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Abstract 
This paper presents a technical description of the 

methods used to generate an interactive, two-
dimensional visualization of 60,568 grants funded by the 
National Institutes of Health in 2007. The visualization is 
made intelligible by providing interactive features for 
assessing the data in a web-based visual browser, see 
http://www.nihmaps.org. The key features include deep 
zooming, selection, full-text querying, overlays, color-
coding schemes, and multi-level labeling. Major insights, 
broader applicability, and future directions are 
discussed. 
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1. Introduction 

Within successful biomedical research, there are two 
elements that accompany every project: proposals and 
publications. Finding ways to analyze these elements in a 
framework that is intuitive and convenient for biologists 
is a very difficult undertaking. The scope and range of 
on-going projects and related data sets are not easily 
identifiable, let alone computable within large-scale 
analyses.  

By providing a gestalt-like frame of reference and an 
expeditious visual entry point for large information 
spaces that is not available via textual reports, 
spreadsheets, or database results, visualization is now 
well established as both an academic discipline and a 
tool for improving scientific research.  It is already well 
entrenched in the biomedical community where it is used 
to facilitate, enhance, and drive analytical and decision-
making processes [1].  

In this case study, we present a technical description 
of an interactive mapping tool based on a comprehensive 
collection of abstracts from proposals funded by the 
National Institutes of Health (NIH). The data provides a 
significant view of federally funded biomedical research 
extant within the United States. The primary purpose of 
this tool is to provide NIH administrators, portfolio 

analysts, program officers, and researchers an intuitive, 
easy-to-use tool for navigating and analyzing large-scale 
funding data. 

 Although still in development, this tool currently 
provides: 

• an orthogonal view of the entire collection 
• a zoom-able component for viewing 

iteratively smaller sub-sets of the collection 
• an interactive interface for selecting groups 

of documents for analysis 
• a system of layers, overlays, color-coding 

schemes, and labels  
• selection components for various fields 

such as institute, topic, or keyword 

2. Data 

The data used for textual analysis were titles and 
abstracts from NIH grants funded in 2007.  In addition, 
we extracted information on Principal Investigator and 
funding Institute or Center (from among 27 distinct NIH 
Institutes and Centers) for each grant.  The data is 
publically available on the NIH website [2] (specific 
project data available on request). After removing 
duplicate abstracts (~1% of the corpus) and grants with 
no abstracts (~10%), we analyzed a total of 60,568 
abstracts associated with 25 separate Institutes.  

3. Technique  

3.1. Topic Modeling 

We used topic modeling [3] to analyze the NIH 
abstracts, and to provide a robust means for computing 
similarities between abstracts.  The topic model is a 
state-of-the-art Bayesian statistical machine learning 
technique for modeling collections of text documents.  
The intuition behind the topic model is that individual 
documents exhibit multiple concepts or topics.  The topic 
model simultaneously learns a set of topics that together 
describe a collection, and the mixture of topics within 
each document in the collection.  These topics – which 
are learned automatically from the data with no prior 
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knowledge – are usually semantically meaningful, and 
highly interpretable. 

While the topics themselves produce a useful 
taxonomy or ontology to categorize individual abstracts, 
they also provide a reliable basis for computing 
similarity between any two abstracts.  We ran a total of 
six independent topic models, initially learning T=200, 
T=400 and T=600 topics (each topic setting was run 
twice from different random initial conditions).  The 
topic models were learned using Gibbs sampling, a 
standard technique for this model [5].  For each of the six 
runs, the Gibbs sampler was run for 500 iterations.  At 
the end of 500 iterations, very similar topics in each run 
were manually merged using hierarchical agglomerative 
clustering, resulting in models having T = 183, 186, 343, 
349, 529 and 535 topics.  These six topic models were 
run for a further 500 iterations of the Gibbs sampler to 
reach stationarity. 

3.2. Document Similarity 

 The layout and visualization of the 60,568 grants is 
completely based on pair-wise similarities computed for 
each pair of grants.  While we did compute all 2 billion 
similarities, we only kept similarities that were above a 
threshold.  Since there is no gold standard for measuring 
similarity between two text documents, we took a multi-
resolution approach of computing a similarity score 
based on general and specific similarity. This was 
achieved by computing the similarity based on all six 
topic model runs, with topic resolutions ranging from 
183 to 535 topics. Averaging over six different topic 
model runs also improves the similarity estimate. 

