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Abstract 
 
What is the structure of the research reported on 

melanoma? How has it evolved over the last 40 years? 
Which parts of this research field are correlated with the 
study of genes and proteins? Are there sudden increases 
in the number of occurrences of certain gene or protein 
names, reflecting a surge of interest? How are genes, 
protein and papers interconnected via co-occurrence 
patterns? 

This paper aims to provide answers to these 
questions by analyzing a data set consisting of papers 
from Medline, genes from the Entrez Gene database, and 
proteins from UniProt. Word burst detection and co-
occurrence analyses were both performed. The spatial 
layout algorithm VxOrd was applied to create the very 
first map that shows papers, genes, and proteins and their 
co-occurrence relationships.  The results were validated 
by five domain experts leading to a number of interesting 
facts pertaining to structure and dynamics of the 
melanoma research field. 

1. Introduction 
Given the explosive growth of biomedical databases, 

a large and diverse number of approaches have been 
suggested to automatically extract information and 
knowledge out of data. There are information retrieval 
tools, text mining tools, clustering tools, categorization 
tools, and text summarization tools. In addition, a number 
of information extraction, semantic annotation, and 
knowledge discovery tools have been developed. A recent 
review of those tools can be found in [1]. Many of the 
proposed approaches and tools draw on research done in 
not only statistics and linguistics, but also bibliometrics 
and social network analysis. Information visualization 
techniques [2] are frequently applied to manage the 
complexity of data, information and knowledge, and to 
communicate results to diverse stakeholders. 

Rather than discovering information and knowledge 
from data, the work presented here aims to give 
researchers a more global view of the structure and 

dynamics of a research domain. The resulting ‘birds eye 
picture’ view is intended to show opportunities for 
collaboration and to minimize unfruitful duplication of 
research despite the increasing specialization of science.  

In this paper we will present approaches that can help 
scientists to answer questions such as: What is the 
structure of the research reported on a particular field? 
How has it evolved over the course of its history? Which 
parts in this research field study what biological entities 
(e.g., gene and proteins)? Are there sudden increases in 
the number of occurrences of certain biological entities 
reflecting a surge of interest? How are biological entities 
and papers reporting our knowledge on them 
interconnected? 

We demonstrate our approaches on a data set 
containing 53,804 papers, 299 genes and 367 proteins 
related to research on melanoma. Kleinberg’s burst 
detection algorithm [3] and advanced knowledge domain 
visualization techniques [4] are applied to characterize the 
structure and dynamics of this research field over the last 
40 years. 

2. Process and Dataset Characterization 
The process of generating a map that shows the 

association linkages between papers, genes, and proteins 
in a common context is identical to the process used in 
many other cases for literature alone [4], and is as 
follows: 
1. Collection of appropriate data records, in this case 

papers, genes, and proteins related to melanoma, 
2. Calculation of pairwise similarities between records, 
3. Ordination, or layout of the records, based on 

calculated similarities, 
4. Visualization and exploration of the data, enabling 

characterization and analysis of the data. 
All four steps are explained in detail subsequently. 

2.1. Data collection 

Three types of data related to melanoma were 
retrieved for this study: papers, genes, and proteins. First, 
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the published literature, a total of 54,016 records over the 
period from 1960 until the date of the query, Feb. 11, 
2004, related to melanoma was collected from Medline1 
using a general search on the single term ‘melanoma.’ Of 
these, a few records were later excluded from the data set 
due to improper formatting or being incomplete records. 
53,804 papers were retained for analysis. We feel 
confident that the Medline data adequately represents 
published knowledge on melanoma given the breadth of 
the original query. 

