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A general framework of a system that supports building engineering is presented It accounts
for a set of desirable features. Among them are (1) graphical man-machine interaction, (2)
high interactivity to facilitate the acquisition of the huge amount of knowledge necessary to
support design, (3) incremental knowledge acquisition as the basis for incrementally
increasing system support, and(4) adaptability to the tasks which are tackled, the distinctive
features of the domain, and user preferences. This paper provides the underlying
assumptions and basic approaches of the modules constituting this framework and sketches
the current implementation.
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I Introduct ion

Building engineering is one of the keystones to economic competitiveness. As a consequence,
computational models which support design in this domain are important research topics. To meet
the expectation that computer-aid enables the production of better designs in a shorter time, the
tools built on these models need to be fully integrated into the workflow of architects. This paper
presents the framework of a support system for building engineering which is highly interactive.
Graphical man-machine interaction provides the basis for a reaction in close co-operation with the
user. The knowledge base of the system and its support is adaptable to the tasks to be tackled, the
distinctive features of the domain, and the preferences of users. The huge amount of knowledge
necessary to support design is acquired automatically, i.e., without bordering the user to answer
thousands of questions. Machine learning techniques are applied to provide the knowledge
necessary to support subgoaling, browsing, and design.

Genuine models are hard to construct for building engineering because of the complexity,
uncertainty, and vagueness prevailing in design decisions. Human designers browse through prior
layouts to inspire and guide their work. According to our experience and to current literature as well
[1,2,3,4],case-based reasoning (CBR) seems to be an appropriate problem solving method. CBR as
the main poblem solving method forces the acquisition of cases and appropriate similarity measures
over case-sets. Questions arising from this are: What ‘grainsize’ should cases have? How should cases
be represented? How should 'similarity' in a computational effective but at the same time structural
selective manner be defined? Finally, how should the huge amount of knowledge necessary to
support building design be acquired and organized? Most work in case-based design (CBD) aims to
support creative design. It focuses on index structures [1,4] to label and retrieve prior layouts via
hypermedia browsing systems, e.g. ARCHIE 11[5], or on adaptation through dimensionality
reduction to provide an interactive architectural design assistant, e.g., CADRE [3], which provides
case adaptation but leaves case selection to the user. No satisfying method is available which
automatically retrieves and adapts prior layouts. This may be due to the fact that retrieval for
adaptation requires the definition of similarity in terms of the adaptation knowledge available.
Usually, it is impossible to determine similarity without processing the computationally expensive
adaptations.
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Adaptation-guided retrieval, as implemented in DejaVu [6], judges the similarity of each case in
terms of the handcoded, domain (in)dependent adaptation procedures that can perform the
needed adaptation of case elements. In geometrical layout design, adaptation mainly corresponds to
adding, eliminating, or substituting objects and their relations. Because of the variety and the
possible combinations of these modifications, adaptation knowledge is hard to acquire by hand. To
extract this knowledge from prior experiences automatically, a different representation of
adaptation knowledge and a different definition of similarity is necessary.

Complex case representations are needed because we do not only have to consider the
geometrical attribute values of single objects, but, most of all, their topological relations. On the other
hand, these representations increase the computational expense in retrieving, matching, and
adapting cases. Short response times are crucial for the acceptance and usage of CBD systems.
Graphical user interaction is another desirable feature of a design support system [7]. However,
graphical interfaces restrict system input and output to CAD layouts. To our knowledge, there is no
method which automatically extracts the knowledge needed for CBD (i.e., complex case
representations, the relevance of object features and relations, and proper adaptations) from
attribute-value representations of prior layouts.

The sections of this paper may be summarized as follows. Section 2 presents the outline of
the framework. Section 3 provides an introduction to the application domain including its
formalization.

Section 4 sketches the modules for knowledge acquisition. Section 5 introduces the modules
providing design support. The final part of the paper discusses the framework presented here and
gives some pointers to related work.

2 Overall framework

Figure 1 sketches the system architecture for an interactive, adaptive, computeraided
design support system including man-machine interaction. While grey boxes denote modules that
perform knowledge acquisition, the white boxes indicate the modules that support the design
process. Arrows are labeled by input and output data.

