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Abstract. Most commonly, case-based reasoning is applied in domains
where attribute value representations of cases are sufficient to repre-
sent the features relevant to support classification, diagnosis or design
tasks. Distance functions like the Hamming-distance or their transfor-
mation into similarity functions are applied to retrieve past cases to
be used to generate the solution of an actual problem. Often, domain
knowledge is available to adapt past solutions to new problems or to
evaluate solutions. However, there are domains like architectural design
or law in which structural case representations and corresponding struc-
tural similarity functions are needed. Often, the acquisition of adaptation
knowledge seems to be impossible or rather requires an effort that is not
manageable for fielded applications. Despite of this, humans use cases
as the main source to generate adapted solutions. How to achieve this
computationally? This paper presents a general approach to structural
similarity assessment and adaptation. The approach allows to explore
structural case representations and limited domain knowledge to sup-
port design tasks. It is exemplarily instantiated in three modules of the
design assistant FABEL-Idea that generates adapted design solutions on
the basis of prior CAD layouts.

1 Introduction

To provide support in a complex real world domain like design, case-based rea-
soning (CBR) has been suggested as an appropriate problem solving method
[14, 17, 13, 15]. In CBR, a new problem is solved analogously to past expe-
riences (cases). That is, cases similar to the problem are retrieved, the set of
best cases is selected, a solution is derived and evaluated and the new problem
along with its solution is stored in memory [17, 25]. In most CBR applications
past experiences have no inherent structure and are described by fixed sets of
attribute value pairs. Traditionally, case adaptation is guided by static libraries
of hand-coded adaptation rules. If model-based knowledge about the domain is
available it may be used to constrain the reasoning process (retrieval as well as
adaptation) or to evaluate solutions.

In design, cases correspond to arrangements of physical objects represented
by CAD layouts and refer to parts in real buildings. The topological structure
(which does not reflect the function or behaviour of objects) inherent in such
layouts needs to be considered during reasoning. Complex case representations,
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however, increase the computational expense in retrieving, matching, and adapt-
ing cases. Efficient memory organization directly tailored to analogical reasoning
becomes essential. Additionally, design is a weak theory domain. Hardly any in-
formation about the relevance of features guiding the selection of similar cases is
available. The adaptation of prior layouts mainly corresponds to adding, elimi-
nating, or substituting physical objects. Because of the variety and the possible
number of combinations of these modifications, adaptation knowledge is difficult
to acquire by hand. In the project FABEL approaches have been developed that
define the structural similarity [6, 16] between structured case representations
(graphs) by their maximal common subgraphs (mcs). Given a new problem the
structurally most similar case(s) are retrieved. One out of several mes is trans-
ferred and the remaining case parts are taken over as needed. Additionally, the
mcs may be used to represent and access classes of cases in an efficient manner.
The remaining case parts can be seen as proper instantiations of mcs, i.e.; as a
special kind of adaptation knowledge that allows to adapt past cases to solve
new problems. In such a way adaptation knowledge can be automatically ex-
tracted out of past cases reducing the effort needed for knowledge acquisition
enormously.

This paper outlines the application domain and task and introduces the ba-
sic functionality required to support various design tasks. Based on this three
concrete approaches are presented that apply structural similarity assessment
and adaptation to provide this functionality in an efficient way. The approaches
differ by focusing on specific parts of the CBR-scenario. Finally, related work
will be discussed and conclusions will be drawn.

2 Application Domain and Task

The application domain used to motivate, illustrate, and evaluate the approaches
to structural similarity and adaptation is architectural design. In particular we
are concerned to support the design of rectangular building layout. Here, past
experiences (cases) correspond to arrangements of physical objects represented
by CAD layouts and refer to parts in real buildings. Each object is represented by
a set of attributes describing its geometry and its type (e.g. fresh air connection
pipe). Concentrating on the design of complex installation infrastructures for
industrial buildings, cases correspond to pipe systems that connect a given set
of outlets to the main access. Pipe systems for fresh and return air, electrical
circuits, computer networks, phone cables, etc. are numerous and show varied
topological structures. As for the retrieval, transfer, and adaptation of past cases
to new problems not the geometry and type of single objects but their topological
relations are important.

