Task-Oriented Knowledge Acquisition and
Reasoning for
Design Support Systems *

Dietmar Janetzko!, Katy Borner?, Oliver Jaschke!, and
Gerhard Strube!

I University of Freiburg
Institute of Computer Science
and Social Research
79098 Freiburg, FRG
dietmar | oliver | strube @Qcognition.iig.uni-freiburg.de

2 HTWK Leipzig
Department of Informatics
P. O. Box 66
04251 Leipzig, FRG
katy@informatik.th-leipzig.de

Abstract

We present a framework for task-driven knowledge acquisition in the develop-
ment of design support systems. Different types of knowledge that enter the
knowledge base of a design support system are defined and illustrated both
from a formal and from a knowledge acquisition vantage point. Special em-
phasis is placed on the task-structure, which is used to guide both acquisition
and application of knowledge. Starting with knowledge for planning steps in
design and augmenting this with problem-solving knowledge that supports de-
sign, a formal integrated model of knowledge for design is constructed. Based
on the notion of knowledge acquisition as an incremental process we give an
account of possibilities for problem solving depending on the knowledge that
is at the disposal of the system. Finally, we depict how different kinds of
knowledge interact in a design support system.
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1 Introduction

Knowledge acquisition refers to analyzing requirements and knowledge of the system to be
built, elicitating of knowledge, and developing models related to problem solving behavior.
In acquiring knowledge that can be employed to build design support systems, a number of
problems must be addressed: Knowledge brought to bear in design has to be identified; the
particular contributions of different kinds of knowledge (e.g., tasks, cases, rules, models)
to the design task have to be assessed; interrelations and interactions between different
types of knowledge have to be exploited such that knowledge acquisition can proceed in
an incremental way. Once these issues are addressed in a systematically way it is possible
to move from knowledge acquisition to system design. This may be done by giving a
specification of the data flow of a system that may be used as a design support system
[JBCH93|.

The goal of this paper is to delineate a methodology of task-oriented knowledge acquisition
that may be used to build design support systems. Our presentation of a methodology
of task-oriented knowledge acquisition proceeds in three sections. First, we introduce the
kinds of knowledge to be used in design. Tasks, cases, rules, and their integration into a
comprehensive model of knowledge are described both from a formal and from a knowl-
edge acquisition perspective. Second, we discuss the rationale of incremental knowledge
acquisition and the knowledge-dependent capabilities of a design support system. Third,
we point out examples of applying different kinds of knowledge when specifying data-flow
in design support systems. Additionally, we illustrate the interactive use of different kinds
of knowledge in planning and design.

2 The Application Domain: Building Design

The application domain used to spell out the approach of task-oriented knowledge acqui-
sition is building design. In particular, the focus is on the installation in buildings with a
complex infrastructure. Here, the main problem is how to layout subsystems for fresh and
used air, electrical circuits, warm, cold, and used water, transport of chemical substances,
computer networks, phone cables, etc. Such a design project involves thousands of of-
ten incompatible objects in different stages of design, at different levels of abstraction,
planned at different places, and by different engineers. The knowledge representation
scheme we use throughout this paper is A4, which has been developed by L. Hovestadt
[Hov93|. A4 allows to represent objects used in building design (e.g., rooms, paths, pipes)
in a multidimensional design room. A4 may be described on a graphical level and on the
code level.

On the graphical level, the most striking and irritating aspect of A4 is its use of ellipses.
Utilizing ellipses instead of rectangles is a useful trick: Ellipses overlap only in a few points.
Thus, ellipses permit a more condensed graphical representation of objects than rectangles
do. The ellipses or circles refer to objects. Different states of our world correspond to
different configurations of objects.



On the code level, each object (circle or ellipse) are represented by its spatial dimensions
and nine further attributes like the time, at which the object was created, the subsystem,
(e.g. used air, fresh air, rooms, paths, electricity, etc.) and morphology (e.g. development,
connection etc.). This representation scheme will be used to produce graphics, the main
basis for man-machine interaction in building design [GS88].

A complex domain like building design poses a number of requirements: A first global
understanding of the domain and its peculiar problems has to be achieved, tasks to be
tackled must be picked out, and the knowledge needed has to be identified. In addition,
the part of the application domain, which is to be modeled has to be selected, the degree
of support offered by the knowledge-based system ought to be specified, and the system
has to be situated into the work-flow of the expert.

3 Knowledge Used In Building Design

In attempt to clarify the notions of "knowledge” and of "representation” the knowledge
level has been introduced as the appropriate level for modelling the competence of a
knowledge-based system [New82]. However, once an efficient rationale is required to relate
knowledge configuration to knowledge application a more specific structure imposed on
the knowledge-level is needed [VAV93, WVAVSA93|. While the knowledge-level principle
is the common denominator of all approaches in knowledge acquisition there is to date no
general agreement concerning the structuring of knowledge [WVAVSA93|.

Apparently, problem solving in building design draws on different kinds of knowledge like
tasks, cases, rules, and models. In our approach of task-driven knowledge acquisition,
these kinds of knowledge are taken to structure the knowledge level. A clear-cut account
of tasks, cases, rules, and models is required both in knowledge acquisition and system
design. In this section, we are concerned with a description of tasks, cases, and rules,
integrating them into a model of design knowledge. We will start out with an informal
description of these kinds of knowledge and proceed by giving a knowledge acquisition
perspective, then provide examples and elaborate the knowledge representation formally.

Our application domain, the construction of supply nets (e.g., air conditioning) in office
buildings, confronts us with complex design tasks. Supporting architects during those
tasks is the objective of the project FABEL, which started in 1992. We applied techniques
of knowledge elicitation, acquisition, and modeling. The results showed the tremendous
importance of workflow analyses, and how they can be used to structure the knowledge
acquisition process. While we ignore in the present paper the important issue of the social
embeddedness of both expertise and knowledge engineering (but see [SJKss]), we want
to focus on the central role of task-structures in complex design. We believe that the
objective of knowledge acquisition for knowledge-based system should be a competence
model with respect to the tasks to be supported. Although two of the authors share a
background in psychology, we do not aim at modeling architects, but their task-relevant
knowledge. We will show how task analyses can guide knowledge acquisition and serve to
construct a model of task-relevant knowledge. This model also provides a basis for system
design and the assignment of subtasks to either the system or to the user in a flexible way
that makes design support systems cognitively adequate [Str92].



According to our experience and to the literature as well [Kol93], design experts rely
to a strong degree on cases; therefore, case-based reasoning (CBR) plays a major role in
knowledge acquisition. There is evidence that cases are employed when complex problems
are embarked that apparently have been solved before. In addition to cases rules also
provide knowledge used to accomplish design problem solving. Rules, in turn, seem to
be preferred when routine tasks are tackled. These two kinds of design knowledge are
integrated with the task-structure, task interrelations, and task dependencies into a model
of the domain.

