AUA % 2024

Keynote: The Human San Antonia Reference Atlas

Version 2.0

Human Reference Atlas

https://humanatlas.io

Keynote: The Human Reference Atlas

Bruce W. Herr II Technical Director

Cyberinfrastructure for Network Science Center Department of Intelligent Systems Engineering Luddy School of Informatics, Computing, and Engineering Indiana University, Bloomington, IN, USA

Keynote | Basic Sciences Symposium | 2024 AUA Annual Meeting | San Antonio, TX | May 5, 2024

Human Reference Atlas Collaborators

- HuBMAP
- SenNet
- GTEx
- KPMP
- GUDMAP
- 13+ other consortia
- 250+ subject matter experts
- Funded by NIH and CIFAR
- Supported by HCA // Human Cell Atlas

HuBMAP Contributing Sites

TMC, TTD

Pacific Northwest National Lab Seattle Children's Hospital

WA

NV

TMC, TTD, RTI, HIVE - TC

University of California, Santa Cruz University of California, San Diego

City of Hope National Medical Center

Stanford University

Scripps Research

OR

Washington University, St. Louis

ID

UT

AZ

RTI, TTD, DP

ND

SD

NE

KS

ок

TMC

Texas Advanced Computing Center

Northwestern University University of Illinois, Chicago Lurie Children's Hospital of Chicago

HIVE - Mapping, TTD Indiana University, Bloomington Purdue University IUPUI

New York Genome Center

University of Rochester Medical Center General Electric Global Research Center

NIH, TMC, DP

TMC, HIVE - TC

University of Florida

NIH Common Fund

Johns Hopkins University

HIVE - TC

University of Kentucky

TMC Vanderbilt University

HIVE - Mapping, RTI, TMC TMC, TTD

University of Connecticut Yale University

HIVE - TC, TTD, RTI, TMC, DP

Harvard University Harvard Medical School Columbia University Beth Israel Deaconess Medical Center

NETHERLANDS

Delft University of Technology

HIVE - TC, TMC European Bioinformatics Institute Wellcome Sanger Institute

Source: https://hubmapconsortium.org/about/

MT

WY

со

NM

Early history of the HRA and HuBMAP

- HuBMAP started in 2018 with the goal of mapping the human body down to the cellular level
- The IU team started off with creating a common coordinate framework, that eventually evolved into the HRA
- In 2023, we published HRA v2.0
- We are now in the production phase of HuBMAP

What is the HRA?

Human Reference Atlas (HRA)

A comprehensive, ontologically aligned, high-resolution, three-dimensional, multiscale atlas of anatomical structures and cells in the healthy human body

Anatomical Structures

Functional Tissue Units

Cell Types

Biomarkers

Genes, Proteins, ..

User Stories guide the HRA development and keep it grounded in providing value

User stories are centered around

- **Construction** Facilitate atlas construction by aligning new tissue blocks with existing data
- **Usage** Use the atlas to gain insights into changes that occur at all levels in the body with aging or disease
- **Sustainability** Ensure atlas sustainability with processes that encourage collaboration and guide future development

HRA User Stories

More than <u>30 one-on-one interviews were</u> <u>conducted with atlas architects</u>, i.e., experts who serve as principal investigators or are otherwise intimately involved in the construction of the latest generation of human atlases, including BICCN, GTEx, GUDMAP, HCA, HuBMAP, Human Tumor Atlas Network (HTAN), KPMP, LungMAP, (Re)building the Kidney (RBK), and SenNet.

In addition, <u>six programmers</u> from different human atlas projects were surveyed.

Table on right shows feature summary, target user roles, user activities, and added value for seven user stories that drive HRA development.

