ID’’ field was further processed by

• Removing a common set of stop words using the Sci2 Tool stop word list (Sci2 Team

2009b), and all individual letters and numbers.

• Removing all punctuations except ‘‘-’’ or ‘‘/.’’

Fig. 1 Number of unique PNAS papers, authors, ISI keywords, author keywords, MeSH terms, references/
10 and new authors from 1982 to 2009
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• Reducing multiple whitespaces to just one space and removing leading and trailing

whitespace.

• Lower-casing all words.

• Replacing all ‘‘-’’ and spaces with period separators to preserve compound words.

• Stemming all ID words using the Sci2 tool. Common or low-content prefixes and

suffixes are removed to identify the core concept. For example ‘‘emergent’’ will be

replaced by ‘‘emerg.’’

• Normalizing the ‘‘AU’’ author field by uppercasing first letters for more legible

labelling.

Two author’s names, ‘‘Wei-Dong-Chen’’ and ‘‘Yu-Lin,’’ were manually changed into

‘‘Chen, WD’’ and ‘‘Lin, Y,’’ and ‘‘in vitro’’ and ‘‘in vivo’’ were replaced by ‘‘invitro’’ and

‘‘invivo’’ respectively.

To understand this dataset’s temporal dynamics, bursts, i.e., sudden increases in the

frequency of words in titles, new ISI keywords, author keywords and MeSH terms were

identified. The top 50 results are shown in Fig. 2. Each bursting word is shown as hori-

zontal black bar with a start and ending time, sorted by burst start year. The bar’s area

represents burst strength. The words ‘‘molecular.weight,’’ ‘‘nucleic.acid.hybrid,’’

‘‘dna.restriction.enzym,’’ ‘‘rats.inbred.strain,’’ and ‘‘genes.vir’’ (given in the lower left)

burst first. The first two words have a higher burst strength, which is indicated by their

larger area. Between 1982 and 1991, more words are bursting than in any other period, and

the top 3 bursting words (‘‘molecular.sequence.data,’’ ‘‘base.sequ’’ and ‘‘restriction.map’’)

appear in this time span. Words ‘‘models.molecular’’ and ‘‘reverse.transcriptase.polymer-

ase.chain.react’’ burst in 2009 and are still ongoing. Figure 2 also shows words that burst

multiple times, e.g., ‘‘dna.prim’’ bursts in 1994, 1998 and 2000, ‘‘kinet,’’ ‘‘reverse.trans-

criptase.polymerase.chain.react,’’ ‘‘time.factor,’’ and ‘‘transfect’’ burst twice over the time

span.

Fig. 2 Horizontal bar graph of top 50 bursting topic words from PNAS
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Scientometrics data and statistics

All papers published in the journal Scientometrics from 1978 to 2009 were downloaded

from WoS (Thomson Reuters 2010) on 3/15/2010. The dataset includes 2,653 records:

1,894 articles, 387 proceedings papers, 93 book reviews, 74 notes, 73 editorial materials,

34 reviews, 27 letters, 22 biographical-items, 17 bibliographies, 11 meeting abstracts, 8

items about an individual, 7 corrections/additions, 4 corrections, 1 discussion, and 1 news

item.

The number of unique papers per year, authors, references, ISI keywords and new

authors were identified, and unique ISI keywords were further processed as those in ‘‘PNAS
data and statistics’’ section. Author names ‘‘VANRAAN, AFJ,’’ ‘‘vanRaan, AFJ,’’ ‘‘Van-

Raan, AFJ,’’ ‘‘Van Raan, AFJ,’’ and ‘‘van Raan, AFJ’’ were manually replaced by

‘‘Vanraan, AFJ’’ and the ISI keyword ‘‘Hirsch-index’’ was replaced by ‘‘h-index.’’ Counts

per year for all six variables are plotted in Fig. 3.