Due to this, objects and their (topological) relations need to be represented
and considered during reasoning. Therefore, the approaches described in this
article use a compile and recompile function to translate attribute value rep-
resentation of objects and their relations into graphs. In general, objects are
represented by vertices and relations between objects are represented by edges.



Reasoning, i.e. structural retrieval and adaptation proceeds via graph-based rep-
resentations. A recompile function translates the graph-based solution into its
attribute-based representation that may be depicted graphically to the architect.
Concentrating on different aspects of structural similarity assessment and adap-
tation different compile functions are appropriate, resulting in different graph
representations of cases and corresponding expressibility power and reasoning
complexity. They are explained in detail in section 4.1 to 4.3. As an example
see Fig. 1 which shows a problem and its solution. Some of the spatial relations
(touches, overlaps, is_close_to) used by TOPO to represent cases structurally are
visualized by arrows.
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Fig. 1. Domain example: A problem and its solution

Given a base of cases represented by graphs, reasoning proceeds as follows:
First, one or a set of cases that show a high structural similarity to the problem
needs to be retrieved out of the case base. Here structural similarity is defined via
the maximal common subgraph (mes) of a case and a problem. Assuming that
cases and problem may share more in common than their maximal common
subgraph, structural adaptation proceeds by transferring and combining case
parts that connect unconnected problem objects to the mcs.

3 Required Functionality

The required functionality (informally defined in the last section) will be defined
via the mappings needed to transfer a set of cases and a problem into one or a
set of problem solutions.

We give some basic notions and notations first. A graph ¢ = (V9,E9) is
an ordered pair of vertices V9 and edges EY with £9 C V9 x VY. Let mes(G)
denote the set of all maximal common subgraphs of a set of graphs G, with
respect to some criteria. If there is no danger of misunderstanding, the argument
of mcs will be left out. Let I' be the set of all graphs, and O be a finite set of
objects represented by attribute values for geometry and type. P(I") denotes the
powerset of I', that means the set of all subsets of I".

The mappings needed to accomplish the required functionality are depicted
in Fig. 2 and are explained subsequently. In order to access and interact via CAD



layouts (that are represent by attribute value pairs) but to reason via topological
structure there must be a way of translating attribute value representations of
cases into graph representations and reverse. Therefore, a compile function has
to be defined that maps the attribute value representation of a set of objects
representing a case or a problem into its structural representation:

compile : P(0O) — I

Inversely, the function recompile maps the graph representation of a set of objects
denoting a solution into their attribute value representation:

recompile : I' — P(0).

i set of
retrieve cases match adapt
problem_g set of solutions_g

compile compile recompile

set of solutions_a

Fig. 2. Mappings required to accomplish the required functionality

The concept of structural similarity allows the selection of one or more cases,
that are suitable for solving a problem. It is used by the function retrieve, that
maps a set of cases (i.e. the case base) and a problem into a set of candidate
cases that are applicable to solve the problem:

retrieve : P(I') x I' — P(I).

Retrieve itself uses (sometimes repeatedly) a function named match that maps
two graphs into their maximal common subgraphs mcs:

match : I' x I' — P(I").

As for adaptation, vertices and edges of the selected set of candidate cases are
transferred and combined to complement the problem into a set of solutions:

adapt : P(I'Y x I' x I' — P(I').

The function edapt also itself will be influenced by the function match such that
a single element of mcs is used for adaptation.

Because of the finity of the object set and the existence of the compile function,
we can restrict the last four mappings to finite domains,i.e., I' may be replaced

by compile(P(0)).



4 Three Approaches to Structural Similarity and
Adaptation

This section introduces three approaches that provide the defined functional-
ity using structural similarity assessment and adaptation. The approaches differ
in the compile and recompile functions applied. Different graph representations
(trees to arbitrary graphs) are used to represent cases illustrating the tradeoff
between expressibility and match complexity. Different ways of memory orga-
nization are used and several retrieval and adaptation strategies are proposed.
The approaches are compared at the end of this section.

4.1 TOPO

The main feature of TOPO is the case-based extension and correction of rect-
angular layouts.

