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Utilizing Visualization for Program Evaluation:
Techniques and Strategies

* How can visualizations help communicate, manage, evaluate science?
« Can progress in science, technology, education, etc. be predicted?

 What methods and tools exist?



Can we talk? How the cognitive neuroscience of attention
emerged from neurobiology and psychology, 1980-2005

John T. Bruer
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Abstract This study uses author co-citation analysis to trace prospectively the
development of the cognitive neuroscience of attention between 1980 and 2005 from its
precursor disciplines: cognitive psychology, single cell neurophysiology, neuropsychol-
ogy, and evoked potential research. The author set consists of 28 authors highly active in
attentional research in the mid-1980s. PFNETS are used to present the co-citation
networks. Authors are clustered via the single-link clustering intrinsic to the PFNET
algorithm. By 1990 a distinct cognitive neuroscience specialty cluster emerges, dominated
by authors engaged in brain imaging research.

Keywords Co-citation analysis - PFNET - Cognitive neuroscience -
Attention
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Fig. 1 In the 1980 net, neuroscience (black nodes and black—white nodes) and cognitive psychology (white

nodes) develop as clusters with high internal co-citation rates. ERP (grey nodes) develops later in net
construction. These clusters are connected by secondary edges at very low levels of co-citation

Bruer, John T. (2010). Can we talk? How the cognitive
neuroscience of attention emerged from neurobiology and

psychology, 1980.2005. Scientometrics, 83(3), 751-764.
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Abstract

Science is increasingly being carried out in large cross-disciplinary research teams. However, currently
little empirical research focused on understanding the outcomes and added-value associated with this type
of research approach exists. This study utilizes a scientific mapping technique to compare the struciure

and topical coverage of publications over time for a transdisciplinary center-based initiative with a Stipelman Brooke. Kara L. Hall Angela Zoss. Janet Okamoto
’ K . ’ ki K

matched set of traditional investigator-initiated grants in the same field. Publication data obtained from

two National Institutes of Health (NIH) databases for all three groups were overlaid onto the University Daniel StOkOIS, and Katy Boérner. 2014. "Mapping the Impact of
of California, San Diego (UCSD) Base Map of Science. The visualizations revealed that the publications TranSdiSCiDIinarV ResearCh' A Visual ComDarison of |nvestigat0r

from the transdisciplinary research centers spread across the topic map of science more rapidly and more = - -
Initiated and Team Based Tobacco Use Research Publications".

comprehensively than both comparison groups. These findings are consistent with the notion that bringing

scientists together from multiple disciplines can lead to more rapid proliferation and dissemination of The Journal Of Translational Medicine and Epldemlology2 (2) 1033

scholarly knowledge across the scientific spectrum, thereby increasing the speed of scientific discovery and

innovation.
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Abstract
Science is increasingly being carried out in large cross-disciplinary research teams. However, currently
little empirical research focused on understanding the outcomes and added-value associated with this type
of research approach exists. This study utilizes a scientific mapping technique to compare the struciure
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Visualizing big science projects, with Filipi N. Silva and
Stasa Milojevié, is out in @NatRevPhys, see rdcu.be
/cyEGS. Explore interactive vis at bigscience.github.io
then use code to map your very own projects.
@IUNetSci @IULuddy @cnscenter @ieeevis @issi_pres
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PERSPECTIVES

Visualizing big science projects

lead to both scientific and technological
superiority”"', In addition, big science has
been propelled into the general public’s

Katy Borner(, Filipi Nascimento Silva and Stasa Milojevié¢

Abstract | The number, size and complexity of ‘big science’ projects are growing—
as are the size, complexity and value of the data sets and software services they
produce. In this context, big data gives a new way to analyse, understand, manage
and communicate the inner workings of collaborations that often involve
thousands of experts, thousands of scholarly publications, hundreds of new
instruments and petabytes of data. We compare the evolving geospatial and
topical impact of big science projects in physics, astronomy and biomedical
sciences. A total of 13,893 publications and 1,139 grants by 21,945 authors cited
more than 333,722 times are analysed and visualized to help characterize the
distinct phases of big science projects, document increasing internationalization
and densification of collaboration networks, and reveal the increase in
interdisciplinary impact over time. All data sets and visual analytics workflows are
freely available on GitHub in support of future big science studies.

Blg sc:ence’ today is mtemauonal

plinary and i i
Big science projects are anchomd around
expensive, large and complex instruments,
they can run for several decades and they
involve thousands of experts. Big science
projects make breakthroughs not only in
basic research but also in innovation that
impacts economy and solves challenging
societal needs. As more science fields move
towards the big science model of knowledge
creation, the lessons learned from previous
successful endeavours become essential.
This is because big science projects are
not just larger and more expensive than
other projects but they require specific
organizational and management structures.
Different knowledge production processes
also bring new research roles, changes in the
division of labour and adjustment in formal
and informal scholarly communication.
One way to communicate these aspects
of big science, on which this Perspective
focuses, is to use various visualizations.
Visualizations in this Perspective — and
interactive online ones — show that big
science projects go through phases with
different input needs, expected outputs
and impacts. As big science projects
‘mature, their collaborations densify and
internationalize; at the same time, scholarly
impact increases in terms of citation counts
and interdisciplinary reach.

NATURE REVIEWS | PHYSICS

Big science as a phenomenon can be
traced all the way back to fifteenth-century
cartography and astronomy'~* or to
ﬁghmﬂa-cenmry natural history

by the founding of the Nanonal
A ics and Space Admini
(NASA) and its active and publicly visible
space programme”, Although most of
the early focus regarding big science was
on physics, as early as 1965, Weinberg*
proposed that biomedical science and
biomedical technology were ready to enter
the ‘big biology” era. This entry was made
only in the 1990s with the Human Genome
Project (HGP), the first big science project in
biology". The expansion of the big science
mode of knowledge production to other
areas of science, such as big biology, brought
with it new organizational and collaborative
forms, such as ‘networked’ science enabled
by information and communication
technologies ' and some debates as to
whether such coordinated efforts can be
called big science™™'".

Big science accentuated the central
role instruments play in the development
of suence as engmes of discovery™”.

} entury ¢
archival pm)ecm (the Corpus L

y such as the
it the mi and the air pump

Latinarum and the Carte du Ciel) had many
characteristics of present-day big science in
terms of funding (state backing by Pmssm

openet{ new vistas and fcd to scientific
revolution, fundamentally changing the
nature of schola:shxp -, The quest for

and France), workforce and ti

and accuracy of

(requiring more than a lifetime of effort),
and were associated with the initial coinage
of the term ‘big science’ (or. ongmaﬂy,

2 haft) by classi

instruments led to their constant evolution,
making these ever more expensive tools”***
obsolete fairly qmddy Thxs s process has
been described™ as ‘tinkering) in which

and Prussian Academy oquenus member
Theodor Mommsen’. The better known and
‘more immediate precursors of what became
known as big science are the establishment
by

‘lineages of technology’ are adapted

and combined, leading to networks, or
‘genealogies’ of technologies. However, the
power« of instruments, such as a scanning

of the University of California cycl can be realized
Ernest Lawrence in the 1930s for energy only when they engage a community of
research” and the World War II Manhattan reseanchers in what has been called ‘an
Project’. The term ‘big science, however, lly leading

was introduced in the 1960s by Alvin M.
Weinberg™ and Derek J. De Solla Price’ to
describe post-World War II developments
m physics that built large and very expensive
(reactors and
accompanied by the growth in scientific
team sizes working on nuclear-related
research’. Making advances in nuclear and,
later, particle physics became part of the
competition among superpowers, with
the expectation that breakthroughs would

to the formation of new scientific ﬁelds,
such as nanotechnology™'. Furthermore,
the relationship between science and
technology is complex and interdependent,
with science also contributing to technology
development™",
Early scientists, such as Galileo
Galilei and Isaac Newton, engaged in
instrument building as well as theoretical
and experimental work™", While not
without precedent, instrument building
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101st Annual Meeting of the Association of American Gegrapﬁers, Denver, CO.

April 5th - 9th, 2005 (First showing of Places & Spaces)

University of Miami, Miami, FL.
September 4 - December 11, 2014.
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Duke University, Durham, NC.
January 12 - April 10, 2015

The David J. Sencer CDC Museum, Atlanta, GA.
January 25 - June 17, 2016.
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Science Maps as Visual Interfaces to Digital Libraries
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MAPS
in large format, full color, and
high resolution.
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MACROSCOPE MAKERS
including one whose job title is
“Truth and Beauty Operator.”
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382

DISPLAY VENUES
from the Cannes Film Festival
to the World Economic Forum.

248

MAPMAKERS

from fields as disparate as art,
urban planning, engineering,
and the history of science.

20

MACROSCOPES
for touching all kinds of data.

354

PRESS ITEMS
including articles in Nature,
Science, USA Today, and Wired.
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Map of Scientific Collaborations from 2005-2009

Computed Using Data from Elsevier's Scopus

VIL.6 Stream of Scientific Collaborations Between World Cities - Olivier H. Beauchesne
- 2012




A Topic Map of NIH Grants 2007

Bruce W. Herr Il (Chalklabs & IU), Gully Burns (ISI), David Newman (UCI), Edmund Talley (NIH)

The National Institutes of Health (NIH) is organized as a
multitude of Institutes and Centers whose missions are
primarily focused on distinct diseases. However, disease
etiologies and therapies flout scientific boundaries,

and thus there is tremendous overlap in the kinds of
research funded by each Institute. This creates a
daunting landscape for decisions on research
directions, funding allocations, and policy

formulations. Shown here is devised an ""v"’"' : J . K
interactive topic map for navigating this E sk i
landscape, online at www.nihmaps.org. ; s &m o
Institute abbreviations can be found
at www.nih.gov/icd.
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? & Cardiac Diseases Research |

[ Neural Circuits Research

An area of the map focused on cardio-
vascular function and dysfunction.
Cardiac Failure (primarily funded by
NHLBI) is topically clustered next to
Stroke (NINDS), since these are the two

‘An area of the map focused on neural
circuits, which shows the diversity of
topics and NIH Institutes that

fund research in this area, such as:
Cardiorespiratory Regulation,

major

ith Ischemia, which results from a e

primarily BI;Visual
Processing, primarily funded by NEE and

stricted blood supply. Also localized in
this area are grants focused on Nitric
Oxide (NOS) Signaling, a major biochem-
ical pathway for vasodilation, and grants,

on Hemodynamics, Sickle Cell Disease,
d

Epilepsy, primarily funded by NINDS.
For color coding, see legend in the
upper-leftinset.
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National Cancer Institute (NCI)
TOP 10TOPICS
Oncology Clinical Trials
2 CancerTreatment
3 Cancer Therapy
4 Carcinogenesis
Risk Factor Analysis
& Cancer Chemotherapy
Metastasis
& Leukemia
Prediction/Prognosis

Cancer Chemoprevention

National Institute of General
Medical Sciences (NIGMS)
TOP 10 TOPICS

Bioactive Organic Synthesis

Xeray Crystallography 4

3 Protein NMR L
+ Computational Models <

5 Yeast Biology

& Metalloproteases
Enzymatic Mechanisms
Protein Complexes.

9 Invertebrate/Zebrafish Genetics
Cell Division

National Heart, Lung,
and Blood Institute (NHLBI)
TOP 10 TOPICS
Cardiac Failure
Pulmonary Injury
3 Genetic Linkage Analysis.
Cardiovascular Disease

5 Atherosclerosis

& Hemostasis

Blood Pressure

Asthma Allergic Airway Disease
7 Gene Association

Lipoproteins

National Institute of
Mental Health (NIMH)
TOP 10 TOPICS
Mood Disorders
2 Schizophrenia
7 Behavioral Intervention Studies
4 Mental Health
Depression
& Cognitive-Behavior Therapy
7 AIDS Prevention
& Genetic Linkage Analysis
Adolescence
Childhood

V.7 A Topic Map of NIH Grants 2007 - Bruce W. Herr II, Gully A.P.C. Burns, David Newman, and Edmund
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ucture of Science

The Social Sciences are the smallest and
most diffuse of all the sciences

serves as the link between Medical Sciences
(Psychiatry) and the Social Sciences

serves as the link with Computer Science
and Mathematics.

Psychiatry Neuroscience

*_~Radiology

General
Medicine

-~ Oncology

Medical Treatments

The Medical Sciences include broad therapeutic
studies and targeted areas of Treatment (e.g. central
nervous system, cardiology, gastroenterology, etc.)
Unlike Physics and Chemistry, the medical disciplines
are more spread out, suggesting a more multi-
disciplinary approach to research. The transition into
Life Sciences (via Animal Science and Biochemistry)
is gradual

is our starting point, the uuvesl ol all sciences. It lies at the outer edge of the map.
applied sciences that draw upon
knowledge in Mathematics and Physics. Thcsc three msclphnes provide a good example of a
linear progression from one pure science (Mathematics) to another (Physics) through multiple
disciplines. Although applied, these disciplines are highly concentrated with distinct bands of
research communities that link them. Bands indicate interdisciplinary research.

Research is highly concentrated in
ese disciplines have few, but very
distinct, bands of research that link

i amilar with traditionl maps that show the relationships between countries,provinces,
exist between the v: plines and research topics in
science. This allows us to map the structure of science.

One of the first maps of science was developed at the Institute for Scientific Information over 30
years ago. It identified 41 areas of science from the citation patterns in 17,000 scientific papers.
That early map was intriguing, but it didn’t cover enough of science to accurately define s structure.

Things are different today. We have enormous computing power and advanced visualization

software that make mapping of the structure of science possible. This galaxy-like map of science
(left) was generated at Sandia National Laboratories using an advanced graph layout routine (VxOrd)
from the citation patterns in 800,000 scientific papers published in 2002. Each dot in the galaxy
represents one of the 96,000 research communities active in science in 2002. A research community
isa group of papers (9 on average) that are written on the same research topic in a given year. Over
time, communities can be born, continue, split, merge, or die.

The map of science can be used asa tool for science strategy. Thisis the terrain in which

them, The thickness of these bands indicates an
extensive amount of interdisciplinary research,
which suggests that the boundaries between
Physics and Chemistry are not s distinct as one
might assume.

The Life Sciences, including and
are less concentrated than
immunology Chemistry or Physics. Bands of linking
research can be seen between the larger
* areas in the Life Sciences; for instance
Infectious Disease between Biology and ) and
between Biology and
Biochemistry is very interesting in that it
is a large discipline that has visible links
to disciplines in many areas of the map,
including Biology, Chemistry, Neuroscience,
and General Medicine. It is perhaps the
most interdisciplinary of the sciences

andi ions locate their scientific capabilities. Additional information about the
scientific and economic impact of each research community allows policy makers to decide which
areas to explore, exploit, abandon, or ignore.

Wealso envision the map as an educational tool. For children, the theoretical relationship between
areas of science can be replaced with a concrete map showing how math, physics, chemistry, biology
and social studics interact. For advanced students, areas of interest can be located and neighboring
areas can be explored.

Most research communities in
nanotechnology are concentrated in
and

However, many disciplines
in the Life and Medical Sciences also
have nanotechnology applications.

Proteom

Research communities in proteomics

are centered in vistry. In addition,
there is a heavy focus in the tools section
of chemistry, such as

The balance of the proteomics
communities are widely dispersed among
the Life and Medical Sciences

nacogenomics

Pharmacogenomics s a relatively new
field with most of s activity in Medicine
It also has many communities in

and two communities in
the Social Sciences

1.10 The Structure of Science - Kevin W. Boyack and Richard Klavans - 2005
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I11.8 Science-Related Wikipedian Activity - Bruce W. Herr II, Todd M. Holloway, Elisha F. Hardy, Katy Borner, and
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Check out our Zoom Maps online!

VIIL.10

History of Science Fiction, by Warc

Visit scimaps.org and check out all our maps in stunning detail!




Iteration XI (2015) Iteration X1 (2016)

Macroscopes for Interacting with Science Macroscopes for Making Sense of Science

Iteration XIII (2017) Iteration XIV (2018)

Macroscopes for Playing with Scale Macroscopes for Ensuring our Well-being

Iteration XVI (2020)

Macroscopes for Harnessing the Power of Data

http://idemo.cns.iu.edu/macroscope-kiosk
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Call for Macroscopes:

What to Submit

Each entry needs to include:
Title of macroscope
Author(s) name, email address, affiliation, mailing address

Link to online site that features the macroscope tool or to
executable code

Macroscope tool description (300 words max): user group
and needs served, data used, data analysis performed,
visualization techniques applied, and main insights gained

References to relevant publications or online sites that
should be cited, links to related projects or works

Tell us about the impact your data visualization has had on
public awareness, social policy, or political action.

19t |teration

Review Process

Submissions will be reviewed and evaluated
by the exhibit advisory board (listed below) in
terms of their:

* Scientific rigor

* Value as a tool for data exploration

* Ability to provide new, actionable insights
* Relevance for a general audience

Important Dates

* Submissions due: Feb 15, 2023

* Notification to mapmakers: April 1, 2023

e Submit final entries: May 30, 2023

* lteration ready for display: August 31,
2023

https://scimaps.org/call
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Utilizing Visualization for Program Evaluation:
Techniques and Strategies

* How can visualizations help communicate, manage, evaluate science?
« Can progress in science, technology, education, etc. be predicted?

 What methods and tools exist?

26



Atlas of Forecasts

Modeling and Mapping
Desirable Futures

Katy Borner
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Atlas of Forecasts: Models of (Desirable) Futures

Model Classes

Many different modeling approaches exist. The

table below by William B. Rouse shows exemplary

levels of modeling, issues needing to be addressed,

and models that have been successfully applied to

support decision-making.

