
60 communications of the acm | march 2011 | vol. 54 | no. 3

contributed articles

De cision making in science, industry, and politics,
as well as in daily life, requires that we make sense
of data sets representing the structure and dynamics
of complex systems. Analysis, navigation, and
management of these continuously evolving data sets
require a new kind of data-analysis and visualization
tool we call a macroscope (from the Greek macros, or
“great,” and skopein, or “to observe”) inspired by de
Rosnay’s futurist science writings.8

Just as the microscope made it possible for the
naked human eye to see cells, microbes, and viruses,
thereby advancing biology and medicine, and
just as the telescope opened the human mind to
the immensity of the cosmos and the conquest of
space—the macroscope promises to help make sense
of yet another dimension—the infinitely complex.
Macroscopes provide a “vision of the whole,” helping
us “synthesize” the related elements and detect
patterns, trends, and outliers while granting access to
myriad details.18,19 Rather than make things larger or
smaller, macroscopes let us observe what is at once
too great, slow, or complex for the human eye and
mind to notice and comprehend.

Many of the best micro-, tele-, and
macroscopes are designed by scien-
tists keen to observe and comprehend
what no one has seen or understood
before. Galileo Galilei (1564–1642) rec-
ognized the potential of a spyglass for
the study of the heavens, ground and
polished his own lenses, and used the
improved optical instruments to make
discoveries like the moons of Jupiter,
providing quantitative evidence for the
Copernican theory. Today, scientists
repurpose, extend, and invent new
hardware and software to create mac-
roscopes that may solve both local and
global challenges20 (see the sidebar
“Changing Scientific Landscape”).

My aim here is to inspire comput-
er scientists to implement software
frameworks that empower domain sci-
entists to assemble their own continu-
ously evolving macroscopes, adding
and upgrading existing (and removing
obsolete) plug-ins to arrive at a set that
is truly relevant for their work—with
little or no help from computer scien-
tists. Some macroscopes may resem-
ble cyberinfrastructures (CIs),1 pro-
viding user-friendly access to massive
amounts of data, services, computing
resources, and expert communities.
Others may be Web services or stand-
alone tools. While microscopes and
telescopes are physical instruments,
macroscopes resemble continuously
changing bundles of software plug-ins.
Macroscopes make it easy to select and
combine algorithm and tool plug-ins
but also interface plug-ins, workflow
support, logging, scheduling, and oth-
er plug-ins needed for scientifically rig-
orous work. They make it easy to share

Plug-and-Play
Macroscopes

doi:10.1145/1897852.1897871

Compose “dream tools” from continuously
evolving bundles of software to make sense
of complex scientific data sets.

By Katy Börner

 key insights
 � �OSGi/CIShell-powered tools improve

decision making in e-science,
government, industry, and education.

 � �Non-programmers can use OSGi/CIShell
to assemble custom “dream tools.”

 � �New plug-ins are retrieved automatically
via OSGi update services or shared via
email and added manually; they can be
plugged and played dynamically, without
restarting the tool.

march 2011 | vol. 54 | no. 3 | communications of the acm 61

C
o

u
r

t
e

s
y

 o
f

 C
y

b
e

r
i

n
f

r
a

s
t

r
u

c
t

u
r

e
 f

o
r

 N
e

t
w

o
r

k
 Sci

e
n

c
e

 C
e

n
t

e
r

,
h

t
t

p
:/

/c
n

s
.i

u
.e

d
u

plug-ins via email, flash drives, or on-
line. To use new plug-ins, simply copy
the files into the plug-in directory, and
they appear in the tool menu ready for
use. No restart of the tool is necessary.
Sharing algorithm components, tools,
and novel interfaces becomes as easy
as sharing images on Flickr or videos
on YouTube. Assembling custom tools
is as quick as compiling your custom
music collection.

The macroscopes presented here
were built using the Open Services
Gateway Initiative Framework (OSGi)
industry standard and the Cyberin-
frastructure Shell (CIShell) that sup-
ports integration of new and existing
algorithms into simple yet powerful
tools. As of January 2011, six different
research communities were benefit-
ting from OSGi and/or CIShell powered
tools. Several other tool-development
efforts consider adoption.

Related Work
Diverse commercial and academic ef-
forts support code sharing; here, I dis-
cuss those most relevant for the design
and deployment of plug-and-play mac-
roscopes:

Google Code and SourceForge.net
provide the means to develop and dis-

tribute software; for example, in August
2009, SourceForge.net hosted more
than 230,000 software projects by two
million registered users (285,957 in
January 2011); also in August 2009 Pro-
grammableWeb.com hosted 1,366 ap-
plication programming interfaces and
4,092 mashups (2,699 APIs and 5,493
mashups in January 2011) that combine
data or functionality from two or more
sources to arrive at a service.

Web services convert any Web
browser into a universal canvas for in-
formation and service delivery. In ad-
dition, there are diverse e-science in-
frastructures supporting researchers
in the composition and execution of
analysis and/or visualization pipelines
or workflows. Among them are sev-
eral cyberinfrastructures serving large
biomedical communities: the cancer
Biomedical Informatics Grid (caBIG)
(http://cabig.nci.nih.gov); the Biomed-
ical Informatics Research Network
(BIRN) (http://nbirn.net); and the In-
formatics for Integrating Biology and
the Bedside (i2b2) (https://www.i2b2.
org). The HUBzero (http://hubzero.org)
platform for scientific collaboration
uses the Rapture toolkit to serve Java
applets, employing the TeraGrid, the
Open Science Grid, and other national

grid-computing resources for extra
cycles. The collaborative environment
of myExperiment (http://myexperi-
ment.org) (discussed later) supports
the sharing of scientific workflows and
other research objects.