3.1 Tasks

Tasks are the building blocks of model-based knowledge engineering. Often, quite general
definitions are employed, like ’a task is something that needs to be accomplished’ [Ste93,
CJS92], or ’a task is a specification of a given problem in terms of input-output information
at the computational level’ [Goe89]. These definitions need to be linked to cognitive
theories of problem solving, which usually characterize problem solving in humans and
machines in terms of goal structures, e.g. [And83, NS72, Van89]. According to those and
similar accounts from cognitive psychology, a problem consists of 'an initial situation, the
actions that can be taken in seeking a solution, and the desired state of affairs, or goal’
[Hol84]. Here, goal means the goal state, which could also be called the solution. Authors
differ in their usage of ’solution’, whether it is taken to be the result of successful problem
solving alone, or together with the sequence of solution steps. In the following, we restrict
ourselves to representations of the result. Is the goal then identical to the solution? This
seems to be true only for a very restricted class of problems. Often, a goal is nothing
more than a partial description of the solution. In chess, for example, the definition of a
checkmate holds for an enormous number of possible mating positions. Design problems
usually have a multitude of solutions.

Analyzing the work in complex design by even elementary knowledge engineering tech-
niques (e.g., observation) yields the insight that design proper is only one side of expertise
in this domain; its complement is strategic knowledge about how to break down large tasks
into a non-arbitrary sequence of subtasks. The importance of this strategic knowledge
has been acknowledged in the literature on human expertise [KS91, Van89]. Its objective,
i.e., to define appropriate design task sequences, will be called planning in the following,
in contrast to the term design, which we reserve for the elementary steps in the design
process. We distinguish between tasks appearing in the domain (application tasks or and
tasks the system has to fulfill (system tasks). Application tasks comprise both planning
and design, and at least some of them can be delegated to the system. Issues of system
design will be treated in the last section. Our objective is to present a framework for the
construction of an abstract model of problem solving in the domain of complex design
that is valid for both human and machine agents.

Tasks may be represented by a flat list or tangled hierarchies. The latter is also called
task-structure. Tasks represented by a flat list just point out what to do. An unstructured
list of errands is an example of a flat list of tasks. In addition, task structures represent
dependencies between tasks. A structured list of errands represents dependencies between
tasks is an example of a task-structure. Tasks structures allows for deriving the sequence
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between different tasks to be achieved.

3.1.1 Tasks: A Knowledge Acquisition Perspective

Given a real world domain and aiming to support users in an task-oriented way we need to
extract some task-structure. It can be used to acquire case-based and rule-based knowledge
in an task-oriented way. This sets the stage for developing a model of the domain. The
general idea of this methodology of knowledge acquisition is outlined in Fig. 1.

To establish a task-structure, firstly, the overall domain task (e.g., planning and design of
supply nets in a building) is factored into manageable subtasks to be accomplished. This
can be done along the physical components involved in the overall domain task. This
task-structure reflects the structure of the physical components that occur in planning or
design.

domain model |
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Figure 1: Task-driven knowledge acquisition

First, the domain and user support dependent task-structure is acquired. Second, cases and rules
are determined corresponding to the tasks to be tackled. Third, the task-structure, cases and rules
can be combined to constitute a domain model. — P denotes the problem part, S the solution part
of a case.

Secondly, dependencies viz. interactions between tasks are specified. There are depen-
dencies between two or more tasks if one task cannot be achieved without considering the
realization of one or more other tasks.

Thirdly, input and output of each of the resulting subtasks is specified. In so doing, the
flat list of subtasks is replaced by a structure made up of tasks and enabling relations.
The task-structure is constructed in collaboration between domain experts and knowl-
edge engineers using knowledge elicitation techniques that range from observation and
interviews to highly structured methods (cf. [SJKSss]).
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Once the task-structure is specified it provides a useful platform for incremental knowledge
acquisition, problem solving, and system design. In knowledge acquisition, elicitation of
cases and rules may be advanced in a focused manner. Elicitating cases is supported
by referring to instances of tasks as cases; eliciting rules by referring to knowledge that
realizes task transitions as rules. A structured assembly of all types of knowledge together
represents a model of the domain. In problem solving, the task-structure provides hints
as to the subsequent tasks to be tackled. Thus, the task structure serves as coordinating
knowledge to be used, e.g., for planning. In system design, the task-structure may be
taken to select tasks, that can be supported by the system.

3.1.2 Tasks: An Example

Fig. 2 exemplifies the derivation of the task-structure in planning and design of supply
nets in a building. The example is taken from the domain of building design. The arrows
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Figure 2: Task decomposition in building design

Tasks are described by expressions made up of three letters and a number. The first letter relates
to the subsystem of the building (e.g., a=used air, g=building, k=climate, r=rooms, w=paths,
s=shaft, z=supply—air). The second letter denotes the general function of the area addressed by
the task (e.g., a=linkage, e= development, n=usage, v=connection). The third letter specifies
the kind of resolution that is employed (e.g., b=area, h=bounding-bozx). The number relates to
the part of the building that is envisaged (e.g., 2=building, 4=floor, 6=room, 8=areas within a
room). For example, knb2 is used as an abbreviation of the task to plan or design the area of
climate use that covers the whole building. The grey shaded part will be used in the next section
to illustrate the acquisition of case-based knowledge.



in Fig. 2 indicate the standard sequence of tasks that are addressed while tackling the
overall problem. The arrows neither point out the necessary requirements that have to be
fulfilled to tackle a particular task nor do they exclude other sequences an architect may
possibly choose when addressing these tasks. Simple arrows refer to a transition between
two adjacent tasks with the former providing input to the latter. For example, the ground
plan gnb2 provides input for the task of designing the areas of a building that are intended
to have a homogeneous climate knb2. The double arrows connect two adjacent tasks that
interact strongly (loop), i.e., they provide input to each other. For example, the layout
of the rooms rnbj and the layout of the paths wnb/ in a building have to be compatible
with each other.

3.2 Cases

During design architects frequently browse through old drawings. Case-based reasoning
seems to be an appropriate reasoning method to support design tasks (see [Goe89, NC91,
Hin92, HF93, DK92|). Cases are specified as instances of tasks. They provide episodic
or specific knowledge about state transitions. Applying CBR, the domain of discourse
is represented by a finite set of already solved cases (stored in the case base C'B) and
a similarity (often equivalence) relation o over them. Case-based reasoning proceeds as
follows. Given a new problem, cases with (modulo the similarity relation) similar problems
are selected from a case-base. The solution of the most similar case is transferred to the
new problem and adapted if necessary. Storing the new problem including its solution
and updating the similarity relation can be seen as a kind of learning [Aam90] Detailed
introductions into CBR may be found in [RS89, Kol93].

Until now, CBR has mainly been applied to analytic tasks. Here properties or symptoms
and corresponding concepts or diagnoses are quite ready at hand. The former are repre-
sented by the problem, the latter constitutes the solution of a case. There is an ongoing
debate how to cut cases in synthesis tasks. Issues at the stake in this debate are the
method to cut cases and as a consequence the grainsize of cases. Imagine the design of
buildings. Concerning the method, cases may be cut ad lib from an overall architectural
plan. In a word, no particular method is applied. Cases may, on the other side, be
derived by using a task decomposition. The task decomposition, in turn, rests upon an
analysis of the problems that occur in the domain [DPvC*87]. Concerning the grainsize,
in an application domain like architecture complete buildings have been taken as cases
[Goe89, DK92, Hin92]. Again, a method like a task- decomposition may be employed to
accomplish units which are better suited for problem solving.

