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Abstract

Conceptual analogy (CA) is a general approach that applies conceptual clustering and con-
cept representations to facilitate the efficient use of past experiences (cases) during analogical
reasoning (Borner 1995). The approach was developed and implemented in SYN* (see also
(Borner 1994, Borner and Faauer 1995)) to support the design of supply nets in building
engineering.

This paper sketches the task; it outlines the nearest-neighbor-based agglomerative con-
ceptual clustering applied in organizing large amounts of structured cases into case classes;
it provides the concept representation used to characterize case classes and shows the analo-
gous solution of new problems based on the concepts available. However, the main purpose
of this paper is to evaluate CA in terms of its reasoning efficiency; its capability to derive
solutions that go beyond the cases in the case base but still preserve the quality of cases.

1 Introduction

The application of CBR methods (Kolodner 1993, Wess, Althoff and Richter 1994) to support
design tasks causes several problems. First of all, one needs to deal with large amounts of highly
structured cases increasing the computational expense to retrieve, match, and adapt cases. But,
short response times are crucial for the acceptance and practical usage of support systems.
Secondly, knowledge about the similarity and adaptability of design cases is not available in
general!. Without this knowledge only queries that resemble one of the cases stored in the case
base could be solved. However, design problems and solutions are hardly ever identical.

Conceptual Analogy was developed to handle these problems. It permits the organization of
large case bases into mutually exclusive case classes that are represented conceptually by the
common features (to be used as an index to the case base) and distinctive features (hinting
at possibilities for adaptation) of their instances. These concepts form the basis for efficient
analogical reasoning, which leads to solutions conforming to the cases seen, i.e., preserving the
quality of cases in the case base.

*This research was supported by the Federal Ministry of Education, Science, Research and Technology (BMFT)
within the joint project FABEL under contract no. 413-4001-01IW104. Project partners in FABEL are German
National Research Center of Computer Science (GMD), Sankt Augustin, BSR Consulting GmbH, Miinchen,
Technical University of Dresden, HTWK Leipzig, University of Freiburg, and University of Karlsruhe.

'This may be due to the fact that the acquisition and modeling of these kinds of knowledge would require
more effort than the actual system support could save.



2 The Design Task

In architectural design, past experiences (cases) correspond to arrangements of physical objects
represented by CAD layouts and refer to parts in real buildings. Concentrating on the design
of complex installation infrastructures for industrial buildings, cases correspond to pipe systems
that connect a given set of outlets to the main access. Pipe systems for fresh and return
air, electrical circuits, computer networks, phone cables, etc. are numerous and show varied
topological structures.

Representing the main access by a square, outlets by circles, interconnecting points by circles
of smaller size and pipes by line segments, Fig. 1 (left) illustrates five pipe systems. Each of
them shows a tree like structure. The main access corresponds to the root (type R), outlets
correspond to leaves (type L) and all other objects are represented by internal objects (type
I). Pipes correspond to edges and equal the connected_to relation among objects. Fig. 1 (right)
shows a problem (partial cases) that corresponds to a set of accesses and its solution.
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Figure 1: A case base, a problem and its solution

Cases, problems and solutions can be represented by a set of objects O and a set E of pairs
of objects (or edges) so that the binary relation E holds for these pairs, i.e., £ := {(0;,0;) €
OxO | Fojo;}. In general, there is no operational information available about how to transform
a problem into its solution.

A caseis denoted by ¢ = (O°, E€). A case base CB is a finite set of cases. The set of all objects
and edges represented by a CB = {c1,ca..,¢n} is Oy = Ueecp O and Ecp)y = Upecp £
A design problem p = (OP, EP) is represented by the root object (main access) and by leaf
objects (outlets). A solution to a given problem p and a CB is a case ¢ = (O€, E°) that
contains the problem objects, eventually adds intermediate objects and provides all edges that
are required to connect the root object with all leaf objects. Let C' be the minimal set of cases
that provide the objects and edges to solve the problem. Then OP CO°C O A EP C E° and
o°\or C Oy A E°\EP C E(c) hold. In general, there can be several solutions Scp, ), = {ci | ci
is solution of p with CB}.

The optimal solution shares the largest interconnected structure with the cases in C and the
edges added, (E*\ E?), occurred most frequently in the cases of C, i.e., in Ex).