Missing so far is a common stan-
dard for the design of modular, com-
patible algorithm and tool plug-ins
(also called modules or components)
easily combined into scientific work-
flows (also called pipeline and com-
position). This leads to duplication
of work, as even in the same project,
different teams might develop several
incompatible “plug-ins” that have al-
most identical functionality yet are
incompatible. Plus, adding a new algo-
rithm plug-in to an existing cyberinfra-
structure or bundling and deploying a
subset of plug-ins as a new tool/service
requires extensive programming skills.
Consequently, many innovative new
algorithms are never integrated into
common CIs and tools due to resource
limitations.

Web sites like IBM’s Many Eyes
(http://manyeyes.alphaworks.ibm.com/
manyeyes/visualizations) and Swivel
(http://swivel.com) demonstrate the
power of community data sharing and
visualization. In 2009 alone, Many Eyes

UCSD Map of Science with data overlays of MEDLINE publications that acknowledge NIH funding.

62 communications of the acm | march 2011 | vol. 54 | no. 3

contributed articles

had more than 66,429 data sets and
35,842 visualizations, while Swivel had
14,622 data sets and 1,949,355 graphs
contributed and designed by 12,144
users. Both sites let users share data
(not algorithms), generate and save dif-
ferent visualization types, and provide
community support. In January 2011,
the numbers for Many Eyes increased
to 165,124 data sets and 79,115 visual-
izations, while Swivel ceased to exist.

Data analysis and visualization is
also supported by commercial tools
like Tableau (http://tableausoftware.
com), Spotfire (http://spotfire.tibco.
com), and free tools; see Börner et al.6
for a review of 20 tools and APIs. While

they offer valuable functionality and
are widely used in research, education,
and industry, none makes it easy for
users to share and bundle their algo-
rithms into custom macroscopes.

Plug-and-Play Software
Architectures
When discussing software architec-
tures for plug-and-play macroscopes,
it is beneficial to distinguish among:
(1) the “core architecture” facilitating
the plug-and-play of data sets and algo-
rithms; (2) the “dynamic filling” of this
core comprising the actual algorithm,
tool, user interface, and other plug-ins;
(3) and the bundling of all components

into “custom tools.” To make all three
parts work properly, it is important to
understand who takes ownership of
which ones and what general features
are desirable (see the sidebar “Desir-
able Features and Key Decisions”).

Core architecture. To serve the
needs of scientists (see both sidebars)
the core architecture must empower
non-programmers to plug, play, and
share their algorithms and to design
custom macroscopes and other tools.
The solution proposed here is based on
OSGi/CIShell:

Open Services Gateway Initiative. De-
veloped by the OSGi Alliance (http://
osgi.org), this service platform has

Figure 1. The NWB tool interface (I) with menu (a), Console (b), Scheduler (c), and Data Manager (d). The two visualizations of Renaissance
Florentine families used the GUESS tool plug-in (II) and prefuse.org algorithm plug-in (III) Nodes denote families labeled by name;
links represent marriage and business relationships among families. In GUESS, nodes are size-coded by wealth and color-coded by degree;
marriage relationships are in red using the Graph Modifier (d). The “Pazzi” family in (c) was selected to examine properties in the
Information Window (b).

contributed articles

march 2011 | vol. 54 | no. 3 | communications of the acm 63

been used since 1999 in industry,
including by Deutsche Telekom, Hi-
tachi, IBM, Mitsubishi Electric, NEC,
NTT, Oracle, Red Hat, SAP AG, and Sie-
mens Enterprise Communications. It
is a dynamic module system for Java,
supporting interoperability of appli-
cations and services in a mature and
comprehensive way with an effective
yet efficient API. The platform is inter-
face-based, easing plug-and-play inte-
gration of independent components by
managing class and dependency issues
when combining components. It is
also dynamic; that is, new components
can be added without stopping the
program. It also comes with a built-in
mechanism for retrieving new compo-
nents through the Internet. As service-
oriented architecture, OSGi is an easy
way to bundle and pipeline algorithms
into “algorithm clouds.” A detailed de-
scription of the OSGi specification and
existing reference implementations is
beyond the scope of this article but can
be explored through http://www.osgi.
org/Specifications.

Leveraging OSGi provides access to
a large amount of industry-standard
code—prebuilt, pretested, continuous-
ly updated components—and know-
how that would otherwise take years to
reinvent/re-implement, thus helping
reduce time to market, development,
and cost of maintenance. OSGi bundles
can be developed and run using a num-
ber of frameworks, including the Equi-
nox project from Eclipse (http://eclipse.
org/equinox), the reference implemen-
tation of the OSGi R4 core framework.
Eclipse includes extensive add-ons for
writing and debugging code, interact-
ing with code repositories, bug track-
ing, and software profiling that greatly
extend the base platform.

Cyberinfrastructure Shell (http://cis-
hell.org). This open-source software
specification adds “sockets” to OSGi
into which data sets, algorithms, and
tools can be plugged using a wizard-
driven process.11 CIShell serves as a
central controller for managing data
sets and seamlessly exchanging data
and parameters among various imple-
mentations of algorithms. It also de-
fines a set of generic data-model APIs
and persistence APIs. Extending the
data-model APIs makes it possible
to implement and integrate various
data-model plug-ins. Each data model

requires a “persister” plug-in to load,
view, and save a data set from/to a data
file in a specific format. Some data
models lack a persister plug-in, instead
converting data to or from some other
data format that does have one. CIS-
hell also defines a set of algorithm APIs
that allows developers to develop and
integrate diverse new or existing algo-
rithms as plug-ins.

Though written in Java, CIShell sup-
ports integration of algorithms written
in other programming languages, in-
cluding C, C++, and Fortran. In prac-
tice, a pre-compiled algorithm must
be wrapped as a plug-in that imple-
ments basic interfaces defined in the
CIShell Core APIs. Pre-compiled algo-
rithms can be integrated with CIShell
by providing metadata about their in-
put and output. Various templates are
available for facilitating integration
of algorithms into CIShell. A plug-in
developer simply fills out a sequence
of forms for creating a plug-in and ex-
ports it to the installation directory
and the new algorithm appears in the
CIShell graphical user interface (GUI)
menu. This way, any algorithm or tool
that can be executed from a command
line is easily converted into a CIShell
compatible plug-in.