The input to the graph layout algorithm is a list of 
pairs of nodes with an associated weight, given by the 
similarity. We computed the similarity between grant 
abstracts di and dj using the average symmetric Kullback-
Leibler divergence function [6], computed using the 
respective mixtures of topics Pr(t| di), and Pr(t| di): 
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This symmetric version (denoted by *) of KL-divergence 
was converted to a [0,1] similarity for input into the 
graph layout algorithm, which is described in the next 
section. 

3.3. Graph Layout - DrL 

Layout is a critical factor in all visualization 
applications, especially for large-scale data sets. For 
laying out the data, the Distributed Recursive Graph 
Layout (DrL) algorithm developed by Shawn Martin was 
used for the data [7]. At its core, DrL is a force-directed 
layout algorithm based on VxOrd [8] and optimized for 
large graphs. It offers both a parallel and sequential 
version of the above force-directed algorithm, a recursive 
multi-level version for very large graphs, and the ability 
to add new nodes to a previously drawn graph.  

DrL is ideally suited for large graphs; meaningful 
results have been obtained on graphs with up to 2 million 
nodes [23]. The input for DrL is a similarity network 
where the weight of each edge in the network represents 
how similar the two connected nodes are. When DrL is 
run, it produces a 2d layout where nodes that are similar 
are placed close to one another. This typically results in 
local clustering of related nodes and a global structure of 
related clusters. 

For this project, quite a bit of time was spent on 
getting a good layout. This is due to the fact that there 
are so many variables in topic generation, grant-grant 
distance computation (0 is identical, infinity is very 
dissimilar), distance to similarity conversion (0 is 
dissimilar, 1 is very similar), and layout parameters. A 
change in parameters at any of these stages could 
drastically alter the layout. Further, we wanted the layout 
to come out where major research areas are strongly 
clustered with strands of grants between clusters 
representing ‘bridges’ which consist of projects laid out 
in a gradient between two topically defined research 
areas. These project bridges have the potential to add 
extra dimensionality to the layout, since their topical 
content provides concrete information on the 
relationships between clusters.  The layout we eventually 
chose for this project is shown in Figure 1. 

 
Figure 1. Final layout of the NIH grants 

3.4. Visual Encoding 

Making sense of the network layout without any 
labeling, coloring, or sizing is nearly impossible. So, to 
help in understanding we chose to color the nodes 
according to the institute which funded the represented 
grant. Unfortunately, there are 25 different institutes in 
the dataset, so there are many colors which are too 
similar to one another to tell apart. To deal with this we 
had to do several things. First, we chose colors such that 
similar colors were as far apart as possible and near 
colors used complimentary colors. While not perfect, this 
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helped to at least be able to notice different institutes 
intermingling. Second, when drawing the nodes, we 
sorted by institute first, and then drew from largest 
institute to smallest institute. Finally, in the user interface 
(discussed below), we allowed overlaying of institutes in 
order to bring all of their respective nodes to the top. 

3.5. User Interface 

To best understand and explore this visualization, 
one must interact with the user interface (UI) (accessible 
from http://www.nihmaps.org/, see Figure 2). The major 
features of the UI include a zooming and panning 
interface to the visualization, toggled overlays, a 
selection mechanism for selecting regions of the 
visualization, and a free text querying mechanism. 

The zooming and panning interface is set up such 
that as the user zooms in, the grants stay essentially the 
same size, but the relative distances increase. This way at 
the top level one can see the major clusters, but with 
each successive level, the nodes become more and more 
distinct. At the lowest level, there are almost no 
overlapping grants. Also, when text overlays are enabled, 
the granularity of text increases with each level, gaining 
more labels and going from general (NIH institutes) to 
specific (the most popular topic in each region). 

A toggling overlay control allows the user to turn on 
an overlay for each institute to see exactly where each of 
the institute’s grants fall. Further, more than one institute 
can be toggled on at a time allowing the user to see their 
overlap. 

When, a user selects a region on the visualization, 
they are presented with a list of the individual grants in 
that region. In addition, a histogram is displayed showing 
the institutes represented in that region, see Figure 3.  

The free text querying mechanism allows the user to 
search for grants which match a query. Matched grants 
are displayed exactly as grants in selected regions are. In 
addition, they show up on the visualization as individual 
markers allowing the user to see where on the map the 
grants lie, see Figure 4. 

