Case-based Learning for Knowledge-based
Design Support

Katy Borner!

Abstract. We present a general approach to combine meth-
ods of interactive knowledge acquisition with methods for
machine learning. The approach has been developed in or-
der to deliver knowledge required by support-systems for
design-tasks. Learning rests upon a knowledge representa-
tion scheme for cases that distinguishes between knowledge
needed for subgoaling and knowledge needed for design. We
employ traces, i.e., protocols of the user’s actions when tack-
ling design-tasks as the initial input for incremental knowl-
edge acquisition. This allows to learn task structures to be
used for subgoaling and case-bases plus similarity relations
applicable to particular case-bases.

1 INTRODUCTION

Integrating incremental learning into a knowledge-based sys-
tems seems to be a promising way to lessen the burden of
knowledge elicitation to system development [9]. The goal of
this paper is to point out how learning can be used in an inter-
active design-support system that uses CBR [8] as the main
problem solving method. The next section briefly describes
the domain we are dealing with. Section three sketches the
computer—human—interaction and the role of traces of this in-
teraction in learning. Section four presents the basic concepts
used and the knowledge representation scheme employed. In
section five the reasoning and learning procedures applied are
presented. In the final part of the paper we discuss the ap-
proach introduced in this paper.

2 APPLICATION DOMAIN:
INDUSTRIAL BUILDING DESIGN

The general application domain used to delineate our ratio-
nale of integrated knowledge acquisition and learning is indus-
trial building design. Our focus is on installations in buildings
with a complex infrastructure. Here, the main problem is how
to layout subsystems for fresh and used air, electrical circuits,
warm, cold, and used water, computer networks, phone cables,
etc. Frequently, architects browse through old blueprints or
drawings to solve new problems. Case-based reasoning seems
to be the natural problem solving method that captures this
procedure. In building design, CAD-like drawings correspond
to snapshots of designed objects in problem solving.

L urwk Leipzig, Department of Informatics, P.O. Box 66, 04251
Leipzig, FRG

2 University of Freiburg, Department of Cognitive Science, 79098
Freiburg, FRG

and Dietmar Janetzko?

In the sequel, we make use of a A4 [6], viz., a knowledge
representation scheme developed to support computer-based
building design. A4 allows to represent objects used in building
design on a graphical level, which is the basis for man-machine
interaction, and on a code level by an attribute-based repre-
sentation, which is the basis for reasoning and learning.

zab6b

Figure 1.
supply net of some building. Type attributes of A4-objects, e.g.,
knb2, refer to states in design.

Snapshot of A4-objects constituting the fresh air

On the graphical level, A4-objects are represented by geo-
metrical objects. Different states in the design of a building
correspond to different configurations of objects represented
by ellipses. Ellipses are a substitute for rectangles circum-
scribed by the ellipses. Using ellipses instead of rectangles is
an unaccustomed but very useful trick: Ellipses overlap only
in a few points. Thus, the readability of drawings becomes es-
sentially improved. Fig. 1 represents some state of work during
the design of the fresh air supply net of a building.

On the code level, Ad4-objects are represented by values for
fixed sets of (i) geometrical attributes that describe placement
and extension {z,dx,y,dy} and (ii) type attributes {aspect,
morphology, resolution, size} representing the state to which
some object adheres. The values of the type attributes form
also fixed sets: Aspect relates to the subsystem of the building
(e.g., a = used-air, k = climate, r = room, s = shaft, w =

way, z = fresh—air). Morphology denotes the general function
of the area addressed in a state (e.g., a = linkage, e = de-
velopment, n = usage, v = connection). The third attribute
specifies the kind of resolution employed (e.g., b = area, h =
bounding-box). Size relates to the part of the building that
is envisaged (e.g., 2 = building, 4 = floor, 6 = room, 8 =
areas within a room). For example zab4 describes the state
of objects representing the area of supply—air linkage that
covers the floor. Other objects represented in Fig. 1 are of type
knb2, zab6, and zab8. The knowledge representation scheme
A4 provides the basis to learn task-structures, cases-bases,
and similarity relations.

