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Places & Spaces: Mapping Science Exhibit

1st Decade (2005-2014)

Maps

Iteration | (2005)
The Power of Maps
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Iteration Il (2007)

The Power of Forecasts

lteration V (2009)
Science Maps for Science Policy Makers

Iteration VII (2011)

Science Maps as Visual Interfaces to Digital Libraries
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Iteration IX (2013)

Science Maps Showing Trends and Dynamics

Cyberinfrastructure for
Network Science Center

Iteration 11 (2006)

The Power of Reference Systems

=
Iteration IV (2008)

Science Maps for Economic Decision Makers

ARE

Iteration VI (2010)

Science Maps for Scholars

Iteration VIII (2012)

Science Maps for Kids

Iteration X (2014)
The Future of Science Mapping

2nd Decade (2015-2024)

Macroscopes

Iteration XI (2015)

Macroscopes for Interacting with Science

Iteration X111 (2017)
Macroscopes for Playing with Scale

Iteration XII (2016)

Macroscopes for Making Sense of Science

Iteration XIV (2018)

Macroscopes for Ensuring our Well-being

http://scimaps.org

100

MAPS

in large format, full color, and
high resolution.
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43

MACROSCOPE MAKERS
including one whose job title is
“Truth and Beauty Operator.”

382

DISPLAY VENUES
from the Cannes Film Festival
to the World Economic Forum.

248

MAPMAKERS :
from fields as disparate as art,
urban planning, engineering,
and the history of science.

20

MACROSCOPES
for touching all kinds of data.

354

PRESS ITEMS
including articles in Nature,
Science, USA Today, and Wired.


http://scimaps.org/

Map of Scientific Collaborations from 2005-2009

Computed Using Data from Elsevier's Scopus

VII.6 Stream of Scientific Collaborations Between World Cities - Olivier H. Beauchesne - 2012




Bruce W. Herr Il (Chalklabs & IU), Gully Burns (ISI), David Newman (UCI), Edmund TaIIey (NIH)

The National Institutes of Health (NIH) is organized as a
multitude of Institutes and Centers whose missions are
primarily focused on distinct diseases. However, disease
etiologies and therapies flout scientific boundaries,

and thus there is tremendous overlap in the kinds of
research funded by each Institute. This creates a
daunting landscape for decisions on research
directions, funding allocations, and policy
formulations. Shown here is devised an
interactive topic map for navigating this
landscape, online at www.nihmaps.org.
Institute abbreviations can be found

at www.nih.gov/icd.
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An area of the map focused on cardio-
vascular functien and dysfunctien.
‘Cardiac Failure (primarily funded by
NHLEI) is topically clustered next to
Stroke (NINDS), since these are the two
major medical emergencies associated
with ischemia, which results from a re-
stricted blood supply. Also localized in
this area are grants focused on Nitric
Oxide (NOS) Signaling, a major biochem-
ical pathway for vasodilation, and grants

'on Hemodynamics, Sickle Cell Disease,

and Aneurysms.

An area of the map fecused on neural
circuits, which shows the diversity of
topics and NIH Institutes that

fund researchiin this area, such as:
Cardiorespiratory Requlation,

primarily funded by NHLBI; Visual
Processing, primarily funded by NEL and
Epilepsy, primarily funded by NINDS.
For color coding, see legend in the

upper-leftinset.
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‘We are all familiar with traditional maps that show the relationships between countries, provinces,
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|
1 o A | » o= g e % @ Y Y states, and cities. Similar relationships exist between the various disciplines and research topics in
| | L L 1 | science. This allows us to map the structure of science.
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One of the first maps of science was developed at the Institute for Scientific Information ever 30
vears ago. It identified 41 areas of science from the citation patterns in 17,000 scientific papers.

That early map was intriguing, but it didn’t cover enough of science to accurately define its structure.
The Social Sciences are the smallest and is our starting point, the purest of all sciences. It lies at the outer edge of the map.

most diffuse of all the sciences. and are applied sciences that draw upon
serves as the link between Medical Sciences knowledge in Mathematics and Physics. These three disciplines provide a good example of a
{Psychiatry) and the Social Sciences. Statist linear progression from cne pure science (Mathematics) to ancther (Physics) through multiple
sarves as the link with Computer Science disciplines. Although applied, these disciplines are highly concentrated with distinct bands of
and Mathematics. research communities that link them. Bands indicale interdisciplinary research

Things are different today. We have enormous computing power and advanced visualization
software that make mapping of the structure of science possible. This galaxy-like map of science
(left) was generated at Sandia National Laboratories using an advanced graph layout routine (VxOrd)
from the citation patterns in 800,000 scientific papers published in 2002, Each dot in the galaxy
represents one of the 96,000 research communities active ence in 2002, A research community
is a group of papers [9 on average) that are written on the ¢ research topic in a given year. Over
time, communities can be born, continue, split, merge, or die.
Research is highly concentrated in and

These disciplines have few, but very The map of science can be used as a tool for science strategy. This is the terrain in which
distinct, bands of research communities that link organizations and institutions locate their scientific capabilities. Additional information about the
them. The thickness of these bands indicates an scientific and economic impact of each research community allows policy makers to decide which
extensive amount of interdisciplinary research, areas to explore, exploit, abandon, or ignore.
which suggests that the boundaries between
Physics and Chemistry are not as distinct as one

‘We also envision the map as an educational tool. For children, the theoretical relationship between
might assume.

areas of science can be replaced with a concrete map showing how math, physics, chemistry, biology
and social studies interact, For advanced students, arcas of interest can be located and neighboring
areas can be explored.