CIShell’s reference implementation
also includes a number of basic ser-
vices, including a default menu-driven
interface, work-log-tracking module,
a data manager, and a scheduler (see
Figure 1, left). Work logs—displayed in
a console and saved in log files—com-
prise all algorithm calls and param-
eters used, references to original pa-
pers and online documentation, data
loaded or simulated, and any errors.
The algorithm scheduler shows all cur-
rently scheduled or running processes,
along with their progress. CIShell can
be deployed as a standalone tool or
made available as either a Web or peer-
to-peer service. The CIShell Algorithm
Developer’s Guide7 details how to de-
velop and integrate Java and non-Java
algorithms or third-party libraries.

OSGi/CIShell combined. Software de-
signed using OSGi/CIShell is mainly a
set of Java Archive bundles, also called
plug-ins. OSGi services, CIShell ser-
vices, and data set/algorithm services
all run in the OSGi container. The CIS-
hell framework API is itself an OSGi
bundle that does not register OSGi ser-

vices, providing instead interfaces for
data-set and algorithm services, basic
services (such as logging and conver-
sion), and application services (such
as scheduler and data manager). Each
bundle includes a manifest file with a
dependency list stating which pack-
ages and other bundles it must run;
all bundles are prioritized. Upon ap-
plication start-up, the bundles with
highest priority start first, followed
by bundles of second, third, fourth,...
priority. Bundles can also be started at
runtime.

A bundle can create and register an
object with the OSGi service registry un-
der one or more interfaces. The services
layer connects bundles dynamically by
offering a “publish-find-bind” model
for Java objects. Each service registra-
tion has a set of standard and custom
properties. An expressive filter language
is available to select relevant services.
Services are dynamic; that is, bundles
can be installed and uninstalled on the
fly, while other bundles adapt, and the
service registry accepts any object as a
service. However, registering objects
under (standard) interfaces (such as
OSGi and CIShell) helps ensure reuse.
Due to the declarative specification of
bundle metadata, a distributed version
of CIShell could be built without chang-
ing most algorithms.

The result is that domain scientists
can mix and match data sets and al-
gorithms, even adding them dynami-
cally to their favorite tool. All plug-ins
that agree on the CIShell interfaces
can be run in software designed with
the OSGi/CIShell core architecture. No
common central data format is need-
ed. Plug-ins can be shared in a flexible,
decentralized fashion.

Dynamic filling. As of January 2011,
the OSGi/CIShell plug-in pool included
more than 230 plug-ins, including ap-
proximately 60 “core” OSGi/CIShell
plug-ins and a “filling” of more than
170 algorithm plug-ins, plus 40 sample
data sets, as well as configuration files
and sample data files. Nearly 85% of
the algorithm plug-ins are implement-
ed in Java, 5% in Fortran, and the other
10% in C, C++, Jython, and OCaml; see
http://cishell.wiki.cns.iu.edu.

Custom tools. The OSGi/CIShell
framework is at the core of six plug-
and-play tools that resemble simple
macroscopes and serve different sci-

64 communications of the acm | march 2011 | vol. 54 | no. 3

contributed articles

entific communities; for example, the
Information Visualization Cyberifra-
structure (IVC) was developed for re-
search and education in information
visualization; the Network Workbench
(NWB) tool was designed for large-
scale network analysis, modeling, and
visualization; the Science of Science
(Sci2) tool is used by science-of-science
researchers, as well as by science-poli-
cy analysts; the Epidemics (EpiC) tool
is being developed for epidemiolo-
gists; TEXTrend supports analysis of
text; and DynaNets will be used to ad-
vance theory on network diffusion pro-
cesses. Here, NWB and Sci2 are covered
in detail:

The NWB tool (http://nwb.cns.
iu.edu) supports the study of static
and dynamic networks in biomedi-
cine, physics, social science, and other
research areas. It uses 39 OSGi plug-
ins and 18 CIShell plug-ins as its core
architecture; two of them define the
functionality of the simple GUI in Fig-
ure 1 (I), top left with the menu (I.a) for
users to load data and run algorithms
and tools. The Console (I.b) logs all
data and algorithm operations, list-
ing acknowledgment information on
authors, programmers, and documen-
tation URLs for each algorithm. The
Data Manager (I.d) displays all cur-
rently loaded and available data sets.
A Scheduler (I.c) lets users keep track
of the progress of running algorithms.
Worth noting is that the interface is
easily branded or even replaced (such
as with a command-line interface).

The NWB tool includes 21 converter
plug-ins that help load data into in-
memory objects or into formats the al-
gorithms read behind the scenes. Most
relevant for users are the algorithm
plug-ins that can be divided into algo-
rithms for preprocessing (19), analysis
(56), modeling (10), and visualization
(19). Three standalone tools—Discrete
Network Dynamics (DND), GUESS, and
GnuPlot—are available via the NWB
menu system. GUESS is an exploratory
data-analysis-and-visualization tool for
graphs and networks (http://graphex-
ploration.cond.org), as shown in Fig-
ure 1, II, containing a domain-specific
embedded language called Gython
(an extension of Python, or more spe-
cifically Jython) that supports the cus-
tomization of graph designs. GnuPlot
is a portable, command-line-driven,

interactive plotting utility for data
and related functions (http://gnuplot.
info). NWB uses 15 supporting librar-
ies, including Colt, JUNG, Jython, and
Prefuse (see Prefuse layouts in Figure
1, III); detailed listings are provided in
the NWB tutorial3 and wiki (http://nwb.
wiki.cns.iu.edu).

