

D-Lib Magazine
December 2003

Volume 9 Number 12

ISSN 1082-9873

Open Archives Data Service Prototype and Automated
Subject Indexing Using D-Lib® Archive Content As a
Testbed

Larry Mongin
Research Programmer
Indiana University School of Library and Information Science
<lmongin@indiana.edu>

Yueyu Fu
Doctoral Student
Indiana University School of Library and Information Science
<yufu@indiana.edu>

Javed Mostafa
Yngve Associate Professor of Information Science and Associate Dean
Indiana University School of Library and Information Science
<jm@indiana.edu>

Introduction

The Indiana University School of Library and Information Science opened a new
research laboratory in January 2003; The Indiana University School of Library and
Information Science Information Processing Laboratory [IU IP Lab]. The purpose of the
new laboratory is to facilitate collaboration between scientists in the department in the
areas of information retrieval (IR) and information visualization (IV) research. The lab
has several areas of focus. These include grid and cluster computing, and a standard
Java-based software platform to support plug and play research datasets, a selection of
standard IR modules and standard IV algorithms. Future development includes software
to enable researchers to contribute datasets, IR algorithms, and visualization algorithms
into the standard environment. We decided early on to use OAI-PMH as a resource
discovery tool because it is consistent with our mission.

D-Lib Magazine Archive Structure

We are using the D-Lib Magazine archives [D-Lib Magazine] as a dataset for our

1

prototype for several reasons. D-Lib Magazine is provided via open access for non-
commercial, educational use with few restrictions (see D-Lib Magazine access terms
and conditions at <http://www.dlib.org/access.html>. The content of the articles is of
interest to the software developers, which is convenient when we are developing the
software. Also D-Lib Magazine has a metadata file associated with each article. Each
article is stored in a directory with the article HTML file, images, and a .meta.xml file
that contains metadata about the article.

D-Lib Metadata

Since March 1999, D-Lib has created an XML metadata file associated with each article
published in the magazine. The metadata format is related to, but not quite the same as
Dublin Core [Dublin Core] which is the metadata structure used by the Open Archives
Initiative.

Below is an example D-Lib metadata file from an article by José Canós et al. in the
January 2003 issue [Canós 2003]:

<?xml version="1.0"?>
<!DOCTYPE dlib-meta0.1 SYSTEM "http://www.dlib.org/dlib/dlib-meta01.dtd">
 <dlib-meta0.1>
 <title>Building Safety Systems with Dynamic Disseminations of Multimedia
Digital Objects</title>
 <creator>Jose H. Canos</creator>
 <creator>Javier Jaen</creator>
 <creator>Juan C. Lorente</creator>
 <creator>Jennifer Perez</creator>
 <publisher>Corporation for National Research Initiatives</publisher>
 <date date-type="publication">January 2003</date>
 <type resource-type="work">article</type>
 <identifier uri-type="DOI">10.1045/january2003-canos</identifier>
 <identifier uri-
type="URL">http://www.dlib.org/dlib/january2003/canos/01canos.html</identifier
>
 <language>English</language>
 <relation rel-type="InSerial">
 <serial-name>D-Lib Magazine</serial-name>
 <issn>1082-9873</issn>
 <volume>9</volume>
 <issue>1</issue>
 </relation>
 <rights>Jose H. Canos, Javier Jaen, Juan C. Lorente, and Jennifer
Perez</rights>
 </dlib-meta0.1>

Most of the elements map into Dublin Core [DC]. The relation field has to be selected
for "URL". The creator field has to be combined for all the authors. D-Lib has a few
fields that don't map into Dublin Core. This is a common problem with the limited map
of Dublin Core.