Note, that the main reason for employing a well-founded method for cutting cases is not
the size of cases as such but the need to come to cases that are usable in case-based rea-
soning. Cases should reflect and support the way how architects design buildings. That
is, they should allow tackling specific problems that are known to reoccur in the applica-
tion domain. Embarking on specific problems becomes extremely hard if the grainsize of
the problem to be solved, e.g., the design of the supply air system, and the grainsize of
the case, e.g., a complete building does not match. Such a mismatch is likely to occur if



no particular method for cutting cases is employed or oversized units in the domain are
viewed as cases.

Case problems should represent an initial state, case solutions its goal state. Thus, cases
relate immediately subsequent states for means of reasoning. Additionally, in domains like
building design, not only knowledge about attributes of case objects is important but also
their inherent relations. Reasoning in design proceeds over complex structures. Knowl-
edge representation schemas have to meet this fact. To formalize this kind of knowledge
we use an algebraic approach, i.e., case problems and solutions are represented by terms
or graphs over some underlying algebra. Cases may be represented in an attribute-based or
in a structural way. The first representation scheme provides the object attribute values
with respect to a given finite number of attributes as usual in CBR (cf. [RS89, Kol93]).
The structural representation gives the relations between objects of cases. While the
former permits fast preselection of candidate cases out of large case-bases, the latter is
suitable to guide adaptation.

3.2.1 Formalization

Knowledge representation. All these considerations lead to the following definitions of cas-
es and similarity relations. Let A denote an attribute-based description of a case problem
or solution, g denotes a structural description (e.g., graph-based description), and the su-
perscripts p and s denote problem and solution descriptions. We assume the existence of a
transformation function ¢ and its inverse that transforms attribute-based representations
into structural representations and vice versa:

30 | 6(AP) = P A G(A°) = g° Ao H(gP) = AP Ao H(g*) = A°
A case c is represented by
c:= (AP gP A% ¢°).
We denote the set of all cases by

CB :={c1, .., Cmep }-

To define similarity of prior and actual case problem descriptions we use two different
similarity relations, namely surface similarity and structural stmilarity.

Surface Similarity. To determine the so called surface similarity of attribute-based case
representations we need a similarity function o,. The similarity function (often a metric)
returns a single number between zero and one, i.e.,

Oa(Ah AQ) € [O, 1],

which is meant to reflect all aspects of similarity. The similarity function based on some
distance measure holds the following axioms:

0q.(A1, A1) =1 (reflexive)
04(A1, Ag) = 0,(Ag, Ay) (symmetric)
(A1, Ag) = 1N 0,(Ag, Ag) =1 — 0,(A1,A43) =1 (transitive)
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and therefore o,(—, —) = 1 is an equivalence relation.

Structural Similarity. To determine structural similarity o, of a given set of structurally
represented problems we determine their most specific common structure M .SCSP. Mod-
ifications which lead to this structure are called proper and are stored in 0,. Given an
actual problem we apply proper modifications given by the similarity relation to it and
compare the result with MSCSP. Given equality we transfer the prior solution to the
actual problem. Thus, o, is defined as the union of proper modifications r (e.g., modifi-
cation rules like generalization, abstraction, or geometrical transformation), which relate
a set of structural problem descriptions ¢’ € G, i = 1,...,n to each other. That is

04 = UL, r; satisfying r;(¢f) = MSCS?, i =1,...,n.

The unique term MSCS? is called the most specific common structure. For any other
specific common structure g of G? there exists a modification r s.t. r(MSCS?) = g.
Modifications are formalized by inverse substitutions, i.e., mappings from constants into
variables. A detailed description can be found in (cf. [B6r94b).

Reasoning. These kinds of knowledge representation enable two-stage similarity assess-
ment [GF91] and reasoning. We are able to combine computationally cheap, fast pres-
election by surface similarity assessment and the computationally expensive process of
structural similarity assessment. Reasoning proceeds as follows:

First, we determine a set of so called candidate cases using the attribute-based representa-
tion of prior cases, the actual problem description and the similarity measure o,. Second,
we use the structural case representation to determine structural similarity which enables
to guide adaptation. Therefore, as in standard CBR, we need first to know about the
similarity relation o, over a set of candidate cases. Thus, we determine o, and MSCS
out of the problem descriptions of the candidate cases. Now we transfer the actual,
attribute-based problem description into its structural representation using the transfor-
mation function ¢. Next, we apply modification rules (e.g., rotate about 90 degrees or
substitute some concrete number of objects by variables) to the structural description of
the actual problem.

Rules in g, are applied until the modified problem is syntactically identical with the most
specific common structure of the set of candidate cases or all rules are tried. Given identity,
the solution of this case set (which may or may be not modified) can be transferred to the
new problem. After that, inverse modification rules (e.g, rotate about minus 90 degrees or
replace the variable by a definite number of objects) are applied. In this way, we get the
concrete structural representation of the new solution. Adaptation is done implicitly by
representing the solution operationally and transferring it to the actual problem. Using
the inverse transformation function ¢—! we derive the attribute-based representation of
the actual solution. The full formalism can be found in ([B6r94a, Vof94]).

3.2.2 Cases: A Knowledge Acquisition Perspective

Having specified a task-structure, a kind of template sheet is introduced into the domain
that may be employed for discerning and acquiring cases. Projecting such a template



sheet or grid onto a domain is nothing more than an attempt at making up for natural
units that are ambiguous, hidden, or even missing. This is an indispensable requirement
for using case-based reasoning in domains that have no units suitable to be referred to as
problem or solution. As with any other structure that is used to discriminate cases within
a complex domain like building design, the task-structure makes strong commitments
concerning the representation, content, and possible use of cases acquired in this way.

rnb4
———— M
(
- lrzai |
L 9 zab4 %’@ JzabG oot zab8
_
()
oo .|| |
zeb4
-
vy G i yy 0
b4 .1 @ © T
zvb4 z: zvb6
J
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. aC JC C5
: zvh4 = zvh6
o

Figure 3: Cutting cases for case-based reasoning

Fig. 3 illustrates the acquisition or cutting of cases by using some part of the task decom-
position introduced in Fig. 2. Dotted arrows represent dependencies among of states not
depicted here. In synthesis tasks, parts of a solution of a task constitute the problem de-
scription for a subsequent task. For instance, in Fig. 3 the case ¢; consists of the problem
zabj and its solution zab6. Given zab6 we may start to design zeb4. The solution of zeb/
is zvb4, see case cy. Next, given zab6, zebj and zvb4 representing the new problem we are
able to design zvb6 recorded by case c3. Case ¢4 represents the design step to derive zab8
out of zab6 and zvb6. Case c5 depicts the use of zvb6 to design zvh6 etc.

There is no hardwired part of a case that may be referred to as problem or solution.
This tricky issue may be resolved by referring to problem and solution as "roles”. A
considerable part of problem solving is figuring out dynamically which part of a situation
or a case may be assigned to the role of the problem.