A common network-science work-
flow includes data loading and/or
modeling, preprocessing, analysis, vi-
sualization, and export of results (such
as tables, plots, and images). More
than 10 different algorithms may be
run in one workflow, not counting data
converters. Common workflows and
references to peer-reviewed papers are
given in Börner et al.3 Here are six ex-
emplary NWB workflows from differ-
ent application domains:

˲˲ Error-tolerance and attack-toler-
ance analysis in physics and computer
science requires loading or modeling
a network and deleting random nodes
(such as by error) or deleting highly
connected hub nodes (such as in an at-
tack);

˲˲ Peer-to-peer network analysis in
computer science can include simula-
tion of various networks and an analy-
sis of their properties;

˲˲ Temporal text analysis in linguis-
tics, information science, and com-
puter science might apply the burst-de-
tection algorithm to identify a sudden
increase in the usage frequency of
words, with results visualized;

˲˲ Social-network analysis in social
science, sociology, and scientometrics
might compare properties of scholarly
and friendship networks for the same
set of people; the scholarly network
can be derived from publications and
the friendship network from data ac-
quired via questionnaires;

˲˲ Discrete network dynamics (biol-
ogy) can be studied through the DND
tool, which bundles loading and mod-
eling a multistate discrete network
model, to generate the model’s state-
space graph, analyze the attractors of
the state space, and generate a visual-
ization of an attractor basin; and

˲˲ Data conversion across sciences
can use multiple converter algorithms
to translate among more than 20 data
formats.

Most workflows require serial appli-
cation of algorithms developed in dif-
ferent areas of science and contributed

by different users. Much of the related
complexity is hidden; for example, us-
ers do not see how many converters are
involved in workflow execution. Only
those algorithms that can be applied
to a currently selected data set can be
selected and run, with all others grayed
out. Expert-workflow templates and tu-
torials provide guidance through the
vast space of possible algorithm com-
binations.

The Science of Science tool (http://
sci2.cns.iu.edu). The Sci2 tool supports
the study of science itself through sci-
entific methods; science-of-science
studies are also known as scientomet-
ric, bibliometric, or informetric stud-
ies. Research in social science, political
science, physics, economics, and other
areas further increases our under-
standing of the structure and dynam-
ics of science.2,5,16 The tool supports the
study of science at micro (individual),
meso (institution, state), and global
(all science, international) levels using
temporal, geospatial, topical, network-
analyses, and visualization techniques
(http://sci2.wiki.cns.iu.edu).

Algorithms needed for these analy-
ses are developed in diverse areas of
science; for example, temporal-analy-
sis algorithms come from statistics and
computer science; geospatial-analysis
algorithms from geography and cartog-
raphy; semantic-analysis algorithms
from cognitive science, linguistics, and
machine learning; and network analy-
sis and modeling from social science,
physics, economics, Internet studies,
and epidemiology. These areas have
highly contrasting preferences for data
formats, programming languages, and
software licenses, yet the Sci2 tool pres-
ents them all through a single com-
mon interface thanks to its OSGi/CIS-
hell core. Moreover, new algorithms
are added easily; in order to read a nov-
el data format, only one new converter
must be implemented to convert the
new format into an existing format.

Multiple workflows involve more
data converters than algorithms, as
multiple converters are needed to
bridge output and input formats used
by consecutive algorithms. Workflows
are frequently rerun several times due
to imperfect input data, to optimize pa-
rameter settings, or to compare differ-
ent algorithms. Thanks to the Sci2 tool,
an analysis that once required weeks

contributed articles

march 2011 | vol. 54 | no. 3 | communications of the acm 65

Figure 2. Exemplary Sci2 tool workflows: horizontal-bar-graph visualization of NSF funding for one investigator (I); circular layout
of a hierarchically clustered co-author network of network-science researchers, with zoom into Eugene Garfield’s network (II);
citation network of U.S. patents on RNAi and patents they cite, with highly cited patents labeled (III); and UCSD science base map
with overlay of publications by network-science researchers (IV).

66 communications of the acm | march 2011 | vol. 54 | no. 3

contributed articles

or months to set up and run can now
be designed and optimized in a few
hours. Users can also share, rerun, and
improve automatically generated work
logs. Workflows designed, validated,
and published in peer-reviewed works
can be used by science-policy analysts
and policymakers alike. As of January
2011, the Sci2 tool was being used by
the National Science Foundation, the
National Institutes of Health, the U.S.
Department of Energy, and private
foundations adding novel plug-ins and
workflows relevant for making deci-
sions involving science policy.

The Sci2 tool supports many differ-
ent analyses and visualizations used
to communicate results to a range of
stakeholders. Common workflows and
references to peer-reviewed papers
are given in Börner et al.3 and the Sci2
wiki (http://sci2.wiki.cns.iu.edu). Four

sample studies are discussed here and
included in Figure 2, I–IV:

˲˲ Funding portfolios (such as fund-
ing received by investigators and
institutions, as well as provided by
agencies) can be plotted using a hori-
zontal bar graph (HBG); for example,
all funding for one researcher was
downloaded from the National Science
Foundation Award Search site (http://
nsf.gov/awardsearch), loaded into Sci2,
and visualized in HBG, as in Figure 2,
I. Each project is represented by a bar
starting to the left at a certain state date
and ending right at an end date, with
bar width representing project dura-
tion. Bar-area size encodes a numeric
property (here total awarded dollar
amount), and equipment grants show
as narrow bars of significant height. A
label (here project name) is given to the
left of the bar. Bars can be color-coded

by award type (such as Small Business
Innovation Research and Career);