Second, genes for ‘melanoma’ were obtained through 
query at the Entrez Gene database2, which returned a list 
of 304 genes. From the list of genes, we obtained 299 
unique gene names, e.g., CMM. These gene names, along 
with their gene aliases (e.g. LOC385488), were used as 
the query list to obtain gene-paper association data. We 
looked for all instances of the gene names and aliases in 
the titles, abstracts, MeSH (Medical Subject Headings) 
terms, and substance lists from the 53,804 Medline paper 
records. A total of 107 of the 299 genes were found in the 
Medline data. Thus, 192 of the genes retrieved from the 
Entrez Gene database had no mention in the set of 
Medline records. The distribution of gene name 
occurrences by Medline field is shown in Table 1. 
Abstracts were by far the richest source of matches for the 
gene names. Titles were next richest source of matches, 
although there were more unique genes in the substance 
list than in the titles. In fact, if the matching query had 
been restricted to just abstracts and substances, no genes 
would have been missed. The output of this process was a 
list of the unique gene-paper association pairs. 

 
Table 1. Gene-paper relational data. 

Source # Genes 
found 

# 
Occurrences 

# Genes 
unique to 

source 
Titles 66 704 0 
Abstracts 97 2374 25 
MeSH terms 4 154 0 
Substances 40 578 9 

 
Third, the Universal Protein Resource UniProt3, a 

central repository for protein information, was used to 
obtain information on the proteins associated with 
melanoma. This database combines the Swiss-Prot 
(115,000 entries), TrEMBL (700,000 entries), and PIR 
databases (283,000 entries), providing access to a 
comprehensive list of proteins. 

Query for the term ‘melanoma’ resulted in 566 hits. 
The unique protein names were identified from the list, 

                                                           
1 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi 
2 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? 
CMD=Search&DB=gene  
3 http://www.pir/uniprot.org/index.shtml  

resulting in 367 proteins. In order to get the best possible 
matches, we modified the proteins names to the form they 
would be referred to in the Medline fields. Two levels of 
modification were done to the protein names before 
matching: 
 Specific match – for example, ‘60S ribosomal protein 

L23a’ was shortened to ‘L23a’ 
 Broad match – in order to get a partial match 

between, for example, the proteins ‘Melanocortin 1 
receptor variant C315R’ and ‘Melanocortin 1 
receptor variant F45L’, each name was modified to 
‘Melanocortin 1’ to get a match based on the 
functionality of the protein. 
Case specificity was not maintained in this study for 

either genes or proteins; thus “Bcl2” and “BCL2” were 
considered to be the same gene. As with the genes, we 
looked for all instances of the proteins in the titles, 
abstracts, MeSH terms, and substance lists from the 
53,804 Medline paper records. A total of 121 of the 367 
proteins were found in the Medline data. The distribution 
of gene name occurrences by field is shown in Table 2. 
For protein-paper association pairs, although titles, MeSH 
terms, and substances add a significant number of 
mentions, they only add 4 unique proteins to the set found 
in the abstracts. Yet, the new association pairs are helpful 
in that they expand the number of papers connected to the 
proteins, and thus enrich the data set.  

 
Table 2. Protein-paper relational data. 

Source # Proteins 
found 

# 
Occurrences

# Proteins 
unique to 

source 
Titles 92 2648 3 
Abstracts 116 7722 22 
MeSH terms 22 2988 0 
Substances 52 2268 1 

2.2. Calculation of similarities 

Similarities between the various records – papers, 
genes, and proteins – were calculated in three parts. First, 
given that the papers dominate the map, and thus form the 
backbone for the entire data set, paper-paper similarities 
were calculated. This was done using a cosine similarity 
based on co-occurrence of MeSH terms as 

21
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where Mp1 is the number of MeSH terms for paper p1 and 
Mp1,p2 is the number of co-occurring MeSH terms for 
papers p1 and p2. Of the 32,319 unique MeSH terms 
occurring 2 or more times, 36 common, non-specific 
terms were removed prior to calculating the similarity 
values (see Table 3). Many of the removed terms are 
Medline “check tags.” In the future we will consider 
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removing all check tags. Also, our experience with many 
data types and many data sets indicates that use of the full 
similarity matrix is not necessary. Rather, use of the top 
few similarities per record is sufficient to characterize the 
map. Thus, in this case, after calculation of the full paper-
paper similarity matrix, only the top 15 similarities per 
paper were used.  