More formally, let Size characterize the number of edges of a case Size(c) := |E|. The
prototype PT(C) = (OP!, EP!) of a set of cases C corresponds to the objects and edges that
are common to all cases in C' and are connected to the root object og. The relative frequency
H(E) of an edge (0;,0;) in E(¢) corresponds to the number of case solutions containing this
edge divided by the number of cases in C:
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The average relative frequency of a set of edges E in E) is

_ . 1 .
Ho(E) := 7 > He((oi,0)).
(0i,05)EE

Let Scpp = {c1,¢2,...} be the set of solutions. Solutions that share a larger prototype with the
cases in C are preferred (>=yy):

c1 Zw 2 & Size(PT(C Ucp)) > Size(PT(C U ¢2)).

Out of these, solutions with a higher average relative frequency of their new edges are preferred
(=m): _ _
1 =g c2 e Ho(E“\E?) > Ho(E®\E?).

Now the design task may be characterized as follows. The input corresponds to (1) a finite
set of complete cases CB; (2) optimality criteria that a solution has to meet; and (3) a problem

(OP, EP).

Required output is an optimal solution (Of, R®). That is, the new solution contains the
intermediate objects and edges that connect all leaf objects in O? to the root object in OP, offer
the largest interconnected structure with the cases in C' and the edges added occurred most
frequently in C.

3 Conceptual Analogy

The approach of Conceptual Analogy (CA) was developed to solve the task outlined above in
an efficient manner. The approach integrates knowledge organization based on past cases and
analogical reasoning via concept representations of classes of cases sharing similar structure.
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Figure 2: Conceptual clustering of case bases and the selection of one partition

Knowledge organization: CA uses unsupervised, nearest-neighbor-based, agglomerative,
conceptual clustering to partition the case base into case classes. For the determination of



the nearest neighbor, tree-like case structures of different size need to be compared. The struc-
tural similarity o of a set C of cases is defined as the quotient of the size of the prototype PT(C)
and the average size of the cases in C to be compared:
. Size(PT(C))
o(C):= 3;
T Teec Size(c)

Given a case base, agglomerative (bottom-up) conceptual clustering is applied to create a case
class hierarchy with partitions at multiple levels of generalization. It starts with a set of case

€ [0,1].

classes, each containing a single case. Repeatedly the two most similar case classes (clusters) over
the entire set are merged to form a new case class that covers both. This process continues until
a single all-inclusive cluster remains. Result is an uniform, binary hierarchy which represents
concrete cases by leaves. Its internal nodes represent concepts describing the cases below them
by their common features (prototype) and their variations (instantiations). Denoting variables
in prototypes by black triangles, Fig. 2 (left) depicts the hierarchy for the five cases represented
in Fig. 1.
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Figure 3: A concept representation as well as its actual and potential experience

A similarity threshold g is used to determine an exhaustive partition of CB (see Fig. 2
(right)) at which reasoning will be based. The similarity threshold value is selected using sev-
eral criteria: minimal retrieval time, maximal potential knowledge and maximal conformity of
proposed solutions. These criteria influence the performance of CA and are discussed in section
4. The resulting partition CCP of mutually exclusive case classes C'C' that exceed a similarity

threshold o is defined by:
CCP ={CC; | UCCi =CB A Vi # j(CC;NCC; =0) AVi(a(CC;) > 0p)}-

Representation of case classes by concepts: Each case class is represented by its prototype
PT(CC), i.e., the most specific common structure of the cases in CC whereas differences are
denoted by variables, the set of substitutions I R(CC') that, when applied to the prototype, result
in the concrete cases of CC as well as the probability P(CC) for each substitution:

K(CC) = (PT(CC),IR(CC), P(CC)).

Note that prototypes as well as instantiation values are trees. The prototype contains the root
object. Its leafs are either leaf objects or variables. Instantiations contain no variables.



The actual experience of a case class equals the set of concrete cases CC. The potential
experience CCP of a case class refers to the set of cases that could be derived by all possible
combinations of instantiations that replace each variable in the prototype by a concrete value.
The zdeal of a CC' corresponds to the instantiation of the prototype with the maximum observed
probability.

Denoting new combinations of instantiations by grey circles and squares Fig. 3 illustrates
the concept representation as well as the potential experience and the ideal of C'C} from Fig.
2. During subsequent reasoning only concepts are used. The concrete cases are stored to enable
the dynamic update of concepts.

The most efficient organization and representation of a case base corresponds to few concepts
that exactly cover the cases in C'B, resulting in short answer times but allowing the derivation of
past cases (solutions) only. Selecting the concept level with prototypes containing a maximum
number of variables as well as a maximum number of possible instantiation values maximizes the
number of potential solutions that are originally not covered by CB. The prototypes, however,
may not represent enough structure to enable a meaningful similarity assessment. Aiming at
high solution conformity, prototypes should be very specific.