Compile and Recompile: The compile function used by TOPO detects binary
topological relations of various types. The type of a relation is determined by
the application dependent attributes of involved objects and their 3-dimensional
topological relation. TOPQ’s compile function projects each layout to the three
axes and the 3-dimensional relation is a combination of the relations detected
for each dimension. For each projection 8 different directed relations can be
detected. They are similar to the temporal relations of [1], but additionally
distinguish several classes of distances between disjoint intervals. Therefore, a
given object may be in one of 16 relationships for each dimension leading to
163 = 4096 different 3-dimensional relationships [12].

Building a graph out of objects and relations, one must decide which ones
should be the vertices and which ones the edges. Depending on this decision
different subgraphs of graph representations of two layouts become isomorph.
As described and discussed in [12] TOPO uses the relations as vertices and the
objects as edges because it allows to detect weaker, but larger, correspondencies
between two layouts.

Retrieval: The matching function searches for the maximal common subgraphs
of two graphs. In order to solve a similar task, the problem of finding a maximal
clique of a graph, various NP-complete algorithms has been developed [2]. A
clique is a complete subgraph of a graph (every vertex is connected with every
other one). Instead of searching for a common subgraph of two graphs TOPO
searches for a maximal clique in one graph representing all possible matchings
between the two graphs, called their combination graph.

Building the combination graph: Using the transformation in [3], the vertices
in the combination graph represent all matchings of compatible vertices in the
source graphs. Figure 3 shows an example. The source graphs f and g contain
objects of type a and b connected by directed relations. The type of a relation



is defined by the types of its source and target objects. Two vertices are con-
nected in the combination graph if and only if the matchings represented by
the vertices do not contradict one another. The matchings (Ra(a,b)<Rs(a,b))
and (Rs(b,b)<Rio(b,b)) are connected because both relations occur in both
source graphs in the same context. Both are connected by a shared object of
type b. (Ra(a,b)<Rsg(a,b)) and (Ri(b,a)<Re(b,a)) are not connected because
the matched relations share an object of type a in graph f but do not share any
object in graph g.

The maximal clique in this combination graph and the corresponding maxi-
mal subgraphs are marked in black.

graph f:
Ri(b,a
Rs(b,b)
R4(a,
Rz(a}\ )As(a,b)
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R3(a,b)
<=>R8(a,b)

Fig. 3. Transformation of the problem of finding the maximal common subgraph to
the problem of finding a maximal clique in a graph. The maximal clique and the
corresponding matching are marked in black.

A general mazimal clique algorithm: The algorithm of [11] (for further use called
maz-cliquepr ) finds all cliques in a graph by enumerating and extending all com-
plete subgraphs. It extends complete subgraphs of size & to complete subgraphs
of size k 4+ 1 by adding iteratively vertices which are connected to all vertices of
the complete subgraph.

As an improvement [12] describes, how to reduce the search space by search-
ing for matchings of connected subgraphs only and combining them in a second
step.

The function retrieval: TOPO includes no own retrieval function but supplies
the retrieval module ASPECT [20] with two different similarity functions. Given



a similarity function and a query case, ASPECT guarantees to find the most
similar source case without the need to compare all cases.

Given two cases, the first similarity function returns the size of the maximal
common subgraphs relative to the minimum size of both graphs. Because a
maximal common subgraph cannot be larger than the smaller one of both graphs
the result is always a rational number between 0 and 1. In order to avoid the
np-complete search for the maximum common subgraphs a second similarity
function is defined. It compares the sets of relations ocuring in both cases. The
result is the number of compatible relations relative to the minimum number of
detected relations of both cases leading to a result, which is also between 0 and
1. The second similarity function obviously returns an upper bound of the first
similarity function, but has no np-complexity.

Adaptation: TOPO extends, refines and corrects layouts by case adaptation.
Because there exists no theory dividing a layout statically into problem part and
solution part, TOPQO uses the heuristic that every object of the source case which
is not found in the query case might be part of the solution. After determining
the common subgraph of the graph representation of a query and a case it offers
to transfer all objects from the source case to the query case which are connected
to the common part by a path of topological relations. In order to use this path
of topological relations to determine the position of the transferred object in the
query, TOPO uses the recompile functions. The user may specify the parts to
be transferred by selecting types of desired objects.

During transfer TOPO may change the size of transferred objects to preserve
topological relations. For example a window is resized in order to touch both sides
of a room. To avoid geometries which are impossible for an object, TOPO limits
the resizing to geometries which occurred in the case base.