Gene-gene, protein-protein, and gene-protein 
similarities were calculated from the lists of gene/protein-
paper pairs as 

21
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where Pg1 is the number of papers referring to 

gene/protein g1 and Pg1,g2 is the number of papers 
referring to both g1 and g2. Similarities between 
gene/proteins and papers were calculated as 
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where Gp1 is the number of genes/proteins referred to in 
paper p1. The value of “one” in the numerator for this 
similarity is appropriate in a co-occurrence sense given 
that each gene/protein – paper combination occurs only 
once. In addition, for genes and proteins mentioned in 
many papers, we did not want them to unduly influence 
the positions of the papers, but rather to be placed within 
the literature map in appropriate positions.  

The three sets of similarities were combined in one 
file (simple concatenation since there were no duplicate 
node pairs between files) and used in a single layout 
calculation. The resulting map is discussed in section 3.2. 

3. Data Analysis and Visualization 

3.1. Temporal and burst analysis 

The overall history of the magnitude of melanoma 
research is shown in Figure 1. Here the numbers of 
papers, and numbers of mentions of genes and proteins 
are given for different time periods. While growth in 
overall melanoma research, as indicated by the number of 
papers, has been increasing at a relatively steady rate over 
the 40-year time period, the growth in gene and protein 
mentions has been dramatic. Protein work started before 
the gene work, and has been more prominent than the 
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Figure 1. Numbers of melanoma-related 
papers, gene-mentions, and protein-mentions 

by time period. 

Table 3. MeSH terms removed from similarity calculation. 
Rank Term # occur  Rank Term # occur
1 Human 44161  20 Aged, 80 And Over 2791
2 Female 21073  21 Time Factors 2491
3 Male 19598  23 Child 2444
4 Support, Non-U.S. Gov't 15420  26 Follow-Up Studies 2018
5 Middle Aged 14466  27 Molecular Sequence Data 1878
6 Animals 13760  28 Cells, Cultured 1771
7 Adult 13185  31 Retrospective Studies 1632
8 Aged 11455  32 Immunohistochemistry 1597
9 Mice 9858  35 Mice, Nude 1372
10 Support, U.S. Gov't, P.H.S. 8127  37 Amino Acid Sequence 1261
11 Tumor Cells, Cultured 5986  38 Survival Rate 1260
12 English Abstract 4673  39 Child, Preschool 1247
13 Comparative Study 4531  40 Base Sequence 1219
14 Adolescent 3707  41 Support, U.S. Gov't, Non-P.H.S. 1191
15 Prognosis 3617  45 Mice, Inbred Balb C 1098
16 Cell Line 3387  46 Rats 1092
18 Diagnosis, Differential 3050  50 Treatment Outcome 1015
19 Mice, Inbred C57Bl 2846  61 Infant 854
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gene work. But the protein work no longer seems to be 
growing as fast as the gene-related work. 

In addition to the simple temporal analysis, 
Kleinberg’s burst detection algorithm [3] was applied to 
identify sudden interests in research on certain genes or 
proteins. The algorithm analyzes streams of time-sorted 
records (here publications) to find features that have high 
intensity over finite/limited durations of time periods. 
Rather than using raw frequencies of the occurrences of 
words, the algorithm employs a probabilistic automaton 
whose states correspond to the frequencies of individual 
words. State transitions correspond to points in time 
around which the frequency of the word changes 
significantly. 

As a result, the algorithm generates a ranked list of 
the most significant word bursts in the stream, together 
with the intervals of time in which they occurred. This 
can serve as a means of identifying topics or concepts that 
rose to prominence over the course of the stream, were 
discussed actively for a period of time, and then faded 
away.  

For the analysis, the complete set of 54,016 papers 
was used and the burst analysis was applied over titles 
and MeSH terms. Altogether 6,041 bursty words were 
identified. From these words we selected those that 
matched gene or protein names from the Entrez and 
Uniport databases. A total of 10 genes and eight proteins 
bursted. The time intervals in which they bursted are 
depicted in Figure 2. 