3 A RATIONALE FOR USER-SUPPORT

We will now give an outline of how the knowledge acquisition
is integrated into human-system interaction. The input for
procedures of learning is provided by traces. The traces we
use are nothing else but protocols of the computer human
interaction that capture knowledge about actions performed
by the user in design. The knowledge extracted from traces
feeds into a design-support system. Support of human design-
ers tackling a complex task may be divided into two parts.
First, providing guidance to select the next subgoal, i.e., the
next state to be tackled in design. Second, generating con-
crete design solutions automatically. In both cases the user is
in a position to accept, modify, or reject the proposal offered
by the system.

[- |
solution next solution
trace, | ok subgoal design
Knowledge (subgoaler | [designer |
A A

knowledge-based support system

Figure 2. Human — system interaction

Figure 2 sketches the interaction of some human user and
the knowledge-based system. During the work with DANCER
[6]. i.e., the knowledge-based CAD-system we employ traces
are recorded that reflect a user’s actions. Traces are used to
elicit the knowledge provided by the user that is employed
as an input for all learning procedures described in this pa-
per. That is, knowledge acquisition proceeds by learning via
analysis of the trace. Output of the learning procedures is
a knowledge-base required by the system-modules subgoaler
and designer. Given an actual situation the subgoaler sug-
gests subsequent subgoals, and the designer presents concrete
design solutions to an human user.

4 KNOWLEDGE REPRESENTATION

Now we take a closer look at the knowledge representation
we use. We will give the representation of objects, states, and
cases in an more accurate and domain independent way.

Ce=< 5, 8>

c, =<9, 8,>
1 1 °2 . 8S (1 s ==
E 1 1§%§5 7 8908 ©
= (zaba) (zab6) | §o ©5|(zabs)
N
= v)
C,= < 8y 55> %E s,
(@ebd) | ¢, =< 55, 55>
¥ — =
=<5 50>(|| foo 2 ||[[®E| J €5= <%, %>
oo
AASCYY) B (b6
* S,
S T |6
|54
S
L (zvh4)J (E (zvh6)

Figure 3. Object representation, state sequences, and cases in

industrial building design

Mlustrated in Fig. 3 are design states approached one af-
ter the other labeled si,...,ss. Each state corresponds to
some arrangement of objects with identical types, e.g., (zab4),
(zab6) etc. The cases c1, ..., cr are subsequent states that are
related to each other.

e Objects are represented by attribute values for a fixed
set of attributes. This set of attributes is divided into the
set of attributes representing geometrical object properties
and the set of attributes representing the state to which an
object belongs, i.e., its type. The former represents concrete
geometrical attribute values of objects. The latter refers to
peculiarities of states with its different case-bases and simi-
larity relations.

e Tasks: Types are also used to represent the tasks that
have to be accomplished. This means that the objects of a
certain type are the realizations of the task of this type. If
we collect all types that are employed during the design of
a building we have the full list of tasks that have to be ac-
complished. Whenever we describe the string-like entry of a
Ad-object on a syntactical level we use the notion of type.
Whenever we refer to problem solving activities like design,
planning, or testing we use the concept of task

o States: We define a state s as a set of objects with
identical type. That is, states may be represented by their
type and the set of geometrical attribute values of all their
objects. There exists some semi-ordering over states which
represents the required object types needed to design a cer-
tain type of objects. These dependencies are represented in a
task—structure [7]. For means of reasoning preconditions and
resulting states are related to each other by cases. Depending
on the stage in problem solving a state can either take the
role of a problem or of a solution.

K. Borner and D. Janetzko

e Cases ¢ are defined as pairs of problem and solution.
While the problem is defined to represent the needed require-
ments, the solution represents the objects designed that fulfil
these requirements. There is an important difference between
the type and geometrical description of the objects constitut-
ing the solution. The former represents the subgoaling solu-
tion, i.e., the next subgoal, the latter represents the concrete
design solution.

These formalizations provide the basis to introduce pro-
cedures of learning taken to realize incremental knowledge
acquisition in design.

5 KNOWLEDGE ACQUISITION AND
LEARNING

The general purpose of the learning procedures introduced in
this section is to enable incremental knowledge acquisition.
That means, the output of each learning procedure provides
the input for the subsequent learning procedure. The initial
input is provided by a trace, i.e., a list of the user’s actions
recorded during the work with the system. On this basis we

e preprocess the trace of user actions into a noise-free trace,

e identify and extract the states tackled one after each other
together with their dependencies leading to tasks which
altogether form the task—structure,

e collect task-dependent case-bases, and

e derive similarity relations over case problems.