To represent cases in an attribute-based way we use the A4-model of organizing data in a
multidimensional dataspace [Hov93]. Each object is represented by its spatial dimensions
(ie., x, dx, y, dy, 7, dz) and further attributes like the time, at which the object was
created, aspect, (e.g., return air, supply air, electricity, construction) and morphology,
(e.g., development, connection) etc. Similarity relations o, over attribute-based case
descriptions are usually handcoded.
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As an example for structural case representations we will show one which is graph-based.
Arrangements of objects and their relations are represented in the following way. Objects
are represented by nodes with labels corresponding to the concrete object attribute values.
Relations between objects are represented by edges labeled with the concrete relations.
For communication nodes are labeled with arabic letters, edges are labeled with roman
numbers. As an example, case ¢y of Fig. 3, may be represented by:

;55 case ¢

;55 problem - a4 position zebd

;5o data

(project/home/user/FABEL task-deco.hdraw)

(viewPosition 46.350723 24.8507234 0.155312 0.155312)

o AP
(298 1440 160 1440 0 420 0.01 supply—air development)
(298 1440 1600 1440 0 420 0.01 supply air development)
(1738 1440 1600 1440 0 420 0.01 supply—air development)
(1738 1440 160 1440 0 420 0.01 supply—air development)

SIS

i gt

Ipl(a’7b7c}d)

I P3 (0'7 b7 C;d)

7‘7'/: eof

;55 solution - a4 position zvbj

(project/home /user/FABEL task-deco.hdraw)

(viewPosition 46.350723 24.850723 0.155312 0.155312)

;55 data

;/"/" AS

e (1018 240 1000 240 0 420 0.03 supply—air connection)
f (1018 240 1960 240 0 420 0.03 supply—air connection)
q (2218 240 1960 240 0 420 0.03 supply air connection)
h (2218 240 1000 240 0 420 0.03 supply—air connection)

S

i g

r  ps(ef.g.h)

IV pa(ase) VI pafcg)
14 p2(b.f) VII  po(d,h)
7';7' eof

The case problem is represented by attribute values characterizing four objects (labeled a
to d) and their inherent relations (labeled I and IT). The solution is represented by attribute
values for another four objects (e to h) and their inherent relations (III). Relations IV to
VII relate solution and problem objects. There are different kinds of relations. In this
example we used:

p1(x;):=objects x;,i = 1,...,n touch each other,
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pa(z,y):=object x covers object y, and
p3(x;):=objects z;,7 = 1,...,n are disjunct to each other.

The corresponding graph of problem and solution is represented in Fig. 4. Double arrows
denote edges, which represent relations combined of p; and p3. Dotted double arrows
represent the relation p3. Relation py is represented by simple arrows. Thick arrows
denote the transformations ¢ and ¢! which transform the attribute-based representation
into the structural one and opposite.

. — f g
C2' bYc) Q=3 =0

fo ' oJ -1 ; \d*
é .h zvb4 (p ,,,,,,,,,,,,,
N eé( )éh

Figure 4: Graph-based representation of case ¢

To realize structural similarity assessment we use proper case modifications and their in-
verses (e.g., generalizations, abstractions, or in the domain of building design: geometrical
transformations). They are handcoded or extracted from the structural case representa-
tion. The latter can be done by determining proper modifications, which lead to the
common structure of cases with equal solutions. The common structure of a case set will
be represented by graphs labeled with variables instead of constants.

3.2.3 Cases: An Example

As an example we use the design of bounding boxes out of areas of supply—air connections.
Given zvb6 the problem is the design of zvh6 (see case ¢; in Fig. 3). As a starting point
knowledge about prior cases is required. This is provided in the knowledge-base together
with a set of proper modification rules used to derive their common structure (see Fig.

5). Now, given an actual new problem situation zvb6, in which way is the actual solution
derived by using the knowledge stored in the knowledge-base?

We start by determining possible candidate cases dealing with the same design step. That
is, we look for prior problem descriptions containing the attribute values {supply—air con-
nection, area} using surface similarity assessment. The result is ¢5 1, ..., ¢54. Additionally,
we need corresponding proper modification rules, e.g., generalization, rotation and refiec-
tion.

Now we are able to do structural similarity assessment and adaptation. By comparing
object relations of the previous and the new problem we determine the most similar
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Figure 5: The problem

case out of the case-base, i.e. ¢54. But the problem description of this case is far from
being identical with the actual problem. Using the proper modification generalization of
attribute values for z, dr and y we determine the common structure of the prior problem
of ¢54 and the upper left part of the actual problem description (see Fig. 6). To illustrate
the most specific common structure of both problems we used dotted lines for variable
x,dxr and y values. Note, that structural relations remain identical here. Given structural
similarity, we transfer the prior solution to the actual problem part. Given this solution,
we solve the remaining three problem parts by using rotation and reflection. Finally, the
actual problem including its solution will be stored in CB.

3.3 Rules

Apart from cases, rules are used to accomplish tasks. Rules are derived by generalizing
transitions between tasks. Thus, rules provide generic knowledge about task transitions.
At the most general level, once a set of conditions on the left hand side of a rule is met,
the right-hand-side of the rule will produce a certain effect. This effect can be employed to
drive reasoning that spans across different types of problem solving like planning, design,
or verification. For example, when designing the network for air supply in a certain part
of the building, rules are employed to make sure that the task is attained, i.e., the network
for supply air in a certain part of a building is actually realized.
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Figure 6: Structural similarity assessment and adaptation

3.3.1 Formalization

In general, there are certain requirements for accomplishing a task ¢, i.e., relations between
a realization of ¢, denoted by t*, and realizations of some other tasks [JJ94]. Let t1,...,1,
be the tasks relevant for the verification, and let ¢7,...,?; denote some realization of
them. The requirements may be represented by predicates, e.g., denoted by F, ..., Py,
with each of them having a certain arity. For example, P, may represent the condition
of covering, i.e., P. may be binary and (t;,,t) € P. may refer to the requirement that the
realization of task ¢;, should cover the realization of task t.

A rule may be referred to as a mechanism yielding a realization for some task t, such that
t* meets the predicates Py, ..., P, corresponding to a certain ¢;. Let us denote this process
of arriving at a realization by Go~») This process may be split up into two steps: A
generation G and a selection S. The process of unconstrained generation of all possible
sets of objects could be formalized by G?. We use the notation SPiT for a selection process
regarding the predicate P". Thus, we could model the rule GPo--Pn) a5 S(Py...Py) © G’ In
most cases, however, the unconstrained generation of all possible sets of objects (Gm) is
not feasible. Instead, we prefer a constrained generation of solutions that integrates as
many predicates as possible leaving the remaining predicates for the selection.

Hence, our rules are of the type S(le___ij) o G Pir-+-Pim)
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3.3.2 Rules: A Knowledge Acquisition Perspective

The formal description of rules presented above provides a rationale to be used in knowl-
edge acquisition directed at rules. The approach of deriving rules relies heavily upon the
task-structure introduced above. Tasks involved in a rule are taken to be free of interac-
tions. This of course limits the applicability of rules in our system severely. Nevertheless,
rules can be used and formulated for quite a range of design tasks, which are more or less
routine’. Accordingly, when observing and interviewing our domain experts we found
that routine construction tasks are those where they indeed apply rules and prefer rule
application to the use of cases. With respect to rules these tasks are nothing more than
input states and output states. Basically, there are three steps to be taken in order to
realize knowledge acquisition directed at rules.

e Determine the task transition to be represented by a rule.

e Assign the tasks involved in the chosen task transition to the input tasks or the output
tasks of the rule.

e Specify on the right hand side the conditions, i.e., predicates P, ..., P, to be met by a

possible solution.