The gene burst diagram reveals two categories of 
genes: melanoma-specific genes and proteins, and genes 
or proteins that were explored as a possible treatment for 
melanoma owing to their success in treating some other 
cancer, as follows: 

 
Specific genes MIA, S100B, CDKN2A, CDK4, 

VEGF, BRAF 
Non-specific genes HLA-G, PTEN, TNF, CD36 
Specific proteins TRF 
Non-specific proteins CD44, P53 

 

3.2. Paper-gene-protein map 

Using the similarity file described in section 2.2, a 
map of papers, genes, and proteins was generated. Layout 
of the data was done using VxOrd [5], a proprietary 
algorithm [6] that uses force-directed placement, a density 
field for repulsion, boundary jumping, and edge cutting. 
Our experience with many studies, both published [7-10] 
and unpublished, is that VxOrd preserves both global and 
local structure for large graphs (>10,000 nodes) from 
many different data types. The resulting layout is shown 
in Figure 3. 

To the best of our knowledge, this is the first map 
which combines the three different element types, papers, 
genes, and proteins, and that can show five different types 
of networks: paper-gene, paper-protein, gene-gene, 
protein-protein, and gene-protein. 

Figure 3 shows the main research areas covered by 
melanoma research over the last 40 years. Gray dots 
represent publications. Genes and proteins are given in 
blue and red respectively. Labeling was done by hand 
after exploration of the map using VxInsight [8]. The 
different research areas can be grouped into two main 
categories: 1) applied medical sciences (left side) and 2) 
basic molecular sciences (right side). Applied medical 
science work occurs at the organism level and rarely 
involves the study of molecular entities. In the basic 
molecular science studies, more research is carried out for 
genes and proteins. Interestingly, papers in the applied 
science portions of the map are less numerous than their 
molecular science counterparts. 

Given the three different node types (papers, genes, 
and proteins) and their diverse associations, a number of 
association networks can be mapped within a common 
context. Figure 4 shows the gene-paper and gene-gene 
networks. Links in the left image indicate that a gene 
(white dot) was mentioned in a paper (grey dot). Links 
between two genes in the right image indicate that they 
have been co-mentioned in the same (one or more) paper 
and may possibly provide information on gene 
interactions related to melanoma. The gene ‘CMM’ in the 

Figure 2. Gene and protein names and burst time intervals. 
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cancer/incidence region is one of the most often 
mentioned genes. In Figure 4 (left) its links to papers in 
the network are shown as red arrows. 

The gene-gene network in Figure 4 (right) is 
obviously much smaller than the gene-paper network, and 
is focused in the region previously identified with 
molecular sciences. Paper-protein, protein-protein, or 
gene-protein networks could be viewed and explored in a 
similar fashion. 

4. Validation by Experts 
In order to validate how well the results and 

visualizations match human judgment we consulted five 
biologists. The informal validation sessions lasted about 
30-40 minutes. Experts were shown four sets of 
information on a computer screen: 1) Figure 2, 2) Figure 
3, 3) four decade-long time slices from the paper-gene-
protein map, 4) the five network association maps 
(including the two in Figure 4). In general, the experts 

 
Figure 3. Melanoma paper-gene-protein map. 
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remarked that this is a very good way to look at the 
domain. 

4.1. Burst Analysis 

The experts were shown Figure 2 and told that the 
40-year data set was analyzed for sudden increases in the 
usage of gene and protein names. The experts classified 
the genes and proteins into the specific and general genes 
shown in section 3.1. The success rate of a particular gene 
for curing a disease leads researchers to experiment with 
other pre-known genes. The experts felt that the set of 
genes that bursted appeared to be more related to 
melanoma than the protein set. 

4.2. Paper-Gene-Protein Map  

Each expert was shown Figure 3, along with an 
explanation of the data and process used to generate the 
map. They were told that the papers close to a certain area 
label are related to this type of research and that genes 
and proteins were placed close to the papers in which they 
are mentioned. Subsequently, they were asked to interpret 
this map. 

Three experts segregated the data into two regions – 
applied science vs. basic science. One of the experts 
mentioned that the majority of research has been done in 
basic science and that there needs to be a shift towards 
applied science where we see only scattered research 
efforts today. 

The fifth expert classified the map into two 
categories – organism level vs. molecular level. By 
organism level this expert referred to treatments within 
the applied science domain. By molecular level the expert 

meant the basic science level dealing with genes and 
proteins. 

