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Abstract 
 
This paper reports challenges and opportunities that arise when introducing advanced data 
analysis and visualization techniques to science policy practice. It discusses a rich set of 
practical questions that could be answered using existing tools and presents first results from an 
exemplary analysis of MEDLINE Publication Output by the National Institutes of Health (NIH) 
using nine years of ExPORTER data. We conclude with suggestions on how to improve the 
transfer of academic expertise and tools to science policy practice. 
  
Challenges and Opportunities 
 
The transfer of advanced data mining and visualization algorithms and tools developed in 
academia to science policy practice poses major challenges. Among the challenges are data 
access and privacy issues (familiarity with the data is key to developing and testing meaningful 
tools and workflows, but data can be highly sensitive); software certification and installation 
needs (new algorithms become available continuously, tool development is iterative); as well as 
workload priorities and practices (Most agency staff have regular work hours and may have 
competing responsibilities and duties). Successful adoption of new analytical techniques by 
agencies requires sufficient time be carved out for staff to be trained and apply what they have 

learned.  Researchers need to teach, conduct 
their own research, and do service at their 
institutions. Researchers aim to publish their 
results in peer-reviewed publications. Science 
policy analysts have to respond to a large 
number of public and internal requests via 
reports and presentations. 

Here, we present lessons learned and first 
results achieved when introducing the National 
Science Foundation (NSF)-funded Science of 
Science (Sci2) Tool to the Reporting Branch of 
the Office of Extramural Research at the NIH 
(National Institutes of Health, 2010a, 2010b).  
The NIH Reporting Branch conducts analyses 
of NIH-supported research projects and 
investigators to support NIH policy development 
and to communicate the impact of NIH’s 
research investments—about $30 billion 
annually—to a wide range of audiences, 
including the extramural research community, 

  
 
Figure 1.  Distribution of Stakeholders Served 
by the Reporting Branch in 2009 
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Congress, the media, and the public (see Figure 1).  The Branch completed 887 requests in 
2009, including custom, ad-hoc analyses as well as mandatory, recurrent reports, many of 
which are published on NIH’s website (see http://report.nih.gov).  These analyses spanned a 
wide range of topics including research grant application success rates and individual 
investigator funding rates broken down by first time versus experienced investigator status, age, 
gender, and NIH funding Institutes and Centers (ICs); the distribution of awards and dollars by 
different grant mechanisms (e.g., research centers and individual research projects), NIH 
funding ICs, awardee institutions, geography and Congressional districts; and the effect of NIH 
training support on subsequent success in obtaining a NIH major research grant award.  The 
Branch was seeking new tools and methods to make analysis results more accessible to a 
broader audience through visualizations. 

The Branch also wanted to learn techniques to provide new insights about how NIH-
supported research and investigators contribute to the creation of biomedical knowledge and  
improve health.  In particular, the Branch was interested in new analysis and visualization 
methods that could extract, analyze, and display research collaborations and networks, and 
characterize the relationships between NIH funding, the scientific workforce and its institutions, 
research projects and topics, research outputs such as publications and patents, and research 
impacts across different biomedical disciplines, time, and places.  The Branch became aware of 
Professor Börner’s work and tools in these areas, and invited her to provide training and 
collaborate on research via the Intergovernmental Personnel Act (IPA) Mobility Program.  In 
July 2010, Professor Börner visited NIH for 12 days, developing and delivering 12 two-hour 
tutorials to teach the utility and usage of different data analysis and visualizations tool as well as 
data infrastructures. The tutorials were attended by about 20 individuals, including staff 
members of the Reporting Branch and other NIH colleagues.  

Below, we provide an overview of the tutorial series, discuss promising analyses workflows, 
present the results of a first joint analysis on research topic coverage and topic evolution of NIH 
supported research, and list a set of suggestions on how to best transfer expertise and tools 
developed in academic settings into research policy practice.  
 