 
Figure 2. NIH Visual Browser 

4. Discussion 

The tool provides an intuitive spatial framework for 
domain experts to view and explore the topic-based-
landscape of any document corpus. Given the importance 
of understanding the trends in scientific funding for 
working scientists, we specifically identified NIH grants 
as a high-value data set. We actively engaged with grant 
administrators at NIH to improve the design of the tool 
and to add new features. These include (a) analytics 
based on graphical selections on the map (Figure 3) and 
(b) searching capabilities (Figure 4). By presenting the 
data in a familiar map-based format (q.v. ‘Google 
Maps’), the visualization became far more practically 
useful and understandable for end-users.  

The development of these tools relies on visual 
elements (i.e., dot color) that represent different 
partitions of the data based on attribute values. We are 
also able to provide alternative color schemes based on 
different attributes (for example, NIH institute vs. Grant 
Coordinator) to provide valuable new views of the data 
(implemented only in a previous, non-public 
implementation). The labels placed onto the map provide 
a mechanism to embed aggregated data from all points in 
a cluster onto the figure at several different levels. Thus, 
the wider application of this tool involves the careful 
choice of (a) which attributes to use to partition the data 
within the color scheme and (b) which attributes to use 
as labels placed over the map. These relatively simple 
choices have a large impact on the usefulness of the tool.  

Performing LDA over large corpora is possible [18] 
and the pipeline underlying this approach scales well to 
the size of this analysis. Members of this team have been 
involved in the development of similar visualizations 
involving over 1 million documents [23]. 

5. Related Work 

The original impetus of trying to derive semantic 
associations from a ‘bag-of-words’ comes from work 
done by Landauer and Dumais in Information Retrieval  
(IR) in regard to Latent Semantic Analysis (LSA) [10]. 
Moving beyond relatively coarse sets of vectors of words 
generated by LSA, subsequent probabilistic models were 
applied to this problem. Work done by Hofmann on 
probabilistic approaches to find semantically related sets 
of words, and thus documents, ultimately resulted in 
Probabilistic Latent Semantic Indexing (PLSI) [11].  

Blei, Ng and Jordan derived a generative version of 
PLSI and called it Latent Dirichlet Allocation (LDA) 
[13], where inference was done using variational 
methods.  Steyvers and Griffiths presented the now 
popular Gibbs sampling inference method for LDA [5]. 
Newman, Chemudugunta, Steyvers and Smyth 
developed a topic model for words and named entities 
[14].  

Research regarding the display of large graph 
layouts has been going on for many decades now. Some 
of the other popular layout techniques that exist for large 
graphs include Large Graph Layout by Adia, Date, 
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Weiland, and Marcott [15], Cytoscape [16], and Tulip 
[17], et. Al.  

 ‘Maps of Science’ (http://mapofscience.com/) is a 
website presenting visualization tools and maps of sets of 
journals and documents [20]. Inter-journal similarity 
scores were calculated with standard methods (cosine, 

Jaccard etc.) from attributes of journals (including inter-
citation and co-reference) rather than a lexical approach 
like LDA. 

 
 

 
Figure 3. Cluster selection with results shown in the right-hand column. 

 

 
 

Figure 4. Query for ‘NIH’ in the title. Results are shown on the map and in the right-hand column.
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6. Further Work 

The NIH Visual Browser has received positive 
feedback from within and without the NIH. We are 
investigating how to how to perform combined analysis 
over multiple corpora (such as NIH grants and Medline) 
[19]. This line of inquiry requires investigating the 
relationships between topic-models from overlapping 
and or fully enclosed corpora. Constructing the system in 
a parallelizable format to allow the creation of smaller 
maps in real time is also of particular interest. This could 
provide interfaces to other search engines or external 
databases to provide near real-time modeling and 
visualization of related external data. Perhaps most 
significant, performing quantitative historical 
assessments to evaluate the role of previous NIH funding 
mechanisms and philosophies in the context of specific 
scientific fronts is another area we will explore.  

A better understanding of the many interrelated 
variables involved in TOPICS+DrL style visualizations 
is essential. Currently much of our visualization efforts 
have been through trial and error. Our next major 
research hurdle will be in becoming more exact about 
what it takes to create the type of layouts we are looking 
for: strong clusters representing topics and thinner 
‘bridges’ of inter-topic clusters connecting the topics. 
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