Level Concern Models

Society GDP, Supply/Demand, Policy Macroeconomic
Economic Cycles System Dynamics
Intra-Firm Relations, Competition | Network Models

Organizations | Profit Maximization Microeconomic
Competition Game Theory
Investment DCF, Options

Processes Patient, Material Flow Discrete-Event Models
Process Efficiency Learning Models
Workflow Network Models

People Patient Behavior Agent-Based Models
Risk Aversion Utility Models
Disease Progression Markov, Bayes Models

THEMATICIAN

TARGET SYSTEM

Formal model

S

Executable model
 Coding ]

Comp. Program

Application =

Results

30



Modeling Goals

Models aim to  capture key phenomena at the levels that are most relevant for

the und; and

describes and

that are

of systems. This spread
ly studied when

Y P
aiming to understand complex systems. Phenomena are roughly organized
by question type (temporal, geospatial, topical, and network) and complexity.

Models that use static reference systems and no feedback cycles are i

of neurons, people clapping in unison at an
f traders

event, or

drive the system far from equilibrium and result in
atial change. For example, the purposeful

in financial markets.
Yoshiki Kuramoto proposed a simple, legant
mathematical model i the 1970s that simulates

rewiring of a network can change a 1D string of
nodes and links into a star-shaped network with
completely different network diffusion dynarmics

represented by blue dots in the image below. Initially,
the oscillators change values rhythmically—each
atits own frequency. When the oscillators are
connected, the oscillating nodes begin to influence

R ik obisis. Wi I

first, followed by phenomena that aim to capture evolving networks and activity
patterns unfolding over them, including feedback or causal loops.

The greatest shortcoming of the human race is our inability to understand the

exponential function.

Phenomena of Interest

‘master list of key phenomena that could be used to

Oscillation
Any motion that repeats itself s called an oscilla-
tion. Examples are a swing, or a ball on a spring

et by
define what system 2 model aims to capture. Yet any
‘modeling effort should start with tabulations of the
phenomena to be modeled, together with informa-
tion on target system simplifications that may or
may not be acceptable. Those tabulations can then
be used to choose model class and parameter values
(see Model Class Overview, page 24).

A model might have various aims: to answer
particular types of questions (e.g., temporal/when or
geospatial/where—sce Questions Overview, page

the energy
time ¢. The figure below shows the later example,
with 1 pen attached to the red ball and paper
moving from right to left as it records the move-
ment of the ball.

freeze into sync, they line up only in time, not space.
Kuramoto Oscillators

Partal Full
Phase- bmkmg, Phasc-Locking  Phasc-Locking

Py
N

fn:bping Point

A tipping point (also called  regime shift) refers to

al point when gradual changes in external

conditions (e.g, temperature or the availability of

food) lead to a rapid change between the alterna-
tive stable states of a system. The changes can be

«—Mortion of Paper

ble (e.g, ifwood burns to ashes or a species

goes extinct).

Motion
of Pen

ight be reversible but without

use of the original path, as the thresholds for those
changes vary in different directions, which is known

in Network Models, page 46).

Self-Organized Criticality

Also known as chain reaction, self-organized
criticality (SOC) refers to the fact that a system
is able to sustain only a limited amount of stress.
1f stress exceeds a certain critical threshold, then
the system relaxes locally to an unstressed state,
and the stress is distributed to the neighborhood.
Examples of SOCs are earthquakes and nuclear
chain reactions. Another example is sand pile
avalanches, which have been studied experimentally
using physical sand piles (see the figure below) and
analytically using cellular automata (page 40).

d Grains Critical _ Avalanche Occurs
lope Increases ™ Slope ¢ Slope Decrease:

In 1987, Per Bak and colleagues showed that
avalanches exhibit a power law distribution
0f 9-s-1 (see the log-log graph below of the
frequency of occurrence /{5 of an avalanche of size
sversus avalanches rank-ordered by size, for a total
0f 200 avalanches).

T

Both approaches can be applied to understand
the probability p tht a path exists between two
nodes/edges, or what fraction 1-p of failures is
required for the network graph to become discon-
nected (see the model discussion in Cellular
Automata, page 40).

Adaptation and Learning
In evolution, adaptation is the process that species
use uited to their t

sively generated tree pattern, the algorith takes an
argument # and produces the five trees shown for
£=1,2,3, 4,8 respectively.

1T

Fractals via Diffusion-Limited
Aggregation

Diffusion is a widely studied phenomenon and
the primary means of transport in many systems.
Diffusion-limited aggregation (DLA) models can
be applied to simulate system growth and behav-
for, such as that of the sample model result below.

“There are phenotype changes (e.g., different bird
beaks exploit different food niches—sce Gause's
Law, page 33), and behavior changes (e.g., birds
adapting t life in urban environments), which are
also called learning. Phenotype and behavioral adap-
tation is often complementary, as can be seen in the
illustration below of dung beetles evolving to have
shorter horns (dashed arrow) that make it possible to
sneak past fighting male competitors (solid arrow) in
order to reach female mates (red symbol at bottom).

are snowflakes, lightning, and
ciies, The factalchusers grown by DLA models
are also called Brownian trees, as particles undergo.
2 random walk using Brownian motion until they
get within a certain critical range, whereupon they
are pulled into a cluster.

Diffusion
Diffusion (also called spreading) can unfold over
discrete or continuous space, o via networks. It may
involve the spread of tangible objects (e g, goods,
people, or even viruses) or intangible objects (eg.,
media, news, or even bitcoin). In the 14th century, the
devastating Black Death (also known as the Plague)
spread throughout Europe via travel in waves—as fast
25 one person could travel per day, arriving first at
the outskirts of populated areas (see map below).

Widespread availability and usage of the airline
transportation system has led to vastly different
diffusion patterns. Since the 20th century, many
diseases have traveled via air trafic routes—from
one major urban center to the next—quickly
endangering millions (see the figure below, which
shows virus path probability for SARS; see also
Impact of Air Travel on Global Spread of Infctious
Diseases in Atlas of Science, page 150).

5 P as hysteresis. An example is the idealized seesaw k Reaction-Diffusion Dynamics
6810 fic domain (e.g., education,
xil:; T:;/Z’: :ﬁ:ﬁ:m ',“,”m::ﬁ ov:::’: shown below, wherein two opposing states depend 0] ‘This phenomenon was initially studied in
: e : on the position of the figure walking past the 3 chemistry for systems in which the concentration
705 and di h : 4 Y ot
m di;g:’;’fﬂfm::;ﬁ":réfm: midpoint (see nodes and images 3 and 7) and thus é 10 of chemical substances changes due to local
from miecro to macro (see Scales Overview, page 72). ‘resiog & dlsteacs betyeses it {{pplog poiot > Fractals via Recursion chemical reactions, with diffusion then causing
. 5 Z10 A fractal is a pattern that continuously repeats at those substances 1 be converted into each other
Seasonality Periodic functions can be used to describe E(_ ~§‘\< \3\ ol £ st ekl aieh e il b Y s A and transported in space. The same dynamics
Many systems have an inherent seasonality. For particular oscillation, with sine and cosine being * e . . e
instance, they might depend on changes in temper- the most common functions used. For example, 2 k é— 13 w ! odeled using
ature, precipitation, or daylight over the year. Asa the displacement oscillation of the red ballin the s > >\‘z Size Phenomena Model Classes Target System Models bnic Models, page
specifi le, natural- tterns figure above can be described by x{f)<X cos (¢ — A4 and
ooty s by AR s B~ Percolation Oscllation Expert-Based Models % Predator-Prey Model (1925) | @™
“The hdrawal inter, whet Alternatively, differential be used Percolation is studied by physicists and matherd — —
gasis ,,;":,-:',::mg‘ - ;;::htfm " 10 describe oscillations (., predator-prey m':m Distance Sr A B s Descriptive Models: Indexesand Laws 28 Tinbergen's Gravity Model (1962) 3
in which rabbit and fox populations oscillate with s il or water) through certain types of porous medll [ — - " nnected by
?.’..'“fz dGs l]f.:"%gfs Wil and (];‘;;m; R e R f:m Nannmpr:‘ o (e, s In 1957, Smon Broadietand oo Tipping Point Predictive Models 30 Markov Chain Model (1913) 34 . page 46
Nt Injctions i Sowessea A from one phaseor sateof matter o another ey ]| Pise Transiton Dynamical Equations (1687) 2 Kermack-McKendrick Epidemic Model (1927) 35 |l <-r
n Models,
(e.g. from liquid to gas due to heat)is called S—— -
3 Synchronization s pouii = nbndrtoen oo J,. "'::hT"':":: to answer: What s the proll | Gelf. Organized riticality (SOC) Probability Theory (1713) 34 Eden Growth Model (1961) 40 ;-:xm“;
Net Withdrawals g 2 % ’ tuated equilibria wh  stabili ¥ § 7 " e . i
e T s e e Some ek time so they happen e pETaRE ” “m ::YP S A Percolation Control Theory (1868) 36 Schelling’s Segregation Model (1971) 41 D:x';:":‘hiﬂ-
ime periodically light up together, excitation patterns changs Wofien e o paitive faacback Loops thet nodes while the latter focuses on removing links il | Adaptation & Leaming Fpidemic Models (1977) 38 Prisoner’s Dilemma Model (19505) ]
14 ’ Part 2: Methods Fractals Cellular Automata (1940s) 40 Braess's Paradox: Faster is Slower (1968) 43
Reaction Diffusion Dynamics Game Theory (1950) 2 The Keller-Segel Model (1970) 45
Network Growth Continuous Field Models (1952) 44 Erdos-Rényi Model (1959) 47
Network Gatekeepers Network Models (1959) 46 Watts Model (1998) 47
Network Attack and Error Agent Based Models (1980s) 48 ~ Barabasi-Albert Model (1999) 47
Diffusion/Spreading Machine Learning Models (1990s) ~ 50 Fconomics of Wealth Distribution Model (1996) 49

Hungarian mathematician Paul Erdés is shown
in the subsequent figure. The central purple node,
denoting Exds, has the highest number of links;
orange nodes have more links than green ones.
Astime progresses from A to C, nodes and edges
increase, s does the density of the network core.

Braess’s Paradox

Adding 2 road to 3 congested road traffic network
can increase overall ourney time. This paradox
was discovered in 1968 by mathematician Dietrich
Braess. Models now exist to explain why building
new roads can increase traffic congestion, and
conversely why closing major roads might improve
traffc fow (see the Faster Is Slower example and
model in Game Theory, page 43).

Positive and Negative Feedback Cycles
Many systems exhibit feedback loops—cyclic
structures of cause and effect that feed system
‘outputs back to system input, possibly via a series of
secondary processes. There are positive/reinforcing
and negative/balancing feedback cycles.

The book Limits to Growth (1972) discusses a
number of feedback structures that aim to capture
changes in population size. A causal loop diagram
(see Model Visualization, page 20) of a population
‘growth model is shown below: the central rectangle
indicates population size; on the left is the positive/
reinforcing cycle of births per year, parameterized
by average fertility, which accounts for the observed
exponential growth; on the right s the negative/
balancing cycle of death per year, parameterized by
average mortality.

Deaths
Per Year

Births
Pe Year

e Mortali
u xian of popul
year)

(l—uumn of popu]almn
giving birth each year)

Population growth rates for different stable and
unstable scenarios are given on page 7, while diverse
modeling approaches are discussed in Dynamical
Equations (page 32) and Agent-Based Models
(page 48).

Part 2: Methods | 15
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Modeling Framework

When developing a model of a real-world system, many critical decisions must be
made regarding model components, their behavior, the environment, and system

dynamics evolving over time. Any model design should start with a specification of
stakeholders and their insight needs, followed by phenomena of interest, and ﬁnally

the success criteria that define when a model is fit for purpose. Model

view Bk d Yot explicit and

implicit; (5) Component Overview—a summary of
the model’s major process components; (6) Output
O il of

of well-d d models idely used in
research and teaching.
Volker Grimm and colleagues developed the

to the typ
generated by the model; and (7) Result Overview—
2 starting point or “reader’s guide” to the various
model results.
Uri Wilensky, developer of the agent-based
X LS4 oA g

Overview, De pis, and Details (ODD)
protocol to standardize the description of individ-
ual- and agent-based models (IBMs and ABMs,
respectively)in ecological modeling. ODD defines
b o groupLfomation: “Oresie’” copees

he purpose of the model;

and results communication must all be detailed. Diverse approaches have been

smodel: “What I 1" cn(\mragvs usersto dmlnp

pmposcd to pmvxdc templates and

ds for ic model develop

support of the

of results. This spread reviews

pnor work on modeling frameworks and then introduces and expands the data
visualization framework presented in At/as of Knowledge, Part 2, to cover the
emergent phenomena discussed in the previous spread, as well as the expert-based,
descriptive, and predictive models discussed throughout the Alas of Forecasts.

We cannot stop the march of history, but we can influence its direction.

Yuval Noah Harari

Prior Work

“There exist many frameworks that zim to guide
novices and experts in the design, run, visualization,
and validation of models. Most are domain-specific,
focusing on a small number of model classes. Some
aim to develop a typology of important concepts,
while others try to codify the different process steps
involved in modeling.

For example, the Open Collaboration for Policy
Modelling (OCOPOMO) project has developed and
demonstrated a policy development model/process
thar distinguishes six phases: (1) initial scenario
defiition, (2) evidence-based, stakeholder-generated
scenario development, 3) development of concep-
tual models, (4) programming of policy models, (5)
simulation and generation of model-based scenar-
ios, and (6) evaluation. The model assumes a close
collaboration between domain experts such as policy
planners and strategic decision-makers, stakehold-
ers, and modeling experts. In phase 5 of the process,
modeling experts instantiate simulation models
with particular variables, run the simulations, and
visualize the model results using text and graphs. The
visualizations help communicate system component
dependencies and what system behavior s derivable
& i it

experts, stakeholders, and modeling experts can
provide feedback and help optimize model design.
‘The NIH Cancer Intervention and Surveillance
Modeling Network (CISNET) aims to standard-
ize the description of models in support of model
comparison and reuse. They suggest using 1 set of
seven documents: (1) Model Overview—an over-

16 | Part 2: Methods

view of the entire modeling effort, including the
questions that the model was designed to answer;
(2) Model Purpose—a description of the primary
and secondary purposes and problems for which the
‘model was designed; (3) Parameter Overview—an
overview of the parameters that inform the model;
(4) Assumption Overview—a preliminary over-

Process Interaction Types
Translate.
Insight o
Operationalize

@ DotascaleTypes @) Model Types

Typology

Insight Needs Data Scales  Models. Visualizations
: cnominal  + descriptive @ table

* categorize/cluster o ordinal e predictive  » chart

< cderianidsort @ interval < graoh

o “ato map

Pheramena <

« xdilaton < network

» synchronization

modeled; *How It Works” explains the mm
“How 1o Use I¥”gives instructions o how to un
the model and the

their states,
the model process and run. *Design concept” aim
to capture the phenomena that the model aims to

reproduce. “Details” describe model lniﬁzhzanon.,

input data,

model; “Things to Notice” advises how to describe
interesting phenomena that the model exhibits;
“Things to Try" explains how a user can manipu-
late the model to produce new results; *Extending
the Model” gives suggestions and challenges on
how to change the model to examine new features
and phenomena, similar to the future work section
of a research paper; “NetLogo Features” discusses
particularly interesting features of NetLogo that are
used in the model; *Related Models” provides links
0 other related agent-based models; and *Credits

T Pattern-Orented Modelng
of Agent-Based Complex Systems,” Grimm and
colleagues argue to use phenomena such as growth
o diffusion patterns to characterize a real-world
system and its dynamics and to develop a model
that might simulate those patterns.

‘The UK. Review of Quality Assurance of
Government Analytical Models details four model
steps: (1) scope and specify, (2) build, (3) validate,
and (4) deliver and use. Given the simplicity and
broad UK. government usage of those steps, we have
mmpm 0 align them with the data visualization

and References” directs how to reference DVL) in Adlas of | i
crsted the model s where the wer can g1 find the Model DV FW presenee hre. The st =
the model. The roughly correspor

been widely used, resulting in a rich mddwzne set

Graphic Variable Types

user
discussed on page 40 in Adas of Knowledge; step i
corresponds to model design and run (page 18);step.
3 concerns model validation (page 22); and step 4
provides extensive detail on how to deliver and use
‘models in practice (partly covered on page 20).

Methodology
“The Atlas of Forecases introduces a general modeling.
framework called Model DVL-FW, which aims
to extend and build on the work above. To our
knowledge, this ambitious endeavor has not been
attempted before, most likely since it would be
difficult to implement for the following reasons:
existing frameworks have been developed for a vast
range of stakeholders—researchers, policymakers,
and practitioners; there exists no unified hng\ugc
for core concepts, such as key phenomens; and
existing models have been developed in different
domains, amid different cultures, with various
needs, affordances, and termis s

“To overcome these challenges and to standard-

ize language usage and methods across do
we conducted a comprehensive eview of more than

by mathemati-
cans, staisicans, physicss,biologiss, mlug.m

. « spatial .
symbols position
gt « retinal « fier.
form
« petora color « history
symbols optics o axtract
motion
* projection
« distortion

to seminal work from the 1600s. In zddi!ion, we

conducted a series of workshops and conferences,
bringing together world-leading experts to weigh in
on general modeling frameworks and their usage in
different domains (see Acknowledgements, page x).

‘The modeling framework presented here was
shared with experts and societies working on unify-
ing approaches to model design, execution, and
validation (see References & Credits, page 180).
‘The comments were incorporated to expand on the
coverage, internal consistency, utility, and usability
of the framework.

“The resulting modeling framework aims to make
it easy to specify, design, run, validate, and visualize
the results of different types of models. It aims to
empower decision-makers to simulate, understand,
communicate, and manage education, science,
technology, and policy (ESTP).