12 Tutorials in 12 Days 
 
The Cyberinfrastructure for Network Science Center (http://cns.slis.indiana.edu) at Indiana 
University has conducted research on the structure and dynamics of science for 10 years; 
curates the international Mapping Science exhibit (http://scimaps.org); and develops large scale 
scholarly databases and open source tools for the study of science by scientific means.  The 
above mentioned 12 tutorials were designed and taught in an attempt to communicate science 
of science research and tools to the Branch.   

The first three tutorials introduced science of science research, information visualization 
principles, and modular tools that support the continuous plug-and-play of new analysis and 
visualization algorithms as they become available.  

The subsequent six tutorials used two plug-and-play tools—the Network Workbench Tool 
(http://nwb.slis.indiana.edu) designed for the study of networks and the Sci2 Tool 
(http://sci.slis.indiana.edu/sci2) optimized for science of science research and practice. Both 
tools come with extensive tutorials (Börner et al., 2009; Weingart et al., 2010) and are actively 
used in science of science research and practice. The tutorials taught and exemplified diverse 
temporal, geospatial, topical, and network analyses and visualizations of datasets at the micro 
(individual), meso (local), and macro (global) levels. A main teaching objective aimed to convey 
differences and commonalities of questions and corresponding analyses and visualizations. For 
example, “when” questions are commonly addressed via temporal analyses, “where” questions 
often involve the application of geospatial methods, “what” questions require topical analyses, 
“with whom” questions are often answered via network studies, and “how” questions help us 
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understand the process by which a certain structure or dynamics came into existence and 
models are used to replicate and validate these processes. NIH data were used in hands-on 
sessions together with algorithm plug-ins specifically developed for this tutorial series. 

Tutorials 10 and 11 discussed data infrastructures such as the Scholarly Database at 
Indiana University (http://sdb.slis.indiana.edu) that supports the federated search of 25 million 
publication, patent, and grant records (La Rowe, Ambre, Burgoon, Ke, & Börner, 2009) and the 
NIH-funded VIVO National Network of Researchers (http://vivoweb.org). The series concluded 
with an outlook of promising future development and collaboration opportunities in tutorial 12.  

All slides have been made freely available online at (http://sci.slis.indiana.edu/sci2).  Tutorial 
participants provided structured feedback on the tutorials’ format; engaged in daily exercises on 
the utility of the presented analyses, visualizations, and workflows for their work; and 
participated in a brainstorming session and subsequent prioritization of promising analyses. 

The comments and feedback provided by tutorial participants resulted in 44 concrete 
candidate analysis ideas from participants, relevant to understanding NIH’s research 
investments and impact.  The brainstorming session generated an additional 30 analysis ideas 
for consideration. From the brainstorming session, about a third each of the proposed ideas 
involved topical (N=11) or network (N=10) analyses, while the remainder were temporal (N=6) 
or geospatial analyses (N=3); these proposals were nearly evenly divided between 
enhancements of the Branch’s previous analyses with the new visualization tools (N=16), and 
totally new research questions for the Branch that were difficult or impossible to answer without 
these new tools (N=14). These ideas ranged from highly specific inquiries on specific diseases 
to the broadest questions of NIH’s impact on the scientific community and health.  

The 12 tutorials provide a knowledge foundation and tool resources to pursue about 80% of 
the identified analyses using existing expertise, datasets, and tools. The remaining 20% would 
require further refinement, additional expertise, data acquisition and/or cleaning, or 
programming to implement new data readers, analysis algorithms, or visualizations.    

The Reporting Branch and Professor Börner identified one particularly relevant analysis and 
first results are presented in the subsequent section. 

 
First Post-Tutorial Collaborative Analysis:  MEDLINE Publication Output by NIH 
 
Research Questions.  We sought to answer:  (1) What fields of science are covered by 
publications that acknowledge NIH extramural grant funding and how have the fields evolved 
from 2001-2009?  (2) What is the time lag between NIH grant awards being made and papers 
being published and what is the probability distribution for the number of papers per project? 
 