˲˲ Looking for collaboration pat-
terns among major network-science
researchers, the publications of four
major researchers were downloaded
from the Web of Science by Thomson
Reuters (http://wokinfo.com). The
data was then loaded into Sci2, the co-
author network extracted, the Blondel
community-detection algorithm ap-
plied to extract hierarchical clusters
of the network, and the result laid out
using the Circular Hierarchy visualiza-
tion, with author names plotted in a
circle and connecting lines represent-
ing co-author links (see Figure 2, II).
Two of the researchers share a com-
bined network, while the others are at
the centers of unconnected networks.
Also shown is a zoom into Eugene Gar-
field’s network;

˲˲ To understand what patents ex-
ist on the topic of RNA interference
(RNAi) and how they built on prior
work, data was retrieved from the
Scholarly Database (http://sdb.cns.
iu.edu).6 Specifically, a query was run
over all text in the U.S. patent data set
covering 1976–2010. The U.S. Patent
and Trademark Office citation table
was downloaded, read into the Sci2
tool, the patent-citation network ex-
tracted, the “indegree” (number of
citations within the set) of all patent
nodes calculated, and the network
displayed in GUESS (see Figure 2, III).
The network represents 37 patents
(in red) matching the term RNAi and
their and the 487 patents they cite (in
orange). Nodes are size-coded by in-
degree (number of times a patent is
cited); patents with at least five cita-
tions are labeled by their patent num-
ber. One of the most highly cited is
no. 6506559 on “Genetic Inhibition by
Double-Stranded RNA”; and

˲˲ The topical coverage of publication
output is revealed using a base map of
science (such as the University of Cali-
fornia, San Diego map in Figure 2, IV.).
The map represents 13 major disci-
plines of science in a variety of colors,
further subdivided into 554 research
areas. Papers are matched to research
areas via their journal names. Multiple
journals are associated with each area,
and highly interdisciplinary journals
(such as Nature and Science) are frac-
tionally associated with multiple areas.

As science becomes increasingly data driven and computational, as well as
collaborative and interdisciplinary, there is increased demand for tools that are easy to
extend, share, and customize:
•	� Star scientist → Research teams. Traditionally, science was driven by key scientists.

Today, science is driven by collaborating co-author teams, often comprising experts
from multiple disciplines and geospatial locations5,17;

•	 �Users → Contributors. Web 2.0 technologies empower users to contribute
to Wikipedia and exchange images, videos, and code via Fickr, YouTube, and
SourceForge.net. Wikispecies, WikiProfessionals, and WikiProteins combine wiki
and semantic technology to support real-time community annotation of scientific
data sets14;

•	 �Disciplinary → Cross-disciplinary. The best tools frequently borrow and
synergistically combine methods and techniques from different disciplines of
science, empowering interdisciplinary and/or international teams of researchers,
practitioners, and educators to collectively fine-tune and interpret results;

•	 �Single specimen → Data streams. Microscopes and telescopes were originally used
to study one specimen at a time. Today, many researchers must make sense of
massive data streams of multiple data types and formats and of different dynamics
and origin; and

•	� Static instrument → Evolving cyberinfrastructure. The importance of hardware
instruments that are static and expensive tends to decrease relative to software
tools and services that are highly flexible and evolving to meet the needs of different
sciences. Some of the most successful tools and services are decentralized,
increasing scalability and fault tolerance.

Good software-development practices make it possible for “a million minds” to
design flexible, scalable software that can be used by many:

•	 �Modularity. Software modules with well-defined functionality accept contributions
from multiple users reduce costs and increase flexibility in tool development,
augmentation, and customization;

•	 �Standardization. Standards accelerate development, as existing code is leveraged,
helping pool resources, support interoperability, and ease migration from research
code to production code and hence the transfer of research results into industry
applications and products; and

•	� Open data and open code. The practice of making data sets and code freely available
allows users to check, improve, and repurpose data and code, easing replication of
scientific studies.

Changing Scientific
Landscape

contributed articles

march 2011 | vol. 54 | no. 3 | communications of the acm 67

Circle size represents number of pa-
pers published per research area; the
number of publications per discipline
given below the map. The knowledge
input (such as in terms of read or cited
papers) and output (such as in terms
of published or funded papers) of an
individual, institution, or country can
be mapped to indicate core competen-
cies. Most publication output of the
four network-science researchers is in
physics.

These and many other Sci2 analyses
and corresponding visualizations are
highly scalable; thousands of authors,
references, and projects can be viewed
simultaneously, and visualizations can
be saved in vector format for further
manipulation.

Macroscope Synergies
Just as the value of the earliest tele-
phones increased in proportion to
the number of people using them,
plug-and-play macroscopes gain value
relative to the increase in their core
functionality; numbers of data-set and
algorithm plug-ins; and the research-
ers, educators, and practitioners using
and advancing them.

OSGi/CIShell-compliant plug-ins
can be shared among tools and proj-
ects; for example, network-analysis
algorithms implemented for the NWB
tool can be shared as Java Archive files
through email or other means, saved
in the plug-in directory of another
tool, and made available for execu-
tion in the menu system of that tool.
Text-mining algorithms originally de-
veloped in TEXTrend (discussed later)
can be plugged into the Sci2 tool to
support semantic analysis of scholarly
texts. Though National Science Foun-
dation funding for the NWB tool for-
mally ended in 2009, NWB’s function-
ality continues to increase, as plug-ins
developed for other tools become
available. Even if no project or agency
were to fund the OSGi/CIShell core for
some time, it would remain function-
al, due to it being lightweight and easy
to maintain. Finally, the true value of
OSGi/CIShell is due to the continu-
ously evolving algorithm filling and
the “custom tools” continuously devel-
oped and shared by domain scientists.