More than 300 model applications are presented
throughout this Addas—with a focus on those that
were applied in practice and that made a posi-
tive difference. Additional examples can be found
in special journal issues: “Science of Science:
Conceptualizations and Models of Science” in
Journal of Informetrics (2009), “Modeling Science:
Studying the Structure and Dynamics of Science”
in Scientometrics (2011), and *Simulating the
Processes of Science, Technology, and Innovation”
in Scintometics 2016 the Springer ook Mol

As noted above in Prior Work, model validation

Retinal

Granularity

Es W &

=

DVL-FW and the ModelDVL-FW. Given the
interdisciplinary nature of most data analysis

Graphlc Syr_nbol TYP°5 . is critical for any modeling effort (see also the itera-
Geometric Symbols Linguistic Pictoral tive model refinement figure in Which Model, page
= e Symbols Symbols 4). During validation, empirical real-world data is
—r= - T compared to analyses and visualizations of modeling
g 2 : vle 4/4 y] v{ results. Comparable visualizations of empirical and
&3 = - simulated data make it possible for domain experts,
1=+ . - leli ind model i
" Size .« o @ | | Tot Text Text | © (computer scientists and programmers) to comment
H nd suggest model i which
g: f:= ﬁpe e 4 m Pl ovext Tet ree | GO in turn may lead to  better match of simulated and
B empirical data (see Model Validation, page 22).
o Value coeeoee|| ||| ]]| rer Tex e O 1 Typically, iterative model refinement is required
5 T to arrive at more accurate, easier-to-understand
E § e eoecoo | ||| ]| et e ven |Bative) frdeads models that capture important patterns,trends, and
= T T T T phenomena in real-world systems.
E Saturation |« e e wee|| ||| |] Text Tet | 3» 3= 3> Data visualization s central to both the
e
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and modeling efforts, it is of utmost importance
to communicate model structure, dynamics, and
results effectively across disciplinary as well as
institutional boundaries—within academis, indus-
try, and government policymaking. The DVL-FW
‘generally provides a principled way to map data
variables to graphic symbols and their graphic vari-
ables. Visualization design stats with theselction

of Science Dynamics (2012); and in “Modell
Visualizing Science and Technology Dmhpnmnu'
published in Proceedings of the National Academies of
Sciencesof the United States of America (2018).
This spread nsoduces the modelin famenor
der of Part 2 details that

B ds on the seven types
defined b) the DVL-FW typology (see numbers
17 in the figure on the opposite page) by adding
Phenomena to Insight Needs under Typology (ss sug-
ested by Grimm and coleagues) and eplacing

applies it to introduce expert-based, descriptive, and
computational predictive modeling clases, which have
ESTP research and

Modeling Framework
Analogous to the data visualization lteracy frame-
work (DVL-FW) presented in Adas of Knovledge
(pages 22-73) and in the associated “Data
Visualization Literacy: Definitions, Conceptual
Framesvorks, Exercises, and Assessments” paper,
the modeling DVL frameswork (Model DVL-FW)
defines 3 typology of key terminology, together

h Madels, which are
specifclly descipive and predictiv subtypes.
Conceptully henomena types are specil-

ype (e.g. 2 graph or map). Types
d variables are then

get sy
the process shown on the opposite page, Model now
appears instead of Analyze (formerly shown), thus
matching Models under Typology, while Validate
joins Interpret as one step.

selected (sce types 4-6 in the figure on the opposite
page, and types 5 and 6 in the table at left). Graphic
symbols include geometric symbols (e.g., point,
line, area, surface, and volume) and also linguis-

In practice, most i ises start
with stakeholder-generated scenarios, or user
stories, that characerizereal-workd evidence.

ized insight need; in addi

The inions, views, and
tions, clusters, o soting, stakeholders mlgh( be expectations by o or more stakehlder groups.
areal-

interested to identify

patterns, or to understand the inner workings of

how networks grow and information diffuses.
Models now include descriptive subtypes to.

analyze data (using temporal, geospatial, topi-

ol and network spprosches obelpsnever when,

world target system; they may even contradict
each other, providing excellent prompts for rich
and meaningful discussions. Scenario develop-
ment is benefited by the presentation of real-world
data and results from prior data analyses and

5
design. As the name suggests, ModelDVL-FW
extends the original DVL-FW to cover descrip-
tive and predictive models that aim to capture and
reproduce emergent phenomena introduced in the
previous spread (pages 14-15).

Typology

“The Model DVL-FW uses visualizations to help
design, optimize, and communicate the results of

whm, whit, fq
seulte hcly help capt P Model
answer questi why i page 20).
have a certain structure and/or dynamics). ‘The Model process step covers the design, imple-
mentation, and run of a descriptive or predictive
Process

‘The original DVL-FW process model supports
descriptive models (page 28) that analyze past

and present data to identify patterns, outliers, and
trends. In order to support the design, run, visual-

model. Adlas of Knowledge (pages 44-71) covered
the design of temporal, geospatial, topical, and
netwark analyses and visualizations, The subsequent
spread (pages 18-19) discusses the design and run
of computational predictive models, and presents
furth

ization,
models, stakeholders must be empowered to iden-

discussed on pages 30-51)

ap
grouped into spatial and retinal variables, with the
latter further subdivided into form, color, texture,
optics, and motion. Some graphic varisbles are
qualitative (e.g. shape, color hue, and pattern) and
are used to represent qualitative data (e.g., educa-
tion, training, and job type). Others are quantitative
(e.g. size, color value or saturation, or speed) and
are commonly used to represent quantitative data
(e.g. weight, temperature, and diffusion patterns).
Adlas of Knowldge details visualization types (page
30), graphic symbol types (page 32), and graphic
variable types (page 34), with discussion of which
‘graphic variables are preattentively processed (ic.,
recognized quickly and independently of cultural
influences) and which graphic variables most accu-
rately convey comparisons of data variables.

‘The subsequent pages introduce model design
and usage, and also model visualization and
validation, as guided by the typology and process
defined in the Model DVL-FW.

Part 2: Methods | 17

32



Model Visualization

Model assumptions, designs, and results should together be communicated in a
format that is appropriate for a wide range of modeling stakeholders and experts.
Visualizations can help domain, modeling, and programming experts to collaborate
closely in the conceptualization and design of models. With those visualizations of
model setup and run, the impact of different parameter values on model results—
including emergent phenomena—can be visually explored. Further visualizations may
help stakeholders compare and interpret model results, and then communicate them
to experts or general audiences. Visualizations can be static, dynamic, or interactive.

The height of sophistication is simplicity.
Clare Boothe Luce

Visualization Types Iceberg Model
he design o efcty a “The icebx

jecting for detailing what d
the appropriate data, analysi, model class, and systems. As the igure below shows, the model
visualization types accurate ins four parts: Events, Trends & Pasterns,
‘mapping of ractare, and. Like an ceberg tip

well as variables to xnn:ncnvlly dmgn. Fbenchicil
(see the visualization and modeling frameworks
presented in Adas of Knewoledge, Part2, and
expanded here in Modeling Framework, page 16).
As discussed in Model Design and Run (page 18),
> : Pl

above the water, Evens are visible; like the under-

water base of that iceberg, the other three parts are

invisible and thus harder to capture.
Evenssindicate what has happened or what

was observed. Trends & Patterns refer to what is

variables as well as model structures and dylumics

decision-makers with deep domain knowledge, 25
deli Jgorithm developers, and time.
interface designers. Itis of utmost importance that r.he lemens that support, e, infence
1 H i Land ich kad to

‘model goals, structure, and dynamics.
Visulizationscan play  mafor ol In
1d

:y:mm dynamics; with 2 focus on physical entities,
organizational structures, existing policies, or
rituals and their i they aim to answer

simultion esults, o model comparison sl

“What causes the Py observing in the
1 data?” Final

“They make it possible to keep

capture the atitudes, bduﬁ morals, expectations,
a

arge set of model components and state variables, in

and to compare multiple model runs or model
types. Simple, easy-to-read visualizations are best.
“This spread presents general visulization types
and examples that have been successfully used to
support model conceptualization, design, and run;

and values

Visible

featured on pages 32-97.

Model Conceptualization

“The ODD Protocol, introduced on page 16, argues
that model conceptualization must define all the
relevant model entites,state variables, and scales.
Different types of visualizations can be used to
support that task.
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Anticipate
Mental Models Regenerate

‘The iceberg model allows for events, patterns,
and structures to be identified, and for changes in
‘mental models (e.g., power/incentive structures) to
be productively discussed.

Connected Circles

“This method helps identify and interlink the major
components of a target system using either paper or
di

means. The paper example above shows how
major components, written on small pieces of paper,
may be placed around the outside of  large circle
according to their similarity. System components
can then be interlinked via lines to uncover
structural and dynamic relationships. Particularly
important parts can be highlighted or underlined.
Lines of different colors can be used to represent
different types of component relationships.

Model Design Visualizations
‘The structure and dynamics of models can be
characterized using conceptual models (causal
loop diagrams), mathematical formulas, computer
models (e.g, preudocode or computer langusges),
or physical models (see examples in Which Model,
page 4). Scripting langusges such 15 NetLogo,
Repast, or Stellar help facilitate model design,
fun, and verification by nonprogrammers, because
their code syntax more closely resembles natural
language than other programming languages. Here,
we introduce different visualizations that support
model design.

Behavior-Over-Time Graphs

Typically called BOTGs, these areline graphs that

communicate paterns of change over time, such as
the seasonality of a variable or the delays between
S

‘The x-axis of a BOTG represents units of time;
there are well-defined start and end points, and a
resolution (seconds, minutes, hours, days, years,
etc) that is relevant for capturing system dynamics.
The y-axis represents one or more variables of
interest; it is labeled with that variable's name,
has a well-defined scale that can be numeric (e.g.,
income or funds spent per year on a scale of $0 to
$1 million) or descriptive (e.g, low vs. high), and
includes 2 legend so that different variables can be
easily distinguished.

BOTGs might be used to understand if all
domain and/or modeling experts plot variable
change over time in the same way: Did they
all use the same general curve or shape (linear,
exponential, S-shape)? How do the slopes compare
(with steeper lines indicating faster growth or
decay, and fla lines indicating no change)? Do they
start or end at around the same time, and are there
major differences in y values at those points?

1 multiple variables are graphed, are they
interdependent, or are there causal relationships
between them (e.g., educational investment
eventually leads to higher income)? The interrelated
behavior of variables over time can be visualized
using causal loop diagrams (CLDs), as described
below. System lags (e.g., the average time it takes
from the completion of an educational degree
toa salary increase) can then be visualized and
discussed. Feedback cycles (e.g., more funding leads
to more publications and citations, increasing the
chances to win future funding) can be captured
and visualized using state-transition graphs (see the
opposite page).

BOTGs can also help identify the type of
data that is most valusble for model design and
evaluation. Given a collective understanding of
why certain data is critical for modeling a target
system, resources might become available to acquire
such data for the most critical variables, rather than
using only data that s readily available.

Causal Loop Diagrams
In serial systems, each variable continually impacts

Model (page 7) and the graph below.

Cost Pressure

Product, Cose

Product Quality

the next. In other systems, there
cycles, which may involve numerous variables—
causal loop diagrams (CLDs) can be used to repre-
sent those systems. Variables might have positive (+)
or negative (-) impacts on each other: positive feed-
back occurs when an increase in variable A increases
variable B negative feedback, in contrast, is an
increase in variable A decreasing variable B. There
are also balancing feedback loops wherein positive

and

Time

In addition, there can be external variables, or con-
straints, that impact overall system behavior. For

instance, in the process capability model below,
cost pressure positively impacts product cost, which
negatively impacts product quality (the two verti-
cal parallel lines denoting a delay), which positively
impacts product cost. The dynamic behavior of this
model can be plotted over time usinga BOTG, as
shown on the opposite page.

Process
Capability

—~
Cost Prod:
Presne R1 B1 Guaty

X L

Another example of a CLD) s given in Limits
t0 Growth Model (page 7).

Block Diagrams
Block diagrams are widely use

to describe systems at a general level (e.g, to
identify principal parts or functions and their
i 3 G %

interest and the weekly deposits i the ditional operation th ines which of
account balance, and the weekly withdrawals two paths 2 program will take; 2 parallelogram to
. The wellas in
he dep b b " :
time. In addition, the account balance s graphed
over time within the central block. Do While Loop While Loop

Interest Race

Weekly
‘Withdrawls

Weekly Deposits

Another example using STELLA is given for
predator-prey models on page 31

State-Transition Graphs

phic
rectangles that present mathematical or logical
operations, with arrows showing the relationships
between blocks. Each block has a single input,
output and transfer function; the output is the
product of the input and transfer functions.

Also known as a state di

Flowcharts differ from STGs in that they
transition between nodes automatically upon
completion of activities, while STGs require

‘graph (STG) can be used to visualize the dynamics
of systems with discrete and fnite states. The graph
is designed by first enumerating all the possible
states and state transitions of the system. Next,

by nodes in a network, and

A take-off point passes a sig

more blacks or summing points. E:
point has two or more inputs and a single output;
it produces the algebraic sum of the positive or
negative inputs.

‘Shown below is a block diagram with two blocks
Iabeled G(;) and H{(), one take-off point (in red),
and one summing point (in gold). The transfer
function G(¢) reads Z(9) and outputs Z()G(e). In
this closed-loop control system, the output is fed
back to the input to control the desired output (see

the discussi The 36).

by directed edges. Edges are
Iabeled by the input of the next state. The initial or

“The supply agonal black *S” line)is
denoted as §=5(4-1); the demand function (diago-
nal red *D" denoted as D =D(P). Market
equilibrium is reached when supply equals demand:
5D, 'The convergent mode (left graph) starts with
(@) low prices and low supply, which causes (b)
prices to ris lyis

fall 2s more is sold, there s (¢) lower supply and
therefore (£) higher prices; when prices and supply
finally sabilize, (g) equilibrium s reached.

n ¢
n
3
8
& o
0
o aw o @ o 0w 0@
Quantity Quantity
State Space Graphs

A system’s abstract state space, or phase space, can

hin Euclidean space, with the
h

and geosptial o opical maps—including 2D and
edi

L3 tion s to transit be used to depict that system'sstate over time; 2
node to the next. sequence of states can then be animated to reveal
Model Run Visuali systm dynamics. A sate space s commonly repe-
Model results can be ps ia tables, graphs, el

b sl st st

3D maps, which are
design (see the lower right figure on page 171) or

startstate of the system i

“The final or

? pet
the vertical axis plots control output. There are
two states: On when the temperature falls below 1

by an arowe with 0 origin poumngmlh: sate. diseases (see 2, page 15, the
evolution ial life (page 41), and neural net-
circle. Not al systems b d end states. work activati II: A New Challenge for

“The example below shows a system with two
states and an acceptor for strings over {01). , s the
startstate, asindicated by

Reinforcement Learning, page 51). Model results
can also be communicated using trees, such a5 to

165,180, the eptem raitons o 5, The ystem

ontrol
Summing P “Take-Off Poine
X 2066 v,
Stock-and-Flow Diagrams

‘While CLDs enable a system to be qualitatively
nmmd. stock-and-flow ditgrams can be used

genealogies; or by networks, like those used to track

S, until
system to S,. There is no end state.

)

Visualizations might be static or dynamic/
animated; they can also be interactive—allowing
viewers, for instance, to speed up or slow down
time, or to zoom in and out of areas of interest
(see interactivity types in Modeling Framework,
page 16).

0 Simulation tools (e.g., NetLogo, Repast) support
changes in model parameters during model rus,
An STG for a ths which i to explore system behavior
discussed on page 34. and on-the-fly dynamics.

detailed . A stock
v any entity that accumulates or depletes
over time; a flow is the rate of change in that stock.
Stock-and-flow disgrams are usually built and
simulated using compute software The igure
below uses the STELLA vi

A flowchart is a graph that uses graphic symbols to
define different logic steps in 4 process (¢.g, the
loops shown in the subsequent two figures). Symbols
inchude  rounded rctangle o idicatethe stat or

iguage ics: The

end of

Exemplarily, we discuss cobweb and state space
graphs here.

Offwhen the temperature is too high.
Hysteresis occurs when the temperature is between
68 and 70 degrees Fahrenbeit; thus, the state
change threshold for Offis lower than it s for Or.

Hysteresis
_| om
4
H
9
H
g Off
3

— >

8F
Temperature

In the ball on a spring (oscillation) example on
page 14, the state space can be characterized by
the postion and the momenturm of the ball In the
Lotka-Volterra differential equations discussed on
page 31, the state space plots the state of the system
25 2 vector within the space that is defined by the

of
2
 state variabl. For example,the sbsequent figure

operati data; a diamond for any

Tef and rght,respectvey).

State space can be either discrete or continuous
in terms of time and space (see page 13).
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Model Validation

Models should aim to capture the behavior of real-world systems in a simple yet
useful manner that can be validated across scales. At the micro level, the type and
behavior of individual components (e.g:, agents for agent-based models or nodes for
network models) need to match up with their real-world counterparts. At the macro
level, the aggregate, emergent properties of the model (e.g., oscillation or adaptation)
‘must reflect the phenomena observed in the real world. Models must be evaluated
based on the accuracy and generality of their predictions. Evaluation results should
be used to increase the accuracy, specificity, or generality of the model, or to make
model results easier to understand and use by decision-makers.

The more any quantitative social indicator is used for social decision-making, the more
subject it will be to corruption pressures and the more apt it will be to distort and
corrupt the social processes it is intended to monitor.

Donald T. Campbell

‘The image below illustrates combinations of low
and high precision and accuracy using 3 bullseye
graph. While there are no bullseye hits in the lower
left corner of low precision and accuracy, there are
‘many hitsin the top right corner of high precision
and accuracy.

)

Increasing Accuracy
.
.
4 qb'
i

QA at Different Model Stages
As discussed in Model Design and Run (page 18),
there are various model stages, with appropriate
types o validation for each. Here, we discuss QA
for allfour model stages: conceptualization, design,
build, and test and deliver. Detailed guidance

for the later three, as identified in the Review of
Quality Asuranceof Government Analyeical Models,
is listed i the text bax on the opposite page.