Feature	User Role	User Activities	Added Value
Facilitate atlas construction by aligning new tissue blocks with existing data			
US#1. Predict cell type populations	Programmers that support Researchers, Clinicians, Pathologists	Predict and explore the likely cell type populations for a RUI-registered tissue block.	Improve cell type annotation through information on what cell type populations exist in what anatomical structures.
US#2. Predict spatial origin of tissue samples	Programmers that support Researchers, Clinicians	Predict and explore the likely 3D location in the human body for a given tissue block with known cell type population.	Compensate for the absence of spatial origin information in many single cell datasets.
Use the atlas to gain ins	sights into chang	es that occur at all levels in the body with a	ging or disease
US#3. Compare reference tissue with aging/diseased tissue	Researchers, Clinicians	Compare tissue blocks, cell types, and biomarker expression levels between healthy reference tissue and aging/diseased tissue.	Understand and communicate changes in tissue structure and function with age or disease.
US#4. Compare reference Functional Tissue Units with aging/diseased FTUs	Researchers, Clinicians	Compare FTUs in terms of cell types and mean biomarker expression levels for healthy reference tissue and aging/diseased tissue.	Understand and communicate changes in FTU structure and function with age or disease
US#5. Provide cell distance distribution visualizations	Researchers, Pathologists	Compute, visualize, and explore distance distributions between different cells, cell types, and anatomical structures (e.g., FTUs), and cell types and morphological features (e.g., the edge of an organ).	Add granularity to our understanding of how disease develops (e.g., how tumor cells grow or metastasize) in support of targeted therapies.
Ensure atlas sustainability with processes that encourage collaboration and guide future development			
US#6. Develop lightweight atlas components	Programmers that support Researchers and Clinicians	Implement usable and useful HRA components (interfaces and APIs) into other portals in the growing ecosystem of human atlases.	Facilitate collaboration and data/code reuse between the HRA and other portals in support of FAIR data principles.
US#7. Implement dashboard for HRA	Researchers, Clinicians, Funders	Track the evolution and usage of the HRA using data, code, and portal usage statistics in aggregate and divided by portal (e.g., HuBMAP or SenNet) or PEDP survey results.	Enable evidence-based decision-making by providing insights into the atlas' construction and usage (e.g., gaps in data, application areas, user demographics, equitable access).

Naming and connecting across scales

- Anatomical Structures
- Functional Tissue Units
- Cell Types
- Biomarkers

Connecting and empowering people

- Subject Matter Experts
- Ontologists
- Programmers
- Experimentalists
- Researchers, Clinicians, and Pathologists

Relevance to Urology

- Measure what's healthy to compare to what's unhealthy
- Knowledge and data resource
- Open data and code, reproducible workflows, lightweight user interface components

NOTE: Not ready for clinical practice

Tour of the HRA

SCT+B Table Framework

Prostate

Paths

https://www.nature.com/articles/s42003-022-03644-x | Data: https://humanatlas.io/3d-reference-library

HRA 3D Reference Organs: kidney, ureter, bladder, prostate, and uterus

HRA Functional Tissue Units (FTUs)

https://www.biorxiv.org/content/10.1101/2023.10.16.562593v3 | Data: https://humanatlas.io/2d-ftu-illustrations

Kidney - Ascending Thin Loop Of Henle

Kidney - Descending Thin Loop Of Henle

Kidney - Inner Medullary Collecting Duct

Kidney - Outer Medullary Collecting Duct

Prostate - Glandular Acinus

OMAPs are wet-bench validated collection of antibodies that are designed to work together in multiplex antibody imaging technologies (CODEX/Phenocycler, CellDive, SIMS, etc.) primarily for identifying specific classes of cell types or tissue regions/layers.