Methods. This funding input-paper output analysis is based on publically available data from 
the Research Portfolio Online Reporting Tools (RePORT) Expenditures and Results 
(RePORTER, see http://projectreporter.nih.gov/reporter.cfm), an electronic tool appearing on 
the NIH RePORT website (see http://www.report.nih.gov). RePORTER allows the public to 
search a repository of NIH-funded research projects–including grants, contracts and intramural 
projects–and resultant publications and patents.  RePORTER also includes research projects 
from the Agency for Healthcare Research and Quality, Centers for Disease Control and 
Prevention, Health Resources and Services Administration, Substance Abuse and Mental 
Health Services Administration, Food and Drug Administration, and the Department of Veterans 
Affairs.  ExPORTER, online at http://projectreporter.nih.gov/exporter/ExPORTER_Catalog.aspx, 
enables users to download RePORTER data in bulk including linkage data between NIH base 
awards and MEDLINE publications.  The automated linkage is accomplished with an electronic 
tool. 

Note that RePORTER Project Data has full project number records, while RePORTER 
Publications Link Tables contain associated base projects to MEDLINE publications. A base 
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project is defined as the same funded research project over its lifecycle, regardless of how 
many award transactions occur for that project.  Unlike some other federal agencies such as the 
NSF, the NIH issues a separate record for each award transaction.  In addition, if a grant has 
subprojects, each will have its own record.  Thus, a base project will have many records in 
RePORTER, e.g., “P” grants are center grants with many subprojects over many years. For NIH 
grants, each transaction associated with a base project has: 1) a prefix which indicates the type 
of award (e.g., new or continuation), 2) a unique identifier, comprised of the grant activity code 
(e.g., R01), administering NIH IC, and serial number, and 3) a suffix, which indicates the support 
year and application submission status (e.g., first submission or later resubmission) as well as 
whether the award is a supplement or a fellowship’s institutional allowance.  Those grants with 
subprojects have an additional unique subproject identifier.  The unique identifier (described in 
2) above) is the component which is used to identify the base project. 

The data were further restricted to all NIH extramural grants, including new, renewal and 
continuation grants, with a budget start date in federal fiscal years of 2001 through 2009.  
Budget start date rather than award date was selected because the latter was not available for 
all years in the ExPORTER downloads.  The nine years of data were then split into three three-
year time periods using a disjoint approach: 2001-2003, 2004-2006, and 2007-2009, and a 
cumulative approach: 2001-2003, 2001-2006, and 2001-2009. 

Publication output for these grants as well as time lags (in years) between the year of new 
(also known as type 1) grant awards and their resultant publications were examined for these 
three time slices.  The University of California, San Diego (UCSD) Map of Science is used to 
associate papers with major fields of science. The UCSD base map was created using 7.2 
million papers published in over 16,000 separate journals, proceedings, and series from 
Thomson Scientific and Scopus over the five year period from 2001 to 2005 resulting in a rather 
stable layout (Klavans & Boyack, 2007). The 554 individual areas of science in this map 
represent groups of journals that are further grouped into 13 general disciplines such as 
Mathematics and Physics (for the full list, see Table 1 and Figure 2). Note that there are 13 
proper disciplines and one "Multiple Categories" category for journals, e.g., Science and Nature, 
which are interdisciplinary enough to fall under the umbrella of more than one discipline.    

A set of papers is “science-located” by matching paper journal names to the 554 science 
map node journal names and size coding the science map nodes by the number of matching 
publications. Some journals are interdisciplinary enough to fall under the umbrella of more than 
one field.  In this case, the journal is fractionally assigned to multiple nodes.  For example, 
"Atmospheric Environment" is associated with 56 of the 554 fields.  For each occurrence of 
"Atmospheric Environment", we increase the total for a node by one divided by 56 times a field 
specific weight for that journal, e.g., "Protein Science" by 0.015625, "Solar & Wind Power" by 
0.03125, etc.  There is no averaging, only sums.  
 