Conceptualization

“The most efficient and robust methods should be
used to support target system selection, delinea-
tion, abstraction, and documentation of the non-
formal model—and that nonformal model should
be documented such that domain experts, model-
ing experts, and computer-scientist programmers
can understand, question, and advance the model
Consequently, model visualizations (page 20) are
often used to facilitate and validate the ideation,

Increasing Precision

Qllllty ASS“HI'ICC Framework on model rcsu.lls. can be quantified and communi-
NER 2 Similarly, it is
i e Mm_r_mmmf_’" important to analyze, viualize, and communicate “The large gray arrow indicates decreasing random

ing requirements; (2) model errors are understood
can be managed; and (3) the model is obust and.
it for purpose. The Revieww of Qualiey Assuranceof
Government Analytical Models report, commissioned
by the UK. Department for Transport, identi-
fied major types of QA methods and graphed them
in terms of business risks versus model complexity
(see the figure below right). QA techniques used by
industry, government, academic, and other leading
entities range from relatively simpl version control
(in the lower left corner) to full external model audit
(in the top right corner); in between are dev
testing, periodic review, internal o external peer
review, and other techniques, which vary according
to model complexity and business risk.

Model Simplicity

Occam's razor principle states that “Entities should
not be multiplied beyond necessity:” As applied to
modeling, that means if there are two models with
equal predictive power, the simpler one should be
chosen. That s, if any components, variables, param-
eters, rules, o assumptions can be climinated from
the model without losing the model’s explanatory
power, they should be omitted.

Model Robustness

‘The robustness of a model s determined by measur-
ing change in model predictions given minor varia-
tions in input data andor parameter settings. ldeally,
variations and uncertainty in data, and their impact

22 | Part 2: Methods

amodel s t parti
tovard that end, parameter swoeps mlghrbr nnto

and diagonal. Random
error (at the top left corner) decreases with more-
accurate dat: ‘models

bstract translation process.

Design

When designing the formal model, modeling
experts should keep future model stages in mind
sothat .mpkmzmmm deployment, and testing

y ive, and
t© which input and parameter changes.

Model Precision and Accuracy
Accuracy refes t the closeness of 3 measured value
o2 standard or known (true) value. Precision refers
o the closeness of two or more measurements to
each other. Typicaly, the more that measurements
are made, the better the precision and the smaller
the error.

Systematic error, or bias (at the lower right corner),
makes all values wrong by a certain amount, which
can e due to many factors e, wrong mode]

canby L Internal or external
i gt st coice QN s
model structure, logic, and assumptions—as well as
assessments of the quality, accuracy, completeness,

assumptions, imperfect d subop-

timal model parameters)leading to invalid results.

Model validation aims to identify and reduce both
ive at higher model precision

d output data

Build

‘The formal model is then implemented by com-

puter-scientist programmers. Any differences from

the original design should be documented and com-

musicated 0 model designesand domain expers.
leted model should be

Building on the simple QA B
Higher methods outlined below, == -
Hioinsas ok mmplex models affecting Intomal Modol Aut >
\n addlllen justify resource Edomel Pess o =9
intensive QA — SR
tomal Poor ™
2
" Periodic
s
s For simple models with low
Lower ¢ levelsof risk, minimal QAis
business risk proportionate 2
Relatively Highly complex
simple models models

verified, and test results should be shared to ensure
the model s fit for purpose.

Test and Deliver

Computer-scientist programmers will test-run the
model and fully document results. In collaboration
with modeling experts, they will develop any needed
training materials, and finally test both (documen-
tation and training) with domain experts to ensure
model assumptions and limitations are understood.

All Model Stages

During the model development process, all model
documentation must match model complexity and
risks. For instance, simple models with low busi-
ness risks will require far less documentation than
‘complex models with high business risks; the latter
might require extensive formal documentation and

capturing well-defined target system behavior; and
i detailed

training , and Itis commonly ajoi
continnions revien to ensure proper usage. teams; data and code-

be putin place to ensure all teams have access to the
Model Validation same resurcs Th teamsages o the carge -

Model validation is the process of determining.
whether an implemented model is a reasonable rep-
resentation of some phenomenon in the real world;

tem and

‘model that

future event or condition can be changed by policy,
and policy consequences can be forecasted. (3)
Pz 2

increases ity. Sometimes, model results
differ substantially, making it necessary to question
mod

ing emergent phenomena to be modeled. The teams
‘might then pick the same or different model classes
s

suffcient
idelity to satisy stakeholder needs; and that model
results are precise and accurate. It aims to ensure
the model has been correctly implemented and is
sufficiently general to capture new iymm states
I

ed ings. An agreed-upon
common set of intermediate and final model results

and to empirical data (e.g., changes in

tions and inspiring future research.

Model Limitations
Every model is a simplification of  real-world tar-

be made; we can be more certain about the sunrise
than sbout the rise of the stock market. (4) Humans
will have more influence on the future than they
did in the past. (5) No single method should

be trusted by itsel;cross-referencing methods.

get system that captures key
behavior; a perfect facsimile would be of limited

values over time).
C

aspe-
1 ecofvealoword dss o dbowsaioos st e
cost of generalizabiliy).

Model Verification

Model verification aims to make sure a model docs
whatit i intended to do. Target system abstrac-
tion, formal model design, and model code (see
page 18) all need to be verified. The former two
verifications benefit from expert reviews. Model

the
eredibility of modeling results, 2 it helps identify
‘model errors and biases; commaunicates advantages
and disadvantages of different model classes for

Model Design QA

value for Aliterature
review by Mohamed Saleh and colleagues in A
Survey on Futures Studies Methods” identified
alist of typical model limitations, including: *(1)
You cannot know the future, but a range of pos-
sible futures can be known. (2) The likelihood of a

Model Build QA

foresight. (6) Anticipation
must be dynamic and able to respond to new infor-
mation and insights.” Model designers and users are
strongly encouraged to document all known model
limitations and all validation results to ensure their
models and model results are used intelligently
and optimally.

Model Test and Deliver QA

reloper testing loper

or sense check.

are captured.

historical datasets.

code verification uses tech
to develop, debug, or maintain large computer
programs. Examples are proper code version con-
trol; regular code reviews; logging code runs (e,
recording and analyzing the number of compo-
nents/agents that are generated and terminated
during  model run, their local behavior, and any
emergent behavior); and k rds of user

changed since the assumptions were originally set.

ing: nge

interactions (e.g., input data or parameter changes,
and accessing analysis results or visualizations) in
support of model and user interface optimization.

Model Replication

nges of key

different versions of a model.

Intermal model audit—formal audit of a model
within the organisation, perhaps invoiing use of

Replication ‘model
published by one expert team is eproduced by
another, independent expert team. To make that
possible, model design and run should be docu-
mented at a level of detail that supports rede-

ind

development refers to department’s guidancs or
other documented QA processes (e.g., third-party
publications).

sign,
adoption of model d

as possible.

‘verification testing results to ensure resuits are

Reviewing outputs—checking that outputs are

part of the development team.
External code review—peer-review of mods!
logic, assumptions and coding to ensure the model

taken, i itations, alterna-
tive scenarios, etc.
Transparency—publication of the model itself,

or the test schedule and results, may provide

tion standards (see the discussion on page 19> mlh uation of appropri
writing and reading model de i ﬁp&mmﬁu‘mw?&mmw
dirsctb 2 % designand/. review of the full system.
< or sign-of - :
Model Comparison st SEaay
Modeling efforts conducted by different teams often PR tent with the model design specification. This il Organisation. This would need to be supported by

yield disparate results that are difficult or impos-
ible to reconcile. Common reasons are insufficient
documentation, proprietary data that cannot be

for scrutiny, andor results are published.

Extemal audit—a comprehensive formal model

Parallel builds—for compls

shared across teams, or diffe i sctly how
1 model is implemented and run. Comparative

between two or more models in 4 systematic way.

‘might be a better altemative if model i regularly
updated and usage and “lower level” checks such
asintemal peer review are aiready in piace.
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Cellular Automata (1940s)

Cellular automata (CAs) are mathematical models that can be used to simulate
complex systems or processes. CAs are applied in several fields—including
biology, physics, and chemistry—to analyze phenomena such as artificial life,
plant growth, or embryogenesis. CAs consists of elements called cells. Each cell
has a value, or state. Cells are connected to certain neighboring cells to form a
one- or multidimensional lattice. Cell states change at discrete time steps using
a set of predefined rules that take the previous states of connected neighboring

cells into account.

Brief History

Cellular automata were developed by Johin von
Neumann and Stanislaw Ulam in the 1940s.

They were initially used to implement self-repro-
ducing machines, such as Rule 90 (discussed in
Basic Models below) or Convway's Game of Life
(explained on the opposite page). Later, cellular
automata became a populir modeling framework
for simalating emergent behaviors and for describ-
ing nonlinear spatotemporal dynamics in a simple
yet concise manner. Comprehensive studies of
cellular astomta have been performed by Stephen
Wolfram, s documented in his book A New Kind
o Science (2002).

Terminology

Cellular sutomata simulate  dynamical system
using a deterministic rule set, discrete time, and
 discrte sate space. The rule set s implemented
using inite-state machines. The set of identical
fiite-state machines is arranged in  regular grid
structure that can be 1D, 2D, or multidimen-

sional. Most 2D cellular automata use a square
grid (see Conway's Game of Life on the opposite
page), but other rids are also possible (see the
triangular, square, and hexagonal grid patterns
in the figure below)

A
£ \/\‘ 4/_§—<y\>
VAVAVAN —
RV X { 8_3 <
Y 1 (O
V, -
Triangular Square Hexagonal

‘The number of distinct sttes (often represented
by colors) that 2 cellular automaton may assume is
typically an integer. The simplest choice is binary (0,
1), with 0 (dead) commonly represented by a white
color, and 1 (alive) denoted by black. A continuous
range of possible state values is possible.
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In each discrete time step, cell states are updated
dynamically as a function of the old state of each
cell and finitely many of its neighbors. The rule is
the same for each cell, but the result of applying a
rule depends on the spatial context of a cell

The neighborhood in which cells affect one
another must be specified. The simplest choice is
nearest neighbors, whercby only those cells directly
adjacent to 2 given cell are affected at each time
step. In the case of 2 2D cellular automaton on
2 square grid, two neighborhood definitions are
common: the Moore square-shaped neighborhood
and the von Neumann diamond-shaped neighbor-
hood (see the figure below).

* = E

Von Neumann Moore

=1

The range r defines how many cells are consid-
ered to compute the next state for a cell the
central black cell in each image above). A larger
number of neighbors is less eficient to compute,
but often leads to better isotropy, or uniformity
in all orientations, and is therefore often used to
model natural phenomena

Basic Models

The simplest type of CA uses a 1D grid, binary
states, and only nearest neighbors. There are
20256 of these so-called elementary cellular
automata, and each can be indexed by 3 unique
binary number whose decimal representation is
called a rule.

An illustration of Rule 90 for a 1D CA is shown
in the subsequent figure. Given a single black cell in
the middle of th
of eight rules (shown above the grid in next column)

e top grid line, 1 deterministic set

is applied to generate the next state for each cell
In time step 1, only rules 4, 6, and 7 are applicable,

resulting in the pattern shown in the second line
‘The rules are applied iteratively for as many time
steps as desired (rules 3, 4, 6, 7, and 8 are applied in
line 2, resulting in the pattern shown in line 3)—
13 times overall in the exampl.

Rde) Rule2 Rled Ruled RudeS Rulet Rule7 Rules
-

Rule 232, known as the majority rule, creates a
different dynamic. When run on any finite set of
cells, it computes the value held by a majority of its
cells. For example, starting with a random distri-
bution of black/white cell patterns, in each time
step, cach cell takes one of the finite discrete states
and simultancously turns to a sate that is most
common within its local neighborhood, leading

t the formation of a patchy pattern. Over time,
the pattern coarsens until the boundaries bet
areas of different states (e.g, white/black) become
straight enough. Different patterns emerge if the
number of states and the radius of the neighbor-

een

hoods is changed.

The figure below shows the resul at steps 0, 2,
and 10 of the majority rule when applied to a 2D
state space of 100x 100 grid cells, with two differ-
ent states and a radius of 1, as generated using the
‘Wolfram Demonstrations Project.

Siep0

Key Insights

CAs are used extensively for modeling phenomena
such as molecular dynamics, hydrodynamics, physi-
cal properties of materials, reaction-ciffusion chem-
ical processes, growth and morphogenesis of living
organisms, ecological interaction and evolution of
populations, propagation of traffic jams, and social
and economic dynamics. They provide a valuable
framework for modeling percolation phenomena

and the concept of self-organized criticality (SOC),
among other phenomena.

Percolation

Percolation is studied by physicists and mathemati-
cians as 2 model for the flow of a substance, like oil
or water, through certain types of porous media,
like sand (see Modeling Goals, page 14).

Simon Broadbent and John Hammersley

introduced a percolation model using the example of
a poraus stone immersed in a bucket of water. Their
model helps answer: What s the probability that
the center o the stone becomes wet?

The figure below shows an example of site perco-
lation clusters on a square 20 x 20 grid-cel lattice
for p=0.29, p=0.59, and p=0.8. If the probability p is

Tow that a cellis blackAwet, only a few small clusters
are formed; ifp is high, large interconnected chus-
ters are formed spanning the whole lattice. There
exists a critical intermediate p, or 2, in which 2
phase transition occurs

Percolation models have also been used to help
understand the impact of network structure on the

Conway’s Game of Life
In the late 19605, the British mathematician John H. Conway invented the
Game of Lif, which was later popularized in Martin Gardner's “Mathematical

Recreations™ colum in Scientifc American. The game uses a 2D grid of squares
on a (possibly infinite) plane. Each square can be alive (black) or dead (white). A
Moore neighborhood of range r=1 is used, whereby each cell has 8 alive or dead
neighbors adjacent orthogonally or diagonally.

“The rules are simple: Ifa live (black) cell has fewer than two live neighbors,
it dies (referred to as loneliness). I a live cell has more than three live neighbors,

it dies (of overcrowding). If a live cell has either two or three live neighbors, it
goes on living (with happiness). If a dead cell has exactly three live neighbors, it
comes alive (called reproduction).

The game proceeds in generations—one generation per time step . In the
initial generation at /=1, a finite number of cells are alive. In each successive
generation, cells come alive and die according to the rules—which can be
executed manually using pencil and paper, or run using a computer and
digital display.

Shown at right are 11 time steps; starting with the initial top pattern, the
rules are applied in each time step, resulting in 2 sequence of patterns that scem
alive or animated

Eric Weisstein compiled an extensive tabalation of life forms and terms,
several of which are provided below—sorted by the number oflive cells, from
three in the top row 1o seven in the bottom row. The Blinker has only three live
cells that keep chang-
ing from horizontal

Blinker Weisstcin Tabulation 3
Life Forms to vertical in subse-
- quent time steps; it s
the smallest oscillator
Block Tub identified by Conway.
The Glider has five live
T cells that seem to move

diagonally on an empty
Boat. " Glider background after each

e B | series of four time

i steps. Interaction with
Snake  Ship  Carrier Bechive Barge

PR PR

other life forms might
result in ever more
diverse patterns.

Note that some life

Phenomena Model Classes Target System Models i
m::;::::‘ 5::;:&‘:::::.’.3 ::: Oscillation Expert-Based Models 26 Predator-Prey Model (1925) 3
:;:1': ﬂftiifﬁ:f:;'ﬁﬁfﬁi'f‘.‘, Synchronization Descriptive Models: Indexes and Laws 28 Tinbergen’s Gravity Model (1962) 3 )
e, ettt sl Tpping Point Predictive Models 30 Markov Chain Model (1913) 34
Siepd Phase Transition Dynamical Equations (1687) 32 Kermack—McKendrick Epidemic Model (1927) 38
Self-Organized Criticality (SOC) Probability Theory (1713) 34 Eden Growth Model (1961) 40
Percolation Control Theory (1868) 36 Schelling's Segregation Model (1971) 4
Adaptation & Learning Fpidemic Models (1927) 38 Prisoner’s Dilemma Model (19505) 3
Fractals Cellular Automata (1940s) 40 Braess's Paradox: Faster is Slower (1968) 43
Reaction Diffusion Dynamics Game Theory (1950) 2 The Keller-Segel Model (1970) 45
Network Growth Continuous Field Models (1952) 44 Erdds-Rényi Model (1959) 47
Network Gatek Network Models (1959) 46 Watts-Strogatz Model (1998) 47
Network Attack and Error Agent Based Models (1980s) 48 Barabési—Albert Model (1999) 47
Diffusion/Spreading Machine Learning Models (1990s) ~ 50 Economics of Wealth Distribution Model (1996) 49

Jmd

Schelling’s Segregation Model (1971)

In 1971, the economist Thomas C. Schelling showed that individual bias can lead to collective bias. His work
was informed by the fact that after the Civil Rights Act of 1964—even though housing discrimination was lle-
gal and racial prejudice was starting to decline—neighborhoods remained highly segregated. He hypothesized
that segregation does not need to be imposed (top-down) and does not refect preferences (bottom-up), but self-
organizes through dynamic interaction. In 2005, Schelling was a co-recipient of the Nobel Prize in Economic

Sciences for his work on conflict and cooperation through game-theoretic analysis.