Analogical Reasoning: Given a query (new problem), it is categorized into the most appli-
cable concept. In order to do so, the problem needs to be structurally reformulated? in terms
of the prototypes of CCP. Basically, the objects and edges of the prototype that connect leaf
objects (outlets) to the problem root (main access) are transferred. The problem may be refor-
mulated several times, applying different prototypes (see Fig. 4). The remaining unconnected
problem objects are denoted by r = O".
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Figure 4: Categorization of a new problem and instantiation of the most applicable prototype

Retrieval for adaptation (here categorization for instantiation) requires the definition of
similarity in terms of the adaptation knowledge available. The applicability « of a concept for
a reformulated problem p’ takes into account the unconnected problem objects O that are in
the instantiation values of the concept thus hinting at the possibilities for adaptation® as well
as the similarity of the prototype of the concept to the reformulated problem. If O" is in the set

?The reformulation of the problem in terms of prior prototypes was influenced by the work of (O’Hara and
Indurkhya 1994) on geometrical, proportional analogy problems.

3This is in the spirit of adaptation guided retrieval already proposed by (Paulokat, Priger and Wef§ 1992, Smyth
and Keane 1994).



of objects of IR(CC) then the applicability of K(CC) is
a(K(CC),p) =c({PT(CC),p'})

otherwise @ = 0. Given the most applicable concept, the prototype pt’ of problem and PT(CC')
is instantiated (see Fig. 4 (right)). The range of instantiations is restricted by the set of in-
stantiation values for each variable in the prototype. The adaptation process is controlled (and
deterministic) in that the most important variable is selected and instantiated by the values
with the highest probability. The scope of instantiation is a solution that relates all uncon-
nected problem objects to the prototype.

Finally, the conformity p of the resulting solution cis determined. The similarity of prototype
and solution ¢ are then considered:

WE(CC),c) = s({PT{PT(CC).p'}), c}).

The solution is presented to the user along with its conformity. The prototype applied can be
used to explain the solution.

Update Given the new solution, the user is now in the position to accept or modify it or,
if the solution is incomplete, to complete the solution or to reject it. Accepted solutions are
stored in the case class applied, changing at least the probability of instantiations. Given that
the solution had to be modified, completed or generated by the user its addition to the case base
may lead to a complete re-organization and a conceptual re-representation of the entire case
base. In such a way, the organization of the case base into case classes and the representation
of case classes by concepts is dynamically changed to incorporate new cases.

4 Evaluation

As for the evaluation of Conceptual Analogy to standard CBR approaches we consider the memory
space, the reasoning efficiency, the reasoning performance, and the quality of proposed solutions.

Memory space: The memory space, required by CBR approaches to store all cases in a flat
CB, corresponds to the size of the cases. CA stores the cases itself, plus the concept repre-
sentations of CC, i.e., their prototypes, instantiations and corresponding weights and requires
approximately twice as much space.

Reasoning efficiency: Given a time limit*, the reasoning efficiency is important for the
success of a certain approach. The number FM of edges to compare, required by conventional
CBR (for the serial search through all cases) corresponds to the size of cases in the C'B:

EMcpr = Z Size(c).
ceCB
As for CA, the selection of the most applicable concept of a certain CC P plus the serial instan-
tiation of variables corresponds approximately to the size of prototypes of the CC in CCP plus
the average size of instantiation values per each CC in CCP divided by the number of CC"

1
EMca:= Y Size(PT(CC)) + YT Al > > Size(IR(CC, z)).
CCeCCP | | CCeCCPzeVARPT(CC))

*That resembles the time the user is willing to wait for a solution before he returns to his do-it-yourself habit.



whereas VAR(PT(CC')) denotes the set of variables in PT(CC) and I R(CC, z) refers to the set
of instantiation values for variable z € VAR(PT(CC')). This allows CA reasoning to function
as efficiently or even more efficiently than CBR:

EMcpr > EMc 4.