The adaptation described so far is additive only and this is the main aim
of TOPO. A second way of using TOPO is transformative. TOPO searches in
the query case for objects constituting an unusual topological relationship. For
this reason TOPO creates a statistic about the frequency of topological relations
occurring in the case base for each type of objects. For example, 100 percent of
the outlets in the case base touch pipes and 2 percent of the chairs touch a shelf.
In case of detecting unusual relationships between objects of a query, TOPO asks
the user whether the position of one or both of the objects should be changed
or not. If the position of an object is confirmed to be changed, TOPQO searches
for an object of the source case compatible to the object of the query which is
related to compatible objects, but by more frequent topological relations. Using
the recompile functions of those more frequent relations the new position of the
object of the query case is determined. As an example let us suppose, that TOPO
detected the unusual relation used air outlet inside used air connection pipe in
a query case like in Fig. 5 and the user confirmed the position of the outlet
to be changed. TOPO searches for a part of the source case, where there is an
object which is compatible to the outlet and related to another object which
ist compatible to the connection pipe. Probably it would find an outlet which



touches a connection line. Therefore, it would transfer the relation touching and
accordingly reconstruct the position of the outlet of the query case.

4.2 MACS

In order to apply our structural concept the module MACS uses an appropriate
representation of domain objects which focuses on their structure. Therefore,
domain objects translated into unconstrained graphs. The preference of MACS
involves to structure the case base dynamically based on the structural similarity
of graph-based cases and to realize a fast retrieval over such a structured case
base.

Compile and Recompile: Analogous to the other approaches the function
compile guarantees the transformation of an attribute value represented case
into its graph representation (see [4] for examples). We represent cases very close
to the graphical representations which are in accordance with former reflections
about the graph structure of the domain elements. There are mainly two ways
to interpret a layout fragment:

— All architectural objects which appear in the layout are represented as ver-
tices. It is possible but not necessary to label the vertices with a type name of
the object and with additional qualitative and quantitative attributes. The
edges are used for expressing the topological relationships between neighbor-
ing vertices and, possibly, are labeled with a type name of the topological
relationship together with additional attributes.

— If the layout contains a certain amount of spanning objects like pipes or
beams then it is more suitable to represent the spanning objects as edges
and the remaining objects as vertices and, if it is necessary, to label with
their type name and necessary additional attributes.

The function recompile transforms vertices and edges of an adapted graph
into objects and relations of a concrete layout. In case of labeled graphs this
mapping is unique. Otherwise the problem of nonunique mappings has to be
solved.

Organization of the Case Base: In this approach, we consider arbitrary
graphs which may be either directed or undirected and, possibly, labeled or un-
labeled. Computing structural similarity is essentially based on graph matching
which actually means computing the maximal common isomorphic subgraphs.
The module MACS uses a backtracking algorithm [23] that realizes the function
match to compute maximal common subgraphs of two arbitrary graphs [24]. A
maximal common subgraph of two graphs denotes their structural similarity.
Because of our key concept of structural similarity, for any collection of graphs
C € P(I'), we use mes(C) to denote the set of maximal common subgraphs of
all graphs in C with respect to counting vertices and edges (cf. [24]).



In general, the structural similarity of a set of graphs is not unique. Therefore,
it may be represented by a set of graphs. Let us introduce some selection operator
E :P(I') — I to determine a unique representative © € mes(C) for each class
C.

Usually, the peculiarities of the application domain lead to a couple of prefer-
able selection operators. There are some illustrative possibilities, e.g.

— other similarity concepts based on labels of vertices or edges of graphs within
mes(C),

— graph—theoretic properties which characterize structures preferred in the do-
main.

When mes(C') and E are given, the structural similarity of any class C' of
graphs may be written as o(C') = E(mes(C)) in the sense of [10].

Because of NP-completeness of the subgraph isomorphism problem, that is
the computing of a common isomorphic subgraph, classical case retrieval is ex-
tremely expensive, if every member of a usually huge case base is potentially
queried. The performance of this search can be increased by prestructuring the
case base in case classes, i.e. clustering.

Preferably, a given case base C'B is clustered with respect to structural sim-
ilarity, i.e. graphs of a close structural relationship are grouped together and
represented by a graph describing their structural similarity. Let us assume that
a case base C'B is separated in n partitions or classes where the finite number n
may be approx. N with N =| CB |. Each class CB; (i = 1,...,n) consists of a
set of graph-represented cases and is determined by a graph ©; which is called
its representative.