Schelling's model shows that a small preference for one's neighbors to be of the same race can lead to a large
collective bias and to total segregation. That is, a city can tip into high segregation levels (see also Tipping Point,
page 14) even if individuals have only mild preferences for having neighbors of their own race. The model uses
22D CA approach with two states, and a radius of r=1. The rules of the game are simple: Agents are *happy”

and stay pr than a certain p ighbors are of the same race type. Agents are otherwise
“unhappy” and move to a random vacancy

An example is given at right for a 30% threshold
and a setup where empty cells are not counted when o
computing thresholds. Agent 4 has five blue neigh-
bors (out of a total of seven) and is happy. Agent Bhas
only one blue neighbor (out of six), is unhappy, and thus | ()
moves to a random vacancy

Shown below left is 3 model with an initially random setup for two types of households (red and blue, in
similar numbers) and empty lots (white). In each round, the happiness of all houschold agents is computed,
and each unhappy agent moves to a random empty lot.
Rounds continue until all agents are happy with their
location. Depending on the threshold, different patterns
emerge. With 2 15% threshold, 100% are happy after
only a few (often less than 10) rounds. Given a 30%
threshold, several more rounds are needed before every-

scancy

Random

one is happy and a patchy pattern emerges. With a 75%
threshold, it takes many more rounds, often hundreds,
0 arrive at 2 highly segregated solution where everyone
is happy.

Vi Hart and Nicky Case designed an interactive

version of Schelling’s model that lets users set double
thresholds, and ratios for two populations and empty

Thiohold Threshold Throhokd
space,see below screenshor. Users can ply to under-
stand how harmless choices can make # harmfl world. They also learn that in a world where bias ever existed,
being unbiased is not enough to arrive at less segregation—the past haunts the present. The model shows how
characteristics that are fixed and unchanging (e.g. race or ethnicity) can become highly correlated with other

characteristics that are mutable (e.g., education or income).
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Model Questions Overview

Given the constraints discussed in the previous six spreads, how can rich data
and validated models be used to provide actionable insights for different deci-
sion-makers? The remainder of Part 3 presents an overview of key questions,
four ESTP domains (education, science, technology, and policy), and three scales
(micro, meso, macro); examples are then given for all 12 domain-scale combi-
nations. This A#las expands on Atlas of Knowledge—which introduced tempo-

ral, geospatial, topical, and network methods to answer when, where, what, and
with whom types of questions, respectively—by helping readers answer questions
regarding why or how. For instance, why is past system performance an indicator
for future performance, or how does knowledge about the evolution of a system
help us understand the future states of that system?

© Temporal Models—“When”

Ardas of Science and At of Knevwledge both focused
on descriptive models. Several studies and visu-
alizations featured there are able to predict future
developments; the remainder of Part 3 features
many more models and visualizations that 2im to
forecast the future.

For example, regression models can be used to
project current trends into the future (see Machine
Learning Models, page 50; and Adlas of Knowledge,
Statistical Studies, page 44).

Alan L. Porter and team employed a combina-

table that lists numbers for electric vehicles (EV)
and plug-in hybrid EVs (PHEVS). In 2009, that
41-year prediction of a fast-evolving market used
data by the International Energy Agency (IEA),
with 2 modei h that considered different

@ Geospatial Models—“Where”

Geospatial position and context are significant.
‘Some countries are landlocked, with no direct
access to marine travel routes. Others are islands,
‘making them difficult o even impossible to reach
during the winter season (see ORBIS, page 154).
Countries that are centrally located are more
likely to be natural hubs of activity. The same logic

formation diffusion and collaboration,
and thus influencing the dynamics and outcomes of
collaboration (see also Alan Curve, page 28).

Their model aims to capture (1) the physical
or functional distance among occupants of a built
environment; (2) the mechanisms of action, such as
;, prospecting, mobilization, and aware-

corporations,

ness; and ples, 2s shared equip-

terms of | are.

y to represent th
in which different agents operate (see Modeling

members, and the location of principal investiga-
labs.

Overview, page 12).
and possibly nested spatial environments (c.g.,
counties, states, countries, continents, the world).
Part 2 discussed models that can represent
discrete space, such as grids or lttices, (see Cellular
Automata, page 40; and Network Models, page
46). Tt also covered models i

tors’ Iabs.

‘The model also captures the state spaces of
collaboration in terms of (3) scientific concepts
shared, (b) social links, (c) institutional units and
disciplines, (d) organizational communication and
hierarchies, () physical proximity, and (f) virtual

space and can be used to predict human migration
or the diffusion of information (see Continuous-
Field Models, page 44); Spatially explicit models
are also used in traffic optimization (see Braess's

Faster Is Slower, page 43).

market segments and technology solutions. As of
2019, EVs had a 2.8% car market share, according
to McKinsey's proprietary Electric Vehicle Index
(EVI). In 30 years’ time, it will be interesting to
compare the 2050 predictions with the figures of
actual sales.

access via comp
‘The model was validated using empirical data
from 172 faculty and research staff members in
three buildings on the University of Michigan
campus. Study results show the dramatic impact of
co-location on the increased likelihood of forming.

Owen-Smith and colleagues g
one step further in that they not only study the
impact of existing space on system dynamics, but

g : For
‘example, researchers who occupy the same build-
ing are 33% more likely to form new collaborations

upy

b s
behavior. Specifically, the team aims to predict the

ind upy are ST%
more likely to form new collaborations than those

walking

tion of expert opinion modeling (see Expert-Based “Temporal studies of Tiwitter data and other real- collaboration patterns that are likely i3 ‘who occupy
Models, page 26) and technology mining to fore- time data were di in Adas of (ags different building layouts. The work is predicated Interestingly, the linear distance between offices
sales from oug] h i di i
dinati Ak

2050. The graph ws
ite world sales for different vehicle types, with a

i canba uead a

system evolution or information di
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productivity; passive contacts increase as individu-
als share more required paths through their space,

paths; see the figure below of a loor plan and the
overtap of two persons’ pathways from their offces
to research lab spaces.

Person 2 pachs pass by Person s door:
Person 15 paths do NOT pass by Person 2 doar.

Person 2’ Area
27 Areal Overlap === Path Overlap & Closest Elevator

Person 15 Area —— Person 1's Path O Office

Person 2’s Path - O Research Lab

and Rescroom

@ Topical Models—“What”

Individuals with the same interests are more likely
o interact. Students and teachers who take or teach
the same classes are more likely to talk. Researchers
in the same discipline are more likely to collzbo-
ate. In general, the academic or professional world

be modeled as agent/node metadata and/or behav-
ior; it can also be represented by topical maps, such
h in i

@ Network Models—“With Whom”

Network topology and it riby

(e:g, the number of node neighbors) have a major

as the map Y
Collaborations Lead to Higher Scientific Impact,
page93.

As described on page 54, Shahar Ronen and
e

is organized into clusters of people, courses, jobs,
y J ding P
cal similarity.

Different ESTP topic areas have different
dynamics. For example, scholarly domains that
‘publish results via e-prints are much faster in
communicating results than those that mostly
utilize books; interdisciplinary scholarly publi-
cations have a broader impact than those within
‘one domain (see Interdisciplinary Collaborations
Lead to Higher Scientific Impact, page 93).
Similarly, different industry sectors are differently
impacted by stock-market developments and also
by technology innovation, such as Al (see Macro:
Technology, page 94).

Global pandemics like COVID-19 have particu-
lar implications for different demographics, indus-
try sectors, and associated unemployment rates (see
Meso: Policy, page 88). Many types of literacy are
taught, all variously impacting workers' skills port-
folios (see Micro: Education, page 74).

Models should aim o take the topical traits
of literacy types, scientific domains, and industry
sectors into account in order to better capture real-
world system behavior. Topical information might

three global
(GLN) using book translations, multiple language
editions of Wikipedia, and Twitter to under-
stand the influence of various it

P well as on network.
growth (see Network Models, page 46).
Many network studies have been run and visu-

in Scientific C; 77; and Best Author
Combinations for Innovation, page §5).
Networks change over time. The figure below
by Yaneer Bar-Yam shows the rising complexity
in network topologies, sizes, and interconnectiv-

social, collaboration, citation, and trade networks.
Results reveal the strong impact of such factors
a5 mentorship and co-authorship networks on

ity patt 5
communities t the global networked civilization.
As time progresses, specialization and diversity
increase, yet network efficiency is maintained via

ing
systems on the visibility and possible impact of its
speakers. Network layouts of the Wikipedia and
Tiwitter GLNs are given below. The nodes repre-
sent different languages and are each labeled with
the appropriate language name, color-coded per
langusge family, and size-coded per the number
of people that speak that language. The links
denote which languages are co-spoken, with link
weight indicating the number of co-oceurrences.
Inboth networks, English is a global hub, with a
handful of intermediate hub languages, including
Spanich, German, French, Russian, Portuguese,
and Chinese. Languages that are found in the
center of the network contribute to the visibility
of ts speakers and the global popularity of the
cultural content they produce. For example, schol-
arly papers written in English are more likely to be
read, cited, and recommended than papers written
in languages that appear in the outer periphery of
the networks.

Twitter

Language Family Population Link Weight and Color
Bronsa | coxoson | M9Cono @ ) it e E—
moe Penoespogre [ omer @ ren -
[l Ameioaion | ovovison J sotoeion @ oomion min S ey MO
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Domains Overview

Descriptive and predictive models can be applied to improve the understanding
and management of complex systems in many different domains. This spread
explores the four ESTP domains. Exemplary models in this spread and on
pages 74-97 were selected based on utility and impact as well as their capacity to
highlight the traits of the 12 different domain-scale combinations. For each of the
four domains, we discuss major stakeholder groups, key insight needs, and unique
challenges and opportunities. Although certain needs and challenges are domain-
dependent, all domains are affected by rapid S&T progress, such as in robotics and
Al and many questions require a cross-domain, multiscale approach to modeling.

® Education

Education refers to the process of acquiring
knowledge, kills, and values via formal classroom

instruction or informal learning in relevan setings.

Education s often fcilitated by teachers, parents,
or other trusted guides, and might be supported by
technology, such as computer hardware and soft-
ware used to deliver interactive exercises.
Educational attainment impacts al areas of

Major global educaton challenges were
o

® Science

y
of the structure and behavior of the world through
observation and experiment. As humankind contin-
s to impact nearly all aspects of the natural world,
it becomes ever more vital o study the effects of

social on
o sl Fraqeanh

infrastructure (including robots and AT) and human
behavior, making it necessary o study sociotechni-
cal systems (e.g. in fictories or cities).

‘Many scholars have attempted to develop
‘conceptual models of science, featuring basic

Gorermens: [ Jour
ottt i [ |
& NGOs Phllamhn)pm
‘1 Campus Actors and Actions CJ0ther Actors.

s and fo

symbolic capital. Arlasof Scence discussed Pierre
Bourdieus symbolic capital categories (o social,
economic, and cultural capital) as well as Bruno
Latour and Steve Woolgar's Cyele of Credibility,

which i i ion of different

m MI:m t0 Macro spreads on Education (pages
74,82, 2nd 90). In general, there is a disconnect
between the S&CT progress made thus fr, the

ight be
mmma into i\mﬁﬁ.\l rant applictions fund-

conferences are subsequently published by profes-
sional societies or commercial publishers, gaining
scholarly recognition and influence. Journalists
describe the results reported in papers to commu-
nicate scientific advances to larger audiences.
Importantly, research teams collaborate with busi-
ness, govemnment laboratories, and nongovernmen-
i 0), asindi thick

e faining accss o exuipment data, and

ight, and

the skl now eguird by instry: Tn e, ay

and theories, which can be writenupi paprs that

up education

life—from income to health and longevity. S(llmg cutting-edge nology ¢ further i page
1 o the lack in Adas of Sciencd).
for ensuring a just society. Given today's rapid S&T Larg Ben Shnei a conceptual

‘advances, innovation in education—along with the
devdupmem of and training in tools and human-

cations), technological advances (e.g, patents,

-nd phyml aillies—anus bs embraced o ensure

model of the research ecosystem, shown at top

“There are many different types of stakehold-
ers who care deeply about education. Among them
are students (and their parents), who must dentify

news, and other documents), course offerings, and right, which promotes team-based research moti-
job adverti dentify existi aed by ralworkd robers. The model s 0
both timely. del i
h isfy the industry solutions that are ready for
of today and tomorrow. w.d,s,,.nd dissemination—the so-called twin-
A key challenge now i At the center are research teams,

sudents and workers for advanced human-Al

comprised of fuculty and students, who are hired

double-headed arrow near the bottor; those insti-
tutions might hire students, increasing the diffusion
of knowledge and expertise into practice. Finally,
research teams are accordingly funded by govern-
ments, businesses, and philanthropies.

William B. Rouse developed Economics of
Research Universitie,the conceptual model shown
below, which aims to interlink inputs and outputs
via costs and faculty—tenured (TT) and nonten-
ured (NTT)—in order to clarify (1) the impact of
brand value on the quality of student applications
and enrollments, and (2) the importance of research
outputs in generating that brand value, which can
e comvertedint titon and oher evenn (ee

which degre(s) nd tect; teachers, who see Modeling O i iy el detals in Meso: Educati
need to keep educational materials up to date and (page 170) for the Living with Robots, Human-
select methods and d H Economics of Research Universities
technologies researchers interested discussions. William B. Rouse: o
ing and documenting how people learn, so that both shows the numerous stakeholders (top), work Toal Classes ,““Tm"hi“ .
teaching and learning can be optimized and person- . and i Facul * Research
i e i G 1 g far NTT Faufty « Admin
who aim to support effective course design and progress ofAL Inputs * Faculty Costs * Overhead
delivery that scales o billions of people worldwide. No. Schools
+No. Depis. Revenue
dowment «Tuition
Advanced Hq -Artificial Intelligence * Tuition * Research
o il T ook + Percent TT « Endowment + Cost Per Student
[ Researchers, Educators, Designers, Operators, Maintainers, Managers | * Ovethead « Brand value
+ Discount Rate
Rescarch, ¢.g., Design of Manufacturing & Research
Marerials Science, Products, Services, Production, ¢, Tuition « Proposals
Battery Chemists Education Supply Chains * Asticles
+ Enrollmen -G
[tnterner of Things, Cloud Computing, Al Data Science, Visualization |
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Brand Vielue

@ Technology

Technology can be defined as the application of
scientific knowledge for practical purposes (e g, in
industry or business for innovation). Technology
opportunities arise by the pressure of scientific
discovery (push) and the demands of societal needs
(pull). Technology delivery requires access to
resources (e, capital, skills, materials, and soft-
ware) but also the effective management of relation-

8

All Goods

3

Al Services
(intangibles)

®
1

__—Manufacruring

W0 0 0 90 %0 200

Share of Employment (Perceat)
s
i

® Policy

Policymaking—or the process of formulating

licies in education, health, politics, o other
domains—might variously involve the need to
optimize resource distribation, improve safety,
ensure competitive advantage, reduce inequality,
or increase societal benefits.

‘While industry has embraced the power of
computatonal predicive model, poliymakers

Evaluaiing,
Ranking Foreasting  Goal Serting

External Internal

(Environmental (Long Rang
Seanning) Plowing)

Scanning Monitoring  Implementing

Swategic Planning Process

ficial); to deal with encrusted regulation (i.e., when
: i 7

ships with competi- ) have been slower to adopt y
tors, and other sakeholders. ﬁ,r inangie serices red i) scdly ncrese: ‘making. Typically, policy advice s provided t0 understand and manage); and to agree on echical
Models are wi optimize aiy load 5 b by senior researchers in universites, industry, values (e, whether o pursue genctic modlﬁunon
wrvly chains, P"‘d"“ dmlw"m and optimiza- d«l...e inthe x do experts empl tostop the
i plysical and the high-quality, high-coverage data sets and ‘mother to child).

e experiences. The gm.l is to speed up the
conversion of capital (material and intellectual) into
success (e.g, market share, name recognition, and a
highly skilled and well-paid workforce). The higher
the “comenion rte”the fster the growth. Most
startups try to grow fast.

cognitive nonroutine work that cannot be easily
automatized will likely increase (see the top image
on page §9).

Rapid S&T progress makes the survival of
companes lescetain. A key mesure of 3 compa-

typically focus on sustaining or slowly expanding

rket ind:
such as the S&P 500 (for the 500 largest UL.S.

advanced data-mining and modeling tools that
are now available.

Models and model visualizations can help
diffrent decson-makers agreeon the sructure

o ovtfhypmg clsof hessiegc lanning

the target system to be managed
lndepnmrud,n well a5 on the roles that different
keholders might play in that

process: In the internal, lo

on the right, secting gols leads o the .mplmum-
ing, monitoring, and forecasting processes that

“The conceptual model below by William
B. Rouse and colleagues shows the fragmented

their market position and dominance. companies). In 1937, the avrage number ofyears are necded 1o achiev those goals. In the external system of U.S. health,educaion, and socal
"While tsk specialization end db thata 1y was listed in the S&P 500 was 75 perspective cycle on the lef, fro i the
conquer strategies were widely usedin the industrial 3. in 2011, it was 15 years and in 2025, i will internal CMS (Centers for Medicare
age, 3 systems science approach to problem-solving be S years as predicted by KPMG. with valuabl input thus offered toward evausting and Medicaid Services), E (Education Services),
nd interdisciplinary i Soboreal ey e Plus, an external scan- FDA (Food and Drug Administration), H
in the innovation age, when much of capital is d used toinform (Health Services), HHS (Department of Health
h b bl i e and Human Services), MHS (Military Health

intangible (e.g., expertise and skills, patents, intel-
lectual property, and reputation) rather than tangi-
ble (e.g., buildings, machines, and trucks).