Results.  From ExPORTER, we downloaded all RePORTER Project Data for fiscal years 2001-
2009 (updated on 05/10/2010) as well as RePORTER Publications from MEDLINE and 
RePORTER Publications Link Tables (files for fiscal years 2005-2010 and 2000-2004 were last 
updated on 03/09/2010 and 07/30/2010, respectively).  Records from other agencies were 
excluded, resulting in 174,872 NIH base projects. This dataset was then further restricted to 
163,246 extramural grant base projects, omitting intramural projects, inter-agency agreements, 
and contracts.  Next, the dataset was restricted to 147,625 base projects with a budget start 
date of October 1, 2000 to September 30, 2009, corresponding to federal fiscal years of 2001 
through 2009.  Cross validation of the 147,625 base projects with internal data available to the 
NIH Reporting Branch revealed that 535 full project numbers (corresponding to 84 out of 
147,625 base projects) could not be found in the NIH internal database and 701 full project 
numbers (corresponding to 147 base projects) from the NIH internal data could not be found in 
the NIH RePORTER data. The great majority of these mismatches were due to changes to the 
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award records after the ExPORTER downloads were created (personal communication with Dr. 
James Onken, NIH, 10/05/2010).  After excluding the 84 unmatched projects, the total number 
of base projects used in subsequent analyses of all grants was 147,541.   

A total of 94,074 or 64% of these 147,541 base projects had 976,572 links to 543,440 
MEDLINE papers. These papers were designated to publication year (publication month or day 
is not available for all publications).  For each base project, only publications that had a 
publication year identical or later than its budget start date were included.  For base projects 
with a budget start date between October 1-December 31, 2000, only papers published in 2001 
and later were included.  In addition, for new type 1 awards whose budget start dates fell 
between October 1-December 31, only publications beginning in the next calendar year and 
beyond were included (e.g.,  only publications from January 1, 2006 and later would be included 
for new awards with budget start dates of October 1-December31, 2005).  We applied a time lag 
for new projects awarded in the last quarter of the year because we assumed most publications 
from the same calendar year were published earlier in that year.   The resulting 499,322 
MEDLINE papers we evaluated were all published between January 1, 2001 to December 31, 
2009. For these publications, there were 901,263 base project-MEDLINE linkages. We refer to 
this dataset as NIH-9FY. 

 
To answer (1) What fields of science are covered by publications that acknowledge NIH 
extramural grant funding and how have the fields evolved over 2001-2009?, we divided the 
dataset into the following five time subsets, corresponding to the three study time periods, 
evaluated separately and cumulatively: 
 
Name  Duration in Years (Dates)________________ #  of Papers 
I   01-03 (January 1, 2001 to December 31, 2003)  122,660   
II   01-06 (January 1, 2001 to December 31, 2006) 294,053   
III   01-09 (January 1, 2001 to December 31, 2009) 499,322   
IV   04-06 (January 1, 2004 to December 31, 2006)  171,393   
V   07-09 (January 1, 2007 to December 31, 2009) 205,269   
 

Using datasets I-III, UCSD science map overlays were generated using information on the 
publication venue of each paper, representing cumulative growth in knowledge generation over 
the three study time periods.  Here, publication venue refers to the outlet in which the paper was 
published, e.g., a journal name. The Sci2 Tool (http://sci.slis.indiana.edu/sci2) was applied to 
generate a topical map for each time slice using the UCSD science map. The UCSD science 
map overlays, given in Figure 2, show the evolution of biomedical research as represented by 
the scientific outputs (papers) that acknowledge NIH funding. A circle is drawn at the position of 
a scientific field, if this field has produced papers. The area size of the circle corresponds to the 
number of published papers.  

The individual areas of science with the largest number of publications citing NIH support 
were Clinical Cancer Research with 36,143 papers followed by Neuroscience; Molecular & 
Cellular (26,467 papers), Protein Science (20,875 papers), and Immunology (18,882 papers).  
Some areas such as BioStatistics in the top right corner of the map experienced considerable 
growth as evidenced by the size increase from yellow to red to blue circles for that area (see 
Figure 2).  