The same temporal analysis workflows as ‘‘PNAS data and statistics’’ section were then

run to identify bursts in ISI keywords and results are shown in Fig. 4 (see ‘‘PNAS data and

statistics’’ section for how to read horizontal bar graphs). In the early 1990s, studies in

Scientometrics mainly focused on Scientometrics indicators, especially of relative citation

impact. These studies originated from Braun et al. (1987, 1989a, b) and were followed by

several publications with ‘‘facts and figures’’ in the titles. The amount of bursting words

per year suddenly increased after 2000. Only 10 bursting words appeared from 1991 to

1999, while 50 bursting words appeared in the following 10 years. Studies related to

‘‘scienc,’’ ‘‘impact’’ and ‘‘journal’’ are the top three bursting topics in the 2000s. Indicators

of scientometric methodologies bursted in this time period, as evidenced by the burstiness

of ‘‘impact factor,’’ ‘‘indic,’’ ‘‘index,’’ ‘‘h.index,’’ ‘‘cocit,’’ ‘‘citat’’ and ‘‘self.cit.’’ Figure 4

shows that ‘‘h.index’’ was the burstiest word related to indicators over the entire timespan

of the dataset. The h-index, proposed by Hirsch (2005), inspired discussions on its

Fig. 3 Number of unique papers published in Scientometrics, their authors, ISI keywords, references/10
and new authors for the years 1978–2009
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strengths and limitations, as well as research on improved indicators. The word ‘‘countri’’

is the only word that burst twice, from 1991 to 1993 and from 1999 to 2001, indicating the

interest in country level, geospatially explicit studies such as Chu (1992), Adamson (1992),

Tsipouri (1991), Kim (2001), etc. The Triple Helix innovation model was another bursting

topic, as indicated by the burstiness of ‘‘triple.helix,’’ and it contributed to the burstiness of

‘‘univers’’ and ‘‘innov.’’

Model application to h-Index, impact factor for Scientometrics and RNAi,
Nano* for PNAS

Construction of datasets

A single journal such as PNAS or Scientometrics records the (often parallel) emergence of

multiple areas of research over time. To understand the structure and temporal dynamics of

different indicators for concrete areas of research, publications for four emerging areas

Fig. 4 Horizontal bar graph of all bursting ISI keywords from Scientometrics
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were extracted: ‘‘h-Index’’ and ‘‘Impact Factor’’ for Scientometrics, and ‘‘RNAi’’ and

‘‘Nano*’’ for PNAS. Keywords were chosen that represent topically diverse research areas

at different stages of their lives in order to account for topic- or time-specific biases.

These four research areas are clearly very different in nature; however, without a

clear corpus of every paper in a particular area, keywords were used which were

unique and specific enough to encompass a great many papers surrounding a par-

ticular topic or method while still avoiding unrelated publications. The keywords ‘‘h-

Index’’ and ‘‘impact factor’’ represent specific topics within the larger umbrella of

performance indicators a rather active area of research in Scientometrics. ‘‘Nano*’’

represents a set of research related by several common factors and RNAi represents

the study of or using a single biological system. It is a contention of this study that

new and specific vocabulary is a close enough proxy to emerging cohesive research

that it can be used in dataset selection. However, the mixed indicator approach

presented here can be used with any canonical list of publications representing an

area, topic, discipline, etc., and we hope to be able to use these indicators on more

accurate lists as they become available.

Figure 5 shows the percentage of papers in Scientometrics or PNAS which contain each

set of keywords. For example, the term ‘‘impact factor’’ appeared in 23 Scientometrics
paper abstracts or titles in 2009, a total of 192 Scientometrics study were published in

2009, and hence the value for that keyword in 2009 is 11.98. The chart also includes the

number of unique authors per year who published a paper with that keyword for the first

time. The number of new authors from PNAS (Fig. 5, right) has been divided by 100 to fit

the scale of the chart.

Emerging areas are preceded by word bursts

Table 1 shows all bursting words related to topics of ‘‘RNAi,’’ ‘‘Nano*,’’ and

‘‘h-Index’’; no bursting words related to ‘‘Impact Factor.’’ All words are sorted by

start year. For example, research on h-index is mostly focused on ranking measure-

ments, scientists’ activities, and journal impact factor studies. The h-index was pro-

posed in 2005 and words began bursting the next year. In this case, word bursts help

pinpoint topics trends.

Fig. 5 Papers containing given keywords and the amount of authors publishing papers with those keywords
for the first time in Scientometrics (left) and PNAS (right)
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Emerging areas quickly attract new authors

To understand the attraction of emerging research areas to authors, all unique authors and

the year of their first published paper in the dataset was found (see Fig. 6). Topics ‘‘RNAi’’

and ‘‘Nano*’’ experience a noticeable increase in the number of new authors. The number

of new authors in ‘‘Impact Factor’’ and ‘‘h-Index’’ also increase remarkably quickly. The

sudden increase of new authors to ‘‘h-Index’’ research after 2005 is attributable to the

influence of Hirsch’s paper published in 2005.