“The exprtie, il and atitudesof employ-

ees are more i

production and delvery ofany pmdnu orsrvice,

1pl
Models are also valuable in overcoming the

Syuun),  (Social Services), and VHA (Veterans

the relevant
e i it Sl
ged,

innovative products. The graph sbove right shows
she steady decline in the share of employment in

p: ,

2 2 g
develop more resilient and future-proof systems in

water supply, transportation, or health care. Models
bl dealwith 3

tives (e.g, if in some failure,

lin) rlati
(dotted line) and other sectors that produce tangible

Economic Models &
Incentive Structures

Comperitive Advantage &
Returns on Investments

Deliver Opunnonl

Comperitive Positions &
Economic Investments

Work Capa
i ok

Economic Returns &
Performance Information

Work Compled &
tcome Information

Work Practices
(People)

blame is appointed; et lack of accountability might
prevent any system change, even if potentially bene-

HHS, CMS, MHS, VHA, FDA, et

Congress, Exccutive, Judiciary
Laws, Regulations\Moncy

Regulations\Money

ired to overcome
ll:gmmmnn in order to develop and implement
holistic solutions to universally improve services.
“Those health, education, and social services would
be funded by state and/or federal money, with the
appropriate separation of powers at the local, state,
and federal levels.

[ Hcalth Services | | Education Services | | Social Services |

[ Patients, Families, Clinicians, Teachers, Social Workers |
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Scales Overview

‘The models dlscusscd m the Atlas trilogy span the micro (individual), meso

1), and macro ( /global) scales. Frequently,
multiple scales need to be considered to arrive at workable solutions that have the
intended effect. For example, social, cognitive, and behavioral factors at the micro
scale impact organizational factors at the meso scale, which impact global science
and entire nations at the macro scale. The reverse is also true: global or nanona]

® Micro Scale

In the Adas rilogy, the micro scale refers to the
scale of one individual—their concerns, abili-
ties, and impact on a well "

those within a locally based spatial, topical, and
networked environment (e, closefiends,fmily
Ttis rare for b

Network models (page 4)or agnt-based modes
(page 48), using one node to represent each person,
might be employed to understand the context in
which one individual is operating, and the emergent

a globx.l perspective that extends to several future
generations (e.g, beyond their children's life-
time) and considers planetary challenges, or other
concerns within a broader geospatial and more

il

policies either restrict or enable activities at the meso or micro levels; i
rules and regulations impact individual behavior. This spread details and exem-
plifies the three main scales used in the A#/as trilogy, while arguing for a holistic
systems science approach to modeling.

Systems Science

Complex systems are ubiquitous—present around us
in nature and society, and within our cognition and.
anatomy—and comprised of many components that
often span multiple scales. Systems science aims to
study these multlevel systems. Here, we focus on the
models of the ESTP domains. The relevance of differ-
ent stakeholders varies according to scale. Some stake-
holders might be relevant for more than one scale, but
willlikely have very different concerns at each scale.
One example s the education system: At the indi-
vidual level, there are concerns about learning perfor-
‘mance and engagement,literacy tests and grades, and
future-proof, labor-market-valued skills and career
trsjectories (see Micro: Education, page 74). At the
organizational level, there i interest in high enroll-
ment rates and rankings,low dropout and suicide rates,
organizational learning curves, and also general opti-
mization of how people learn (sce Micro: Technology,
page 78; and Meso: Education, page 82). At the global
level, there is the need to align educational offerings
with S&T trends and job market demands, and to stay
globally competitive (see Macro: Education, page 90).
Given the extensive diversity in data and stake-
holder concerns, the relevance of models largely
depends on insight needs and scale (see Model
Classes Overview, page 24). For example, models
that take individual behavior into account, such as
network models (page 46) and agent-based model-
ing (page 48), are more common at the individ-
ual or micro scale. Models that aim to optimize
collaboration and competition, as well as profit and
reputation maximization by organizations, might
employ control theory (page 36) and game theory
(page 42). Models at the global societal scale often
use expert-based models (page 26) and dynamical
equations (page 32) to capture general trends.
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act with each other
ot cluiters acconding o ither types of ttributes
(e.g, age or gender) or a given network structure
(e:g, links denoting social, family, or business rela-
tionships). For example, the graph below shows U.S.
bachelor’s degrees grouped by category; for each
category, the midrange salary is graphed within the
total salary range. Individuals can use the graph to
make more-informed carcer decisions.

In professional and private lfe, we frequently
seck to understand what influence an individual has
on their peers, family, community, or society. Itis
just as important, conversely, to understand how the
behavior of an individual s impacted by their peers,
family, community, or society—as discussed on page
56, with specific regard to the impact of family and
social networks on an individual’s behavior, includ-
ing (over)eating, smoking, and even happiness.

Challenges and Opportunities

One person’s lfe span of 80 years equals about
29,200 days, or 700,800 hours. Much of that time
may be spent on satsfying basic needs,such 1 eat-
ing and sleeping. E:

ighly

Regardless, s ability to cause
massive and possibly irreversible change on Earth
is steadily increasing.

Model Examples
Microscale ESTP models are discussed on pages
74-81.

Micro: Education (page 74) considers the
impact of individual decisions on career trajectories,
and skill sets that are valued in the workforce.

Micro: Science (page 76) discusses inequality
in faculty production and hiring; productivity and
innovation; and the growth of scholarly networks
and their impact on scientific careers.

Micro: Technology (page 78) examines the
learning needed to optimize the manuficturing
process for one product.

Micro: Policy (page 80) explores the impact of
increased life expectancy on worker demographics
and associated policy challenges.

Different lfe stages, through retirement and
beyond, pose different opportunities and challenges
in terms of making favorable individual decisions
( izing time spent on learning vs. work-

of time could be spent on efforts that ultimately

advance both individual and collective well-being.
In reality, most human concerns are focused on

short time spans and immediate relationships—

ing evaluating income and spending patterns;
making efforts to understand the concerns of
others; and contributing to society).
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AGRCULTURE & BUSINESS COMMUNICATIONS COMPUTER  ENGINEERING  HUMANTES  SOCIAL MATHE,
NATURAL RESOURCES SCENCE SOENCES  SCENCES.

(® Meso Scale

In the Adas rilogy, the meso scale refers to the
level at which organizations, institutions, and
regions make decisions. For example, in educa-
tion, it might be beneficial to study and model
learning cohorts and thereby optimize teaching
and learning modules for different learning styles.
In science, it is important to assemble productive
ey s, e ooy up«m. from

Model Examples

® Macro Scale

Mesoscale ESTP models are discussed on pages
82-89.

Tnthe Adas mlvg), the macro scale refers to global Model Examples
Models might Macroscale ESTP models are discussed on pages
b e ioum o ek opemand 90-57.

the which

In 83), models
are applied to understand. I\cwpszlc learn and how
o scale up education in an equitable manner.

In the science domain (pages 84-85), models
e applied toidentify cultural disconnectsor gaps

tives from academia, ...dmw. and gvv:mmem

ty and to determine the
most innovative author combinations or the factors.

Industry
sectors are generally advantageous (e.g. to opti-
mize supply chains or improve customer service).
Government agencies routinely benefit from data
and expertise exchange, as well as from the coor-
dinated implementation of new policies, within
and across regional boundaries.

Challenges and Opportunities
Coordinating modeling efforts within and across
teams, organizations, and regions can be 1 hercu-
lean feat. Data s often held by multiple owners, and
privacy-preserving data sharing might be needed to
run meta-analyses using all data or to validate mod-
els against all data.

Similarly, algorithms and other code that are
needed to implement 2 complete model might be
‘owned by different institutions, such that license
and intellectual property issues must be resolved
before a computational model can be constructed
and run.

Different stakeholders typically have corre-
spondingly different needs, expectations, cultures,
responsibilities, and capabilities. Agreeing
on mutually beneficial goals, finding a shared
language, and agreeing on the best process for
developing, implementing, validating, using, and
communicating a model can be time-consuming.
However, collective buy-in makes it possible to
benefit from the wisdom, resources, and (social)
networks of many experts; it can lead to transfor-
mational solutions that exploit existing synergies
for widespread benefit.

hers have a long and
successful career in science.

In the technology domain (pages 86-87),
models help identify and communicate the impact
of government funding on economic success. They
can be used to compute how innovative different
regions and cities are, and also to understand the
impact of changes in product sales volume on busi-
ness process dynamics.

The olicy domain (ages $8-89)graty bene-
fits 2 region or

Increasing networked complexity (e.g., the
aggregation of people and corporations in large
cities) leads to ever-fuster communication and
innovation, yet also more-complex interdependen-
based on global risks (see WEF Risk Trends
Network, page 97). Faster transport, mainly
via densely connected cities and efficient airline
networks, leads to faster spreading of not only
information but also, potentially, diseases
(see Epidemic Models, page 35).

Increased human life expectancy will impact
the workforce (see Changes in Working-Age
Population, page 81) and possibly also humankind’s
global innovation potential (see Age Dynamics in
Scientific Creativity and Achievement, page 77;
Regional and Global Innovation Indexes, page
87; and Al Vibrancy in R&D, Economy, and
Inclusion, page 94).

systems such as cites, connected by street and air-
line transportation systems, power grids, and the
Internet (see Anthropocene Animation, page 65).
Long-term global monitoring and modeling efforts
require the development of new data recording,
aggregation, mining, and visualization infrastruc-
tures (see International Science Observatory in
At of Scence, page 176) to properly manage

the complexity of the Earth system that supports
‘our existence.

Challenges and Opportunities
‘The globalization of education, science, business,
and government, as well as the challenges that
humankind is increasingly facing (c.g., extreme.
poverty, environmental degradation, and global
warming), require international and interdis-

city within the global and local context in which it
operates—see the sequence below of zooms from 2
map of Europe (panel 4), into Italy (panel B), the
Lazio region (panel ), and finally Rome, ltaly's
capital (panel D). Examples presented in Meso:

ip Agrecing on priorit
nn\el.mcs and the allocation of resources across

Several indexes exist to model and monitor
global progress. The Global Competitiveness Index
(GCI 4.0), developed by the World Economic
Forum, identifies 12 main drivers of productivity,
called pillars, that are expected to grow in signifi-

nations and institutional boundaries is
major challenge.
Measuring and optimizing ESTP progres is
ial due to the systemic

the impact of policy on
gross domestic product and unemployment rates,
as well as public atttudes, knowledge, and interest
with regard to education, science, technology, and
societal issues.

Just as there are different stakeholders and
concerns at different geospatial levels, there also
exist different stakeholders and concerns at different
levels of aggregation within education areas, scien-
tific disciplines, and industry sectors. Ultimately,
decision-makers should sim to understand and
involve all stakeholders that are affected when
revising an old or implementing a new model.

cance over time. The table below shows regional
performance by pillar, and the four main catego-
ries (at top) used to classify those 12 indicators,
with darker shades indicating better performance.
Europe and North America perform well in many
of the pillars. East Asia and the Pacific lead in
terms of Financial system. All egions score above
60% on Macrsecomomic stabiliy and sbove 50% on

different educational systems and needs, scientific
cultures and values, technological opportunities
and demands in different industry sectors, and the
context and history of different policy systems.
However, clear metrics and success criteria are
beneficial when aiming to model and optimize
co-evolving systems at the global scale.

Business dynamism.
Table 1: Regional performance, by pillar
Average score {0-100)
o
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®® Meso: Education

di

In the education domain, models are widely applied.
For example, logistic regression models are used to predict and reduce student
dropout or waning student engagement and pcrformincc More advanced models
are under devel to support i ion. Given the success

of massively open online courses (MOOCs)—and the massive usage of online
education during the COVID-19 pandemic—it becomes more important to study
how people learn online.

Examples

Computational models of research universities can simulate the impact of
different funding and enrollment strategies—up to 20 years into the future.
MOOCs make it possible to scale up education to millions of students, by
generating rich data that supports the development of learning analytics
models, which increase our understanding of how people learn and also offer
personalized learning support.

Key Insights
Innovation in education is required to ensure the survival of institutions, as well

as to scale up education so that billions can be educated for a future wherein
robots, Al, and humans can learn and work together.

74
76
78
80
82

86
88
90
92
94
96

Micro: Education

Micro: Science

Micro: Technology
Micro: Poli

Meso: Education

Meso: Science
Meso: Technology
Meso: Policy
Macro: Education
Macro: Science
Macro: Technology
Macro: Policy

Probable Futures of Public vs. Private and Large vs. Small
Research Umversmes

Hundreds of coll i ial crisis ing to the Hechinger Report. MOOCs
= phousands of stud lass, consi ing the i pe
student. Which institutions will survive?
William B. devel
ofthe i i 1 model ofaresarch
i figure at lower i 70). Nzn, ey

resources available to the 160 best-resourced research universitis, 2 small subset of the 2,285 U.S. four-yea,
nonprofit, higher education institutions. Then, they developed and ran a computational model for four types
ofuniversites: ) large public, (i) large private, (i) small public, and () small private. The large institutions
(3and i) opped he st o 160 intemsof esurces,eaingthe smll ons i and ) ear the bottom. The
(5D stats quo, o busoes s wual, (2 seady

decline in fore nd h-quality, online
Scenario §3 has th I h 1 force that s the same

for allthree, but a i : Instance S5 10K iversties bei

10 offer enire degrees for s el 2 $10,000,which s possble oy by cannibaizing the income generted by

other professional ly number of

students to be taught stays the same, this h ase scenario for o types. Instances

83: 10x and §3: 1K refer to a tenfold increase in students, and 1,000 students per class, respectively; both
instances lead to & 52), which in turn reduces
publishing productivity and brand value.

All three scenarios were run for the four types of universitis, and the predictions for year 20 of the model
run are shown i below. The left nputed using data on publications,
citations, and h-index, but not funding. Units are arbitrary, but useful for relative comparisons. The right graph.
shows the net present value (NPV) a financial metric that equals the current value of projecte future cash
fows, Typicall aim for a zero

NPV, 50 they break even.

percentage k (T'T) faculty
impact. Non T facaly i y TT faculty lower
Th some situations, i for a university
o substanally recduc esarchactivicies i rde o avid the cot ha hese actvites e
need

‘model of universii i itutions without

20-Year Outlook by Scenario
B Valur N T Vel (Mo of Dotlr)
500

T J—
St S 590K Skibe S St S2 9% SESIK %)
o o o Sl SR (R ST S

W Large Pubic B Lage rvate WSl Public 8 Smal Prvate

Active Learning Increases Student Performance in Science,
Engineering, and Mathematics

‘What are the best learning formas for any given knowledge or skill» When s it best to use passive vs. active
learning? ive listening and learning be ged:

“The quality of science, technology, engineering, and mathematics (STEM) education, including the meth-
ods used, impacts learning outcomes. According o The Stase ofU.S. Scienceand Engincering 2020, the Natonal
Science the United States placed ninth in both
mathematics and science, whe in an international isons of 19 advanced
cconomies particpating i the Trends in Internaional Mathematics and Seince Seudy (TIMSS) seudy:

‘Work by René F. Kizikec and team shows comple-

Visual Analytics of MOOCs
How do people learn? How can they ine? What

horts exhibit? How design be optimized he needs of ndividual learners?

Withthe advent of MOOCs in 2008 o millions o sodents aking coures o, i becomes positle
o capture, analyze, and use teaching and duato d to optimize teach-

ing. Data from MOOCs ine

online courses.

¢ engagement, perfo

tion rates for 1.8 million learners taking 55 MOOCs s 12
a function of the United Nations Human Development
Index. The results are graphed at right; each dot repre-
sents a country, size-coded by the number of learners.
MOOC completion rates are higher for learners from
more developed countries.

A number of metastudies have been conducted

« 5

‘Completion rate (%)
iy

to analyze which learning methods achieve the best 4
educational outcomes. Scott Freeman and his team

performed a metastudy analying the results of 225 2.
studies that reported data on performance scores and

failure rates for STEM courses itional lectur- 0

ing that dominates U.S. STEM instruction vs. active

4 05 08
Human Development Index
learning. They found that active learning results in

by 1,601 MIT xPRO course
“Architecture of Complex Syuum dgl:rm-l in fll 2016. Mom than 30 million sparae evens students
g ) d d his figure. Graph
o pre-and ,anh 2
2 =5 s ey iy
to the Graph C, learni
modules via circles pluad in sequence from et o rights modulu are color-coded by module type (sce legend).
Greenarcs . from one learning to the next; purple arcs denote
backward transitions, o revisit earlier learning pically ing for exams.

/*mmmmcmvmsvﬂ-m

v’a P vv(wvv \i\-vy-(.vy

increased performance, which rais tter, s shown in the
Graph A plots the number of stents over the puc!nl :hansr in the failure rate for active learning. As the
nge at 12% is plmmd as
et ot (in red). Graph il class for active learning (in blue)
relative to lecturing (in orange), ith mean flure rates at 21.8% and 33.8%, respectively. As can be seen, active
leaming substantiallydecreses fulue ates. The team aeoshows that filur rats unde traditonal ecturing
of

increase by 55% relative to active le ‘Their work argues
active leaming.

Matthew T. H pointing out d “lecturing” exists,

ly range from ively presenting

that content, to. i d: d explanatic 1 i rk

Despite the critique, it i i i i i ir pedagogi-
cal toolkit; choose the best (¢ o
understand and spport or :xplnd) the i sl Ratats o welace. Kyt opple il il o i

3 desi align.
s, learning object ith learner needs and interests.
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©® Meso: Technology

I ing i ional ition and shareholder demands for short-term
returns lead to ever-shorter pxoducr cycles. Higher costs for research and devel-
opment (R&D) make conunuous mncvatmn mandatory for survlval lndustry~
university cooperation is b 1 to facilitate technol as
well as innovation transfer (see Shneiderman’s twin-win success discussed on

page 70).

Examples

IT Sectors with Large Economic Impact

How do federal funding and scientific progress together impact industry R&D? Which research specifi-
cally led to the development of key products, and how large a market was created via those various lines

of research?

The 2016 *tire tracks” graph below—updated since its 2012 creation—was published in the Consinuing
Innovation in Information Technology workshop report by the Computer Science and Telecommunications
Board (CSTB), a unit within the National Academies of Sciences, Engineering, and Medicine. The visu-
alization shows the IT sectors that benefited from federal funding for fundamental research; that funding
helped create not only those IT sectors but also firms and products with ultimately large and far-reaching
economic impact.