3.3.3 Rules: An Example

We present two examples for rule application that relate to the design of a supply air
system. In particular, the generation of zab6 and zvb4, viz., the design of areas for the
installation of pipes for this kind of system are concerned. As a kind of basic rule we
realize the partition of an area into a number of subareas. This is abbreviated by GZ (cf.

Fig. 7). The rule that realizes the task zab6 (zab6-rule) is nothing else than G# applied
to the number of objects that represent zab4.

—F
> S0000c
zab4 zabb

Figure 7: Application of a rule for partition

The zab6-rule - as any other rule - may be reemployed by other rules. For example,
the zvb4-rule is a combination of the G”#-rule and a selection of certain predicates, in
particular distance and number, which may be noted by Sp. Thus, our rule can be

abbreviated by Sp o G (cf. Fig. 8).
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zeb4 , snb4 zvb4

Figure 8: The zvb4-rule modeled as a combination of partition and selection

3.4 Integrated Models of Knowledge

The most elaborated kind of knowledge to be acquired is knowledge encapsulated into
domain models. Models may be distinguished according to the aspects they preserve.
There is the widespread distinction between structural and behavioral models [Geng84].
An integrated circuit, for example, may be represented by focusing on the structure or on
the functional behavior. The structural model encompasses the physical components and
their interrelations. The behavioral model captures the stimuli and responses and their
interrelations. Each of those models whether they be structural, behavioral or whatsoever
is not a purpose in itself but a means to support a particular function. Recently, this idea
has attracted considerably attention both in cognitive science and in artificial intelligence
under the heading of change of representation and problem solving as modelling (e.g.
[BRI0, Ind92, VAV93]). For example, preferring a causal view of the functioning of a
car implies an assumption that this causal view leads to an adequate approximation of
the functioning of the car, which allows for further problem solving, e.g., diagnosis. (cf.
[VAV93]). Hence, the type of aspects described by a model has to allow for fulfilling the
function, which the model is intended to support.

The model we develop in knowledge acquisition is a structural model of a real-world phe-
nomenon like a building. It describes physical components, their structural features, and
the relations between them that are required to realize, i.e., to plan and to design, such
a building. Such a model represents knowledge about sequences of design steps like tasks
do. It also comprises methods suitable to embark on concrete design tasks, viz., cases and
rules. Additionally, it contains meta-knowledge about how to combine all knowledge in a
consistent and reasonable way. This kind of knowledge may be represented by descriptive
interrelations and dependencies between the aforementioned kinds of knowledge. Its pur-
pose is to guide the process of problem solving and the selection of appropriate problem
solving methods. The model of the domain, defined on the set of tasks will consist of
following parts:

e the structure of descriptive interrelations
e the task-structure, which can be divided into
— the structure of decomposition

— the structure of dependencies
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e the structure of cases

e the structure of rules

We use T' to denote the set of tasks. As a certain state of a concrete project we mean a
substitution of each task ¢ € T with a set of certain domain-objects (in our case objects).
The realization of a task t is termed t*. Thus, t* = () means that task t has not been
designed yet. If V' is a set of tasks we denote the set of realizations of these tasks by V™.

3.4.1 The Structure of Descriptive Interrelations

We presume that relations between task-realizations may be specified on the computa-
tional level, i.e., there are algorithms a, ..., o, with certain arities (e.g., n; for ;) that

decide for any nj-tupel of sets of domain-objects (especially task-instances) (t; ,....#; )

whether or not a(t;,...,t; ) = TRUE holds. Let (P"), := (P,...,P,) be predicate
symbols, one for every a;, vi/ith the same arity as a;. So if we have (t;,,... ,tin]_) € PjT
we want a;(t] ... ,t;‘n]_) = TRUE to hold. Thus, we can define the structure of descrip-
tive interrelations by the pair (T, (P!);) In the domain of building design the following

k3

predicates proved to be very useful [JJ94]:

(i) Let t € Pp denote that the objects realizing ¢ are disjoint
(ii) Let (¢1,t) € P denote that the realization of ¢, covers the realization of task ¢

(iii) Let (¢;,t) € Py denote that the objects realizing ¢; are equal in number with the
objects realizing ¢

We could thus collect all requirements on the solution of a task ¢ that the model represents
by

U{(th?"'?tin]-) EP]' | dk € {1,,7?]} t:tzk}

Jj=1

3.4.2 The Structure of Decomposition

Let S(t) := {ti,,---,t,,} CT be aset of tasks that can be regarded as a decomposition
of the task ¢. That means a solution for the sub-tasks is a solution for the top-task
t. On this level of description, the problem of tackling the top-level task ¢ by tackling
the sub-tasks in S(t) can be represented by the pair (S(t),t). Establishing S(¢) is quite
straightforward if the task renders itself into a partition, e.g., according to a set of physical
components denoted by pi,...,pyu). Each P! may or may not be specified in different

2

degrees of specification. We may associate with each physical component P! a task t;.

k3

There may be various ways of decomposing t. Let S; be the set of possible decompositions
of t. Thus, we can define the structure of decomposition by the pair (7,57 := U S;),
teT

with the relation ST representing the sub-task-decomposition of tasks.
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3.4.3 The Structure of Dependencies

As a possible dependency concerning a task t we understand a set V' of tasks ¢; the solutions

of which are sufficient for the user to design ¢. t may be accomplished in more than one

ways. Each alternative way of accomplishing a task ¢ will yield a different pair (V,t). So

we collect in D, all pairs (V,t) € P(T) x T, such that ¢ can be viewed as dependent on

V. Thus, we can define the structure of dependencies as the pair (T, D" := |J D;), with
teT

the relation DT representing dependencies between tasks and sets of tasks.

Figure 9 shows a part of the relation D7 in the domain of building design, concerning the
supply-air (abbreviated by the letter z). The diagram illustrates that the design of zab6
depends on the realization of zab4, the design of zeb4 depends on the realization of knb2
and zab6, the design of zvb6 depends on the realization of zab6, zebj, zvb/, and so forth.

Figure 9: Graphical representation of dependencies in the domain of building concerning
the supply air

Specification of dependencies. If a task t can be viewed as dependent on the tasks in V/
we could specify the dependency represented by (V,t) € D' according to the relations
Py, ... P, by collecting the set

U{(til,...7t,’nj)€f)j|v1’€€ {1,...,nj}:t,-k :t\/tzk E‘/} .

As an example we take a look at the task zvb/. We have ({zeb4, snbd}, zvbd) € D,
i.e., the realization of the zvb/ depends on the realization of the zebj as well as on the
snb4. The dependency described by ({zeb4,snb4}, zvbd) € D could thus be specified
by (snbd,zvbd) € Pr and (zebd,zvbd) € Py. In addition, we have the requirement
(zvbd) € Pp.