Choosing an OAI Repository Program

The Open Archives Initiative [OAI] is an open standards, open source group. They offer

2

a number of tools, most of which are available free of charge, to help implement
repositories and harvesters. We wanted a program that is easy to install, one
implemented in Java, and one with which it is easy to load metadata files. The program
we chose was the "Rapid Visual OAI Tool" (RVOT) from Old Dominion University
[Old Dominion RVOT]. RVOT is a stand alone Java program that includes a
lightweight http server. It is easy to install as a user program. RVOT includes several
mapping procedures to convert metadata into the rfc1807 native metadata format
[rfc1807]. Sets are supported. The program also includes an interactive user interface to
map metadata fields into the native rfc 1807 format. There is some concern that the
native file/directory structure might not work for large datasets, and we may need to
migrate to a database repository in the future to ensure efficient performance.

Below is an example an example of the rfc1807 metadata record for the Canos et al. D-
Lib article:

 TITLE:: Building Safety Systems with Dynamic Disseminations of Multimedia
Digital Objects
 AUTHOR:: Jose H. Canos
 AUTHOR:: Javier Jaen
 AUTHOR:: Juan C. Lorente
 AUTHOR:: Jennifer Perez
 ORGANIZATION:: Corporation for National Research Initiatives
 DATE:: January 2003
 TYPE:: article
 ID:: http://www.dlib.org/dlib/january03/canos/01canos.html
 LANGUAGE:: English
 RELATION:: D-Lib Magazine
 COPYRIGHT:: Jose H. Canos, Javier Jaen, Juan C. Lorente, and Jennifer Perez

This rfc1807 record maps into a RVOT Dublin Core record that uses a similar syntax
but substitutes rfc1807 tags for Dublin Core tags. Author maps to Creator; Organization
maps to Publisher, and Copyright maps to Rights.

Below is the RVOT Dublin Core record for the Canós article:

 TITLE:: Building Safety Systems with Dynamic Disseminations of Multimedia
Digital Objects
 CREATOR:: Jose H. Canos
 CREATOR:: Javier Jaen
 CREATOR:: Juan C. Lorente
 CREATOR:: Jennifer Perez
 PUBLISHER:: Corporation for National Research Initiatives
 DATE:: January 2003
 TYPE:: article
 IDENTIFIER:: http://www.dlib.org/dlib/january2003/canos/01canos.html
 LANGUAGE:: English
 RELATION:: D-Lib Magazine
 RIGHTS:: Jose H. Canos, Javier Jaen, Juan C. Lorente, and Jennifer Perez

Note that the rfc1807 fields [rfc1807] are quite similar to Dublin Core XML used in
OAI-PMH.

3

Extracting Data from D-Lib XML Files

Most of the OAI-PMH fields can be directly mapped from the D-Lib meta.xml files that
describe each article. The main field missing from the D-Lib metadata file is a subject
terms field. D-Lib includes a <meta> tag in the <head> element of every article, using
the same three keywords. Since term association is a major part of a search service we
decided to use IR algorithms to compute subject (keyword) terms for each article.

Below is an example of the metadata XML file resulting from our use of the IR
algorithm to compute keywords:

<article>
 <title>
 Building Safety Systems with Dynamic Disseminations of Multimedia Digital
Objects
 </title>
 <creator >Jose H. Canos</creator>
 <creator> Javier Jaen</creator>
 <creator>Juan C. Lorente </creator>
 <creator>Jennifer Perez </creator>
 <publisher>Corporation for National Research Initiatives</publisher>
 <date>
 <month>January</month>
 <year>2003</year>
 </date>
 <type>article</type>

<identifier>http://www.dlib.org/dlib/january03/canos/01canos.html</identifier>
 <language>English</language>
 <relation>D-Lib Magazine</relation>
 <rights>Jose H. Canos, Javier Jaen, Juan C. Lorente, and Jennifer
Perez</rights>
 <subject>train javax interfaces driver size aspect components ejbs home page
http station states
 evacuation screen stations tunnels section decision transportation
 </subject>
 <xmluri>01canos.xml</xmluri>
</article>

Most of the fields, except for the subject fields, were derived directly from the D-Lib
metadata file.

Generating Keywords from D-Lib Articles

Here is the term selection algorithm we used:

• Extract tokens from HTML article text with Java callback parser.
• Drop terms that contain special characters except terms that end with

punctuation (. , ? ;).
• Convert characters to lower case.
• Drop terms less than 4 characters in length.
• Drop terms in stop word list.
• Add term to term frequency matrix.