As a GRAPHICAL INTERFACE we use the hypermedia drawing environment DANCER
developed at the Institut fuer Industrielle Bauproduktion (IFIB), University of Karlsruhe [8]. While
employing the system like a standard CAD drawing-tool the user creates new objects, resizes them,
assigns labels to them, etc. System support is presented graphically as well. The user is always in a
position to accept, modify, or reject suggestions. If the actual problem can't be solved by the system
it is allocated to the user. User actions, i.e., the creation, deletion, and labeling of objects as well as
the acceptance, modification, or rejection of system proposals are recorded in a trace. The trace
feeds into two different modules that acquire the knowledge needed for design support
incrementally.

Forms, forcing the user to answer a set of predefined questions, may be used to acquire
additional knowledge.

Figure 1: System architecture and man-machine interaction
The module named TASK ACQUISITION, takes the trace and automatically extracts

predecessor relations between object types (e.g., room-outlets have to be designed before the
furniture may be arranged etc., accesses have to be designed before they are connected etc.) from
them. The object types and their relations are represented as a semantic
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network, named task structure. Aiming at a 'task-oriented user support' [9] the grain size of cases
corresponds to the grain size of the elementary decisions of the architect. Thus, the CASE
ACQUISITION module uses the task structure and geometrical data (e.g., room size, area size) to
extract cases from the traces. For efficiency reasons, we store cases which support one task (e.g., the
design of interconnections for fresh air) in a task-dependent case base.

The system support may be divided into
(i) guidance in selecting the next subgoal, i.e., the next task to be tackled in design;
(ii) suggesting a set of candidate cases (CAD-layouts) able to give some hint about how to

solve the actual problem; and
(iii) generating an adapted design solution which fits the selected subgoal.
These support modes are provided by the SUBGOALER, BROWSER, and DESIGNER module

respectively. The modules and their underlying approaches are discussed in detail in section 3 and
4.

2 Application domain and its formalization

The application domain used to delineate our rationale of incremental, adaptive knowledge
acquisition and organization as well as interactive design support is industrial building engineering.
We focus on installations in buildings with a complex infrastructure. Here, the main problem is how
to layout subsystems for fresh and used air, electrical circuits, warm, cold, and used water, computer
networks, phone cables, etc. Using the construction kit MID! suitable for installations according to
ARMILLA [10], layouts are formed exclusively from a huge variety of catalogue objects, which are
arranged on a predefined grid.

In the following we will introduce the notions of projects and task structures. As for memory
organization in terms of knowledge application during design support, we need to define cases, case
bases, and case classes. Furthermore, the definition of two kinds of similarity measures is necessary.
The formalizations are needed to introduce the modules for knowledge acquisition and reasoning in
section 3 and section 4.

2.1 Projects
To represent CAD-like drawings, we use the representation scheme A4 [8]. A4 allows the

graphical and attribute-based representation of objects (e .g., concrete objects like rooms, pipes,
chairs etc., but also more abstract objects like areas for the entire house or the climate system, etc.).
The former representation is used as the main basis for manmachine interaction. The latter
representation constitutes the basis for semi-automatical knowledge acquisition and support.

Graphically, A4-objects are represented by geometric objects. Different states during the
design of a building correspond to different configurations of objects. Ellipses are a substitute for
rectangles circumscribed by the ellipses. Using ellipses instead of rectangles is an unaccustomed but
very useful trick: Ellipses overlap only in a few points. The readability of drawings becomes essentially
improved. For reasons of readability, we have restricted ourselves to two dimensions here.

Attribute-based, A4-objects are represented by values for a fixed set of geometric attributes
and type attributes. Geometric attributes that describe placement and extension are:
{placement-in-x, extension-in-x, placement-in- y, extension-in-y}. The type of an object is denoted
by the values of the attributes {aspect, morphology, resolution, size}. Aspect relates to the subsystem
of the building (e.g., z=supply-air). Morphology denotes the general function of the area addressed
(e.g., a=linkage, e=development, v=connection). The third attribute specifies the kind of resolution
employed (e.g., b=area, h=bounding-box). Size relates to the part of the building that is envisaged
(e.g., 4=hallway, 6=room, 8=areas within a room).
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Figure 2: Objects, states, task-structure as well as cases and case bases

2.2 Task structure
CAD-like drawings correspond to snapshots of different stages of problem solving. The

design of objects of a unique type may be seen as an elementary design step or task and therefore
grouped to constitute states.

Figure 2 (left) depicts the design of eight different states named s_1 .s_8 of a supply air
system. Each state is represented by a set of objects. The geometrical attributes of objects are
represented graphically. Their types are represented by attribute values. As an example, state s_1 of
type zab4 shows five objects that represent the areas of supply-airlinkage which cover the hallway.