Over the past five years, a number of
projects have adopted OSGi (and in two
cases, CIShell):

˲˲ Cytoscape (http://cytoscape.org).
Led by Trey Ideker at the Univer-
sity of California, San Diego, this
open-source bioinformatics soft-
ware platform enables visualization
of molecular-interaction networks,
gene-expression profiles, and other
state data.15 Inspired by a workshop on
software infrastructures in July 2007
(https://nwb.slis.indiana.edu/events/
ivsi2007), Mike Smoot and Bruce W.
Herr implemented a proof-of-concept
OSGi-based Cytoscape core several
months later; OSGi bundles are avail-
able at http://chianti.ucsd.edu/svn/
core3. Once the new Cytoscape 3.0
core is implemented (projected mid-
2011), sharing plug-ins between the
NWB tool and Cytoscape will be much
easier, thereby extending the function-
ality and utility of both;

˲˲ Taverna Workbench (http://taver-
na.org.uk). Developed by the myGrid
team (http://mygrid.org.uk) led by
Carol Goble at the University of Man-
chester, U.K., this suite of free open-
source software tools helps design and
execute workflows,12 allowing users
to integrate many different software
tools, including more than 8,000 Web
services from diverse domains, in-
cluding chemistry, music, and social
sciences. The workflows are designed
in the Taverna Workbench and can
then be run on a Taverna Engine, in
the Workbench, on an external server,
in a portal, on a computational grid,
or on a compute cloud. Raven (a Tav-
erna-specific classloader and registry
mechanism) supports an extensible
and flexible architecture (with approx-
imately 20 plug-ins) but an imple-
mentation using an OSGi framework,
with alpha release was scheduled for
February 2011. The myExperiment
(http://myexperiment.org) social Web
site supports the finding and sharing
of workflows and provides special sup-
port for Taverna workflows9;

˲˲ MAEviz (https://wiki.ncsa.uiuc.
edu/display/MAE/Home). Managed by
Shawn Hampton of the National Center
for Supercomputing Applications, this
open-source, extensible software plat-
form supports seismic risk assessment
based on Mid-America Earthquake
Center research in the Consequence-
Based Risk Management framework.10
It also uses the Eclipse Rich Client
Platform, including Equinox, a com-

As the functionality
of OSGi/CIShell-
based software
frameworks
improves, and as
the number and
diversity of data-set
and algorithm
plug-ins increases,
so too will the
capabilities
of custom
macroscopes.

68 communications of the acm | march 2011 | vol. 54 | no. 3

contributed articles

ponent framework based on the OSGi
standard (https://wiki.ncsa.uiuc.edu/
display/MAE/OSGI+Plug-ins).

˲˲ TEXTrend (http://textrend.org). Led
by George Kampis at Eötvös Loránd
University, Budapest, Hungary, this
E.U.-funded project is developing a
framework for flexible integration,
configuration, and extension of plug-
in-based components in support of
natural-language processing, classifi-
cation/mining, and graph algorithms
for analysis of business and govern-
mental text corpuses with an inher-
ently temporal component.13 In 2009,
TEXTrend adopted OSGi/CIShell as
its core architecture and has since
added a number of plug-ins, includ-
ing: the Unstructured Information
Management Architecture (http://

under development is Dyneta, which
uses OSGi/CIShell as its core to sup-
port the study of dynamically evolving
networks. The tool is able to generate
networks corresponding to different
network models, execute a specific
event chain on them, and analyze the
interplay of network structure and
dynamics at runtime. The tool will be
used to develop a theory of spreading
in networks (such as HIV infections
and transmission of drug resistance).
An initial set of plug-ins is available
at http://egg.science.uva.nl/dynanets/
nightly/latest.

As the functionality of OSGi/CIS-
hell-based software frameworks im-
proves and the number and diversity
of data-set and algorithm plug-ins in-
crease, so too will the capabilities of
custom macroscopes.

Outlook
Instead of working at the Library of
Alexandria, the Large Hadron Col-
lider, or any of the world’s largest
optical telescopes, many researchers
have embraced Web 2.0 technology
as a way to access and share images
and videos, along with data sets, al-
gorithms, and tools. They are learn-
ing to navigate, manage, and utilize
the massive amounts of new data
(streams), tools, services, results, and
expertise that become available every
moment of every day. Computer sci-
entists can help make this a produc-
tive experience by empowering bi-
ologists, physicists, social scientists,
and others to share, reuse, combine,
and extend existing algorithms and
tools across disciplinary and geospa-
tial boundaries in support of scien-
tific discovery, product development,
and education. Computer scientists
will have succeeded in the design of
the “core architecture” if they are not
needed for the filling or bundling of
components into custom tools.

The Cyberinfrastructure for Net-
work Science Center (http://cns.iu.edu)
at Indiana University is working on
the following OSGi/CIShell core ex-
tensions, as well as on more effective
means for sharing data sets and algo-
rithms via scholarly markets:

Modularity. The OSGi/CIShell core
supports modularity at the algorithm
level but not at the visualization level.
Like the decomposition of workflows

The socio-technical design of plug-and-play software architectures involves major
decisions based on domain requirements to arrive at powerful tools and services:

•	� Division of labor. The design of a “core architecture” requires extensive computer
science expertise and a close collaboration with domain experts. Data-set and
algorithm plug-ins—the “filling”—are typically provided by domain experts most
invested in the data and knowledgeable about the inner workings and utility of
different algorithms. The design of “custom tools” is best performed by domain
experts, as only they have the expertise needed to bundle different plug-ins relevant
for diverse workflows. Technical manuals on how to use, improve, or extend the
“core” need to be compiled by computer scientists, while data-set, algorithm, and
tool descriptions are written by domain experts;

•	� Ease of use. As most plug-in contributions come from domain experts with limited
programming skills, non-computer scientists must be able to contribute, share, and
use plug-ins without having to write new code. What seems to work well is wizard-
driven integration of algorithms and data sets, sharing of plug-ins through email
and online sites, deploying plug-ins by adding them to the “plug-in directory,” and
running them via a menu-driven user interface, as in word-processing systems and
Web browsers;

•	 �Core vs. plug-ins. The “core architecture” and the plug-in filling can be implemented
as sets of plug-in bundles. Determining whether the graphical user interface,
interface menu, scheduler, and data manager should be part of the core or its filling
depends on the types of tools and services to be delivered;