Fast Retrieval over a Structured Case Base: We may assume that the
case base is partioned in n finite classes and that a representative of every class
is computed by ©; = o(CB;), (i = 1,...,n) with an optimal value of n ~ +/N.

There is a basic scenario for retrieving similar cases to a given problem (the
query case g). The fast retrieval proceeds in two steps:

1. The retrieval yields a maximal similar representative ©; to the given query
case. The resulting class is indexed by some i*. (Note that there may be
several maximal results being mutually incomparable.)

2. Over the set C'B;» of preferred cases, retrieval is performed again to return
the ultimate result.

The fast retrieval allows to reduce the number of necessary comparisons to
2n in the average case. Usually, the result is a set of cases of C'B;» having a
structural similarity of maximal size. Those are returned for further reasoning
procedures like case adaptation. The advantage over conventional approaches is
quite obvious.

In case of MACS, the result of retrieval is a set of source cases denoted
by Si+ C CBj«. Each case g/. € Sj» has the property that each element of
mcs({gg* ,9}) = match(gg* , g) has the equal number of vertices and edges, i.e. the
size of structural similarity of each graph of S;» and the query case is identically.



Adaptation: The selected cases are proposed one after the other to a checking
algorithm or to the user, who selects the most suitable one.

In general we have smaller query cases than source cases, hence it is possible
that a chosen source case solves a problem itself. Otherwise, the selected source
case have to be adapted to the problem. Normally, in CBR adaptation means the
transformation of a chosen source case using informations which are included in
a knowledge-base and several kinds of substitutions of a query case.

The module MACS realizes a structure modification of query cases doing
simple substitutions exclusively which result is the supplemented query case.
We may distinguish two basic scenarios to realize the function adapt for a query
case ¢:

1. We select a source case gj. € Si=. Further, let h be a structural similarity of
¢ and the chosen source case g}.. Using the result of match(g, gj»), we get a
mapping list of corresponded vertices of g and g/« which define the graph A.
The adapted graph (solution) is generated from graph g by adding all walks
in g}., which have not an isomorphic mapping in g but which begin and end
with vertices of h. These walks may be sequences of edges which are incident
with vertices not corresponding to a vertex of g excluding the begin and end
vertices.

2. We use the whole set S;« for adaptation. Let A be a structural similarity of g
and S;». An adapted graph (solution) is generated from graph ¢ by adding all
walks of graphs of S;« that have the same property as described above. The
user will have to choose between using all graphs of S;» or special graphs
only.

The module MACS provides the first variant of adaptation exclusively. It
would require a different scenario to realize the second variant of adaptation.
Especially, the creation of some choosing heuristics based of a different graph
representation or the specification of extensive user interaction would be neces-
sary.

4.3 CA/SYN

Conceptual analogy (CA) is a general approach that relies on conceptual clus-
tering to facilitate the efficient use of past cases in analogous situations [7]. CA
divides the overall design task into memory organization and analogical reason-
ing both processing structural case representations. In order to ground both
processes on attribute value representations of cases a compile function and a
recompile function need to be defined.

Compile and Recompile: The function compile guarantees the unique trans-
formation of an attribute value represented case into its structural normal form,
i.e., a tree. Especially suited for the design of pipelines, compile maps outlets
into vertices and pipes into edges. Inversely, recompile maps vertices and edges
into outlets and pipes. Geometrical transformations like rotation are considered.
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Representing the main access by a square, outlets by circles, interconnecting
points by circles of smaller size and pipes by line segments, Fig. 4 (left bottom)
illustrates six cases representing pipe systems. Each of them shows a tree like
structure. The main access corresponds to the root (R), outlets correspond to
leave (L). Crosspoints of pipes or connections of pipe segments are represented
by internal vertices (I). Pipes correspond to edges. Each object is placed on the
intersecting points of a fixed grid (not shown here) and can be uniquely identi-
fied by its z and y coordinates and its type € {R, I, L}. Pipes connect objects
horizontally or vertically. Thus a case can be represented by a set of vertices and
a set of edges representing connected_to relations among these objects. Formally,
a case ¢ = (V° E°) is a tree. A case base C'B is a finite set of cases. A typical
design problem provides the main access, the outlets, and perhaps some pipes,
i.e., it is a forest. A solution of a problem contains the problem objects and
relations and eventually adds intermediate vertices from past cases and provides
the relations that are required to connect all outlets to the main access.