4

• When terms in document >100, start new document.

• When the end of the file is reached, process the term by document matrix as
follows:

o Compute df (document frequency matrix).
o Drop terms that don't appear in at least 10% of documents.
o Compute tf/idf (Term frequency (tf) is the number of times a term occurs

in a single document. Inverse document frequency (idf) is a measure of
the distinctiveness of this term across the document space.) tf/idf =
tf/log(N/df).

o Select n terms with highest tf/idf weights.
o Compress tf/idf matrix.

tf/idf

Each cell of the term by document matrix is the raw frequency count of the number of
times a term occurred in a particular document. The overall frequency matrix is the
number of documents in which each term is found. These two arrays are used to
compute tf/idf. The terms are about 25% of the tokens in the HTML document after
rejecting terms with special characters, tokens less than four characters, and terms in the
stop word list.

tf/idf = tf/log(N/df)

The tfidf(termArray) method computes tf/idf from the raw frequency arrays.

Below is a snippit of sample Java code for this process:

 tf/idf = tf/log(N/df)

The tfidf(termArray) method computes tf/idf from the raw frequency arrays.

Below is a snippit of sample Java code for this process:

 public void ctfidf(){
 int i,j;
 int N = docs;
 for (i=0;i<nterms;i++)
 for (j=0;j<N;j++)
 if(htdf[i][j] > 0 && hdf[i] > 0){
 htdf[i][j] = htdf[i][j] * Math.log(N/hdf[i]);
 //System.out.print(hterms[i]);
 //System.out.println(htdf[i][j]);
 }
 else
 htdf[i][j] = 0;

 }

The tf/idf method provides a way for weighing terms in a document space. A term that

5

occurs in every document is not a very useful search term and a term that appears very
infrequently is also probably not that useful [Salton, McGill: 1983].

Creating a Document Space within a Single Article

An important feature of this OAI-PMH data service is computing keywords from the
text of the articles. The tf/idf algorithm requires a document space; a term by document
matrix. Because paragraphs in an HTML document are difficult to define, we decided to
use term proximity to define the document space. Each set of n terms (where n=100) in
the current code is treated as a document. Tokens that passed the screen represented
about 25% of the terms in the original document. A typical paragraph is about 400
words; hence, 100 selected terms is close to the size of a paragraph in English prose.
Table 1 below illustrates the conversion data from five D-Lib articles.

Table 1. Conversion Data from Five Sample Articles
On Making and Identifying a "Copy"
Norman Paskin, International DOI Foundation

Computed
Keywords

Relevance
Data

Metadata

Building Safety Systems with Dynamic Disseminations of
Multimedia Digital Objects
José H. Canós, Javier Jaén, Juan C. Lorente, and Jennifer Pérez,
Polytechnic University of Valencia

Computed
Keywords

Relevance
Data

Metadata

MOAC - A Report on Integrating Museum and Archive Access
in the Online Archive of California
Richard Rinehart, University of California, Berkeley

Computed
Keywords

Relevance
Data

Metadata

iVia Open Source Virtual Library System
Steve Mitchell, Margaret Mooney, Julie Mason, Gordon Paynter,
Johannes Ruscheinski, Artur Kedzierski, and Keith Humphreys,
University of California, Riverside

Computed
Keywords

Relevance
Data

Metadata

Open Archives Activities and Experiences in Europe: An
Overview by the Open Archives Forum
Susanne Dobratz and Birgit Matthaei, Humbolt University, Berlin

Computed
Keywords

Relevance
Data

Metadata

Table 2. Computed Keywords
 Paskin Canos Rinehart Mitchell Dobratz
1 document train page programmer united
2 blue javax broad chakrabarti expectations
3 schema interfaces physical phrase offered
4 hence driver direct learning second