The ¢; in V with (V,t) € DT represent tasks that are (if realized) sufficient for the user to
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find a solution for t. The specifications concerning those t; € V" and ¢t need not be sufficient
to define a realization for ¢, i.e., the specifications represent only necessary conditions.

3.4.4 The Structure of Cases

In CBR, the domain of discourse is represented by a set of cases stored in C'B together
with a similarity measure o over these cases. The attribute-based problem state A? and its
structural representation g” correspond to states t € V' which are necessary to consider in
order to solve a some task t. The solution of a case represented by A® and ¢° corresponds
to the realization of the task ¢ denoted by t* € V*. Thus a case may be represented by
a tuple (V,V*). A new problem corresponds to a tuple (V*,(}) meaning that t* € V* has
not been designed yet. Our aim is to get a function ficp,| representing the knowledge
given by the C'B and o which applied to a case-problem, yields its solution, i.e.:

fiepa)(V)=V"

Considering the knowledge encoded into the set of tasks 7" the structure of cases may be
represented by

(T, ficBo))-

Case-based knowledge represented by fiop o is suitable to design the solution to a current
problem.

3.4.5 The Structure of Rules

A rule rj, with arity ny yields for any nj-tupel of finite sets of domain-objects (s1,. .., sp,)
a finite set of domain-objects s, so that certain relations P; hold between the input and
the output. Let be r(s1,...,5,,) = s, so we demand «;(s;,, .. .,sin]_) to be TRUE for
certain «; and (s, .. .,s,jnj) € {s1,...,8n,,5}™. Thus, rules could be represented by
strings of the following kind:

Pe(S1,.00080) =5 = Naj(sq. .. ., $i,,) = TRUE

in which the elements of the conjunction depend on the rule 7.

We collect in R the rules and define the structure of rules by (T, R).

3.4.6 The Model of the Domain

The model of the domain can now be summoned by collecting all former defined structures.
The model may thus be denoted by

M = (T, (PT)hST,DT,R, f[CB,a])-

1

We would like to point out that a complete domain model is an ideal. It would certainly
not be feasible as a realistic objective for knowledge acquisition, since a complete model
is dynamically extended in itself whenever new knowledge - be it additional cases, or
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whatever - is acquired. But for the very same reason, this model provides the guideline
for incremental knowledge acquisition. Its very incompleteness because of its extensibility,
makes it superior to static models in terms of cognitive adequacy. This will be shown in
the following section.

4 Interrelations in Knowledge Acquisition and Prob-
lem Solving

In the previous section, we have introduced different kinds of knowledge that enter the
knowledge base of a design support system. We will now investigate how these kinds of
knowledge interrelate in knowledge acquisition and problem solving. In particular, our
attention is attracted to three aspects of interrelations in knowledge acquisition and prob-
lem solving. First, the focus is on the starting point of task-driven knowledge acquisition,
i.e., the concept of a task. Second, the notion of knowledge acquisition as an incremental
process is addressed. Third, interrelations between knowledge configuration and knowl-
edge application [WVAVSA93] in problem solving given a particular state in knowledge
acquisition are outlined and discussed.

4.1 Task-driven Knowledge Acquisition

Broadly speaking, a task is an objective or goal relating to thing or states to be attained.
[Ste93]. Issues start to get tricky once this concept is used in a more specific sense. In
general, there are various usages of the notion of a task. First, the notion of a task may
be used exclusively with respect to human problem solving or with respect to mapping
of aspects of human expertise to knowledge-based systems. Second, the notion of a task
may have a general flavor with generic, i.e., reusable tasks reappearing allegedly across
different domains [Cha83], or they may be very domain specific. There is a trade-off
between highly general tasks on the one side and highly specific tasks on the other side:
While general tasks may be re-used in top-down knowledge acquisition specific tasks
allow - by definition - for a closely tailored fit to the domain and provide guidance for
incremental knowledge elicitation in particular to case-based knowledge. Third, tasks
may be described on different levels of specification, i.e., by referring to the input and
output of tasks [Goe89], the goal to be accomplished in tasks, or the method, strategy, or
inference structure taken to realize the task. Sometimes tasks are identified with goals or
problem types [CJS92] or with a goal and a method how to achieve that goal [BWvS*87].
Finally, tasks may be represented by an unstructured set, or by a task-structure, which
organizes tasks and subtasks. Task structures may or may be not specified with respect
to methods used to realize tasks or interactions between tasks.

Our usage of the notion of task is concerned with mapping of aspects of human expertise
to knowledge-based systems. Since our concept of task has accrued from a bottom-up
approach it is closely tailored to the requirements of our domain. Specifications of input
and output, the goal to be accomplished, methods taken to realize the task are also
included. Task structures made-up of task-subtask links are also provided. These are
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enriched by methods, i.e., cases or rules and by a specification of interactions between
tasks. Enlarging a set of task to a full-blown task-structure is accomplished in incremental
knowledge acquisition.

There are various approaches to identifying and elicitating tasks. For instance, orien-
tating at a physical decomposition, analysing requirements, using a particular problem
solving method the application of which enforces a particular task decomposition [Ste83]
or adopting task decomposition schemes traditionally used in the domain are alternative
heuristics used to identify tasks. Various heuristics to task decomposition may or may not
yield the same task-structure. If a domain may be decomposed into physical components
like, e.g., in architecture it is a natural way to take this partition as a rational to identify
tasks. Thus, "pipes to transport supply air” may be referred to as physical components or
as the task to plan and design this very physical components. Fixing the grainsize of tasks
is usually realized once a particular heuristic to task identification is chosen and applied.
The decision concerning the choice of the rational for a task decomposition influences the
identification and elicitation of other kinds of knowledge. For example, rules are spec-
ified as procedural knowledge used to accomplish transitions between tasks. Thus, the
choice of a particular grainsize for tasks influences the kind of rules that are candidates
for knowledge acquisition [JB93].

4.2 Incremental Knowledge Acquisition

In what follows, we address the notion of knowledge acquisition as an incremental pro-
cess. This orientation marks a contrast to previous research in knowledge acquisition
since hitherto not very much attention has been paid to the fact that knowledge acqui-
sition is a process that develops in time. There is no doubt that in reality knowledge
acquisition can hardly be conducted without dead-ends or revisions. However, each step
in knowledge acquisition should gain maximal profit from what has already been acquired
in the preceding steps. This is not always possible. Sometimes, there are incremental
extensions of knowledge to be acquired, which are supported by the knowledge already
acquired, and sometimes there are none. We draw a distinction between different kinds to
proceed in knowledge acquisition: In true incremental knowledge acquisition a preceding
step supports a subsequent step. For example, elicitating a set of tasks followed by an
elicitation of cases that are instances of tasks is an example of incremental knowledge ac-
quisition; elicitating tasks supports elicitating and representing cases since tasks provide
a guidance how to partition cases. In mere additional knowledge acquisition a subsequent
step is taken without any support by a preceding step. Cast in these notions an impor-
tant requirement to meet in knowledge acquisition is to maximize the steps of incremental
knowledge acquisition while the steps of additive knowledge acquisition should be kept at
a low level.