Kidney - OMAP-3

Legend ^
Anatomical Structures
Cell Types
Protein Biomarkers AS-AS, AS-CT, CT-BM

Paths

tions	Variation Note Variation Note<	iμm podocyte	T nm Synaptopodin	
Anatomical Structures	Functional Tissue Units	Cell Types	Biomarkers Genes, Proteins,	Conceptual
Anatomical Struc	ctures, Cell Types, and I	Biomarkers Tables		Atlas
3D Reference Organs	2D FTU Illustrations	Organ Mapping	Antibody Panels	
Vascular Geometry				

Vasculature Common Coordinate Framework

VCCF Video: https://youtu.be/zQeMgxo8n_U

Template

air/fluid flow

Experimental Dataset Framework

Anatomical Structures

- 5
- all anatomical structures

~

~

- kidney capsule
- hilum of kidney
- cortex of kidney
- renal column
- outer cortex of kidney
- renal medulla
- renal papilla
- renal pyramid

Landmarks

- C
- all landmarks
- bisection line
- left renal artery
- left renal pelvis
- left renal vein
- left ureter
- major calyxes
- minor calyxes

Tissue Block C	ontrols		^
Tissue Block Dir	mensions (mm)		Ð
Width (X)	Height (Y)	Depth (Z)	-2
Tissue Sections			Ð
Thickness	# Sec	ctions	_
Tissue Block Ro	tation		Ð
х ———	•	0	<>
Υ	•	0	0
z	•	0	\sim
Anatomical Str	ucture Tags		^
Add Anatomica	al Structures		+

HRA-mapped Data: kidney, ureter, bladder, prostate, and uterus

HUBMAP HRA EXPLORATION

HRApop Framework

HRApop data: kidney, ureter, bladder, prostate, and uterus

		ASCT+B and 3D Reference Organs			Cell Type Annotation Too		n Tools
Organ	Datasets with H5AD file	#AS in 3D (male + female)	#AS	#CT	#CT in Azimuth	#CT in CellTypis t	#CT in popV
kidney	207	116	61	70	58	34	0
prostate gland	34	18	13	19	0	0	13
urinary bladder	0	15	16	15	0	0	14
ureter	0	4	7	14	0	0	0
uterus	23	10	61	18	0	0	13
Total (sum, not unique)	264	159	151	122	58	34	40

RAlit Framework

HRAlit data: kidney, ureter, bladder, prostate, and uterus

Organ	#Publications	#Experts	#Institutions	#Funded Projects	#Funders
kidney	762,095	59,910	8,899	97,041	1,485
prostate	174,800	23,131	5,078	34,219	907
ureter	62,702	3,921	1,564	3,294	144
urinary bladder	133,489	10,343	3,131	14,713	460
uterus	71,489	3,266	1,417	8,470	177
Total (sum, not unique)	1,204,575	100,571	20,089	157,737	3,173

Using the HRA

HRA Knowledge Graph Framework

HRA API and Applications

ASCT+B Reporter User Interface

https://humanatlas.io/overview-tools

Registration User Interface (RUI)

https://humanatlas.io/overview-tools

Exploration User Interface (EUI)

https://humanatlas.io/overview-tools

3D scene viewer

Interactive FTU Explorer

https://humanatlas.io/overview-tools

Cell Distance Visualizations

If you are interested to explore cell-cell, cell-FTU distance distributions, please share your data in this format:

x	У	z	Cell Type
555	756	4	Endothelial cell
765	231	3	B cell
356	235	7	T cell

With Yash Jain, MC-IU yashjain@iu.edu.

Join zoom next meeting on March 25, 2024 at 4-5p ET. Email Nancy Ruschman, <u>nruschma@indiana.edu</u> if you don't see invite in your cal.