Scientific fields were further aggregated into 13 disciplines of science that are labeled and 
shown in Table 1. Custom code was used to extract numerical values for the number of 
publications in the 13 major disciplines and the 554 areas of science. Table 1 shows the 
publication counts as well as changes in the number of publications by major discipline over 
time in raw numbers and in percentages, and is based on datasets I, IV, and V. 
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Table 1: Changes in the number of publications in the 13 major disciplines from 2001-2009.  
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Biology  2,079 3,073 3,520 48%  15%  69%

Biotechnology  2,750 4,865 6,380 77%  31%  132%

Brain Research  17,040 23,244 25,910 36%  11%  52%

Chemical, Mechanical, & Civil Engineering  144 315 615
119
%  95%  327%

Chemistry  2,989 5,232 6,395 75%  22%  114%

Earth Sciences  11 15 16 36%  7%  45%

Electrical Engineering & Computer Science  597 1,183 1,716 98%  45%  187%

Health Professionals  15,383 23,431 29,148 52%  24%  89%

Humanities  6 18 29
200
%  61%  383%

Infectious Diseases  37,825 49,002 53,288 30%  9%  41%

Math & Physics  353 741 1,023
110
%  38%  190%

Medical Specialties  25,351 34,409 39,361 36%  14%  55%

Social Sciences  2,154 3,697 5,109 72%  38%  137%

Multiple Categories  14,196 16,680 17,358 17%  4%  22%

Unrecognized  1,782 5,498 15,401
208
% 

181
%  764%

Total 
122,66

0
171,39

3
205,26

9 40%  20%  67%
 

From Table 1, it is evident that the NIH-supported research knowledge output, as measured 
by the total number of publications, has increased in each successive time period, but the 
growth rate was higher in 2004-2006 at 40% than in 2007-2009 at 20%, when compared to the 
immediately preceding time period.  This same pattern of peak growth in 2004-2006 followed by 
diminished growth in the later time period was also observed for each of the 13 specific 
disciplines as well as the “Multiple Categories” field.   It is likely that the doubling of the NIH 
budget from 1999 to 2003, which greatly increased the number of grants awarded by NIH  -- 
from 43,259 in 2000 to a peak of 52,789 in 2004 -- contributed to the jump in publications in the 
2004-2006 time period.  After 2003, NIH’s budget remained approximately level, as did the 
number of annually awarded grants, which might account for the slower rate of growth of 
publications in 2007-2009 (for NIH grant award totals in 2000-2009  see 
http://report.nih.gov/FileLink.aspx?rid=569 accessed on 10/07/2010).   

Two disciplines represented nearly half of the research outputs:  Infectious Diseases 
included 140,115 or 28% of all publications, followed by Medical Specialties, which had 99,121 
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or 20% of the total.  Health Professionals and Brain Research were associated with 
approximately the same number of publications over the nine years (67,962 and 66,194, 
respectively), but rate of growth for the former discipline was substantially higher than that for 
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Figure 2: UCSD Map of Science with three data overlays for 2001-2003 (yellow), 2001-2006 
(orange), and 2001-2009 (dark red). The largest circle represents 36,143 papers. 
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the latter over time.  Multiple Categories, reflecting interdisciplinary research, represented 
another 48,234 or 10% of all publications.  All the remaining disciplines, including the physical 
and social sciences and humanities, had far lower topic coverage as measured by the total 
number of publications.  However, these low coverage topic area had some of the greatest 
overall growth over 2001-2009 (e.g., the growth rate was 383% for the Humanities, 327% for 
Chemical, Mechanical and Civil Engineering, 190% for Math and Physics, and 187% for 
Electrical Engineering and Computer Science), reflecting the increasingly transdisciplinary  
nature of biomedical research. 

Of note, a non-trivial number of publications could not be mapped to any discipline, 
especially those appearing in the 2004-2006, and 2007-2009 literature.  This was due, in part, to 
publications in new journals established after 2005, the last year of journals included in the 
UCSD science map.  For example, 1816 PLoS One, 1670 Biochem Biophys Acta, 759 Conf 
Proc IEEE Eng Med Biol Soc, 453 PLoS Genet, and 439 PLoS Pathog could not be science-
located on the UCSD science map.  
 