This distinction between incremental and additive knowledge acquisition is also true for
task-driven knowledge acquisition. If a set of tasks 7' is taken to be the foundation
and beginning of knowledge acquisition, there is a number of alternative possibilities to
proceed and to enlarge the knowledge base (cf. Fig. 10).

Note, that we do not advocate for a deterministic sequence of steps in knowledge acqui-
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incrementell

Figure 10: Dependencies in task-driven knowledge acquisition

sition and do not exclude other possible tracks. However, once a set of tasks T is taken
as a starting point in knowledge acquisition and system design there are a number of
tracks that are advantageous since using them permits an incremental knowledge acquisi-
tion. The acquisition of the task-structure ST and D' as well as the relational structure
(PT); is based on a set of tasks T. Expanding the knowledge acquisition by case-based
knowledge represented by fio g is supported by having a task-structure (7, ST DT) that
points out important areas of a domain to be covered by cases and also the grainsize of
cases. Adding rules R to the knowledge-base rests upon corresponding predicates (PT)
on T (cf. Fig. 10).

4.3 Incremental Problem Solving

Taking an incremental approach, knowledge acquisition can be used for incremental sys-
tem development such that the capabilities of the knowledge based system to be built
are gradually enlarged. There are different types of knowledge within the space of all
states of knowledge that may be acquired incrementally. In more general terms, these
kinds of knowledge may be referred to as coordinating or realizing knowledge. Knowledge
used to coordinate problem solving - e.g., tasks T and the dependency-structure thereof
(T, ST, DT) - is used in planning. Knowledge used to realize problem solving - e.g., cases
ficp,s) and rules R - are employed in design. Knowledge used to coordinate problem
solving and knowledge used to realize problem solving have to be well balanced. Only
concentrating on knowledge that realizes problem solving, which is not counterbalanced
by knowledge that coordinates it will not enhance the overall problem solving capabilities
of the system. Whether or not both kinds of knowledge are balanced well depends on
the track taken in incremental knowledge acquisition and system development. In the re-
mainder of this section we give an exemplary account about the kinds of problem solving
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that is possible given a particular kind of knowledge.

Providing a Task Control List. Incremental task-driven knowledge acquisition sets out
with a set of tasks T' provided for problem solving and further knowledge acquisition.
Which type of problem solving may be successfully realized by a system in this stage?
Seen from the viewpoint of a simple single-task problem (e.g., simple diagnosis) there does
not seem to be any need for using tasks in problem solving at all. However, a more com-
plex real world problem like design is a different cup of tea. Addressing such multi-task
problems requires devices for coordinating problem solving, e.g., decomposing an overall
task into subtasks, finding a track through the space of sub-tasks, administering tasks,
which still have to be tackled or tasks, which are already solved. Tasks provide knowledge
suitable for coordination in problem solving. Even a set of tasks 7" may prove to be useful.
As a matter of fact, the benefits for problem solving grow if in addition to a mere enumer-
ation of tasks, i.e., a set of tasks, dependencies between them or relational descriptions
are also represented. For example, a set of tasks 7' may be useful in computer-supported
design as a check-list with the active part of problem solving still taken by the user. By
pointing at tasks still to be done or at tasks already done, such a list provides a kind of ad-
ministrational support in problem solving. Apart from its usefulness in problem solving,
the set of tasks 7' is the kernel of the overall knowledge acquisition described in this paper.

Checking Realizations of Tasks. The predicates (PI); represent knowledge about relations
between realizations of tasks. Predicates (PI); have a description-like flavor. They state
what a task looks like that is embedded into a network of other tasks and that is realized
well according to the judgement of an expert. Predicates (PI); are the foundation of
checking design solutions in our system [JJ94]. Given a particular stage in design prob-
lem solving descriptive interrelations (P); between tasks may be employed for tracking
errors in design. Due to the interrelations between tasks an error in a given task spreads
out and affects other tasks, too. Knowledge about dependencies may be used by the

system for localizing the fan-out area affected by an error in a particular task.

Proposing Task Sequences to Support Planning. A set of tasks T' may be also extend-
ed by knowledge about their structure of decomposition S* and dependencies D? may
be provided for problem solving and further knowledge acquisition. S and D? repre-
sent structural knowledge especially useful for coordination of planning. Which type of
problem solving may be successfully realized by a system in this stage? When solving a
multi-task problem it is - by definition - not sufficient to limit the attention just to single
tasks. There has to be a device to plan a sequence of tasks to be tackled. Advantageous
sequences of tasks have to be selected and disadvantageous ones or dead ends have to be
avoided. To realize this objective the system has to be equipped with additional coordi-
nating knowledge. Knowledge about dependencies fulfills this requirement. Dependencies
are relations between single tasks and certain sets of tasks. If there is a dependency re-
lation between a certain task and other tasks a solution for the task can not be attained
without considering the other tasks. Once knowledge about dependencies between tasks
is acquired in addition to a set of tasks 7', the system may exploit knowledge appropriate
for coordinating problem solving.

23



Realizing Tasks to Support Design. Given a set of tasks T', knowledge about their structure
of decomposition S7 and dependencies DT, the knowledge-base may be incrementally en-
larged by case-based knowledge (7, fiop,»]) or rule-based knowledge (7', R) or both. This
means, the knowledge already given allows for generating planning. Which type of prob-
lem solving may be successfully realized by adding cases or rules? If the knowledge-base
encompasses cases or rules the system will be able to design single, predefined tasks. Note,
that design may be used to work out the plan derived by applying a set of tasks, knowl-
edge about their structure of decomposition and dependencies. Designing tasks proceeds
by applying cases to a task t given by T to accomplish its realization t*. This is done
in an analogous manner to prior solutions of this specific task. Alternatively, rules may
be applied. The result will be the realization of the ¢ again. Given given both kinds of
knowledge the user has to choose the advantageous one.

Full Support. Finally, there are all types of knowledge mentioned so far provided for
problem solving and system design. This means there is a set of tasks 7', structured by
ST and D”, descriptive interrelations (P]);, case-based knowledge ficB,o], and tules R.
Which type of problem solving may be successfully realized by a system equipped with
this kind of knowledge? Since all types of knowledge described above are given all problem
solving capabilities discussed so far are possible in a system that uses all these kinds of
knowledge.

| Objective |Se1ection Criteria ‘

Test Using both cases and rules and comparing the results
Giving preference to the kind of knowledge
Success
that has been applied successfully in the past
Speed Giving preference to the kind of knowledge
the application of which proceeds fastest
Transparency Using the kind of knowledge the application of which
is most transparent to the user
Giving preference to cases if and only if
Specificity there is a very close match between the problem
and prior cases and choosing rules otherwise

Figure 11: Criteria for selecting cases and rules

The system may for example use the coordination knowledge for tracking the user’s prob-
lem and may offer both planning or design proposal, which are derived from knowledge
appropriate for realizing problem solving. Such a system comprises both cases and rules
for tackling a task. As a consequence, there has to be a device to control whether cas-
es, rules, or both may be applied. Different selection criteria have been set up to cope
with this problem [JS91]. Which of these is chosen depends very much on the objective
of using cases or rules (cf. Fig. 11). While there are many possible approaches to this
problem there is, however, no selection criterion that can be applied successfully across
all possible applications. Taken together, when used in a design support system the full
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bag of different kinds of knowledge mentioned so far allow for a systematic coaching of
the expert’s problem solving:

e The system is in a position to scan the experts problem solving behavior by localizing
the tasks the expert is concerned with.

e As far as the tasks are concerned, which the user has already tackled the system
makes an attempt at checking them. The result is communicated to the user.

e Knowledge about dependencies may be used by the system for localizing the fan-
out area affected by an erroneous task.

e Concerning tasks not yet tackled by the user, the system is able to make a planning
proposal about the next step to take. The user may accept or reject the planning
proposal.

e The system may work out the planning proposal by making a design proposal, which
the user may accept or reject.