The task to be supported by case-based reasoning is the creation of new objects based on
previously designed objects. Given a certain design state, say s_1 in Figure 2 (left), the design of two
states s_2 or s_7 may be tackled. Designing s_2 first, s_3 on the basis of s_2 or s_7 on the basis of
s_1 may be tackled next etc. In Figure 2 (left), arrows are used to denote these predecessor relations
between states. The set of states together with their relations constitute the task structure. The
weighting on state transitions may be used to state their frequency, i.e., preference.

2.3 Cases, case bases, and case classes
As for reasoning, design fragments have to be connected to each other. Aiming at a

task-oriented user support [9], the grainsize of cases is identical to the grainsize of tasks. More
specifically, cases connect preconditions of tasks to the completed task itself. The objects which are
necessary, i.e., the preconditio to work a task out, is called the case problem. The objects which
consitute the solution of the tasks are represented by the case solution.

Different design steps, i.e., tasks, require different design strategies. For example, return air
accesses are connected by using the shortest admissible path but connections for supply air accesses
take curved tracks to achieve reduction of the noise caused by the air. The support of each task
requires access to task-dependent case bases that provide cases which share identical solution types.
For an illustration see Figure 2 (right). Given the problem objects, of type 'zab4', case c-l= {s-1, s-2}
supports the design of 'zeb4'-objects. ext, these zeb4- objects of s_2 become the problem and are
solved by designing objects of type zvb4, i.e., s_3, applying c_2={s_2, s_3}. Depending on the stage
in problem solving a state can either take the role of a problem or of a solution. Note that the
application of the task structure guarantees a homogeneous distribution of cases for the different
tasks occurring in design.

Attribute-based cases are defined by the geometrical and type attribute values of
immediately subsequent states. There is an important difference between the geometrical and the
type attribute values describing the solution. While the type-attribute values represent the next
subgoal, the geometrical attribute values represent the specific design solution. Thus, the type
attribute values refer to the peculiarities of states with different case bases and similarity relations. In
contrast, the geometrical attributes represent the geometry of a set of objects.

In general, there is no information available about solution paths or adaptation operators.
Due to the application domain, attribute-value representations are not sufficient to determine the
similarity of cases in terms of adaptability. For illustration, consider Figure 2, state s_5. Given the
geometrical attribute values of the four partial object arrangements, their identity after rotation and
reflection is difficult to determine. Reasoning
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has to proceed through object relations instead of through attribute values of single objects. To
re-represent geometrical layouts in terms of their topology, we use an algebraic case representation
which was inspired by [11]. It enables the representation of the topology of cases by ground terms
(i.e., terms containing no variable like 'above(a,b)) of some term algebra. See [12,13] for a detailed
explanation. We assume the existence of a function that transforms the attribute-based
representations into structural representations and vice versa.

Structural case representations are the basis for dividing task-dependent case bases into
case classes. Here, case classes are defined as sets of cases sharing similar topology. Each case class
may be represented by their prototypical topology (their most most specific generalization [14] )
represented by a term as well as the modification rules (inverse substitutions) that were applied to
derive this prototype from the concrete cases. A prototype refers either to the best instance (see
prototype theory [15]) or to a more general representation of a case class. The former holds if
background knowledge (e.g., geometrical transformations) is available which reduces every case of a
class to one unique instance of the case class. The latter is applied, if generalization is used to derive
the prototype of a case class. Combinations of generalization and geometrical transformations are
possible. As proposed by [16], the prototype represents common features with constants or
functions. It acts as a holding form for typical object topologies. Distinctive features are represented
by variables. Modifications, named c_rules and a_rules, define the replacement of subterms by
variables and variable instantiations respectively.

2.4 Similarity measures
As for the retrieval of prior cases out of huge data sets, the definition of a similarity measure

is necessary.
To determine a set of candidate cases supporting the same task, an attribute-based

similarity measure will do. The moment we want to retrieve cases for design support, we need to
define a similarity measure that takes structural features of cases, i.e., their topology, as well as the
adaptation knowledge available into account. Thus, we need to define two different similarity
measures.

Attribute-based similarity of two problem states may be done in a standard way. See [17] for
different approaches. For instance, the Hamming distance of attribute values may be determined
and transformed into a similarity measure. Weights may be used to denote the relevance of attribute
values.