To answer (2) What is the time lag between NIH grant awards being made and papers 
being published and what is the probability distribution for the number of papers per 
project?, we performed the following analysis. 

The NIH-9FY dataset was restricted to new grant (Type 1) awards made in fiscal years 
2001-2009 (October 1, 2000 to September 30, 2009). For each new grant, we identified 
associated MEDLINE papers that occurred in the year of earliest budget start date and 
subsequent calendar years through 2009 with one exception:   for the subset of new awards 
whose budget start date fell in the last three months of the calendar year (October 1-December 
31). We excluded publications from that year because most publications from the same 
calendar year were presumed to have been published prior to last quarter of the year (in other 
words, we applied a time lag of one year for all projects awarded October 1-December 31). This 
nine year dataset was the again split into three time periods covering new awards made in fiscal 
years 2001-2003 (resulting in 171,920 papers through 2009), 2004-2006 (resulting in 104,842 
papers through 2009), and 2007-2009 (resulting in 27,415 papers through 2009). For each time 
period, we retrieved the number of papers produced per new project (i.e., new award), and 
plotted the results (see Figure 3).   

Figure 3 clearly shows that grants made earlier had more time to generate papers.  For 
the oldest projects (new awards made in 2001-2003), the median (25%, 75%) of publications 
generated was 5 (2, 10), with a minimum of one and maximum of 426 publications.  For the next 
oldest projects (new awards made in 2004-2006), the median (25%, 75%) of publications 
produced was 3 (2, 7), with a minimum of one and maximum of 205 publications.  The youngest 
projects (new awards made in 2007-2009), generated far fewer publications with a median 
(25%, 75%) of 2 (1, 3), a minimum of one and maximum of 101 publications. 

A further examination of how many years it took new awards to generate their first 
publication revealed a remarkably consistent pattern.  For each of fiscal years 2001 to 2003, 
approximately 11% of new grants made that year were cited by their first paper in first year of 
funding, about another 30% of new grants were cited by their first paper in the second year of 
funding (which was the peak or mode of the distribution) while still another 23% were cited by 
their first paper in the third year of funding, with the remainder of first citations made in later 
years.  A similar pattern was observed for new grants made in later fiscal years, with the second 
year of funding always being the most frequent in which a first publication appeared in the 
literature (except for new 2009 awards which had only one year of follow-up).  This pattern may 
further explain why the peak growth in publications occurred in 2004-2006, immediately after the 
doubling of the NIH budget, which ended in 2003. 
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Paper Distribution for Type 1 Projects
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Figure 3: Number of papers per base project for new (Type 1) awards made in fiscal years 
2001-2003 (yellow), 2004-2006 (red), and 2007-2009 (blue).  Number of papers and projects 
shown on a log scale. 
 
Discussion.  These initial analyses provide insight into the research topics of the knowledge 
generated by NIH’s extramural grant support over a nine year period.  The areas of greatest 
topic coverage—Infectious Diseases, Medical Specialties, Health Professionals and Brain 
Research--coincide well with NIH’s large investments in research grants focusing on infectious 
diseases and related topics (including HIV/AIDs and vaccine research), clinical research and 
clinical trials, and neurosciences, brain disorders and neurodegenerative diseases as described 
by NIH’s Research, Condition and Disease Categories system, which is based on a 
sophisticated text mining tool (see http://report.nih.gov/rcdc/categories).   
 Our findings also demonstrate that NIH’s contribution to scientific knowledge, as 
measured by number of publications, has been increasing over the last decade.  Our temporal 
analyses suggest that this growth is likely related to the substantial increase in grant awards 
associated with the doubling of the NIH budget over 1999-2003, which slowed down with the 
subsequent leveling of grant awards made in more recent years.  

