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Abstract. Performing efficient decentralized search is a fundamental
problem in Peer-to-Peer (P2P) systems. There has been a significant
amount of research recently on developing robust self-organizing P2P
topologies to support efficient search. In this paper we discuss four P2P
models (CAN, Chord, PRU, and Hypergrid) and three characteristic
search algorithms (BFS, k-Random Walk, and GAPS) for unstructured
networks. We report on the results of simulations of these networks and
provide measurements of search performance, focusing on search in un-
structured networks. We find that the proposed models produce small-
world networks, and yet none exhibit power-law degree distributions.
Our simulations also suggest that random graphs support decentralized
search more effectively than the proposed unstructured P2P models. We
also find that on these topologies, basic variants of the breadth-first
search algorithm have the lowest search cost.

1 Introduction

Peer-to-Peer (P2P) networks have sparked a great deal of interdisciplinary ex-
citement and research in recent years [17]. This work heralds an fruitful perspec-
tive on P2P systems vis-4-vis open multi-agent-systems (MAS)! [14]. A central
issue for both P2P networks and MAS is the problem of decentralized search; an
effective search facility that uses only local information is essential for their scala-
bility and, ultimately, their success. Initial work on this issue suggests that there
is a strong relationship between network topology and search algorithms; sev-
eral deployed P2P networks [3,10,11] and MAS [2] have been shown to exhibit
power-law degree distributions? and small-world properties.® In a small-world
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! In an open MAS, agents do not have complete global knowledge of system member-
ship.

2 The degree distribution of nodes in a graph follows a power-law if the probability
P(k) that a randomly chosen node has k edges is P(k) o< k™7, for T a constant skew
factor [3].

3 A small-world network is characterized by low diameter and high clustering co-
efficient, relative to a random graph of equivalent size [26]. We will define these
properties in full below.
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network, there is a short path between any two nodes. This knowledge, however
does not give much leverage during search for paths in small-world systems be-
cause there are no local clues for making good choices. What is the best we can
do for decentralized search in a small-world? There has been little comparative
analysis of unstructured®* P2P models and search algorithms. Such validation
and comparison of models and algorithms is the first step in answering this
question.

The approach we have taken to explore this issue is to model the network
topologies of two typical unstructured P2P models developed in the P2P com-
munity (PRU [18] and Hypergrid [20]) in simple graph-theoretic terms and build
simulations of these networks to measure topological properties and search per-
formance. As a comparison, we performed the same analyses on a random graph
[3] and two structured P2P models (CAN [19] and Chord [22]). We show through
simulations that unstructured P2P networks have exactly the properties and
problems of small-world topologies; the networks have low diameter but no
means of directing search efficiently. Interestingly, none of the models consid-
ered generate power-law degree distributions. This turns out to be desirable in
an engineered system; although power-law networks support efficient decentral-
ized search [1], they are fragile in the face of attack [3] and unfairly distribute
network traffic during search [20]. The reason for these weaknesses lies in the
degree distribution; such networks have a few nodes of very high degree that
serve effectively as local “hubs.”

1.1 P2P Concepts and Related Work

There are two broad categories of P2P systems: hybrid and pure [17]. Hybrid
systems are characterized by some form of centralized control such as a name
look-up service [17] or a middle agent [8]. Pure systems strive for self-organization
and total decentralization of computation; these systems are the focus of the
work presented in this paper.

Pure P2P networks can be classified by the manner in which decentralization
is realized. In structured systems [19, 22], placement of system resources at nodes
is strictly controlled and network evolution, consequently, has costly overhead.
Unstructured systems are characterized by a complete lack of constraints on
resource distribution and minimal network growth policies. These systems focus
on growing a network with the desirable low diameter of small world systems
using only local information.

Early work on search methods for small world networks was done by Walsh
[25] and Kleinberg [13] and on decentralized search in scale-free networks by
Adamic et. al. [1]. An early study of unstructured P2P network search perfor-
mance was done by Lv et. al. [15], comparing search performance on generic
power-law, random, and Gnutella networks.5 More recently, several groups have
continued to study search performance with a focus on comparing power-law and

* The unstructured/structured distinction is made precise below.
® http://www.gnutella.com



random topologies with deployed P2P systems such as Gnutella [5, 23, 27]. Initial
studies on search in open MAS have also focused on generic topologies [9, 21].
Several projects have investigated the topological characteristics of the Internet
[10] and implementations of P2P filesharing networks [11]. What has been miss-
ing in all of this work is a general comparative study of proposed unstructured
P2P models, their topologies, and performance of search algorithms. This paper
is an initial step in filling this gap in our understanding of decentralized search
in unstructured P2P networks and open MAS.