Memory Organization starts with a case base (C'B) providing a significant
amount of cases as well as a structural similarity function o.

To explain memory organization some basic definitions will be given first.
A case class CC is a nonempty subset of C'B. Let mes(CC) be the (unique)
maximum common, connected subgraph of the cases in C'C' containing the root
vertice. The structural similarity® is defined as |E™°*| divided by the total num-
ber of edges in the cases of CC:

|EmCS |

o(CC) = TUreco B

e [0, 1].

Given a case base and a similarity function o a case class partition CCP is a
set of mutually disjoint, exhaustive case classes CC: CCP = {CC; | |J, CC; =
CBAYi# j(CC;iNCC; =0) AVi# j((c1,e2 € CCi Aes € CCj) — o(er,e2) >
o(e1,e3) Ao(er,ca) > o(ea,e3))}. A case class hierarchy CCH is the set of all
partitions CCPY of CB = {c1,..,en}: CCH = (CCP°, CCPY, ..., CCP*Y).

Given a set of cases CB = {c1, ..,cn}, represented by trees, memory organi-
zation starts. Nearest-neighbor-based, agglomerative, unsupervised conceptual
clustering is applied to create a hierarchy of case classes sharing cases of similar
structure. It begins with a set of singleton vertices representing case classes, each
containing a single case. The two most similar case classes C'Cy and CCy over
the entire set are merged to form a new case class CC' = C'C7; U CC5 that covers
both. This process is repeated for each of the remaining N —1 case classes, where
N is the number of cases in C'B. Case class merging continues until a single all-
inclusive cluster remains. Thus at termination a uniform, binary hierarchy of
case classes is left.

Subsequently, a concept description K(CC') is assigned to each case class
CC'. The concept represents the mes(CC) (named prototype) of the cases in

® Note that the structural similarity function is commutative and associative. Thus it
may be applied to a pair of cases as well as to a set of cases.
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CC and a set of instantiations thereof, along with the probability of these in-
stantiations. The probability of an instantiation corresponds to the number of
its occurrences in the cases of C'C divided by the total number of cases in C'C.
The mecs denoting the structure relevant for similarity comparisons will serve as
an index in the case base. The instantiations (subtrees) denote possibilities for
adaptation. Probabilities will direct the search through the space of alternative
instantiations.

concept hierarchy concept representation
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prototype o 0.33 instantiations and
w)/ Co»0 2 their probability

I
-y —— oo Moo

o ¢ (1) ‘
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Che b MR TR
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Fig.4. Concept hierarchy and concept representation

In such a way, large amounts of cases with many details can be reduced to
a number of hierarchically organized concepts. The concrete cases, however, are
stored to enable the dynamic reorganization and update of concepts.

Analogical Reasoning is based on concepts exclusively. Given a new prob-
lem, it is classified in the most applicable concept, i.e., the concept that shares
as many relations as possible (high structural similarity) and provides instanti-
ations that contain the problem objects that are not covered by the prototype
(adaptability)?. Thus instead of retrieving one or a set of cases, the function
classify maps a concept hierarchy K(CCH) and a problem p into the most ap-
plicable concept K(CC).

Next, the mcs of the most applicable concept is transferred and instantiated.
Instantiations of high probability are preferred. Each solution connects all prob-
lem objects by using those objects and edges that show the highest probability
in the concept applied. In general, there exist more than one solution. The set
of solutions for a problem and a case base may be denoted by Scp . Instead
of adapting one or more cases to solve the problem, the function instantiate
maps the concept representation K(CC') and the problem into a set of adapted
solutions Scp p.

* Note that the most similar concept may be too concrete to allow the generation
of a solution. See also [22] for a discussion and experiments on adaptation-guided
retrieval.
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Finally, the set of solutions may be ordered corresponding to a set of pref-
erence criteria: (1) max. structural similarity of the solution and the concept
applied, (2) max. probability of edges transferred, and (3) min. solution size.