4.3. Time Series Analysis 

In order to understand the structure and dynamics of 
melanoma research and its evolution over the last 40 
years, a series of time slices from the paper-gene-protein 
map was shown to the experts. The time slices were 
visualized in VxInsight and captured for use by the 
experts, and covered the decades 1964-1973, 1974-1983, 
1984-1993, and 1994-2003.4 The experts were asked to 
compare the time-series plots while thinking aloud. The 
subsequent description of the evolution of melanoma 
research was compiled from the explanations of these 
maps by these five experts.  

For the first time slice, 1964-1973, all experts except 
one identified Chemotherapy as an emerging area for the 
possible treatment of cancer. One expert pointed out the 
dominance of diagnostic and immunity based approaches.  

In the following decade, 1974-1983, chemotherapy 
gained immense popularity and seemed a most viable 
treatment for cancer. In addition, cell research was 
conducted in parallel to understand the cause of the 
disease. A shift towards molecular technology led to the 
development of methods for tagging cancerous cells using 
antigens. This in turn increased the number of 
‘monoclonal studies’ – one of the major research areas – 
as an alternative to chemotherapy. In contrast to 
chemotherapy, monoclonal treatments remove only 
cancerous cells, but retain healthy cells.  

                                                           
4 Figures for the time slices were too large for the paper, but are 
available upon request from the authors. 

Figure 4. Gene-paper (left) and gene-gene (right) networks overlaid on the melanoma paper-gene-
protein map. 
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The subsequent decade, 1984-1993, shows a high 
percentage of research on ‘metastasis’ behavior of cancer. 
While former studies focused on cancer that is affecting a 
particular region of the body, many studies in the time 
period also aimed to find out how to stop cancer that is 
spreading throughout the body. As lymph nodes are 
indicators for early cancer detection during the metastasis 
phase of the cancer, the number of research papers in this 
area increased as well. Due to the human genome project 
initiative, chromosomal research became more 
widespread.  

In the most recent decade, 1994-2003, interest in 
mapping the human genome and the availability of 
sequence data boosted gene-expression and mutation 
studies. Research on lymph nodes increased further. In 
sum, the time series nicely shows the different 
evolutionary stages of melanoma research. 

4.4. Association Data 

Experts were told what associations among papers, 
genes and proteins are shown in the five maps. The map 
shown in Figure 4 (left) was used to explain the 
connections of one gene, here the CMM gene, to papers. 

Experts found the high number of connections to the 
'CMM' gene surprising and mentioned that this gene 
might be mentioned in many papers that address 
demographic issues which is not the case for most of the 
other genes. 

They noticed the high density of the protein network 
and explained it with the fact that researchers had a head 
start in proteins studies as compared to gene studies. 
Given that proteins are the functional units of cells that 
are primarily responsible for cell interactions they are 
more attractive for study. 

5. Discussion and Future Directions 
This paper presented a very first attempt to map a 

‘network ecology’, namely, the interrelations among 
papers, genes and proteins in order to answer the 
questions stated in the introduction.  

We believe that a global view of how many different 
research results are interconnected, what areas are 
currently unknown to mankind, and a means to quickly 
filter out relevant material are essential to biology today. 

Systems such as Arrowsmith that supports the 
discovery of links between two literatures within Medline 
[11], or literature based methods for identifying gene-
disease relations [12] are first steps in the right direction. 
However, in order to gain a big picture view more than 
one or two entities (genes, proteins, diseases, papers) need 
to be correlated and managed.  

In future work we plan to further evaluate the 
accuracy of gene and protein placement, investigate 
changes in the similarity measure that will increase gene 

and protein placement accuracy, and collaborate with 
melanoma specialists to look more closely at the inferred 
gene-gene, protein-protein, and gene-protein networks 
with regards to their explanatory and predictive power. 

In addition, we plan to map major institutions in 
geographic space based on zip code information. This will 
help identify the (changing) research focus of institutions 
and the importance of geographical space for 
collaboration and information diffusion. 
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