Reasoning performance: Another distinctive advantage of CA is the derivation of potential
experiences that conform to the cases seen, but which go beyond the set of actual experiences
stored in the CB. While CBR methods have the cases in CB at their disposal exclusively, the
set of potential experiences derivable from the conceptual representations of case classes exceeds
or equals the set of cases in CB:

cBc |J cor
cceccre

Solution quality: A basic intention of case-based reasoning is the preservation of the case
quality during memory organization as well as reasoning. Proposed solutions should conform
to the cases in C'B. The conformity of cases to themselves equals one. Thus, the average
conformity of all cases that are retrieved unchanged by CBR equals one. The average conformity
of the cases that are derivable by CA from the conceptual representations of CCP corresponds
to the conformity of the potential solutions that are derivable from all concepts representing the
CC’s of a CB divided by the number of all potential solutions:

1 1
foa = 7em1 O Ammen 2. ME(CC)e).
ICCP| o iceep 1CC™ Eehm

Obviously, the conformity of the cases in CB to themselves (CBR) is equal to or higher than
the average conformity of potential experiences derived by CA:

Roepr =12 Hoa-

Optimal partition: The optimal partition of CB (and thus the optimal similarity threshold
value og) corresponds to a compromise between maximum reasoning efficiency (expressed by
the minimum number of comparisons required for classification and instantiation), maximum
number of potential experiences and maximum conformity of the potential set of solutions.
Norming all three features to the values obtained for standard CBR the partition that minimizes

EMca y |CB| oL
EMcer  |Uccecor CCP'  Toa

is selected for reasoning. Depending on the application requirements or user preferences the
three factors may be weighted differently.

5 Related Work and Discussion

Conceptual clustering techniques have been used in several systems to organize and index cases
in an efficient way. Already UNIMEM (Lebowitz 1987) applied inductive learning methods to
identify predictive features to be used as indices. Hierarchical structured case memories that
group cases sharing similar attributes into classes and represent each case class by a concept



have been proposed. These concepts have been either described by sets of common features
(MOP’s) like in CYRUS (Kolodner 1983), or as probabilistic concepts as in COBWEB (Fisher
1987). To our knowledge, the concept representation used by CA is unique in that it divides the
knowledge contained in the case class into a set of common features to be used as indices and a
set of generic knowledge about possible adaptations for design.

Whereby most systems are restricted to attribute-value languages, LABIRINTH (Thompson
and Langley 1991) extends COBWEB into structured domains. LABIRINTH learns unclassi-
fied objects that have relations and uses the component structure to constrain matching. It
demonstrates a method for learning from hierarchically decomposed objects, using the results of
component classification to guide object classification. However, like COBWEB, LABIRINTH
is restricted to classification tasks.

BRIDGER (Reich 1991) was designed to support the design of cable-stayed bridges. It orga-
nizes attribute-value descriptions of bridges into a hierarchical classification tree. In synthesis,
the set of specification properties, considered to be a partial description of a new bridge, is
classified with the hierarchy. Once the description reaches a leaf node, the properties missing
from its description are completed from that leaf as well as from several adjacent nodes. Each
completion results in a solution candidate. There is no mechanism for selecting the optimal
solution nor to handle interrelated attributes.

COBWEB (Fisher 1987) is interesting in its use of a principled evaluation function that favors
clusters maximizing the potential for inferring information. In contrast to earlier unsupervised
learners, which have been evaluated in terms of the comprehensibility of the formed concepts,
COBWEB was explicitly evaluated in performance tasks - missing attribute prediction. CA
is optimized and evaluated in terms of reasoning efficiency, maximum potential experience vs.
actual experience, and maximum average conformity of proposed solutions.

There are also a number of CBR, approaches that apply conceptual clustering techniques in
organizing their case base. The Prototype-Based Indexing System (PBIS) proposed by (Malek
and Amy 1994) uses an incremental prototype-based neural network to organize cases into groups
of similar cases and to represent each group of cases by prototypes. The JANUS CBR Shell
(Schiemann and Woltering 1995) applies a Cohonen network to automatically organize cases
into disjoint case classes corresponding to similar attribute values and represents these classes
by reference cases. Both systems do a two stage retrieval. Firstly, the prototype/reference case
pointing to a case class is selected. Secondly, this case class is searched for the most similar
concrete case. Its solution is presented as the actual classification. The systems are restricted
to attribute-value representations of cases and to classification tasks.

CA’s contributions are: The efficient, structural organization of cases into case classes. Its
use of performance criteria to select an optimal partition of C'B. The representation of CC’s by
concepts representing knowledge about the similarity (prototype) and adaptability (instantia-
tions) of cases. During reasoning concepts allow for the efficient categorization of a new problem
into the most applicable (instead of most similar) case class. Concepts allow also for the gen-
eration of potential solutions that go beyond past cases and the evaluation of new solutions for
their conformaity. Prototypes itself may be used to explain design solutions. Last but not least,
CA requires an extremely low knowledge acquisition and modeling effort that is important for
the acceptance of design support systems.
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