I the graph, time runs vercically upward, from 1965 to 2010. Eight R&D tracks are eatured. Each track
shows y (in red) s jois R&D (in blue), which results in

into solid

Data models and visualizations can be employed to analyze and icate the
impact of science funding on the success of I'T sectors. Models can be applied to
compute how innovative different U.S. regions or counties are. Business dynamics
models advise how erroneous information from the customer end to other parts of
the supply chain can lead to devastatmg inefficiencies, mcludmg excessive inventory

ineffective missed schedules, poor product
quality and customer service, and lost revenues.

Key Insights
Edwin Mansfield explored eight industries during 1975-1994, luding that

the introduction ofnew pmduﬂ categoris some ofwhich become billon-dollas ndustris (lack dots msging
he tracks indi flows

within or l:ron:lus—shwcumg the cross-fertilization of deas, nechnulngtﬂ. and people between academic
h, i I the tracks, in gray type, are the corporate brands

that have 3 major ¢ market share i the eight IT sectors.

‘The visualization was originally developed by the National Research Council o illustrate how federally
funded university research, together with industry R&D, plcc«le the zmugenu: of large I'T industries by
decades (see also the d of 2 20-year
ization, in Adlas of Knowledgz, Chemical R&D Powers the U.S. fiaiti Engine, page 112). The graph
shows “old” areas like Microprocessors, which exceeded $1 billion in annual revenue in the early 1980s and then

over 10% of the new products and processes introduced could not have been
developed without (substantial delays in the loss of) academic research. Thus,
research funded by government, academic, and charitable research institutions is
crucial for private-sector technology development and innovation.

74 Micro: Education
76  Micro: Science

78  Micro: Technology
80 Micro: Policy

82 Meso: Education
84 Meso: Science

56
88 Meso: Policy

90 Macro: Education
92 Macro: Science

94 Macro: Technology
96 Macro: Policy

exceeded $10 bill 1995, Tt al like Robotics, which has reached $1 billion but not
yet $10 i

‘While necessarily incomplete, symboli looking in nature, the graph inspires reflection and
action. It has been used in National i and that 2im to d

the impact of and make a case for federal investments in foundational research.

i —
LT O ) p— L L Conpuuw Gragnes A1 & Rowonce.

v ot i Remrsh.

TSR —

Regional and Global Innovation Indexes

Business Dynamxcs‘ Response to Sudden 10% Retail Sales Increase

How innovative is the region in which you live, and how does it compare to other regions? Is it well connected How d iy
o e o] e gt i Jay W founder of system dynami ,whlch aims to mode the i objects
y develop it g 10 answer such questions in order to properly p ic systems. In his 1961 book Industrial Dynamics, he introduced the use of system dynamics

dd h sty for son, and exploit new ige creation, technology ial busi and the Forrester effect, better-known today as the bullwhip effect, which

difsion, and othersmilar opportuniie. describes the increasingly large demand distortions that tend to occur along the supply chain—from custom.-
ion indexes exist to help it ional leaders make data-dri ilers, distribut and inally o suppliers. Forinsance,a prediced o actal 15-unit

decisions in their daily work. The Global Innovation Index (GI1) is published annually by Cornell University, i tail sales might lead to 2 20-
INSEAD, the World Intellectual Property Organization, and other partner organizations. It ranks the world's s in the d o v, Asthe “wiy” moresavay fom he custome,

countries and economies by their capacity for, and success in, innovation.

“The Innovation Index that
o tgion, o o oveall U, performance. The servic i proided by the Indiaa Busioes Rsearch Ceter at
Indiana Universicy's Kelley School of Busines. Th s calculated from four that

ighted: b pital (30% weight), ic dy (30%), productivity and employment
(30%), and economic well-being (10%). The data used to compile the Innovation Index comes from government
statistical agencies as well s from private, proprietary sources, including Moody’s Analytics, Decision Data
Resources, EMSI, and VentureDeal.

theefect ampliis, causng not only excess control issues and

Similry, s forcasing predictons move furthe vy ot i o i spsream long the suyply

chain, the k hey become. Poor ionand lack ofvisilit,
such as capacity, batch sizes, and time lags, all i illation in ’
and possibly supply shortages (also called a production flywheel eff Control Theory, page 36).
Exemplrly, the dynamic behavior o y system is captured in the graph belorw.
(inbl Iuding 2 10% increase in retail sales, which motivates an 18%

dungc in distributor oders, causng a 343 increase in factory orders, resulting in 4 4% increase in factory

‘The Innovation Index 2.01is an interactive online resource that incorporates new research
innovation, by taking into account regional knowledge spillovers, technology diffusion, and foreign direct
investment, as well as social capital. It was designed to help regional leaders arrive at a strong consensus on
future-proof strateges. Innovation Index 2.0 visualizations can be shared with all stakeholders to identify 3
region's capabilities, shortfalls and potentials, and to guide complex decision-making in support of collective

in red, from top y unis o retaiers, disrbusor,
and the r.mry ‘warchouse. In 1961, when this graph was model
the target system, that model was run on some of the early computers, and the model results were sed to plot
system behaviors.

A decade later, in 1972, Forrester and his students used the DYNAMO (DYNAmic M()dzhng) simulation

action toward a common plan. language—wich they had orgialy developed for analyzing h indus-
MapTool makes it possible to explore, spatially, any innovation metri ng-age popu- develop The Limits o model (page 7), one of the first mmpuul models with

Iation o business incubator spllover effects. The map below shows kmwledgc crston and technology diffsion multiple feedback loops.

at the county levl. The U.S. averg s s t 100; counties with  lower-than-averageindex (in be) are most In World 1) and papers, ght to model the world , population,

prevalent, whil ith 2 higher ptionally high knowledge creation and and ecology. He argued odels are far superior to simple debs apturing

technology diffusion (in dark blue). dynami rid ifying problems, and also d ing the

Decision-makers can examine their own region in the context of others, select one region as a standard
against which all others may then be compared, or zoom into detailed data. Any content can be downloaded
(a5 a spreadsheet or PDF) at the county, metro area, or Economic Development District (EDD) level for further
analysis and examination.

Knowledge Creation and Technology Diffusion by County

United States =100
M More than 140
W 120110 140
100110120
8010100

Less then 80

likely effects of proposed systemic changes.
In Systes Dynamics ystem inkingand Modeling for & Complex World Q000), Johin D. Stcsmas,asudent of
Forrester, (re) models, toget ool fo systems thinking, modeling, and st
li king i for many del

o

——

onvitue i

Part 3: Models in Action | $7

40



Part 4: Science Maps

in Action

100

Part 4: Science Maps in Action

Places & Spaces:
Mapping Science

Introduction to the Exhibit

Created by experts in science, humanities, and the arts, the works
collected in the Places & Spaces: Mapping Science exhibit convey the
excitement of scientific progress and discovery. Maps of science chart
the more abstract spaces of data and knowledge, helping us forecast new
fields of inquiry and enabling us to tell stories that we can all under-
stand and act upon. An interdisciplinary and international advisory
board chose each of these exhibited works as an outstanding example of
how visualization can bring patterns in data into focus.

As 0f 2020, 100 maps by 215 mapmakers have been displayed at 396
venues, in more than 28 countries, on 6 continents. Each unique venue
adds its own value. Ultimately, the exhibit is like the eponymous stone
in the story of stone soup—with experts around the globe contributing
singular visualizations that ask new questions while offering solutions
to meet local contexts and needs.

‘The Atlas of Forecasts features maps designed for kids—the next
generation of experts and leaders; maps showing trends and dynamics
in the past, present, and future; and maps that foreshadow the future
of science mapping. The 30 maps featured here communicate complex
data; help bridge gaps between experts in academia, industry, and
government; and help align forces toward the identification and imple-
mentation of desirable futures.

Part : Science Maps in Action
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Reducing Human Bias

Humans tend to be subjective, often acting according to biased opinions rather than
objective facts. Cognitive biases are systematic deviations from normative ratio-
nality in judgment, as studied in fields like psychology and behavioral econom-

ics. While many such biases have been

show one particular trend that is reversed when

tion of an in-group based on out-group criteria (L.,
when individuals outside of an in-group devalue
aspects in which they fare poorly relative to that
in-group, but overvalue aspects in which they fare
well elative to their out-group). Sampling errors
anyorerto snb«quuu data s, model o visual-

research, controversies abound as to their possnble origins and czuscs Tn order to

make objective, well-informed decisions, we need to

d are nearly
impossible o a.m and correct unless the proper

is secured and data

d anc
neutralize existing biases. This spread explains some of the known btases, beliefs,
and behaviors, with suggestions for how to counteract them. Ultimately, biases
and beliefs have a major impact on life satisfaction. Understanding our own
biases is an important step toward experiencing a fulfilling present and future.

All models are wrong, but some are useful.
George Box

To Err Is Human
Though human brains are powerful and efficient,
human error inevitably occurs a every level ofsoci-
ety. Some errors are systematic and systemic. Many
are self-reinforcing via positve or negative feedback
cyeles (s the figare below and Modeling Goals,
page 14). Frequently, specific individual or intitu-
tional actions (e, funding of highly funded schol-
fi the

preprocessing is performed.

Gender Bias
“The well-known bias of gender stereotyping has
proven pervasive and difficult to overcome. Sheryl
Sandberg, uthor of Lean In: Women, Work, and the
Will o Lead (2013), confirms that women are called
bossy when exhibiting the same behaviors for which
e o e, Sacber with pc-
Adam G

pe
ment. In-depth discussion on this subject, with
significant examples and theoretical models, can be
foundin Nerwerks,Croes and Markes: Reasoning

il
expects 2 man to bembmmn. but 2 woman to be
helpful; ergo, if 2 man does not help, he is “busy,” but
iF womandoes nothep,she s “sclfsh” Similarly,

IEEEERRE ]

g

endogenous belief that girls are not as good as
boys in math and science; even when girls perform
similarly to boys, their work may be graded more
eritically. Since that unconscious bias in turn has a
profound and systematic effect on whether female
students pursue degrees and professions in those
felds, such endogenous belief leads to self-fulfill-
ing prophecies.

Gender bias is also present in blinded grant
proposal reviews, as the fact that women tend to use
“weaker” language (e.g, “we hope to” instead of *we
will’ results “might be” rather than “will be")leads
to their proposals being dismissed for sounding less

environment (e.g., more funding created for already
highly funded scholars), leading in turn to rewards
for potentially erroncous actions (¢.g, favoring older
vs. younger scholars; thus, older scholars are able to
further their impact, while younger scholars are not
afordd resources (o perform high-end research,

about a Highly Connected the word: by males.
Easley and Jon Kleinberg. faculty differ zmﬂy Inunalyzing the! 'm-g‘usv  Nevrtheles,inthe past few decades, blind

. of about 14 ices have led to p lyin
Data Bias com, Ben Schmidt found that, while male profes- <ymphony orchestras. Though now widespread, the
Any i ith data, which ypically regarded as brilliant, awesome, and practice of using screens in auditions to conceal
is gathered by retrieved ¥ candidates from the jury was gradually imple-

i o 6 G it ol

16T sensors or other sources. Using the most appro-

priate and highest-quality data is crucial for arriv-

ing at actionable insights. Unfortunately, imperfect

data is frequently used with confidence.
iy .

25 bossy, annoying, disorganized, and even beautiful
or ugly. Furthermore, students generally give profes-
sors muuch higher ratings when they believe them to
be male, regandless of their actual gender.

Gender bm regularly factors into pﬂfm"mln(ﬂ

d, drav-

‘which falsely.
the best strategy for maximizing the number o
tions per dollar spent).

Action

Extensive lterature exists on why human judg-
ment fails, particularly when long-term or global
decisions are at stake. In addition, considerable
research aims to uncover why people violate norms of
action through social misbehaviors (e.g., conforming
with false majority judgments or failing to help those
in need) and norms of reasoning through cognitive
errors (e.g, polarized black-and-white thinking or
overgeneralization). The goal is enhanced under-
standing of the bases for good behavior and accurate
judgment, coherent explanations of occasional lapses,

172 | Parts: Envisioning Desirable Futures

ing on a part of the population that is close at
hand—such as colleagues, friends, or neighbors
with experiences and opinions similar to those of
the data collector—so that findings are thus more
likely to reflect the views of the data collector than
of the general population. This kind of nonproba-
bility sampling can be useful for pilot testing, but s
often not a good choice for designing, parametriz-
ing, or validating a model for  target system.

Other common data sampling mistakes include:
selective attention, whereby a person's limited
capacity allows for only certain stimuli to be noticed
while others are tuned out, when several occur
simultaneously; base-rate neglect, when a person
focuses heavily on new information without prop-
erly taking into account original or base assump-
tions; confirmation bias, whercby new evidence is
interpreted according to existing beliefs or theories;
Simpson's parador,in which separate sets of data

more likely than men to receive critical Mb.ck.
and women laders i particularar frequently
described as abrasi

mented. As  result, the percent of female musicians
in the five highest-ranked U.S. orchestras increased
from 6% in 1970 to 21% in 1993; one study found
that blind auditions accounted for up to 46% more:
female musicians by 1996. However, blind recruit-
‘ment is not viable in most industries; instead, many
institutions require members of job search commit-
tees to attend professional training sessions on

Bias s also present in the grading of students’
assignments. Many teachers seem to have the

d how to remedy ¢
Systematic, proactive efforts toward ensuring
‘more equitable outcomes have resulted in an increas-

NGO e B e 0%
2%,

P “Genx
- H—

ing fraction of

and his team) can make
data access more eff-
e, comprebensve,

logical choice by consumers and by firms, and the
R > o i

tion as it impacts motivation, engagement, perfor-
ind happi

Ina 1960s sudy on (hed.rmngpﬂwno(dxﬂ'n.

o women in the science, technol

Generational Bias

“The figure below, from The Global Comperitivencss

while Repors 2018 by the World Economic Forum
improving data-driven Leonard Bi{km and Lawrence lkrlnwnz hid a (WEF), shows life satisfaction for 135 coun-
decision-making by group of up to 15 people stand on a street corner, tries, as measured on Cantrl's Ladder of Life
professionals, policymak- with aselect number saring up at the sky; they Scale—whereby participants, using the numbers
ers,and citizens. Theaim  then counted how many passersby stopped and 0 for worst posible 1) to 10 (best possble i),
more humanli also ooked up a the sky. When only one question, “Ho satisfed are you i
(see desk and 1793 in 2 group was staring upward, passersby your days?” Finland, Denmark,
and mathematics (STEM) fields (se top graph on 1o flly resoive the experience of “uncanay valley” stopped; with five peopl staring upward, more pass-  Norway, and the United States sppear to have the
opposite page)—yet much work still needs to be (owhen a robot's ¥ ups with all 15 people highest Global Competitiveness Index (GCI) 4.0
done to increase the number of graduate and PhD pasenty soppe scores, il the Republic of Burunds, landlocked
degrees awarded, and the number of tenure-track ‘with si h: istent use of d als in the African Great Lakes region, seems to score
and leadership positions held by women. Ife-tracking wearables, and rliance o smart- concluded tht socal pressures,orsocial conformity,  lowest. As the WEF state,th fc that ife st
phones can al offe a profound sense of connec- . Extensive faction accountsfor over two-thirds of differences
tivity; they seem to readily become part of our general advice ki rmmmmlm the nega- p the GCI 4.0 scores s remarkabegivn how
“There are presumed to be major differences across identity, such that being without them can leave tivesof peer ,in
generationsinterms of education, work ethics, us with a deep sense of ansiety o loss. those who resstpeer presure, asking for hlp when {erms f clre, ity and politcs.
tech-savviness, and cost-efeciveness. The bot- nd cith How
Self-Perpetuating Bias ation ducational, scholarly,industril, or government

tom figure on left graphs the average view of 200
hiring managers on whether Generation X-ers
(born 1965-1950) or millennials (born 1981-1996)
are more likely to have certain qualities relevant

to performance and the workplace. Generational
differences and associated biases can easily lead

to miscommunication and misunderstandings in
personal life. Di

As discussed earlier in “To Err Is Human,
seated beliefsin how the world works can inform

expectations that lead to self-fulfilling prophecies:
Ifone i inclined to grasp a particular situation in

providing y - s
However, humans are social animals, and our
habits are reinforced by those we surround ourselves
with. Nicholas A. Christakis and James H. Fowler
showed thatbehaviors such s smokin, besity,

a negative way, one.
experience;if that same scenario s seen in 2 posi-

‘multiple generations (e.g, between teenagers and
be. 1y

tive light,

experince one s then furher reinforces one's

even feclings of happiness, can
q;md via social networks. For example, a married
person's chances of smoking were decreased by

679% when their spouse quit smoking; and people

their how the world works. surrounded by cooperative colleagues are likely to be
However, understanding differencesis the first step “That premise s central, for example, to Jayson more cooperatie. Study results have implications for
toward counteracting and overcoming them. L. Lusk and Anne Rozan's p clinical and public health
yUS. b intervent ip formations.
Own-Species Bias bout the safety of geneticall M) also leads to the “paradox of
Also called speciesism, this prejudice holds one’s food, which in turn has implications on their unanimity™—as described by Derck Abbott for
i ly, humans favor- it Using survey data, the expri- Lachlan . Gunn et al—whercby certainty s not

g P
species), even if their needs are equivalent.