•	� Plug-in content and interfaces. Should a plug-in be a single algorithm or an entire
tool? What about data converters needed to make the output of one algorithm
compatible with the input of another algorithm? Should they be part of the
algorithm plug-in? Should they be packaged separately? What general interfaces
are needed to communicate parameter settings, input, and output data? Answers
are domain-specific, depending on existing tools and practices and the problems
domain experts aim to solve;

•	� Supported (central) data models. Some tools (such as Cytoscape) use a central data
model to which all algorithms conform. Others (such as NWB and Sci2) support
many internal data models and provide an extensive set of data converters. The
former often speeds execution and visual rendering, and the latter eases integration
of new algorithms. In addition, most tools support an extensive set of input and
output formats, since a tool that cannot read or write a desired data format is usually
of little use by domain experts; and

•	� Supported platforms. Many domain experts are used to standalone tools (like MS
Office and Adobe products) running on a specific operating system. A different
deployment (such as Web services) is necessary if the software is to be used via Web
interfaces.

Desirable Features
and Key Decisions

incubator.apache.org/uima); the da-
ta-mining, machine-learning, classi-
fication, visualization toolset WEKA
(http://cs.waikato.ac.nz/ml/weka);
Cytoscape; Arff2xgmml converter; R
(http://r-project.org) via iGgraph and
scripts (http://igraph.sourceforge.
net); yEd (http://yworks.com); and the
CFinder clique percolation-analysis-
and-visualization tool (http://cfinder.
org). In addition, TEXTrend extended
CIShell’s workflow support and now
offers Web services to researchers.

˲˲ DynaNets (http://www.dynanets.org).
Coordinated by Peter M.A. Sloot at the
University of Amsterdam, The Nether-
lands, DynaNets is an E.U.-funded proj-
ect for studying and developing a new
paradigm of computing that employs
complex networks. One related tool

contributed articles

march 2011 | vol. 54 | no. 3 | communications of the acm 69

into algorithm plug-ins, it is algorith-
mically possible to modularize visual-
ization and interaction design. Future
work will focus on developing “visu-
alization layers” supporting selection
and combination of reference sys-
tems, projections/distortions, graphic
designs, clustering/grouping, and in-
teractivity.

Streaming data. The number of
data sets that are generated and must
be understood in real time is increas-
ing; examples are patient-surveillance
data streams and models of epidemics
that predict the numbers of suscepti-
ble, infected, and recovered individu-
als in a population over time. EpiC
tool development funded by the Na-
tional Institutes of Health contributes
algorithms that read and/or output
streams of data tuples, enabling algo-
rithms to emit their results as they run,
not only on completion. Data-graph vi-
sualizations plot these tuple streams
in real time, resizing (shrinking) the
temporal axis over time.

Web services. The OSGi/CIShell-
based tools discussed here are stand-
alone desktop applications support-
ing offline work on possibly sensitive
data, using a GUI familiar to target
users. However, some application do-
mains also benefit from online deploy-
ment of macroscopes. While the OSGi
specification provides basic support
for Web services, CIShell must still be
extended to make it easy for domain
scientists to design their own macro-
scope Web services.

Incentive design. Many domain
experts have trouble trying to use an
evolving set of thousands of possibly
relevant data sets compiled for specific
studies of inconsistent quality and cov-
erage, saved in diverse formats, and
tagged using terminology specific to
the original research domains. In addi-
tion, thousands of algorithms that sup-
port different functionality and diverse
input and output formats are written
in different languages by students and
experts in a range of scientific domains
and packaged as algorithms or tools
using diverse licenses. More-effective
means are needed to help domain ex-
perts find the data sets and algorithms
most relevant for their work, bundle
them into efficient workflows, and re-
late the results to existing work. Schol-
arly markets resembling a Web 2.0

Network Workbench Tool: User Manual 1.0.0., 2009;
http://nwb.cns.iu.edu/Docs/NWBTool-Manual.pdf

4.	B örner, K., Chen, C., and Boyack, K.W. Visualizing
knowledge domains. In Annual Review of Information
Science & Technology, B. Cronin, Ed. Information
Today, Inc./American Society for Information Science
and Technology, Medford, NJ, 2003, 179–255.

5.	B örner, K., Dall’Asta, L., Ke, W., and Vespignani,
A. Studying the emerging global brain: Analyzing
and visualizing the impact of co-authorship teams.
Complexity (Special Issue on Understanding Complex
Systems) 10, 4 (Mar./Apr. 2005), 57–67.

6.	B örner, K., Huang, W.B., Linnemeier, M., Duhon,
R.J., Phillips, P., Ma, N., Zoss, A., Guo, H., and Price,
M.A. Rete-Netzwerk-Red: Analyzing and visualizing
scholarly networks using the Network Workbench
tool. Scientometrics 83, 3 (June 2010), 863-876.

7.	 Cyberinfrastructure for Network Science Center.
Cyberinfrastructure Shell (CIShell) Algorithm
Developer’s Guide, 2009; http://cishell.wiki.cns.iu.edu

8.	 de Rosnay, J. Le Macroscope: Vers une Vision Globale.
Editions du Seuil. Harper & Row Publishers, Inc., New
York, 1975.

9.	 De Roure, D., Goble, C., and Stevens, R. The design
and realisation of the myExperiment Virtual Research
Environment for Social Sharing of Workflows. Future-
Generation Computer Systems 25 (2009), 561–567.

10.	E lnashai, A., Hampton, S., Lee, J.S., McLaren, T.,
Myers, J. D., Navarro, C., Spencer, B., and Tolbert, N.
Architectural overview of MAEviz–HAZTURK. Journal
of Earthquake Engineering 12, 1 Suppl.2, 01 (2008),
92–99.

