Borner, Katy. (1998). Concept-based, adaptive human-computer interaction. Proceedings of the 9th Irish Conference on
Artificial Intelligence and Cognitive Science, Dunnion, John, O'Hare, Gregory, Nuallain, Sean O., Reilly, Ronan, and
Smith, Barry (Eds.), Dublin, Ireland, Published by the University College Dublin, pp. 103-109.¢

Concept-based, adaptive human-computer
interaction

Katy Borner

Indiana University, Computer Science Department
Bloomington, IN 47405, USA
katy@cs.indiana.edu

Abstract. Aiming at intelligent interfaces this paper describes research
on human-computer interaction (HCI) that is based on concepts and
evolves during the systems usage. The concepts are extracted out of past
user interactions utilizing the approach of Conceptual Analogy [B6r97].
They are used to assist navigation and manipulation tasks visually and
acoustically at increasing levels of generalization. Here we motivate the
concept-based approach, describe the adaptive HCI that can be achieved
with it, and exemplify the approach in an abstract domain.

1 Introduction

By intelligent interfaces we mean interfaces that allow for generative, adaptive
human-computer interaction. Generative interaction (e.g., during navigation and
manipulation) refers to the generation of useful knowledge structures (e.g., a plan
or a design) to satisfy a user’s goals. Adaptive interaction entails the personal-
ization of content and presentation of it [Lan97]. Content involves the knowledge
structures and inferences used to support human problem solving. The presen-
tation of content refers to the implemented human-computer interface inclusive
its interaction possibilities.

Artificial Intelligence (AI) techniques can be applied advantageously to per-
sonalize contents. Virtual Reality (VR) technology enables multiple channels and
modes to be used for human-computer interaction. In this paper we present pre-
liminary results of a system which combines AI techniques and a VR interface to
achieve generative, adaptive human-computer interaction. We begin in Section 2
by introducing our approach which centers around enabling the system to learn
unobtrusively from the user and to successively adapt according to user prefer-
ences. Section 3 sketches the approach of Conceptual Analogy that was described
in detail elsewhere [Bor97] and is applied to achieve generative, adaptive HCI
based on concepts. In section 4 we summarize our work this far and provide an
outlook.

2 Adaptive human-computer interaction

Any computer system — like any person — makes certain (inter)actions easier to
achieve and is more or less intuitive to understand. The systems interface and the
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software behind implicitly define a sort of interaction landscape, creating valleys
that are easy to travel whereas other areas are separated by forbidding moun-
tain ranges and are harder to reach. Ideally, the interaction landscape should
dynamically adapt to the (kind and sequence) of operations that are used by its
particular user(s).

Lets illustrate this in an abstract domain and task.! The abstract domain is
a rectangular, equally spaced labyrinth-like world enriched with virtual objects.
The users task is to navigate to several places and to manipulate (i.e., select and
assemble) objects to built object assemblies like an arch, fence, tower etc. within
a restricted time.? Places and objects are arranged on an underlying grid. Places
can be reached using a variety of paths (see Fig. 1). The variety of possible object
assemblies is enormous. There is almost no rule-based or model-based knowledge
available to guide navigation and manipulation.
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Fig. 1. Four different sample paths and a problem

A problem corresponds to a set of places/objects and some relations among
them. Its solution is a path or object assembly that contains the problem places/
objects and combines past examples (i.e., paths/object assemblies) to connect
all problem places/objects. Myriad combinations of past examples are possible
resulting in a very large search space and usually more than one solution. Here,
solutions that share a high structural similarity with past examples (i.e., which
probably satisfy similar sets of constraints) are preferred.

A system aiming at an unobtrusive, adaptive support of such navigation and
manipulation tasks should personalize its knowledge structures and inferences as
well as the presentation of support to the users preferences.

Personalization of content may proceed as follows. In the first run, the system
has not knowledge about the preferences of its user. Thus, no guidance can be
provided during navigation or manipulation. Tackling a navigation task a second

! The domain and task may be instantiated into diverse domains and tasks such as
architectural design, robot navigation, generating animation sequences of virtual
actors, or production planning.