2 P2P Models

In this section, we briefly introduce the P2P models under discussion. To facili-
tate comparison, we consider network topologies using a uniform graph-theoretic
framework. We view peers as nodes in an undirected graph of size M where edges
indicate connections between peers in the network. Each node N in the graph
has, as an attribute, a routing table Ty = [e1 : w1,...,e : wi] that associates
a weight w; to each edge e; (1 < i < k) incident on N. This represents the
connections of node N to k neighbors in the graph. Unless otherwise stated, all
weight values are equal in the graph.

2.1 Structured Models

As mentioned above, structured models enforce strict constraints on network evo-
lution and resource placement. These constraints limit network robustness and
node autonomy. Structured P2P models are good for building systems where
controlled resource placement is a high priority, such as distributed file storage.
However, they are not good models for systems with highly dynamic member-
ship. The main advantage of these models is that the added constraints result
in sublinear search mechanisms; each of these models has an associated native
search mechanism that takes advantage of the added structure [19, 22].

CAN. The Content-Addressable Network (CAN) is a framework for structured
P2P systems based on a virtual d-dimensional Cartesian coordinate space on
a d-torus [19]. Nodes in a CAN graph have as an attribute the coordinates
of a subspace of this space that are used in adding nodes and edges to the
graph. Initially, the graph consists of one node and no edges. This initial node
is assigned the entire virtual space. As nodes are added to the graph, they are
assigned a subspace in the virtual space from a uniform distribution. The system
self-organizes to adjust to a new node by adding edges from the new node to
adjacent nodes in the space. A visualization of a 32 node CAN graph is given in
Figure 1. All graph visualizations were made with the Pajek package [6].

Chord. Chord is another self-organizing structured P2P system model [22].
Nodes in a Chord graph have, as an additional attribute, a coordinate in a



Fig. 1. 32 Node CAN and Chord Networks.

1—dimensional virtual space (called a ring). When a new node N is added to
the graph, the routing table attributes of the nodes adjacent to N on the ring
are used to add edges between N and k other nodes distributed in the space. A
visualization of a 32 node Chord graph is given in Figure 1 on the right.

2.2 Unstructured Models

Unstructured models strive for complete decentralization of decision making and
computation. They require only local maintenance procedures and are topolog-
ically robust in the face of system evolution.

Random Graph. We utilize the Erdés- Renyi random graph as a baseline model
for comparison with unstructured networks [3]. There is one parameter in build-
ing a system with this topology: connection probability p. To build a random
network based on this model, the graph initially has no edges. Then for each
possible undirected edge between two distinct nodes in the graph, an edge is
added with probability p.

Fig. 2. 32 Node PRU and Hypergrid Networks.

PRU. The PRU model for unstructured systems, proposed by Pandurangan
et. al. [18], is based on a simple network growth policy that ensures low graph
diameter. In these graphs, nodes have a boolean attribute inCache, indicating
their role in network evolution. The model has as parameters node degree K,
minimum degree L, and maximum degree U. The graph starts with K nodes with



attribute inCache = True. Each of these nodes has L edges incident on them
from randomly chosen nodes within the group. When a new node N is introduced
into the graph its inCache value is False, and edges are added between it and L
randomly selected inCache nodes. If this addition causes any inCache node N¢
to have more than U edges, N¢ has its inCache value set to False, and a non-
inCache node in the system is chosen to become inCache [18]. A visualization
of a 32 node PRU graph is given in Figure 2 (left).

Hypergrid. The Hypergrid model for P2P networks [20] builds a graph topol-
ogy that enforces low graph diameter and fixed node degree. The graph grows
as a simple k-ary tree with nodes on the leaf level of the tree having their k — 1
free edges randomly connected to other nodes on the same level in the tree with
degree less than k. A visualization of a 32 node Hypergrid graph is given in
Figure 2 (right).

3 Unstructured P2P Search Algorithms

Search in a graph is defined as finding a path from a randomly chosen start
node N; to a randomly chosen destination node Ng. The cost of a search is the
number of edges traversed in locating the destination node (i.e., the number of
“messages” sent in the network during the search process). There are two broad
classes of search techniques for unstructured P2P graphs: uninformed (blind) and
informed (heuristic) [23]. Uninformed algorithms utilize only local connectivity
knowledge of the graph during search. In addition to basic connectivity, informed
algorithms use some localized knowledge of the graph (such as “directional”
metadata) to make heuristic decisions during search. In this section we consider
two characteristic uninformed search algorithms, random BFS [5,9,12] and k-
random walk [1,15], and a generic informed search algorithm, GAPS [24].