If the solution was accepted by the user, its incorporation into an existing
concept changes at least the probabilities of the instantiations. Given that the
problem already contained relations, it might add new instantiations or even
change the prototype itself. If the solution was not accepted, the case memory
needs to be reorganized to incorporate the user provided solution.

Fig. 4 (left) depicts the organization of cases into a concept hierarchy. N
cases are represented by 2N — 1 case classes resp. concepts K(CC'). Leave ver-
tices correspond to concrete cases and are represented by the cases themselves.
Generalized concepts in the concept hierarchy are labeled (I) to (V) and are char-
acterized by their mes (prototype) denoted by black circles and line segments.
The representation of concept no. (III) representing case; to cases is depicted on
the right hand side of Fig. 4. The instantiation of its prototype results in case;
to cases as well as combinations thereof. Given a new problem, the most applica-
ble, i.e., most similar concept containing all problem objects is determined. The
set of problems that may be solved by concept no. (III) corresponds to the set
of all subtrees of either concrete or combined cases, containing the root vertice.

The general approach of Conceptual Analogy has been fully implemented
in SYN, a module of a highly interactive, adaptive system architecture [8]. Its
compile and recompile function is especially suited to support the geometrical
layout of pipe systems. See [6, 9] for a detailed description of the implementation.

4.4 Example

Figure 5 provides an example of structural similarity assessment and adaptation.
Depicted on the top is the query case or problem, the middle presents a source
case used by TOPO to generate the adapted solution on the right hand side.
The bottom line illustrates the application of a concept to generate a design
solution. The problem contains a set of supply accesses, a main access as well as
some pipes. In the source case, all accesses are connected by pipes.

As for the application of TOPO (middle), dark arrows denote spatial rela-
tions of the maximal common subgraph of the graphs of both cases. If there is
no maximum common subgraph, one is chosen by chance. The paths of rela-
tions connected to the chosen common subgraph are transferred incrementally
to generate the adapted case.

It is not always desirable to transfer all paths, as the ones leading to outlets
A and H. Therefore, the designer is asked before transfer, or he can repair the
layout, or domain-specific heuristics must be applied. During transfer TOPO
may change the size of transferred objects to preserve spatial relations. For
example a window is resized in order to touch both sides of a room. To avoid
geometries which are impossible for an object, TOPO limits the resizing to
geometries which occurred in the case base.

The application of MACS may retrieve to the same source case as the one
used by TOPO requiring a higher match complexity and the handling of non-
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uniform mappings. The application of MACS adapt function transferes all pipes
that are necessary to connect all problem outlets. Again the problem of non-
unique mappings needs to be solved.

bm query case return air provider: [
I return air outlets: m
return air pipes: ==

spatial relations: ™

d e f g i
A 7 J
source case result of TOPO
used by TOPO B !
B
C
> [V] 4P|

D E F G H | D
AL concept J J
BE— used by SYN > result of SYN
Ci= 1
. p— : C
B & ada B ©& & = B
D E F G H I D E F G |

Fig. 5. Examples of structural similarity assessment and adaptation

Instead of transferring parts of a single case, SYN selects the most applica-
ble concept of the respective concept hierarchy. This concept shows the highest
structural similarity of its cases and contains all problem objects. It is charac-
terized by its prototype (dark grey) and its instantiations (light grey) on the
left hand side. The prototype is transferred to the query case connecting outlets
D, E, G, and I to the main access J. The remaining problem outlets B, C, and
F are connected via appropriate instantiations resulting in a correctly adapted
solution.

4.5 Comparison

All three approaches use structural similarity assessment and adaptation to re-
trieve and transfer case parts to solve new problems. However, the approaches
differ in their focus on different parts of the CBR-scenario. Subsequently the
strength and limitations of each approach and its domain specific and domain
independent parts are discussed.

First of all it must be noticed that the definition of the compile and recompile
function strongly depends on the domain and task to support. The higher the
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required expressability of structural case representations the more complex are
graph matching, i.e., the less efficient are retrieval and adaptation. The appli-
cation of labeled graphs (TOPO) or trees (SYN) allows to invert the function
compile to recompile. This can not be guaranteed for arbitrary graphs (MACS).
Whereas the representation of cases by trees (SYN) guarantees unique mes, this
does not hold for graph representations, as in TOPO or MACS. Domain specific
selection rules need to be defined or extensive user interaction is necessary to
select the most suitable mecs. This may be advantageous during retrieval allow-
ing the selection of different points of view on two graphs (being the mcs and a
problem) but may not be acceptable for memory organization.