We will now turn to an examination of the procedures to
extract noise free traces and to learn task—structures, state-
dependent case-bases, and the simailarity relations over cases
applicable to a particular case-base.

5.1 Preprocessing of the Trace

A trace is made up of user actions recorded during the de-
sign of some building. Traces represent sequences of states
traversed successively. They provide information about the
initialisation, selection, resizing, deselection of ob-
jects to be designed. Moreover, attribute-value assignments
are recorded, which are required when designing buildings by
using the A4 representation scheme. These are, e.g., set as-
pect (seth), set z-dimension (setZ), set morphology (setM),
set time (setTtag) etc.

Traces are a valuable source of knowledge to be used as
an input for learning procedures. However, they cover un-
necessary or even wrong actions that have to be eliminated.
As a consequence, traces have to be preprocessed in order to
obtain noise-free knowledge suitable for further knowledge ac-
quisition and learning. An example of a trace that is used as
an input for preprocessing is given in Fig. 4. During the early
design of a building named school there are two new objects
created, viz., object number 1 and 2. To both objects attribute
values for hight, time, aspect, morphology, region, and solu-
tion are assigned. In the following, the objects are resized;
this is reflected by new assignments of values for x, dx, y, dy.
Finally, the object under counsideration is deselected. During
the creation of object 1 and 2 the object 1 was selected and
immediately deselected reflecting a user mistake. Information
relevant for the subsequent extraction of the task—structure

school 1 init
school 1 setZ O
school 1 setTtag 9.10826e-149
school 1 setA gebaeude
school 1 setM nutzungs
school 1 setR bereich
school 1 setS 2
school 1 resize 100 480 50 480
school 1 deselect
school 1 select
school 1 deselect
school 2 init
school 2 setZ O
school 2 setTtag 9.108387e-149
school 2 setA klima
school 2 setM nutzungs
school 2 setR bereich
school 2 setS 2
school 2 resize 100 480 50 480
school 2 deselect
Figure 4. Example trace

are state type (e.g., gnb2) and values for geometrical dimen-
sions X, dx, y, dy of the created objects. Filters are used to
extract these data. In Fig. 4 these data are marked boldly.
The filter output of the example trace given in Fig. 4 would
be:

[gnb2:1] 100 480 50 480
[knb2:1] 100 480 50 480

That is, object 1 is the only object of type gnb2 that is
created. Object 2 is the first object of type knb2. Given such
a noise-free trace we are able to extract the task—structure.

5.2 Learning the Task—Structure

The overall design task may be divided into sequences of sub-
tasks to be tackled. There are tasks which have to be accom-
plished before others can be addressed, i.e., the creation of
some objects provides the knowledge required for the design of
other objects. A task—structure captures the knowledge used
in subgoaling, which refers to dividing an overall task into a
sequence of subtasks or subgoals.

In building design, however, it is difficult to acquire precon-
ditions and effects of certain design steps. Noise free traces
provide the input to learn the task—structures, i.e., complex
structures corresponding to the alternatives and peculiarities
when designing buildings.

Figure 5 provides an example for the task—structure of the
design of fresh-air and used-air supply nets. The example out-
put described in the last subsection, i.e., the state transition
between gnb2 and knb2, is the input to the procedure of learn-
ing the task—structure. The output of the procedure is the
task—structure that starts with the design of the building us-
age region (gnb2) at the root node and continues with the
design of the climate usage region (knb2). This step is neces-
sary to design the rooms (rnb4), ways (wnb4), and shafts usage

K. Borner and D. Janetzko

Task—structure

Figure 5.

areas (snb4) in the sequel. Double arrows between the latter
three state-types denote dependencies between them during
design. Given all these design decisions we are now able to
start the design of the fresh-air and used-air supply nets.

That is, the task-structure provides some semi-ordering
over the set of object types. At the same time it expresses
requirements to design specific objects. Parallel or alternative
ways in design may also be represented. Determination of ob-
ject types, i.e., goals to be accomplished becomes possible.
Aiming at a task—oriented user support, the task—structure
even provides guidance to partition complex realization of
design-tasks into cases as we will see next.