3.1 Random Breadth-First-Search

Random BFS [5,9,12] is an uninformed search algorithm that has been pro-
posed as an alternative to basic uninformed “flooding.” Basic BFS is a common
technique for searching graphs. Search begins at N by checking each neighbor
for Ny. If this fails, each of these neighbors check their neighbors and this con-
tinues until Ny is found. The idea behind random BFS is to improve on the
flooding method to reduce message overhead during search. This is attempted
by randomly eliminating a fraction p of neighbors to check at each node. Search
then proceeds from N, with ns neighboring nodes as follows: select [(1 — p)n,]
randomly chosen nodes adjacent to N,, and return success if Ny is among them.
Otherwise each of these neighbors randomly selects a (1 — p)-subset of its neigh-
bors. This process continues until Ny is located. If at any time during the search
a node N contacts a “dead-end” node (a leaf in the graph), the search process
backtracks to N and continues. It has recently been shown that there is an
optimal value for p in certain restricted power-law networks [5].



3.2 k-Random Walk

Random walk on a graph is a well known uninformed search technique [1,15].
In this approach, a reduction in message overhead is attempted by having a
single message routed through the network at random. Search proceeds from
N, as follows: randomly select one neighbor N. If N # Ny, then N similarly
contacts one of its neighboring nodes, avoiding re-selecting N, (if N has only one
neighbor, it is forced to pass control back to Ny). This process continues until Ny
is located. This search mechanism does not generate as much message traffic as
the BFS algorithms since there is only one message being routed in the system.
The trade-off is that the search response time is significantly longer. k-random
walk extends this process to k random walkers that operate simultaneously with
the goal of reducing user-perceived response time [15].

3.3 Generic Adaptive Probabilistic Search

There have been several proposals to add “directional” metadata to uninformed
search [4,12,24,27]. We consider here a simplification of these proposals which
we call Generic Adaptive Probabilistic Search (GAPS), following the adaptive
probabilistic search algorithm of Tsoumakos and Roussopoulos [24]. GAPS can
be viewed as a minimally informed approach to searching in an unstructured sys-
tem, making full use of the routing tables Ty = [e1 : w1, ..., € : wy] associated
with each node N. The weight w; indicates the likelihood of successful search
through neighbor N; based on previous search results. Initially, w; = 1, Vs.
Search proceeds from N, as follows: choose a single edge e; from the routing

table with probability Z":_Uj’ and return success if N = Ny is adjacent on this
edge. Otherwise, this neli_ghbor selects one of its neighbors following the same
procedure. When the destination node Ny is located, all nodes along the path
from N5 to N4 (with loops removed) increment the weight in their neighbor
tables for their successor in the path by 1. In this way, these nodes will be

chosen with higher probability in future searches.

4 Simulation Results

To compare P2P network models and search algorithms, we implemented them
in a uniform framework. We considered using existing agent-based simulators
[4,16], but decided that the level of implementation detail necessary for a clean
investigation of topology/algorithm interaction necessitated a simple common
framework. For each network of size M that we simulated, we used the following
parameter values, which were chosen to build graphs of approximately equivalent
edge count across all models:

— Random Graph: probability p = %g_%

— CAN: dimension d = 3
— Chord: edges k = log M



Table 1. Statistics of Simulated Networks

‘ Model ‘ # Nodes | # Edges J?I\;gi.n]/D;gaie)e Avg. Distance | Diameter gg:fﬁgﬁ ‘
Random 1024 10240 (?73?1) 2.65 4 0.02
PRU 1024 10350 (128/231) 2.89 5 0.25
Hypergrid 1024 10239 (2272%) 3.71 5 0.124
CAN 1024 9524 (%ng) 4.85 10 0.50
Chord 1024 9728 (1199/{)9) 3.45 5 0.16

— PRU: inCache node count K = %, lower bound L = log M, upper bound
U=3L+3
— Hypergrid: degree k = 2log M + ¢, for constant ¢ < 6.

4.1 Topological Properties

As briefly discussed in Section 1, P2P models and MAS are anticipated to grow
small world networks that also possibly have power-law degree distributions
[3,5,10,11]. The results of our simulating the models under consideration for
M = 1024 are presented in Table 1. We measured these values using the Ucinet
package [7]. Here, the average distance for a graph is the length of the shortest
path between two nodes averaged over all node-pairs in the graph. The diameter
of a graph is the length of the longest direct path in the graph between two
nodes. The clustering coefficient of a graph is the proportion (averaged over all
nodes) of nodes adjacent to a particular node that are also adjacent to each
other. The node degree frequencies for the models are plotted in Figure 3.
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Fig. 3. Degree Frequency Distributions for CAN and Random Model (left), HyperGrid
Model (center), and PRU Model (right).