In future work we plan to analyze the origin of new authors (from what areas of science

are they coming?) and to study their key features such as career age.

Emerging areas cite highly interdisciplinary references

It is assumed that papers in a new research area cite papers from many areas of research, as

no papers yet exist in the nascent area. Thus, sudden increases in the diversity of cited

references might indicate an emerging research area. In order to test the interdisciplinarity

of the sets of papers containing ‘‘Nano*,’’ ‘‘RNAi,’’ ‘‘Impact Factor,’’ and ‘‘h-Index,’’ each

set was mapped to the UCSD Map of Science (Klavans and Boyack 2009). This map

clusters more than 16,000 journals into 554 disciplines and gives the similarity between

these disciplines. An interdisciplinarity score (see Eq. 1) per year was given to ‘‘Nano*,’’

Table 1 Bursting topic words
for ‘‘RNAi’’, ‘‘Nano*’’, and ‘‘h-
Index’’

Word Strength Start End

RNAi

messenger.rna 6.36 1993 2002

antisense.rnai 3.11 1994 2002

caenorhabditis.elegan 3.87 2000 2006

functional.genomic.analysi 3.09 2001 2003

double.stranded.rna 5.16 2002 2003

gene 2.96 2003 2005

Nano*

express 6.73 1991 1999

bind 3.90 1991 2001

sequenc 3.77 1991 2003

rat.brain 4.83 1992 2001

gene 3.90 1992 1997

clone 3.48 1992 1999

site 3.18 1992 1996

inhibit 3.37 1993 2002

identif 3.48 1994 2000

design 4.01 2000 2003

microscopi 3.67 2005 2005

peptid 3.64 2006 2006

h-Index

rank 2.97 2006 2007

scientist 2.56 2006 2006

journal 2.43 2008
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‘‘RNAi,’’ ‘‘Impact Factor,’’ and ‘‘h-Index’’ using the ‘‘Rao-Stirling diversity’’ (Rao 1982;

Stirling 2007). The distribution of references in each paper across the map of science was

calculated. Then, the ‘‘Rao-Stirling diversity’’ D was calculated for each pair of referenced

disciplines on the map. The probability of the first discipline (pi) was multiplied by the

probability of the second discipline (pj) and the distance between the two disciplines (dij),

which was then summed for the distribution.

D ¼
X

ijði 6¼jÞ
pi � pj � dij ð1Þ

dij was calculated as the great-circle distance between disciplines, rather than the more

standard Euclidean distance, because the UCSD map is laid out on the surface of a sphere.

The result is an aggregate measurement of the diversity of individual papers and their

references. We define this diversity as interdisciplinarity rather than multidisciplinarity

because it measures individual paper references rather than the spread of references across

an entire journal or dataset. Porter and Rafols (2009) also used ‘‘Rao-Stirling diversity’’ to

measure how the degree of interdisciplinarity has changed between 1975 and 2005 for six

research domains.

Figure 7 shows the interdisciplinary distribution of each set of documents per year over

time. Several references could not be matched directly with journals in the UCSD Map of

Science. If fewer than 50% of a paper’s references mapped onto the UCSD map, the paper

was excluded from the analysis. Older papers were more likely to be excluded from the

analysis, as the further back in time citations go, the less likely their journal would be

represented on the UCSD Map of Science. The newest papers’ references also experienced

a dip in their matches on the UCSD map, as they may have been citing journals too new to

be mapped. Between 50 and 80% of Scientometrics references were not mapped, probably

due to the high volume of monograph citations. This is one likely cause of the significantly

different internal distributions of interdisciplinarity between Scientometrics and PNAS,

whose references could consistently match to the UCSD map 70% of the time.

Average interdisciplinarity was calculated by taking the average interdisciplinary score

across all papers in a given set per year. ‘‘Nano*,’’ ‘‘RNAi,’’ ‘‘Impact Factor,’’ ‘‘h-Index’’

and Scientometrics all show an increase in average interdisciplinarity of references over

time (see Fig. 8). This may be an indicator that the areas are still expanding in the number

and diversity of attracted authors and ideas from different areas. Interestingly, works

published in all of PNAS since 1982 show virtually no change in their level of interdis-

ciplinarity over time, demonstrating the continuous very high level of interdisciplinarity of

papers in this journal.