5.3 Learning Case-Bases

Once a task-structure is specified, a kind of template sheet
is introduced into the domain that may be employed for dis-
cerning and acquiring cases. Projecting such a template sheet
or grid onto a domain is nothing more than an attempt at
making up for natural units that are ambiguous, hidden, or
even missing. This is an indispensable requirement for using
case-based reasoning in domains that have no units suitable
to be referred to as problem or solution.

We assume that different tasks in design require different
design strategies. For example, while return air accesses will
be connected by using the shortest path, connections for fresh
air accesses take curved tracks to achieve noise reduction.

Case-bases are formed in a way that preconditions neces-
sary to design a certain object type are represented as case
problems, and the state to be designed is represented as their
solution. Assuming that each case solution contains states of
one type (e.g., zab6), case-bases are indexed by this type (e.g.,
CB.ats, see Fig. 6). Note, that in the example given in Fig.
6 each problem description also contains only objects of one
type. This has not necessarily to be the case since the speci-
fication of a problem may very well relate to quite a number
of different tasks.

CB zab8

® ®©0

B
s Bo o

® 0

CBrhe

Y
CB oo ;:
zvb6 o0
CcB ’ v:
A A
zvh4 T T
T
Figure 6. Task dependent case-bases

5.4 Learning Similarity Relations

Finally, we need to derive similarity relations over case-sets to
be used for retrieval of prior cases in problem solving. Two-
stage similarity assessment [5] is widely accepted as an effi-
cient way to case-selection in CBR. While attribute-based sim-
tlarity assessment is used for fast preselection to determine a
set of candidate cases, structural similarity assessment allows
for structural comparisons as a basis for adaptation. We will
now describe how the corresponding similarity relations are
learned.

Attribute-based similarity assessment proceeds by compar-
ing weighted attribute values. Given some similarity measure
(e.g., Hamming distance) we learn about the relevance of cer-
tain attributes for reasoning. That is, input are cases grouped
to one case-base or case-set (e.g., cases with identical solu-
tions). Output are weights characterizing the relevance of at-
tributes for this classification.

Structural similarity assessment uses structural case repre-
sentations (e.g., terms-based or graph-based ones) to deter-
mine similarity. Using the underlying term algebra (or graph
algebra) and the concept of antiunification [10] we are able to
learn inductively about proper substitutions. Applying these
substitutions to some set of cases we derive their least general
anti-untfier also called most specific generalization [11] which
may be seen as a kind of prototype of this case set. This has
been discussed in detail elsewhere [2].

As an example for using prototypes in similarity assessment
imagine a prototypical room. This room, which may not exist,
is representative for all rooms you have ever seen. Remem-
bering concrete rooms (cases) permits to apply the proper
modification rules which lead to this prototype. Entering an
unseen space, you will be easily able to recognize if it is a
room. You simply apply proper modifications and compare
the result with the corresponding room prototype (“generate
and match”). Knowing about prior concrete rooms permits to
derive more knowledge about different types, forms, usages,
etc. of rooms.

The set of modification rules (e.g., proper substitutions,
deletions of objects) of a case-base together with the proto-
type of this case-base will be used to determine structural sim-
ilarity between this case-base and an actual problem. Struc-

K. Borner and D. Janetzko

tural similarity assessment proceeds by selecting rules out
of the rule-set and applying them to the actual problem. If
this application yields the prototype of the case-base the ac-
tual problem is said to be structurally similar to this case
set. Adaptation proceeds by transferring operational solution
descriptions using the concept of derivational analogy (3, 4].
Note, that the application of identical operations to different
terms (problems) results in different solutions.