6

5 itself size visitors page costs
6 distinct aspect testbed wide most
7 edition components richard michigan workshops
8 ifla ejbs reach analysis southampton
9 press home held greenstone workspace
10 niso page bancroft citeseer openarchives
11 identical http portals phind scientific
12 elements station models theme user
13 resource states record create pisa
14 common evacuation damd authorities extend
15 likely screen image description torii
16 qualfier stations object cdrom responding
17 reference tunnels often refereed formats
18 ebook section objects conference activities
19 open decision initial riverside workpackage
20 users transportation practice crawling univ

Analysis of Results of Subject Term Extraction

We selected the top 20 terms based on tf/idf weight for each article. We then read the
article and evaluated a simple relevance judgment for each term. The question was
whether the term was relevant to the semantic meaning of the article. See Table 3 below.

Table 3. Relevance Judgments
Article/
Key

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 %

Paskin y n y n n n y y y y n y y y n y y y y y 70

Canos y y y y n n y y y y y y y y y y y y y y 90

Rinehart y n y n y y y n n y y y y y y y n y y y 75

Mitchell y y y y y n y y y y y y y y y y y y y y 95

Dobratz y n n n y n y y y y y y y y y y y y y y 85

After running the Java program that computed subject terms, we read each article to
make a judgment on whether the computed subject terms were relevant to that article.
The criteria was not whether the program selected the best subject terms for that text,
but rather whether the term generally reflected the semantic meaning of the article. The
resulting scores varied from 70-95%. There are some terms in each article set (reach,
held, likely) that would not work well at all as search terms. An interesting question for

7

future work is whether to have a cataloger prune those terms or leave them in assuming
that most users of the search interface wouldn't use those terms anyway.

OAI-PMH Harvester Selection/Search Service

A harvester provides the means for collecting metadata from repositories. We wanted a
harvester that would be easy to install. We also looked for one that would make it easy
to schedule a harvesting job and to manage the harvested data. In addition we wanted
the harvester to be open source and implemented in Java. Among the many existing
OAI-PMH harvesting tools, we chose OAIHarvester from OCLC. The OAIHarvester is
an open source Java application providing an OAI-PHM v.2.0 harvester framework. It
provides some Java interfaces to harvest customized metadata formats.

Although the OAIHarvester provides a way for harvesting the metadata, we wanted to
offer users a direct view of the repository by adding some search services on top of it.
The search services we developed support search functions in the fields of author, title,
subject, and publication date. Users can search on any combination of the fields. The
search results include the links to the retrieved article, to the authors, and to the full
metadata about the article in XML format.

D-Lib Article Browser

We developed an article browser with a search service using as data the D-Lib
Magazine articles and metadata. The browser is now running on data in our OAI-PMH
repository. We are in the process of linking the repository to an OAI-PMH harvester and
will run the browser and search service from the harvested data once that link is
complete. For the time being the metadata and subject terms for the articles in the OAI-
PMH repository is output to a single XML file using a Java program. A second Java
program reads the XML file and outputs the metadata to a MySQL database as a single
large table. The Apache Tomcat search servlet queries the database using SQL
commands. Apache Tomcat is an open source Java servlet engine. Results from user
queries are written to an HTML file and returned to the user. Here is a sample of the
browser returning a table of articles from the January 2003 issue:

8

Figure 1. Result of searching for January 2003 articles

A search for the author ("Creator") Canos returns this result:

9

Figure 2. Result of searching for the author ("Canos")

An interesting question is whether this application produces better results than the
search function already built into D-Lib Magazine. The D-Lib search service is based on
a conventional full text search engine. The main difference between our search service
and D-Lib's search service is that in ours the subject field contains terms generated using
tf/idf. The browser and search interface can be accessed at
<http://enable.slis.indiana.edu:8080/enable/dlib.html>.

Search terms can be entered into the title, creator, and subject text fields. Entering terms
into multiple fields is a logical OR. Start and end dates can be selected. If one simply
wants to see articles from one or more issues, no terms need to be entered into the text
fields. The user has to specify the date range and click on the submit button. Results are
returned as a table. The user then selects the title to view the article or selects Metadata
to view the Dublin Core metadata for that article.