2 Other research on multimodal adaptive interfaces combines automatic speech recog-
nition, computer vision for gesture tracking, and machine learning techniques [RP97].
Our system restricts the primary mode of interaction to the navigation and manip-
ulation of virtual places/objects.



time, the system may suggest the path used the last time. In a third run the sys-
tem may combine the first and second path to support navigation. Analogously,
manipulation of objects can be eased by grouping objects to object assemblies.
That is, the system collects past examples of paths/object assemblies.® It com-
bines them to support subsequent navigation and manipulation tasks preferring
those examples that show a high structural similarity.

Personalization of presentation proceeds visually and acoustically via a VR in-
terface. It consists of tracked glasses to experience the three dimensional world
that is projected on a larger screen of about 8’ by 8’ size, named Wall, a tracked
stylus glove to navigate and manipulate objects, and a stereo audio system.
Visually, preferred paths may be broader, lighter, contain blinking elements,
show more footsteps, or more virtual actors may go on them (see Fig. 2). Here
the with, level of hue or the number of blinking elements/virtual actors corre-
sponds directly to the number of previous path selections.

Acoustically, solutions generated by combining examples of low structural simi-
larity will be presented with a high, shrill sound reminding a user to check the
solution before accepting it. Solutions showing a high structural similarity to the
transferred past example(s) are presented with low, humming sounds.
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Fig. 2. Different visualizations of paths preferences at a given user position

Not only the presentation of support changes during system interaction but
also the interaction itself. In the beginning the concrete next place to visit or
the objects to assemble may be highlighted. Later on, the system combines ex-
amples such that the user can manipulate larger object assemblies or employ
path macros to change places instantaneously. The concrete execution of the
commands is delegated to the system. In such a way, generative, adaptive sup-
port for manipulation and navigation is provided visually and acoustically at
increasing levels of generalization.

3 Note that there are no negative examples.



3 Concept-based human-computer interaction

To achieve the adaptive HCI described in the last section, concepts extracted
out of past user interactions may be employed. User interactions (i.e., the user’s
coordinates as well as changing positions of typed objects manipulated via a
stylus glove) will be time-stamped and are recorded via position sensors one
at the side of a pair of shutter glasses and one on the back of the stylus-glove
respectively. They are internally represented by a set of attribute vectors:

place(x,y,z=4.0,3.0,1.0; time=0.2)
object(x,y,z=0.0,0.0,0.0; type=cube; time=0.3)

to facilitate learning of navigation and manipulation tasks in terms of these
attribute primitives. For example, if a user puts several cubes over each other to
built a tower, the goal would be to learn the (general) structure of a tower.

Paths and object arrangements are represented by sets of places/objects (sub-
sequently denoted by x) and the temporal /spatial relations (e.g., ’place_1 before
place_2’ or ’object_1 below object_2’) among them:

example( (x_1, ..., x_n), (<x_1,x_2>, ..., <x_n-1,x_n>) )

The temporal/spatial relations may conform to Allens relations [All84]. For nav-
igation/manipulation support past examples have to be combined. Solutions
sharing many relations with past examples are preferred. Case-based reasoning
(CBR) [K0193,AP94] allowing for the retrieval and adaptation of past examples
(called cases) seems to be the appropriate reasoning method. However, it does
not support case retrieval based on structural similarity and case adaptation by
case combination, see [BCPT96] for a detailed discussion. The approach of Con-
ceptual Analogy (CA) was developed to overcome these limitations [Bér97]. CA
is a general approach that relies on conceptual clustering to facilitate the effi-
cient use of past cases in analogous situations. The approach divides the overall
design task into memory organization and enalogical reasoning both processing
graph-based case representations.

To explain Conceptual Analogy we are going to use the following graph-
theoretic definitions: A graph ¢ = (V9,E9) 1is an ordered pair of vertices
V9 and edges E9 with E9 C V9 x V9. A set of graphs is denoted by G. The
entire graph g'@) of a set G of graphs equals the union of the vertices/edges of
the graphs in G, i.e., (@ = (U, V9, U% E9) = (V(@, E(D). The relative
frequency Pg of an edge (v;,v;) of the entire graph of G equals the cardinality
of the graphs in G' containing this edge divided by the cardinality of G:

Pa(oi,vy) 1= LS G €2

Conform to the terminology used in case-based reasoning we define: A case
¢ = (V¢ E°) is a graph (vertices represent either places or objects and edges
denote temporal/spatial relations among places/objects). A case base CB is a
finite list of (possibly identical) cases. A problem p = (V?, EP) provides a set



of vertices and perhaps some edges; i.e., it is a forest. A solution s = (V?, E®)
of a problem contains the problem vertices and edges and adds those vertices
and edges from cases in C'B that are needed to connect all problem vertices and
edges.