HRA Organ Gallery in VR

Organ selection keyboard: Select an organ to view in 3D high-resolution

 \equiv

HRA API: Run an API Query

Input parameters for	running an API query:	HRA-API Workflow 3: F	tun an API Query		
Fill in parameter v	values for the route				
	HRA-API v1.x Routes				
GET /v1/db-status				Get current status of database	
	GET /v1/sparql			Run a SPARQL query	
	Run a SPARQL query				
	REQUEST				
	* query string SPARQL query to use Examples: SELECT * WHERE (?sub toke	?pred ?obj .) LIMIT 10			
	Authentication token to use for auth Authentication token to use for auth enum enum Override SPARQL response format	nenticated searches application/son application/id+json application/in-guads stats table text/cs text/n3 text/tab-separated-value (Note that not all formats are supported for all SPARQL query t	application/n-triples application/sparql-results+json applicati s text/truthe tree spes)	ion/sparqi-results+xmi application/trig	
	API Server https://apps.humanatlas.lo/api Authentication Not Required			FILL EXAMPLE CLEAR TRY	
Select a response —	RESPONSE				
code to view example response and schema doc	Successful operation. SPARQL responses vary by format	v/content negotiation.		application/json	Fill parameters with example options
E>	xample Schema documentation bonse tab tab for the response				<u>htt</u> ı

https://humanatlas.io/api

HRA User Stories

HRA User Stories

More than <u>30 one-on-one interviews were</u> <u>conducted with atlas architects</u>, i.e., experts who serve as principal investigators or are otherwise intimately involved in the construction of the latest generation of human atlases, including BICCN, GTEx, GUDMAP, HCA, HuBMAP, Human Tumor Atlas Network (HTAN), KPMP, LungMAP, (Re)building the Kidney (RBK), and SenNet.

In addition, <u>six programmers</u> from different human atlas projects were surveyed.

Table on right shows feature summary, target user roles, user activities, and added value for seven user stories that drive HRA development.

Feature	User Role	User Activities	Added Value
Facilitate atlas constru	ction by aligning	new tissue blocks with existing data	
US#1. Predict cell type populations	Programmers that support Researchers, Clinicians, Pathologists	Predict and explore the likely cell type populations for a RUI-registered tissue block.	Improve cell type annotation through information on what cell type populations exist in what anatomical structures.
US#2. Predict spatial origin of tissue samples	Programmers that support Researchers, Clinicians	Predict and explore the likely 3D location in the human body for a given tissue block with known cell type population.	Compensate for the absence of spatial origin information in many single cell datasets.
Use the atlas to gain ins	sights into chang	es that occur at all levels in the body with a	ging or disease
US#3. Compare reference tissue with aging/diseased tissue	Researchers, Clinicians	Compare tissue blocks, cell types, and biomarker expression levels between healthy reference tissue and aging/diseased tissue.	Understand and communicate changes in tissue structure and function with age or disease.
US#4. Compare reference Functional Tissue Units with aging/diseased FTUs	Researchers, Clinicians	Compare FTUs in terms of cell types and mean biomarker expression levels for healthy reference tissue and aging/diseased tissue.	Understand and communicate changes in FTU structure and function with age or disease
US#5. Provide cell distance distribution visualizations	Researchers, Pathologists	Compute, visualize, and explore distance distributions between different cells, cell types, and anatomical structures (e.g., FTUs), and cell types and morphological features (e.g., the edge of an organ).	Add granularity to our understanding of how disease develops (e.g., how tumor cells grow or metastasize) in support of targeted therapies.
Ensure atlas sustainab	ility with process	ses that encourage collaboration and guide t	future development
US#6. Develop lightweight atlas components	Programmers that support Researchers and Clinicians	Implement usable and useful HRA components (interfaces and APIs) into other portals in the growing ecosystem of human atlases.	Facilitate collaboration and data/code reuse between the HRA and other portals in support of FAIR data principles.
US#7. Implement dashboard for HRA	Researchers, Clinicians, Funders	Track the evolution and usage of the HRA using data, code, and portal usage statistics in aggregate and divided by portal (e.g., HuBMAP or SenNet) or PEDP survey results.	Enable evidence-based decision-making by providing insights into the atlas' construction and usage (e.g., gaps in data, application areas, user demographics, equitable access).

US#1. Predict cell type populations

Given a location in the body, what cell types and their distribution should I see?