6 DISCUSSION

System design that rests upon an immense effort for manual
knowledge elicitation will hardly be successful. There is sim-
ply no time to feed in all knowledge required. System architec-
tures that enable knowledge elicitation and learning thereby
increasing user support during the system usage may provide
a way out. This can only be achieved by combining learn-
ing and knowledge elicitation techniques such that knowledge
elicitation is used to establish a framework for a knowledge-
based system the knowledge-base of which is built or enlarged
by using learning techniques. Developing such frameworks are
a real challenge to enable useful and adaptable computer-
aided support in design. We delineated an approach to in-
corporating learning into design-support systems. Differing
from other approaches that pursue a similar goal [9] our em-
phasis is on case-based reasoning as the major problem solv-
ing method. Consequently, the learning procedures sketched
deliver knowledge required by case- based reasoning. In our
approach, incremental learning is accomplished by using a
trace of the user’s design activities, i.e., by recording states
traversed by the user. The system incrementally learns state
transitions, i.e., preferred sequences of states, cases, and sim-
ilarity relations. The knowledge learned allows for a support
of subgoaling, similarity assessment, and adaptation in build-
ing design. Each time the system lacks knowledge to solve a
certain problem this problem is allocated to the user. But this
is not simply a surrender of the system since each task allo-
cation to the user triggers a well-defined learning-task of the
system with the input, the learning-goal, and the background
knowledge specified. By this close linkage of knowledge acqui-
sition, problem solving, and learning we are able to adapt the
system to the user and the pecularities of the domain chosen.

The algorithms underlying the preprocessing of the trace
and the extraction of the task—structure have already been
implemented and tested. The determination of similarity re-
lations over cases and their usage for similarity assessment
and adaptation constitute the backbone of a program called
Syn Term (for Synthesis by using Term-based knowledge rep-
resentations). This has been discussed in detail elsewhere [1].

ACKNOWLEDGEMENTS

This research was supported by the German Ministry for Re-
search and Technology (BMFT) within the joint project FA-
BEL under contract no. 413-4001-01IW104. Project partners
in FABEL are German National Research Center of Computer
Science (GMD), Sankt Augustin, BSR Consulting GmbH,
Miinchen, Technical University of Dresden, HTWK Leipzig,

University of Freiburg, and University of Karlsruhe.

REFERENCES

(1]

2]

(3]

[4]

[5]

[6]

(8]

[9]

[10]

(11]

Katy Borner, ‘Structural similarity as guidance in case-based
design’, in Topics in Case-Based Reasoning Selected Papers
from the First European Workshop on Case-Based Reasoning
(EWCBR-93), eds., Stefan Wess, Klaus-Dieter Althoff, and
Michael M. Richter, volume 837 of Lecture Notes in Artificial
Intelligence, 197-208, Springer, (1994).

Katy Borner, ‘Towards formalizations in case-based reasoning
for synthesis’,in AAAI-9} Workshop on Case-Based Reason-
g, pp. 177-181, (1994). also FABEL Report 22.

Jaime G. Carbonell, ‘Derivational analogy : A theory of re-
constructive problem solving and expertise acquisition’, in
Machine Learning: An Artificial Intelligence Approach, eds.,
Ryszard S. Michalski, Jaime G. Carbonell, and Tom M.
Mitchell, volume 2, Morgan Kaufmann, Palo Alto, CA,
(1986).

Jaime G. Carbonell, Craig A. Knoblock, and Steven Minton,
¢ PRODIGY: An integrated architecture for planning and learn-
ing’, in Architectures for Intelligence, ed., Kurt VanLehn, Erl-
baum, Hillsdale, NJ, (1990). Also Technical Report CMU-CS-
89-189.

Dedre Gentner and Kenneth D. Forbus, ‘MAC/FAC: A model
of similarity-based retrieval’, in Proceedings of the Cognitive
Science Conference, pp. 504-509, (1991).

Ludger Hovestadt, ‘A4 — digital building — extensive com-
puter support for the design, construction, and management
of buildings’, in CAAD Futures '93, Proceedings of the Fifth
International Conference on Computer-Aided Architectural
Design Futures, pp. 405-422. North-Holland, (1993).
Dietmar Janetzko, Katy Boérner, Oliver Jaschke, and Ger-
hard Strube, ‘Task-oriented knowledge acquisition for design
support systems’, in First Furopean Conference on Cognitive
Science in Industry, (1994).

Janet L. Kolodner, Case-based reasoning, Morgan Kaufmann,
1993.

Katarina Morik, ‘Balanced cooperative modelling’, in Ma-
chine Learning. Vol. 1V, eds., R. Michalski and G. Tecuci,
pp- 295-317. Morgan Kaufmann, (1994).

Steven Muggleton, Inductive logic programming, Academic
Press, 1992.

Gordon D. Plotkin, ‘A note on inductive generalization’, in
Machine Intelligence 5, eds., B. Meltzer and D. Michie, 153—
163, American Elsevier, (1970).

K. Borner and D. Janetzko