Memory organization: applies nearest-neighbor-based, agglomerative, unsuper-
vised conceptual clustering to create a hierarchy of concepts representing cases
of similar structure.

Clustering starts with a set of singleton vertices representing each case of
CB by a concept K, i.e., a set of graphs with edges showing an identical relative
frequency. The two most similar concepts and over the entire set are merged to
form a new concept that covers both. The structural similarity* o maps a set K
of graphs into the interval [0, 1]:

K| (K (K)
o (K) = |5 B _ 1B € [0,1]
WS B Ul B

were EZ(K), i = 1,...,|K] is defined as EZ(K) = {(v,v) | (vj,v) € EE) A
Pr((v,vr)) = "7‘} This process is repeated for each of the remaining N — 1
concepts, where N equals the number of cases in C'B. At termination, a uniform,
binary hierarchy of concepts is left (see Fig. 3).

The concept of four cases equals four (possibly empty) graphs showing the
same relative frequency of their edges relative to the cases in the case class. For
example, concept no. VII in Fig. 3 may be visually represented by:
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In such a way, large amounts of cases with many details can be reduced to
a number of hierarchically organized concepts. The concrete cases, however, are
stored to enable the dynamic reorganization and update of concepts.

Analogical reasoning: is based on concepts exclusively. Given a new problem, it
is classified in the most applicable concept. The applicability « of a concept K to
solve a problem p equals —1, if the entire graph of the concept does not contain
the problem and thus the concept cant solve the problem. Otherwise it equals
the similarity of K. If 0 < a(K,p) < 1 holds, then K will allow to generate at
least one solution of p. The concept showing the highest a value is called the
most applicable concept.

Each solution connects all problem objects by using those vertices and edges
that show the highest probability in the concept applied. Instead of adapting
one or more cases to solve the problem as in CBR, an applicable concept K is
applied to generate a set of adapted solutions Sk , for a problem p. In general,

4 Note that the structural similarity function is commutative and associative. Thus it
may be applied to a pair of cases as well as to a set of cases.
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Fig. 3. Different paths and resulting concept hierarchy

there exist more than one applicable concept. The set of all solutions S¢p,p, of
a CB for a problem p equals the union of solution sets Sk . It may be ordered
corresponding to the quality p of a solution, which corresponds to the relative
frequency of its edges with regard to the concept K used to generate it, i.e.,
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Solutions of high quality are presented with humming sound. Solutions of low
quality - generated by more general concepts - are accompanied by shrill sound.
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Fig. 4. Finding a path from point A to B based on examples I to IV

Figure 4 provides an example of navigation support at different user posi-
tions (denoted by a black dot). It is based on the sample paths depicted in Fig.
1 and their conceptual representation shown in Fig. 3. The upper solution cor-
responds to sample path no. IT and shows a quality of one. The solution below
was generated by applying concept no. VIL. Its quality equals 0.625.



4 Summary

We have provided a snap shot of our work in progress on intelligent interfaces.
The system provides an interface which learns to support manipulation and
navigation tasks by natural interactions with people. The system uses a virtual
world and virtual objects as natural reference for human-computer interaction.
Preferred paths or object assemblies can be extracted, used as well as com-
municated during problem solving on increasing levels of generalization. The
interfaces’ expressiveness scales along with the users’ skill. Over time, less ma-
nipulation and navigation proceeds at higher levels of generalization, increasing
the overall efficiency of human-computer interaction. Personalized concepts are
grounded on concrete human-computer interactions and the human-computer
interaction changes with the concepts that are built up.

Some areas of our future work on concept-based, adaptive HCI include: The
application of the approach to concrete domains and experiments with differently
personalized presentations (visually and acoustically).
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