Tn 2 world where humans and Al-empowered
robots and other machines live, learn, and work
together, it becomes i

beliefs about hbehng policy, the safety of GM
food, and M food

instance, that in a police lineup, the probabil-
ndidar: b

e eniogencualy detrained They s
des of life scientists (who

environments to arrive at even higher GCI values?
Lifesatistaction (Deworst possile I, 10-best possible i),
5207

Frians

- i

E)
6140307 s 0-100 e

he first Exposing Biases
three unanimous witness dentifications, but then Peapl tend to be unaware of their own biases and
i Mdeoti believe they make decisions objectively. Project

Taplicit i tadi ibout hid-

1 words, it i highly

relationships to this new d
perceive them to be our creations and allies,
objects entirely arificial and separate from

mosteseen Part 5: Envisioning

what will we do when their needs conflict wi

own (e

meiss= Desirable Futures

5 for many people to all agree. In

i, the researchers cite how ancient

rescribed that a suspect on trial should
if found unanimously guilty. Though
hi ntaltivs; tha lighdl

den biases and to generate data for research.
Investigations using their data have found, for
‘example, that “states higher in racial bias spend less
on disabled Medicad enrolees”and that “Blacks

ld observed that unanimous agreement
b the presence of systemic error in the

death rate due
related to Whies explice acialbis” T orge-
nization provides users with easy access to exer-

More peopl
and ethical response to smart environments,

wearables, and the like. Smart envionmen| 1 70) Moder[ng Opportunities

that use augmented reality (AR) data visuali
tions to provide pertinent details (such as k

s o et | 172 Reducing Human Bias
174 Managing Risks

176 Building Capacity

178 Actionable Forecasts

pos
houghts and feeli d

fure of the error,

ness and control). It also allows anyone t test their
own biases by taking part in surveys related to race,
gender, ethnicity, obesity, age, r!lxgmn. disability,

prorking solution.

tisfaction

itive bias has been shown to have a and sexual orientation. Whu- biases.
fon an individual’ life satisfac- they can b
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Award v

2022 PROSE Award Winner, Engineering &
Technology

Endorsement v

“The future is not waiting to reveal itself. It's all
around us, in the shifting and changing
consequences of every one of the quintillion
interactions going on every second,
everywhere. We make the future, unknowing
of the consequences. If we were able to
model and predict the result of all those
interactions, we could reshape them and
generate a future we want. This magnificent
Atlas is a first step toward being able to do
that.”

https://www.voutube.com/watch?v=ScWYq1FuwZE

James Burke, author of Connections


https://www.youtube.com/watch?v=ScWYg1FuwZE

The Future of Learning & Work Workshop

Open Digital Future. Perspectives on data at the intersection of education and job markets.
Toward a new role of visual and learning analytics.

https://cns-iu.github.io/workshops/2022-03-14-futurium

Forum Il —— j



https://cns-iu.github.io/workshops/2022-03-14-futurium

Indiana University Bloomington will host the
International Society of Scientometrics & Informetrics

Conference (ISSI)
July 2-5,2023

/workshops/2023-07-02_issi/

T




24 Hour Science
Map Event

https://24hoursciencemap.info

Dec 11, noon - Dec 12, noon ET, 2021




ﬂ 3 5.

24 Hour Human Reference
Atlas Event

https://24hoursciencema p.info

--------

Dec 10, noon — Dec 11, noon ET, 2022



Utilizing Visualization for Program Evaluation:
Techniques and Strategies

* How can visualizations help communicate, manage, evaluate science?
« Can progress in science, technology, education, etc. be predicted?

 What methods and tools exist?

48



INDIANA UNIVERSITY
c NS Cyberinfrastructure for SCHOOL OF INFORMATICS,
Network Science Center COMPUTING, AND ENGINEERING

Data Visualization Literacy

Borner, Katy, Andreas Bueckle, and Michael Ginda. 2019. Data visualization literacy: Definitions,
conceptual frameworks, exercises, and assessments. PNAS, 116 (6) 1857-1864.

Borner, Katy (2015) Atlas of Knowledge: Anyone Can Map. The MIT Press.

71.94 i,




.
Data Visualization Literacy (DVL)

Data visualization literacy (ability to read, make, and explain data visualizations)
requires:

* literacy (ability to read and write text in titles, axis labels, legends, etc.),

« visual literacy (ability to find, interpret, evaluate, use, and create images and visual
media), and

« mathematical literacy (ability to formulate, employ, and interpret math in a variety of
contexts).

Being able to “read and write” data visualizations is becoming as important as being able to read
and write text. Understanding, measuring, and improving data and visualization literacy is
important to strategically approach local and global issues.

Cyberinfrastructure for
CNS eeeeeeeeeeeeeeeeeeee 50



DVL Framework: Desirable Properties
* Most existing frameworks focus on READING. We believe that much expertise is gained
from also CONSTRUCTING data visualizations.

» Reading and constructing data visualizations needs to take human perception and cognition
into account.

* Frameworks should build on and consolidate prior work in cartography, psychology,
cognitive science, statistics, scientific visualization, data visualization, learning sciences, etc.
in support of a de facto standard.

* Theoretically grounded + practically useful + easy to learn/use.

» Highly modular and extendable.

Cyberinfrastructure for
C NS eeeeeeeeeeeeeeeeeeee 51



DVL Framework: Development Process

* Theinitial DVL-FW was developed via an extensive literature review.

» The resulting DVL-FW typology, process model, exercises, and assessments were then tested
in the Information Visualization course taught for more than 17 years at Indiana University.
More than 8,500 students enrolled in the IVMOOC version (http://ivimooc.cns.iu.edu) over the
last six years.

» The FW was further refined using feedback gained from constructing and interpreting data
visualizations for 100+ real-world client projects.

« Data on student engagement, performance, and feedback guided the continuous
improvement of the DVL-FW typology, process model, and exercises for defining, teaching,
and assessing DVL.

* The DVL-FW used in this course supports the systematic construction and interpretation of
data visualizations.

Cyberinfrastructure for
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Data Visualization Literacy Framework (DVL-FW)

Consists of two parts:

DVL Typology DVL Workflow Process
Defines 7 types with 4-17 Defines 5 steps required to
members each. render data into insights.

Deploy

Insight Needs Data Scales  Analyses Visualizations  Graphic Symbols Graphic Variables Interactions
« categorize/cluster +nominal « statistical « table « geometric symbols  « spatial *zoom
« order/rank/sort < ordinal « temporal * chart point position «search and locate
« distributions (also  «interval « geospatial  *graph line * retinal « filter

outliers, gaps) « ratio « topical *map area form * details-on-demand
* comparisons « relational * tree surface color « history Stake-
« trends (process * network volume optics « extract

and time) « linguistic symbols motion < link and brush h0| d ers
* geospatial text * projection
* compositions numerals « distortion

(also of text) punctuation marks
« correlations/ « pictorial symbols

relationships images

icons

statistical glyphs

Cyberinfrastructure for
c NS Network Science Center 53



Data Visualization Literacy Framework (DVL-FW)

Consists of two parts that are interlinked:

DVL Typology +
DVL Workflow
Process

Interaction Types

Deploy

Graphic Variable Types e

Insight
Need Q
Types

Graphic Symbol Types e

Acquire Analyze Visualize Visualization Types 0

Data Scale Types e Analysis Types

54



CNS:

Stake-
holders

e Data Scale Types

Interaction Types

Deploy

Analyze Visualize

e Analysis Types

Graphic Variable Types o

Graphic Symbol Types e

Visualization Types Q
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Interaction Types

Deploy . Graphic Variable Types
Design
Data
Translate Overlay
Insight ¢ Graphic Symbol Types
Stake- I
holders Types
P Pick
Reference
System Visualization Types

Operationalize

Analyze Visualize

Data Scale Types Analysis Types

56



Interaction Types

Deploy S Grqphic Variqble Types
Data

Translate Overlay

; | 2,
| sl I 1
LT

Insight ¢
Stake- I
holders Types

Pick
Reference

System
Operationalize

Analyze Visualize

Data Scale Types Analysis Types
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Data Visualization Literacy Framework (DVL-FW)

Implemented in Make-A-Vis (MAV) to support learning via horizontal transfer, scaffolding,

hands-on learning, etc.

= Make-A-Vis i

Data

v B ISl Publications: (CSV)Preprocessed-wos

Title Authors Journal Year
—_—
A 8 Journals: (from ISl Publications)
Name #Papers  #Cites
BMCEVOLBIOL il 7
FEBSJ 2 0
NAT PHYS 3 18

Cyberinfrastructure for
Network Science Center

#Cites

First Year
2006
2005

2005

@ Make Visualization

0 Select Visualization Type A

Temporal

v ’ Bar Graph
Scatter Graph
Last Year ® LT
o S
2006
Geomap Scimap
2005
2006
Select Graphic Symbol Type(s) v
Select Graphic Variable Types v

Machine

Temporal Bar Graph €@

Smart
Form

Web
Computing I
Making s
Buikling. e
ecucaton [N

i _

©0

Application [N
Robotics | INEG————

Computer

Analysis [
sten I
v [
Aiebrsic Geometry —
o E—

Capacity m—

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
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Typology of the Data Visualization Literacy Framework

Insight Needs

* categorize/cluster

* order/rank/sort

« distributions (also
outliers, gaps)

* comparisons

* trends (process
and time)

* geospatial

* compositions
(also of text)

* correlations/
relationships

Data Scales
* nominal

* ordinal

e interval

* ratio

Analyses

» statistical
* temporal
* geospatial
» topical

* relational

Visualizations

* table

* chart

* graph

* map

* tree

* network

Graphic Symbols Graphic Variables Interactions

» geometric symbols e spatial *zoom
point position * search and locate
line * retinal « filter
area form * details-on-demand
surface color * history
volume optics * extract

* linguistic symbols motion * link and brush
text * projection
numerals * distortion

punctuation marks
* pictorial symbols

images

icons

statistical glyphs

Borner, Katy. 2015. Atlas of Knowledge: Anyone Can Map. Cambridge, MA: The MIT Press. 25.

Network Science Center
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http://scimaps.org/atlas2

Typology of the Data Visualization Literacy Framework

Insight Needs Data Scales  Analyses Visualizations  Graphic Symbols Graphic Variables Interactions
* categorize/cluster | * nominal » statistical « table » geometric symbols e spatial *zoom
* order/rank/sort * ordinal * temporal * chart point position * search and locate
« distributions (also | «interval * geospatial e+ graph line * retinal « filter
outliers, gaps) * ratio * topical * map area form * details-on-demand
* comparisons * relational s tree surface color * history
* trends (process * network volume optics * extract
and time) * linguistic symbols motion * link and brush
* geospatial text * projection
* compositions numerals * distortion
(also of text) punctuation marks
* correlations/ * pictorial symbols
relationships images
icons
statistical glyphs

Borner, Katy. 2015. Atlas of Knowledge: Anyone Can Map. Cambridge, MA: The MIT Press. 26-27.

Cyberinfrastructure for
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Bertin, 1967

selection

order

quantity

association

g 3 c NS Cyberinfrastructure for
S Network Science Center

Wehrend
& Lewis,
1996
categorize

rank

distribution

compare

correlate

Few, 2004

ranking

distribution

nominal
comparison
& deviation

time series
geospatial

part-to-
whole

correlation

Yau, 2011 Rendgen &
Wiedemann,
2012
category

differences

patterns time

over time

spatial location

relations

proportions

relationships  hierarchy

Frankel,
2012

compare
and
contrast

process
and time

form and
structure

Tool: Many
Eyes

compare
data values

track rises
and falls
over time

generate
maps

see parts
of whole,
analyze text

relations
between
data points

Tool: Chart
Chooser

table

distribution

comparison

trend

composition

relationship

Borner,
2014

categorize/
cluster

order/rank/
sort

distributions
(also outliers,

gaps)
comparisons

trends
(process and
time)

geospatial

compositions
(also of text)

correlations/
relationships
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Typology of the Data Visualization Literacy Framework

Insight Needs

* categorize/cluster

* order/rank/sort

« distributions (also
outliers, gaps)

* comparisons

* trends (process
and time)

* geospatial

* compositions
(also of text)

* correlations/
relationships

Data Scales
* nominal

* ordinal

e interval

* ratio

Analyses

* statistical
* temporal
* geospatial
* topical

* relational

Visualizations

* table

* chart

* graph

* map

* tree

* network

Graphic Symbols Graphic Variables Interactions

» geometric symbols e spatial *zoom
point position * search and locate
line * retinal « filter
area form * details-on-demand
surface color * history
volume optics * extract

* linguistic symbols motion * link and brush
text * projection
numerals * distortion

punctuation marks
* pictorial symbols

images

icons

statistical glyphs

Borner, Katy. 2015. Atlas of Knowledge: Anyone Can Map. Cambridge, MA: The MIT Press. 30-31.

Network Science Center
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Visualization Types

Chart

Pie Chart Bubble Chart

Graph

3 2010 2011 2012 2013 2014 2015 2016 2017 2018

Temporal Bar Graph

Map

N -
02%  24%  46% 68% 810% >10%

Choropleth Map  Proportional Symbol Map

Network Science Center

Tree

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Dendrogram

Network © _® _@®~
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Visualize: Reference Systems

Visualization Types
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Visualize: Reference Systems, Graphic Symbols and

Variables
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Typology of the Data Visualization Literacy Framework

Insight Needs Data Scales  Analyses Visualizations | Graphic Symbols Graphic Variables Interactions
* categorize/cluster «nominal » statistical « table » geometric symbols | e spatial *zoom
* order/rank/sort * ordinal * temporal * chart point position * search and locate
« distributions (also «interval * geospatial e+ graph line * retinal « filter
outliers, gaps) * ratio * topical * map area form * details-on-demand
* comparisons * relational s tree surface color * history
* trends (process * network volume optics * extract
and time) * linguistic symbols motion * link and brush
* geospatial text * projection
* compositions numerals * distortion
(also of text) punctuation marks
* correlations/ * pictorial symbols
relationships images
icons
statistical glyphs

Borner, Katy. 2015. Atlas of Knowledge: Anyone Can Map. Cambridge, MA: The MIT Press. 32-33.
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Typology of the Data Visualization Literacy Framework

Insight Needs Data Scales  Analyses Visualizations  Graphic Symbols Graphic Variables | Interactions
* categorize/cluster «nominal » statistical « table » geometric symbols |« spatial *zoom
* order/rank/sort * ordinal * temporal * chart point position * search and locate
« distributions (also «interval * geospatial e+ graph line * retinal « filter
outliers, gaps) * ratio * topical * map area form * details-on-demand
* comparisons * relational s tree surface color * history
* trends (process * network volume optics * extract
and time) * linguistic symbols motion * link and brush
* geospatial text * projection
* compositions numerals * distortion
(also of text) punctuation marks
* correlations/ * pictorial symbols
relationships images
icons
statistical glyphs

Borner, Katy. 2015. Atlas of Knowledge: Anyone Can Map. Cambridge, MA: The MIT Press. 34-35.
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Graphic Variable Types

Position: x, y; possibly z Quantitativ More

A Position

Form: . e

* Size Quantitativ Length

» Shape Qualitative —

« Rotation (Orientation) Quar Angle Rotation

Color: g VL e

* Value (Lightness) L e § Area

» Hue (Tint) HEE Thtive o O

« Saturation (Intensity) Dy Volume

Optics: Blur, Transparency, Shading, Stereoscopic Depth DD

Texture: Spacing, Granularity, Pattern, Orientation, Gradient Color Hue Color Value | | Color Saturation
v [ [ OO0 e [

Motion: Speed, Velocity, Rhythm

Less

CNS ioceree
Networl ice Center
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Point Line Symbols Symbols
— | S X A
©| O
BlE|Y Yj b YWT// VJTText Y%T
2 o TT > “T—T >
“a X X X X
Size o
. c o O | | | Tet Text Text - See Atlas of Knowledge
5 36-39 for
% Shape ] pages
é ® A ® | Text Text 7ext complete table.
>
Z — o o 0 0 o | | | | | Text Text Text ‘ ‘
8 | sl h Qualitative
R ° e o o L ) | | | | | Text Text Text ‘ (alive) ‘ (dead)
> |_ U‘ Also called:
[ .
E £ Saturation - Categorical Attributes
% x Identity Channels
6 o Granularity :.::
; LXK . .
£ — Quantitative
¥ | Pattern 227 [pta
744 5] 5 Also called:
9 .
2 Blur 5 6% &8 o @ @ I(\)/IrdeljedAttrlbutes
le) agnitude Channels
c
2| Speed
'16 (2 2 o [ o
®c =
@ w¥ Network Science Center 69




Graphic Variable Types Versus Graphic Symbol Types
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INDIANA UI Y
C N S Cyberinfrastructure for LUDDY SCHOOL OF
Network Science Center INFORMATICS, COMPUTING, AND ENGINEERING

_Advance'you? skills in one of the most in demand careers through this six=
CEOS) online course focused on understanding and creating data visualizat

translate complex data into actionable insights.

T R i N
( FLYER ) REGISTER FOR JAN 9-FEB 19, 2023 ([ FAQS )
(o) NRERREY (o)

Learn from Experts Evolve Yourself Make a Difference
Connect with industry professionals and leading Gain forever knowledge and skill-up in powerful data Embrace data-driven decision-making in your
researchers. visualization tools. personal and professional life.
https://visanalytics.cns.iu.edu US Employers which have sent students include

The Boeing Company, Eli Lilly, DOE, CDC, NSWC Crane.
C NS Kb emes Coter


https://visanalytics.cns.iu.edu/

INDIANA UNIVERSITY
c N S Cyberinfrastructure for SCHOOL OF INFORMATICS,
Network Science Center COMPUTING, AND ENGINEERING

Q&A




From registration form prompt:

“What questions do you have about data visualizing as a component of program
evaluation?”

 Whatis agood strategy to determine metrics you would like to evaluate?

 How expensiveis it?

* Do you have best practices to share?

* What are the most effective ways to tell stories using visual data?

» Best Tools especially for statistical evaluation.

 Whatis the best way todo it?

* Sources and measures of impact outside of the usual; visualization for
different audiences

 How to best avoid skewing interpretations -- our eyes can be deceived...

* What trainings or professional development opportunities do you all
recommend to further our knowledge on this topic?
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