Structural similarity assessment proceeds by comparing the actual problem with the
prototypes representing the case classes of the a task-dependent case base. Therefore, the prior
modifications (c_rules) are applied to fit the problem to the prototype (see also

3 Modules for knowledge acquisition

There are two modules that acquire the knowledge needed for design support. Both are
characterized as follows.

3.1 Task acquisition
The module for TASK-ACQUISITION extracts preferred state sequences, i.e., the task

structure, from several user traces. More exactly, it records predecessor relations between object.
Thus, based on state sequences for specific buildings, we derive complex task structures which
correspond to the alternatives and peculiarities when designing different buildings. Weights that
denote the frequency of state transitions enable the handling of multiple choices.
TASK-ACQUISITION may be provided by the module named ACTION. The documentation of its
implementation and evaluation may be found in [18].

3.2 Case acquisition
Knowledge acquisition for design is performed by a module named CASEACQUISITION. This

module uses the task structure like a cookie-cutter to stencil cases from user traces. Cases are given in
A4 representation, i.e., by attribute-value pairs. For efficiency reasons, cases that support unique
tasks are stored in task-dependent case bases. The CASE-ACQUISITION module was implemented
separately in order to cut cases of unique grainsize automatically and in a task-oriented way.
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4 Modules for design support

As for design support the framework proposed provides three different modules. These are
called SUBGOALER, BROWSER, and DESIGNER.

4.1 Subgoaler
Subgoaling refers to the capability of knowing what to do subsequently at any stage of

problem solving. Given an actual state of the design, subgoals have to be created, selected, and
linked. Solution paths that exclude or interact with each other are possible. Subgoaling support is
provided by the SUBGOALER that uses the task structure to propose the next subgoal(s) to be
tackled. The SUBGOALER may even call the BROWSER or DESIGNER for the design solution to the
actual problem.

4.2 Browser
Retrieval of candidate cases is possible by activating the BROWSER. Inputs are the geometric

problem description and the next subgoal to be addressed. If the user wants design support, a set of
candidate cases CC is selected and presented. The appropriate threshold value for the required
similarity is strongly user, domain, and task dependent. Browsing capabilities provide modules like FA
V, ASM, or PIX [17] that compare (weighted) attribute values using a similarity measure working over
attribute-value representations of cases.

Browsing may be used as a fast preselection step that restricts the number of cases needed
to be investigated in a computationally expensive structural similarity assessment.

4.3 Designer
Adapted design solutions are generated by the DESIGNER module. If the user asks for

design-support structural similarity assessment and adaptation proceeds. For structural similarity
assessment and adaptation, previous and actual geometric attributebased descriptions are
transformed into algebraic ones. Note that the new problem does not allow for automatic
re-representation. It needs to be reformulated in terms of prior Fototypes. The problem may be
reformulated several times, applying different prototypes. tris then categorized in the case class with
the most similar prototype. The prototypical solution is transferred and the a_rules are applied to
derive the adapted solution. Following this, the actual solution is transformed into its attribute-value
representation to enable its graphical representation. Finally, the actual case is added to the
appropriate case base. The underlying approach was named conceptual analogy (CA) [12,13,19]. It
has been implemented in a module called SYN (for SYNthesis) [20].

Figure 3: Design support

Figure 3 sketches memory organization and design support illustrated with cases taken from
layout design. Representing outlets by small squares and the main access by a square of a larger size
the case problems depict simple access patterns. The connection of these accesses is represented by
the corresponding case solutions. The entire taskdependent case base is divided into two case classes
CC_1 and CC_2 that conform to the common structural features of the cases. Each case class is
represented by its prototype and corresponding modifications. Given a new problem as depicted on
the right, it is reformulated in terms of these prototypes. The problem will be categorized into CC_2,
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because of its structural similarity to prototype _2. The prototypical solution is adapted by applying
the corresponding set of a_rules_2.

5 Discuss ion

Providing interactive, adaptive design support, the problems that relate to the amount and
the structural complexity of the knowledge have to be addressed. Systems that require an immense
effort for knowledge elicitation will hardly succeed. There is simply no time to feed in all knowledge
required. Filling in large forms to label and save each possibly useful experience, as suggested e.g., for
the ARCHIE system [5] is also difficult to integrate into the usual workflow of architects. We believe
that highly user-interactive frameworks, which manage knowledge elicitation during the system
usage, are a real challenge to enable useful and realizable computer-aided support in design. The
close linkage of knowledge acquisition, organization, and problem solving guarantees support that is
adaptable to the user and the peculiarities of the chosen domain.
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