11.	H err II, B.W., Huang, W.B., Penumarthy, S., and
Börner, K. Designing highly flexible and usable
cyberinfrastructures for convergence. In Progress in
Convergence: Technologies for Human Wellbeing, W.S.
Bainbridge and M.C. Roco, Eds. Annals of the New York
Academy of Sciences, Boston, 2007, 161–179.

12.	H ull, D., Wolstencroft, K., Stevens, R., Goble, C.,
Pocock, M.R., Li, P., and Oinn, T. Taverna: A tool for
building and running workflows of services. Nucleic
Acids Research (Web Server Issue) 34, Suppl. 2 (July
1, 2006), W729–W732.

13.	K ampis, G., Gulyas, L., Szaszi, Z., and Szakolczi, Z.
Dynamic social networks and the TEXTrend/CIShell
framework. Presented at the Conference on Applied
Social Network Analysis (University of Zürich, Aug.
27–28). ETH Zürich, Zürich, Switzerland, 2009.

14. Mons, B., Ashburner, M., Chicester, C., Van Mulligen, E.,
Weeber, M., den Dunnen, J., van Ommen, G.-J., Musen,
M., Cockerill, M., Hermjakob, H., Mons, A., Packer, A.,
Pacheco, R., Lewis, S., Berkeley, A., Melton, W., Barris,
N., Wales, J., Mejissen, G., Moeller, E., Roes, P.J.,
Börner, K., and Bairoch, A. Calling on a million minds
for community annotation in WikiProteins. Genome
Biology 9, 5 (2008), R89.

15.	S hannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang,
J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker,
T. Cytoscape: A software environment for integrating
models of biomolecular interaction networks. Genome
Research 13, 11 (2002), 2498–2504.

16.	S hiffrin, R. and Börner, K. Mapping knowledge
domains. Proceedings of the National Academy of
Sciences 101, Suppl. 1 (Apr. 2004), 5183–5185.

17.	S hneiderman, B. Science 2.0. Science 319, 5868 (Mar.
2008), 1349–1350.

18.	S hneiderman, B. The eyes have it: A task by data
type taxonomy for information visualizations. In
Proceedings of the IEEE Symposium on Visual
Languages (Boulder, CO, Sept. 3–6). IEEE Computer
Society, Washington, D.C., 1996, 336–343.

19.	T homas, J.J. and Cook, K.A., Eds. Illuminating the
Path: The Research and Development Agenda for
Visual Analytics. National Visualization and Analytics
Center, Richland, WA, 2005; http://nvac.pnl.gov/
agenda.stm

20.	W orld Bank and International Monetary Fund. Global
Monitoring Report 2009: A Development Emergency.
The World Bank, Washington, D.C., 2009.

Katy Börner (katy@indiana.edu) is the Victor H. Yngve
Professor of Information Science at the School of Library
and Information Science, Adjunct Professor at the School
of Informatics and Computing, and Founding Director
of the Cyberinfrastructure for Network Science Center
(http://cns.iu.edu) at Indiana University, Bloomington, IN.

© 2011 ACM 0001-0782/11/0300 $10.00

version of Craigslist.org can help ease
the sharing, navigation, and utilization
of scholarly data sets and algorithms,
reinforcing reputation mechanisms
by, say, providing ways to cite and ac-
knowledge users who share, highlight
most downloaded and highest-rated
contributions, and offer other means
for making data sets, algorithms, work-
flows, and tutorials part of a valued
scholarly record.

Acknowledgments
I would like to thank Micah Linnemei-
er and Russell J. Duhon for stimulating
discussions and extensive comments.
Bruce W. Herr II, George Kampis,
Gregory J. E. Rawlins, Geoffrey Fox,
Shawn Hampton, Carol Goble, Mike
Smoot, Yanbo Han, and anonymous
reviewers provided valuable input
and comments to an earlier draft. I
also thank the members of the Cyber-
infrastructure for Network Science
Center (http://cns.iu.edu), the Net-
work Workbench team (http://nwb.
cns.iu.edu), and Science of Science
project team (http://sci2.cns.iu.edu)
for their contributions toward this
work. Software development benefits
greatly from the open-source commu-
nity. Full software credits are distrib-
uted with the source, but I especially
acknowledge Jython, JUNG, Prefuse,
GUESS, GnuPlot, and OSGi, as well as
Apache Derby, used in the Sci2 tool.
This research is based on work sup-
ported by National Science Founda-
tion grants SBE-0738111, IIS-0513650,
and IIS-0534909 and National Insti-
tutes of Health grants R21DA024259
and 5R01MH079068. Any opinions,
findings, and conclusions or recom-
mendations expressed here are those
of the author and do not necessarily
reflect the views of the National Sci-
ence Foundation. 	

References
1.	A tkins, D.E., Drogemeier, K.K., Feldman, S.I., Garcia-

Molina, H., Klein, M.L., Messerschmitt, D.G., Messian,
P., Ostriker, J.P., and Wright, M.H. Revolutionizing
Science and Engineering Through Cyberinfrastructure.
Report of the National Science Foundation Blue-Ribbon
Advisory Panel on Cyberinfrastructure. National
Science Foundation, Arlington, VA, 2003.

2.	B örner, Katy. Atlas of Science: Visualizing What
We Know. MIT Press, Cambridge, MA, 2010;
supplemental material at http://scimaps.org/atlas

3.	B örner, K., Barabási, A.-L., Schnell, S., Vespignani, A.,
Wasserman, S., Wernert, E.A., Balcan, D., Beiró, M.,
Biberstine, J., Duhon, R.J., Fortunato, S., Herr II, B.W.,
Hidalgo, C.A., Huang, W.B., Kelley, T., Linnemeier, M.W.,
McCranie, A., Markines, B., Phillips, P., Ramawat, M.,
Sabbineni, R., Tank, C., Terkhorn, F., and Thakre, V.