Fig. 6 Number of new authors per year for ‘‘RNAi’’ and ‘‘Nano*’’ research areas (left) versus ‘‘Impact
Factor’’ and ‘‘h-Index’’ research areas (right)
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Model validation

Comparison of indicators

The three different indicators provide different insights. The number and type of bursting

words is an indicator of the intensity and topical direction of change. The number of new

authors an area manages to attract reveals the brain drain from other research areas to itself.

The interdisciplinarity of paper references gives an indicator of the diversity and topical

origin of the base knowledge from which the new area draws.

Each of the four datasets do have a steady increase in the number of new authors and

interdisciplinarity scores which might be an indicator that all four of them are emerging

Fig. 7 Interdisciplinarity of references cited in ‘‘Nano*’’ (upper left), ‘‘RNAi’’ (middle left), ‘‘Impact
Factor’’ (upper right), ‘‘h-Index’’ (middle right), PNAS (bottom left) and Scientometrics (bottom right)
datasets. Darker areas indicate earlier publications, the y axis indicates the number of papers with a certain
interdisciplinarity score, where x = 0 is the least interdisciplinarity possible
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areas of research. More datasets, especially ones representing established or dying research

areas, are needed to make more concrete conclusions.

Temporal dynamics

Comparing the temporal dynamics of the three indicators reveals correlations between

them, see Fig. 9. The figure shows that the appearance of new authors always signified the

beginning of an emerging area. In ‘‘Nano*,’’ ‘‘RNAi’’ and ‘‘h-Index’’ datasets, a sudden

increase in the diversity of cited references occurred with the appearance of new authors

simultaneously. Word bursts occurred 8 years later for ‘‘Nano*,’’ 7 years later for ‘‘RNAi’’

and only 1 year later for ‘‘h-Index.’’ For ‘‘Impact Factor’’ dataset, a sudden increase in the

diversity of cited references occurred 6 years after new authors appeared. The correlation

between increasing new authors and diversity of cited references suggests that new authors

are coming from diverse established areas rather than some already nascent cohort with a

pre-existing body of research.

Discussion and outlook

This paper presented, exemplified, and compared three indicators that seem to be indicative

of emerging areas and have interesting temporal correlations: new authors enter the area

first, the interdisciplinarity of paper references increases, then word bursts occur. Although

the indicators are descriptive, they can be applied to identify new areas of research and

hence have a certain predictive power.

The datasets used to validate the model have limitations. With only two journals,

journal-specific rather than subject-specific trends might dominate. As Scientometrics

Fig. 8 Average interdisciplinarity of references cited in the six datasets per year
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publishes relatively few papers, keyword filtering resulted in even smaller sets. The use of

two largely unrelated journals and two unrelated sets of keywords was an attempt to offset

journal-specific or discipline-specific artefacts, as was the use of keywords at different

stages of their popularity and use. Future work should use a larger and more diverse dataset

of emerging research areas.

Diversity was measured using the UCSD Map of Science covering 2001–2005 data.

However, the structure of science evolved continuously since the first paper in this study

was published in 1978. Two problems arise: papers that were initially highly interdisci-

plinary but were part of a larger trend linking multiple disciplines in the future will be seen

as less interdisciplinary than they ought to be. This may explain why PNAS seems to

slowly increase in interdisciplinarity over time (see Fig. 8). Secondly, the UCSD map does

not capture journals that ceased to exist before 2001 or did not yet exist in 2005 (see

‘‘Emerging areas cite highly interdisciplinary references’’ section). An updated version of

the UCSD map covering the years 2001–2010 will soon become available.

Future work will add additional indicators (e.g., densification of scholarly networks

during the maturation of a research area; a combination of lexical and citation based

information) but also other datasets (e.g., data of mature or dying areas) to the indicator-

by-dataset validation matrix to make sure the indicators are:

• efficient to calculate,

• predictive, i.e., give different results for mature or dying areas, and

• stable, i.e., are robust regarding data errors/omissions.

Fig. 9 Temporal dynamics of three indicators for ‘‘Nano*’’ (upper left), ‘‘RNAi’’ (upper right), ‘‘Impact
Factor’’ (bottom left), and ‘‘h-Index’’ (bottom right)
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We welcome replications of this study and suggestions for improvements. The open

source Science of Science Tool (Sci2 Team 2009a) can be downloaded from

http://sci2.cns.iu.edu. All workflows used in this study as well as the Scientometrics dataset

are available online as part of the Sci2 Tool tutorial (Weingart et al. 2010).
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