% of Total 🔻	# Cells 🔺	Cell
17%	549,473	Cortical Thick Ascending Limb
15%	476,562	Inner Medullary Collecting Duct
8.0%	259,453	Proximal Tubule Epithelial Segment 1
7.4%	242,118	Distal Convoluted Tubule Type 1
6.3%	203,659	Ascending Thin Limb
6.0%	194,380	Connecting Tubule
5.7%	185,991	Descending Thin Limb Type 1
5.2%	168,763	Descending Thin Limb Type 2
4.7%	152,603	Proximal Tubule Epithelial Segment 3
3.9%	127,341	Medullary Thick Ascending Limb
2.9%	95,842	Fibroblast
2.7%	87,883	Cortical Collecting Duct Principal
2.1%	66,948	Macula Densa
1.8%	59,228	Medullary Fibroblast

https://apps.humanatlas.io/us1/

US#2. Predict spatial origin of tissue samples

Given a distribution of cells, where in the body might this have come from?

% of Total 💌	# Cells 🔺	Cell
17%	549,473	Cortical Thick Ascending Limb
15%	476,562	Inner Medullary Collecting Duct
8.0%	259,453	Proximal Tubule Epithelial Segment 1
7.4%	242,118	Distal Convoluted Tubule Type 1
6.3%	203,659	Ascending Thin Limb
6.0%	194,380	Connecting Tubule
5.7%	185,991	Descending Thin Limb Type 1
5.2%	168,763	Descending Thin Limb Type 2
4.7%	152,603	Proximal Tubule Epithelial Segment 3
3.9%	127,341	Medullary Thick Ascending Limb
2.9%	95,842	Fibroblast
2.7%	87,883	Cortical Collecting Duct Principal
2.1%	66,948	Macula Densa
1.8%	59,228	Medullary Fibroblast

Similarity 🔻	Label 🔺
0.99	outer cortex of kidney
0.93	kidney pyramid
0.73	hilum of kidney
0.73	renal column
0.72	kidney capsule
0.50	renal papilla

Also, similar datasets and HRA extraction sites

https://apps.humanatlas.io/us2/
US#3. Compare reference tissue with aging/diseased tissue

https://apps.humanatlas.io/eui/

US#4. Compare reference FTUs with aging/diseased FTUs

https://apps.humanatlas.io/ftu-explorer/

US#5. Provide cell distance distribution visualizations

Coming June 14th on humanatlas.io

US#6. Develop lightweight atlas components

Coming June 14th on humanatlas.io

US#7. Implement dashboard for HRA

Coming June 14th on humanatlas.io

Wrapping it up

Future work

- Releases every 6 months (June and December)
 More data, more collaborations, more organs, continued advancement of US#1-7
- HRA in clinical settings

Current Team

Connecting people is key to our success. Here are some of our great collaborators (apologies to those I missed!)

Principal Investigator, **Co-Principal Investigators**, and Consultants

Full Time Staff

Katy Börner MC-IU PI CNS Director

Daniel Bolin

Software Developer

Professor of Medicine

(Biomedical Informatics) and

of Biomedical Data Science

Andreas Bueckle

Research Lead

Ontologist

Josef Hardi

Software Developer

David Van Valen Assistant Professor of Biology and Biological Engineering & Investigator

Bruce Herr II

MC-IU PM

CNS Technical Director

Fusheng Wang Associate Professor of Biomedical Informatics and Computer Science

Griffin Weber Associate Professor of Medicine

National Institutes of Health

CIFAR

Rachel Bajema 2D Medical Illustrator

Supriya Bidanta Research Assistant

Avinash Boppana Research Consultant

Lu Chen PhD Student

Yashvardhan Jain

Research Software Engineer

(Machine Learning)