10

Conclusions, Limitations and Future Work

To prototype the search service, we are running the search Java servlet from a database
built from data in the RVOT repository. The next step is to install an OAI harvester and
run the search service from the harvester, which will harvest the metadata from the
repository. This step will be completed in December 2003. OAI recommends running
data services from harvested data. We will use the OCLC harvester that stores data in a
database so the search servlet code will be the same.

The relevance judgments described in this article were binary, and the result was
expressed as a simple percent. More work is needed to improve this analysis function.
There is almost no overlap between keyword sets across the several articles, which
makes vector analysis difficult.

A web crawler needs to be written that can discriminate between full length articles and
other features in each issue.

Terms were selected based on high tf/idf weights in the tf/idf matrix. Other selection
algorithms need to be explored and analyzed. One selection algorithm by Mostafa is
used in Sifter vocabulary generation: Select a term if it ranks in the top n terms in a
document(R) and occurs in at least N documents(D) [Mostafa 1998]. We should be able
to compare the resulting term vectors using statistical algorithms more sophisticated
than simple percentages.

The RVOT OAI-PMH repository program is quite easy to use and will easily meet our
needs through the prototype stage of this project. RVOT uses a file format similar to
rfc1807 to store the Dublin Core data elements. A mapping function in the server allows
the user to select rfc1807 elements to map to specific Dublin Core fields.

The results of computing keywords from text in the articles are quite interesting. We
assigned binary relevance values to each term in the keyword list based on a fairly
relaxed standard. The question we posed was not whether the keywords were the best
terms to represent the meaning of the article. Our criterion was instead whether the term
was a reasonable keyword for the article or a part of the article. Results varied from 70%
to 95% based on that relaxed criteria.

There are some nonsense terms in the keyword set but there are many terms that do
reflect the semantic meaning of the article. One interesting observation is that the
keyword sets for each article have little in common with other article keyword sets. That
was a bit of a surprise given the tight focus of D-Lib. Another interesting feature of the
relevance analysis is that most of the non relevant keywords appeared at the top of each
list. The keyword list is sorted by tf/idf weight with the highest values at the top of the
list. This result suggests that tf/idf weighting may not be the best method of selecting
terms. The tf/idf algorithm does a good job of selecting terms for a specific document
but not necessarily a good term for all paragraphs in an article. Keep in mind that we

11

split each article into multiple documents (paragraphs) for this computation.

Acknowledgment

This work was partially supported through a grant from the National Science
Foundation (NSF) (Award#:0333623).

References

[Canós 2003] José H. Canós et al.: "Building Safety Systems with Dynamic
Disseminations of Multimedia Digital Objects", D-Lib Magazine, January 2003.
Available at <doi:10.1045/january2003-canos>.

[D-Lib Magazine] D-Lib Magazine is an electronic publication focused on digital
library research and development. It is available at <http://www.dlib.org/>.

[Dublin Core] Dublin Core Metadata Initiative, <http://dublincore.org/>.

[IU IP Lab] Indiana University School of Library and Information Science Information
Processing Laboratory, <http://ella.slis.indiana.edu/~lmongin/iplab/>.

[Mostafa 1998] Mostafa, J., Quiroga, L., & Palakal, M. "Filtering Medical Documents
Using Automated and Human Classification Methods." Journal of the American Society
for Information Science, 49(14), 1304-1318, 1998.

[OAI] Open Archives Initiative, < http://www.openarchives.org/>.

[rfc1807] An XML Schema for the rfc1807 metadata format, 2002. Available at
<http://www.openarchives.org/OAI/2.0/guidelines-rfc1807.htm>.

[Old Dominion RVOT] Rapid Visual OAI Tool from Old Dominion University,
<http://rvot.sourceforge.net/>.

[Salton, McGill 1983] G. Salton and M. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, 1983.

Copyright © Larry Mongin, Yueyu Fu, and Javed Mostafa

12