4.2 Search Performance

We now describe our experimental setup for measuring search performance. We
were interested in the actual number of messages to find a node in the system.
The studies discussed in Section 1.1 have primarily considered the probability of



successful search. We were looking at the cost of 100% success for each search
(i.e., Time To Live, TTL = o0). We measured search cost, on simulations of
network size 2" for 5 < n < 10, as the average of 5000 searches on each size
(specifically: 50 simulated networks, 100 searches on each, for all 6 network
sizes). For measurements of the GAPS algorithm, we “weighted” some fraction
P of nodes in the system more heavily (i.e., P% of the nodes are “popular”)
to be the destination for some fraction W of the searches. We skewed search in
this manner since the general efficacy of GAPS is dependent upon there being
popular nodes in the system that are the destination nodes for a higher than
average proportion of the searches. We also “primed” the network with 100
messages before measuring GAPS cost so that we could distinguish its behavior
from random walk. The results of these simulations are presented in Figures 4
through 9.
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Fig. 4. Search performance comparison of Structured models (CAN, Chord) using their
native search algorithms against Unstructured (Random) model using BF'S.
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Fig. 5. Random BF'S Search Performance across Hypergrid, PRU and Random model.
Cutoff probability = 0.0 (left) and 0.75 (right).

5 Discussion

As mentioned above, the defining characteristics of a small-world network are
low diameter and high clustering coefficient [26]. The values in Table 1 clearly
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Fig. 6. k-Random Walk Search Performance across Hypergrid, PRU and Random
model. k = 1 (left) and 16 (right).
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Walkers.

indicate that all of the models (except the random model) grow small-world
topologies. Chord, with a constant degree distribution, does not exhibit a power
law. None of the degree distributions plotted in Figure 3 follow power-laws:
CAN (left) follows a Poisson distribution (like the random graph) because it is
built by assigning nodes in the graph using a uniform hash function [19]. In the
case of Hypergrid graphs (center), the bulk of the nodes have maximum degree
while some linearly decreasing number of nodes at the leaf level fail to establish



maximum degree. PRU (right) has a highly skewed distribution: the “bump”
at degree 10 represents the lower bound L on degree, while the peak at degree
33 represents nodes that have reached the upper bound U on degree. The few
intermediate nodes represent those that are currently inCache.

Turning to performance, Figure 4 illustrates the value of structure: the CAN
and Chord native search mechanisms give O(log M) search performance. The
cost of BFS on random graphs (typical of unstructured models) increases lin-
early with network size M, with cost roughly M /2. Clearly, the native search
mechanisms of structured networks outperform, by several orders of magnitude,
flooding search on unstructured networks.

Next, we compare the three search algorithms for unstructured networks. The
results for BFS with 0.0 and 0.75 cutoff values is given in Figure 5, for 1 and 16-
random walk in Figure 6, and for GAPS with 5% of the nodes popular, receiving
75% of search requests in Figure 7 (left). Clearly, all variants of random BFS
have the same cost (indicating that randomness does not enhance basic BFS) and
have lower cost than both GAPS and k-Random Walk. Also, GAPS is cheaper
than Random Walk search algorithm. Overall, Random Walk seems to involve
a higher cost in all three graphs. The long term performance improvement of
GAPS algorithm for the Random Graph model is presented in Figure 7 (right).
Clearly this algorithm improves over time (albeit at a very gradual rate). We also
compare the user-perceived response time (that is, the normalized cost of search)
of all three P2P models for k-Random Walk (k = 1,2,4,8,16,32) in Figure 8.
Normalized cost improvement is equivalent across all three models. Finally, we
consider search performance on each of the three topologies. From Figure 9,
it is evident that the random graph scales well for all the search algorithms.
Hypergrid has similar search cost as that of PRU and Random graph for small
size networks but as the network size increases, its performance degrades. Also,
it is evident that GAPS is a good alternative to k—random walk. Overall, these
experiments clearly indicate that the random graph model and BFS requires
lowest cost for unstructured networks.

6 Conclusions and Future Work

In this paper we explored the topological properties and search performance of
structured and unstructured P2P models using simulations of the CAN, Chord,
Hypergrid, and PRU models and the random BFS, k-random walker, and GAPS
search algorithms. Our goal was to provide a basis for a better understanding
of the role of topology in search performance and to highlight the strengths and
weaknesses of these models and algorithms.

We discovered that each of these models do indeed grow as small worlds with
low diameter and high clustering coefficients. None of the models developed
power-law degree distributions. We also found that basic BFS overall had lowest
search cost across all unstructured models and that the random graph topology
supports the lowest cost search using BFS and k—random walk. Furthermore,
we determined that random cutoff does not improve the cost of BFS. Finally, we
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Fig. 9. Performance of Search algorithms (BFS, Random Walk and GAPS) across
Random model (left), Hypergrid (center) and PRU model (right).

also found that the GAPS algorithm performs well as an alternative to k-random
walk on all networks.

We plan next to undertake a complete formal investigation of the GAPS algo-
rithm as a paradigmatic informed search algorithm. Its generality and simplicity
may give us a good handle on designing efficient informed search algorithms
that outperform BFS. We also plan to investigate unstructured topologies to
specifically support GAPS.
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