While TOPO does no retrieval at all, MACS and SYN retrieve a set of
cases from a dynamically organized case base. MACS uses a two-level case or-
ganization. The lower level contains the concrete cases grouped into classes of
similar cases. The upper level contains graphs describing the mcs of classes of
similar cases. It does a two stage retrieval selecting the most similar mcs first
and searching in its cases for the most similar concrete case(s). SYN uses a hi-
erarchical memory organization, i.e., a case class hierarchy. Each case class is
represented intentionally by a concept representing the unique mecs and instan-
tiations which denote possibilities for adaptation as well as their probabilities.
Given a new problem, the most applicable concept of the concept hierarchy is
searched for.

In order to compare graph representations, MACS and TOPO need to apply
graph matching algorithms (cliquen search and backtracking) that are known to
be NP-complete. For this reason TOPO uses ASPECT for retrieval, reducing
retrieval to one computationally expensive match between a selected case and
the problem. MACS case organization allows to reduce the number of matches
required to search through N cases to N x V/N. The restriction to trees (SYN)
reduces expressibility but offers the advantage to match efficiently.

An important peculiarity of the module TOPO is to investigate the com-
patibility of object types and relation types of layouts. The case adaptation of
TOPO searches for an object of the source case compatible to the object of the
query which is related to compatible objects, but by more frequent topological
relations. Using the recompile functions of those more frequent relations the new
position of the object of the query case is determined.

The preference of MACS involves to structure the case base dynamically
and to realize fast retrieval. MACS is suitable to investigate the possibilities of
learning the partition of a case base with respect to the structural similarity
and their representatives. MACS realizes a simple variant of case adaptation by
adding all walks of the source case, which have not an isomorphic mapping in
the query case but begin and end with vertices of their mcs.

CA/SYN definitely concentrates on efficient structural case combination.
Therefore, the approach integrates the formation of hierarchically organized
concepts (i.e., concept hierarchies) and the application of these concepts dur-
ing analogical reasoning to solve new problems. It is unique in its representation
of concepts by the mcs and its instantiations plus probabilities. Its definition
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of applicability allows the efficient selection of the most similar concept that is
neither too general not to concrete and guarantees the generation of a prob-
lem solution. The instantiation of its mes is guided by the probabilities of these
instantiations, resulting in the optimal solution.

5 Related Work and Discussion

Interactive design systems as ARCHIE [19] or CADRE [15] do either support
retrieval or adaptation of past designs. Systems like CASEY, KRITIK or IDEAL
[5] integrate case-based and model-based reasoning to support retrieval as well
as adaptation. They require model-based knowledge which is not available in our
domain. Cases are most commonly represented by fixed sets of attribute value
pairs. Static libraries of hand-coded adaptation rules are used to transform past
cases into new solutions.

There is a number of CBR approaches that apply conceptual clustering
techniques in organizing their case base. The Prototype-Based Indexing System
(PBIS) proposed by [18] uses an incremental prototype-based neural network
to organize cases into groups of similar cases and to represent each group of
cases by a prototype. The JANUS CBR Shell [21] applies a Cohonen network to
automatically organize cases into disjoint case classes corresponding to similar
attribute values. It represents these classes by reference cases. Both systems do a
two stage retrieval. Firstly, the prototype/reference case pointing to a case class
is selected. Secondly, this case class is searched for the most similar concrete case.
Its solution is presented as the actual classification. However, both systems are
restricted to attribute value representations of cases and support classification
tasks.

To our knowledge, the approaches introduced in this paper are unique in
their handling of structural, i.e., graph-based case representations, their defini-
tion and application of structural similarity functions and the structural adap-
tation of cases without further domain knowledge. They enable to reuse highly
structured cases of varying sizes to support design tasks. As for memory or-
ganization, conceptual clustering techniques can be advantageously applied to
reduce reasoning complexity. The representation of case classes by their mecs
or by concepts, effectively short cuts much of the memory retrieval effort that
would be necessary to check each past case separately for structural similarity.
The complexity of structural mappings can be handled in an economical manner
and realistic response times become possible.
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