 Our analyses also begin to shed light on the efficiency of knowledge production from 
NIH grant support.  NIH-supported investigators quickly generate publications they link to their 
grant support.  Amongst new grants which generated any publications and had sufficient years 
of follow-up to observe the majority of publication outputs (5 years), we found that approximately 
two-thirds of them were cited by papers published within the first three years of initial project 
funding.  While it is possible that some of these early citations reflect work conducted prior to 
receiving support for the cited grant, these data suggest NIH grantees are highly productive.   

Taken together, these initial results provide a baseline from which to conduct more detailed 
studies that may provide greater depth and insight into NIH’s research enterprise and its impact 
on improving health.  Future analyses can also be compared to similar research being 
conducted by others. As an example, our work complements the topic maps based on NIH-
funded extramural grants already created and supported by NIH’s National Institute of 
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Neurological Diseases and Stroke and National Institute of General Medical Science (see 
http://www.nihmaps.org).  

This study has some limitations.  As noted above, the UCSD science map is based on 
journals in existence from 2001-2005, and thus may not include the most recent emerging fields 
of science.  Also, the more recent grants in our study period have not had sufficient follow up 
time to generate all of the expected publications suggested by our temporal analyses of the 
entire nine year period.  While we considered earlier start and end dates for our study period to 
allow all grants to have at least five years of post-funding follow-up time, we ultimately rejected 
this strategy because this would introduce another problem: it is generally accepted that 
publications from earlier years were less likely to cite their grant support. 
 
Suggestions for Acquiring New Analytic Skills 
 

From the perspective of the visiting scholar (Dr. Börner), twelve days are very little time to 
get to know new colleagues and their expertise; to obtain security clearance, to gain access, 
and to understand internal agency data; to develop, test, and document new workflows that 
address the specific needs of the Reporting Branch; to specify, implement, and start using new 
algorithm plug-ins developed on a short timeline at the Cyberinfrastructure for Network Science 
Center; and to adapt to different work culture and practice.   

From the perspective of a federal agency unit (the Reporting Branch), the intense tutorial 
schedule (two hours per day, twelve days in a single month) had significant advantages but also 
some drawbacks.  The advantages included near daily exposure to the tools and hands-on 
practice during the tutorial sessions, and immediate, local access to the instructor/scholar while 
in residence at NIH.  Feedback solicited from the tutorial participants was very effectively used 
by the instructor/scholar in real-time to improve the subsequent classes.  However, the tutorials 
compressed a semester’s worth of material into a month.  Each tutorial presented completely 
new material and tools, unfamiliar to most participants, leaving little time to completely absorb 
what had just been learned.  To master these new tools, significant time outside of class was 
needed to study the theories and their practical applications.  In particular, more time was 
needed to learn how to “read” and recognize significant patterns and other information 
contained in these novel visualizations, such as tree maps or social network analyses, which 
are unknown to many researchers.  Because the Reporting Branch has a heavy, and often 
unpredictable workload in responding to frequent, urgent requests, it proved challenging to 
spend as much time as desired outside of the classroom to practice using the tools during the 
month Dr. Börner was at NIH. Other agencies embarking on a similar training arrangement, 
might consider arranging for a semester sabbatical visit, if feasible.   

Despite these limitations, the Reporting Branch staff has begun to apply these visualization 
tools in its work, thanks in part to the excellent archive of training materials provided, interest in 
the Branch and from another NIH IC in conducting joint projects, and the continued collaboration 
with Dr. Börner and her research team after she returned to Indiana University. Dr. Börner’s 
team has implemented an “Ask an Expert” web site where Sci2 Tool info requests can be 
submitted/processed in a structured way. This way, a formal process is in place to request 
expert comments on a planned, in progress, or completed analysis; to inquire about specific 
algorithms or workflows; or to get estimates for new algorithm plug-in, e.g., a reader for a new 
data format. 

We look forward to testing and improving existing, new, and planned extensions of the tools 
and analysis workflows, and to further improve the transfer of expertise and tools from 
academia to science policy practice.  
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