Kate Gustilo Research Analyst

Bhushan Sanjay Khope Software Developer

Ellen Quardokus Heidi Schlehlein Sr. Research Analyst 3D Medical Illustrator

Todd Theriault Technical Writer

Edward Lu

Libby Maier User Experience Designer

MC-IU PM

Lisel Record

Yingnan Ju PhD Student

Acknowledgments

The Human Reference Atlas (HRA) is under active development by the Indiana University Mapping Component as part of the HuBMAP HIVE, SenNet CODCC, KPMP, and GUDMAP efforts with expert input by the HRA Editorial Board and in close collaboration with experts from more than 18 other consortia. Data was provided by HuBMAP and other Tissue Mapping Centers. This research has been supported by the NIH Common Fund through the Office of Strategic Coordination/Office of the NIH Director under awards OT2OD033756 and OT2OD026671, by the Cellular Senescence Network (SenNet) Consortium through the Consortium Organization and Data Coordinating Center (CODCC) under award number U24CA268108, and by the NIDDK under awards U24DK135157 and U01DK133090. The work has also been supported by the Kidney Precision Medicine Project grant U2CDK114886, and the NIH National Institute of Allergy and Infectious Diseases (NIAID), Department of Health and Human Services under BCBB Support Services Contract HHSN316201300006W/HHSN27200002. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health

More information about the Human Reference Atlas is available at: <u>https://humanatlas.io</u>

- A. Bueckle, C. Qing, S. Luley, Y. Kumar, N. Pandey, and K. Börner, "The HRA Organ Gallery affords immersive superpowers for building and exploring the Human Reference Atlas with virtual reality," Frontiers in Bioinformatics, vol. 3, 2023. doi: <u>10.3389/fbinf.2023.1162723</u>
- A. Bueckle, K. Buehling, P. C. Shih, and K. Börner, "Optimizing Performance and Satisfaction in Matching and Movement Tasks in Virtual Reality with Interventions Using the Data Visualization Literacy Framework," Frontiers in Virtual Reality, vol. 2, 2022. doi: <u>10.3389/frvir.2021.727344</u>
- A. Bueckle, K. Buehling, P. C. Shih, and K. Börner, "3D Virtual Reality vs. 2D Desktop Registration User Interface Comparison," PLOS One, vol. 16, no. 10, 2021. doi: <u>10.1371/journal.pone.0258103</u>
- B. W. Herr II, J. Hardi, E. M. Quardokus, A. Bueckle, L. Chen, F. Wang, A. R. Caron, D. Osumi-Sutherland, M. A. Musen, and K. Börner, "Specimen, Biological Structure, and Spatial Ontologies in Support of a Human Reference Atlas," Nature Scientific Data, 2023. doi: 10.1038/s41597-023-01993-8
- K. Börner, P. Blood, [...] A. Bueckle, B. W. Herr II, "Human BioMolecular Atlas Program (HuBMAP): 3D Human Reference Atlas Construction and Usage," bioRxiv preprint 2024.03.27.587041, 2024. [Online]. Available: 10.1101/2024.03.27.587041
- K. Börner, A. Bueckle, et al., "Tissue Registration and Exploration User Interfaces in support of a Human Reference Atlas," Nature Communications Biology, 2022. doi: <u>10.1038/s42003-022-03644-x</u>
- K. Börner, S. Teichmann, [...] A. Bueckle, et al., "Anatomical structures, cell types and biomarkers of the Human Reference Atlas," Nature Cell Biology, vol. 23, no. 11, 2021. doi: <u>10.1038/s41556-021-00788-6</u>
- L. Chen, D. Teng, T. Zhu, J. Kong, B.W. Herr II, A. Bueckle, K. Börner, F. Wang, "Real-Time Spatial Registration for 3D Human Atlas," BigSpatial '22: Proceedings of the 10th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, 2022. doi: 10.1145/3557917.3567618

Thank you!

Resources at: https://humanatlas.io/events/AUA2024

Contact me: Bruce Herr <<u>bherr@iu.edu</u>>