The system outlined at the end of this section allows for the most far reaching systematic
support of a user. Services offered by the system are embedded into the work-flow of the
user and may be called upon by the user on demand. The system is in a position to offer
support unobtrusively which the user may accept or reject.

5 Knowledge Interaction

The last section spelled out interrelations between different kinds of knowledge. In order
to exploit them, we will now illustrate the interactions of different kinds of knowledge.
Therefore we present two prototypical knowledge level and data-flow specifications for a
system aiming at a case-based and rule-based support of the climate system. Effects of
different, but interacting kinds of knowledge are pointed out by drawing on tasks and
cases, and tasks and rules. We will illustrate the kind of support, which was referred as
realizing tasks to support design in the preceding section. An instance of design of supply
nets is taken to exemplify the interactions between tasks, cases, and rules. This example
is meant to show how full support of a design support system looks like.

5.1 Interactions and System Design

We use MoMo [WVLT92] a language designed to specify and operationalize KADS concep-
tual models. In MoMo, the control flow is defined on the system layer using system—tasks.
The data flow is specified on the inference layer in terms of places, actions, and types. Ac-
tions refer to inferences directed toward a particular system—task. Places are " containers”
holding the knowledge, i.e., input and output of an action. The kind of knowledge used
by an action has to be specified by assigning it to a particular type. To represent MoMo

25



models graphically, e.g, as an inference structure, boxes are used to represent actions, and
ovals are used to represent places.

In section 2, Fig. 2 we gave a survey of the steps required when planning and designing a
complex technical device like a climate system. When watching an expert planning and
designing supply nets in buildings the whole process may be broken down into a sequence
of snapshots or states of problem solving. The type of knowledge that enters each state
of problem solving may be specified by a MoMo place. We extended this set of MoMo
places to a full-blown MoMo inference structure by inserting MoMo actions that draw on
the precedent place to generate the subsequent place.

5.1.1 Tasks and Cases

The first inference structure in Fig. 12 makes use of the task decomposition and the
case-based approach for structural similarity assessment. A new problem is represent-
ed by the situation description. The task decomposition provides known subgoals
and state-subgoal-pairs. Both are the input to the MoMo action identify problem.
Output of this planning phase is a concrete problem description, which is worked out

situation-description

tion- known subgoals
‘situation-type

:subgoal -type
- - state-subgoal-pairs
identify-problem :staies.lggoal?type
— problem-description
:problem-type
case-base
‘case-type
modification-rule-base
:modification-rule-type

e i

transfer-solution

‘state-type

adapted state
‘state-type

Figure 12: Inference structure to integrate tasks and cases

in the design-phase using a case-based approach. We use an attribute-based similarity
assessment to preselect appropriate candidate cases case-set out of the case-base.
The next action is the application of rule-based background knowledge stored in the
modification-rule-base called modify cases. These modification rules are applied
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to the problem description and the candidate cases until a most specific common struec-
ture of both can be determined. This common structure together with the applied
modification rules is taken to define the structural similarity. Now, the modified solu-
tion can be transferred. Applying the inverse rules to the solution results in the concrete,
adapted solution of the new problem. Additionally, the action update is used to ad-
d the new case to the case-base. Finally, the case-base, modification-rule-base,
state-subgoal-pairs and known-subgoals will be enlarged by knowledge derived from
the lessons learned when solving the new problem.

5.1.2 Tasks and Rules

The second inference structure (cf. Fig. 13) uses rules instead of cases. Again the task
decomposition provides knowledge needed to determine the subsequent planning steps.
For the design phase the decision to use rules instead of cases propagates through the rest
of the inference structure. The action identify problem provides the input for select
rules out of a finite set of rules.

proj ect-description
‘project-type

indentify-problem

problem-description
:problem-type

known subgoals

:subgoal-type
state-subgoal-pairs
:state-subgoal -type

situation description
:problem-type

Figure 13: Inference structure to integrate tasks and rules

These rules are applied to the problem description resultingin the situation description
of the correct solution. Finally, the known subgoals, the state-subgoal-pairs and the
rules are updated. Obviously, there is no need any more to entertain system—tasks for
adaptation or testing purposes.

5.2 Interactions: An Example

To exemplify the knowledge interactions we integrate the knowledge represented by tasks,
cases, and rules to design a supply air network in an office building. This will be illustrated
by interactively solving tasks of the given task-structure using different approaches. Fig.
14 depicts a part of the task decomposition introduced in section 2, Fig. 2. Shaded areas
mark the tasks that are solved in a case-based or a rule-based way. The area marked I
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refers to the task solved by applying the zab/ rule (introduced in section 3.3.3). The task
marked II can be solved by applying the zvb4 rule (cf. section 3.3.3). The rectangularly
shaped areas IIT and IV depict the tasks solved in a case-based manner applying case ¢y
and c¢; respectively (see section 3.2.3). Note, that it would also be possible to solve task
[ and IT in a case-based manner using the cases ¢; and ¢y see section 3.2.3, Fig. 3.
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Figure 14: Solving tasks integrating different problem solving approaches

As discussed in the preceding section, a description of the task decomposition can be
employed as coordinating knowledge, which can be used to select and integrate different
problem solving approaches. The task decomposition provides information as to ”when”
and "what” should be solved. Cases and rules provide knowledge about "how” it should
be solved.

6 Discussion

Our intention has been to give a systematic account of knowledge acquisition for design
support systems. To that end, we employed the dependencies between tasks in order to
drive the knowledge acquisition. Task-oriented knowledge acquisition of cases, rules, and
models is apparently an effective approach to system design and seems to be especially
well-suited to design tasks like the design of buildings and their supply nets. Depending
on the knowledge available the system is able to realize particular degrees of support.
Providing the right task assignment between user and system is a challenge to enable useful
and realizable computer-aided support in design. Only those tasks should be assigned to
the system that can be tackled successfully by the system on the basis of the knowledge
represented. This sounds quite straightforward and simple but requires careful analyses
of the application domain and the workflow of human-computer interactions
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Although our results are experimental in nature they might pave the way to a more
principled account of knowledge acquisition and system design in CBR-systems. Parts
of this work have already been implemented along the rationale presented [JJ94]. As an
outlook on future work we investigated and exemplified interactions of different kinds of
knowledge by generating and using variants of inference structures of the system to be
built. In sum, task-oriented knowledge acquisition has turned out to be a viable approach.
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