Nanotechnology

Mast research communities in
nanotechnology are concentrated in
and
However, many disciplines
in the Life and Medical Sciences also
have nanotechnology applications

Psychiatry -NeUroscience

KX S Proteomics
=~ Radiology
! Pk ¥ Research communities in proteomics
; g, : : i : are centered in ‘mistry. In addition,

‘Biochemistr ; : i X e . there is a heavy focus in the tools section
¥ S b 3 2 ¥ 4 of chemistry, such as

The balance of the proteomics
4 ; : : L, ks G R b L ety communities are widely dispersed among

Genera| i L : p ! : i Ry 7 v A g the Life and Medical Sciences

Medicine

Medical T'reattﬁr_teh't’s;

The Life Seiences, including Biology and

R .2 g : Biox . are less concentrated than
R Immunology . Chemistry or Physics. Bands of linking

i i research can be seen between the larger

i S areas in the Life Sciences; for instance
The Medical Sciences include broad therapeutic = x Infectious Disease between Biology and I ) 1y, and
studies and targeted areas of Treatment (e.g. central o between Biology and Env nental Scie
nervous system, cardiology, gastroenterclogy, eic.) 3 Biochemistry is very interesting in that it
Unlike Physics and Chemistry, the medical disciplines is a large discipline that has visible links
are more spread out, suggesting a mora multi- fo disciplines in many areas of the map,
disciplinary approach to research. The transition into including Biclogy, Chemistry, Neuroscience,
Life Sciences (via Animal Science and Biochemistry) and General Medicine. It is perhaps the
is gradual. most interdisciplinary of the sciences,

Pharmacogenomics

Pharmacogenomics is a relatively new
field with most of its activity in Medicine.
It also has many communities in

] and two communities in
the Social Sciences.

1.10 The Structure of Science - Kevin W. Boyack and Richard Klavans - 2005




The United States Patent and Trademark Office does scientists and
industry a great service by granting patents to protect inventions.
Inventions are categorized in a taxonomy that groups patents by indus-
ry or use, proximate function, effect or product, and structure. At the
time of this writing there are 160,523 categories in a hierarchy that goes
15 levels deep. We display the first three levels (13,529 categories) at
right in what might be considered a textual map of inventions,

Impact The US Patent Hierarchy Prior Art

Patent applications are required to be unique and non-obvious, partially
by revealing any previous patents that might be similar in nature or
provide a foundation for the current invention. In this way we can trace
the impact of a single patent, seeing how many patents and categories
it affects.

The patent on Goretex—a lightweight, durable synthetic fiber—is an

example of one that has had significant impact. The box below enlarges
the section of the hierarchy where it is filed, and the red lines (arranged
1o start along a time line from 1981 to 2006) point to the 130 categories
that cantain 182 patents, from waterproof clothing to surgical cosmetic
implants, that mention Goretex as “prior art”

Mew patents often build on older ideas from many different categories.
Here, blue lines originate in the sixteen categories that contain patents
cited as prior art for a patent on “gold nanoshells” Gold nanoshells are a
new invention: tiny gold spheres iwith a diameter ten million times smaller
than a human hair) that can be used to make tumors mare visible in infra-
red scans; they have even helped cause complete remission of tumors in
tests with laboratory mice. The blue lines show that widely separated
categories provided background for this invention.

Keeping is an impor part of

any taxonomy, including the patent hierarchy. Cateqaries are easier to
understand, search, and maintain if they contain elements that comfortably
fit the definition of the category, The box abave shows tiny bar charts, part
of a Taxenomy Vaildator that reveals whether elements fit their categories.
Categories may need to be redefined, and sometimes need 1o be split
when they get too vague or large; a problem shared by many classification
systems in this information-rich century, But how can we tell which ones to
eliminate, add or revise—or how to revise them—in the complex, abstract
sociolinguistic spaces we partition into ontologies?

Something as simple as a bar chart helps people see how entitiesina
category relate to that category. Here, each bar encodes a “distance to
protetype”; how much each patent differs from an idealized "prototype
patent” for that category. A measure like this can be based on statistics,
computational linguistics, or even human insight. Thus a category with
mostly small bars is a good one, and a generally ragged one needs scrutiny
or reorganization; but ene that has only twa or three tall bars may mean
that only those few elements doen't belong,

Even simple visuals can make thinking easier by providing better distilled
data to the eye: vastly more data than working memory can hold as words.
They facus peaple on exactly the right issues, and support them with the
comprehensive averviews they need to make mare informed judgements.

1.8 Taxonomy Visualization of Patent Data - Katy Borner, Elisha F. Hardy, Bruce W. Herr Il, Todd Holloway, and W. Bradford Paley - 2006
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V1.3 Diseasome: The Human Disease Network - Mathieu Bastian and Sébastien Heymann - 2009
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Check out our Zoom Maps online!
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@ MACROSCOPES FOR INTERACTING WITH SCIENCE

Earth AcademyScope Mapping Global Society Charting Culture

Weather on a worldwide scale Exploring the scientific landscape Local news from a global perspective 2,600 years of human history in & minutes




% Play with Scale » Megaregions of the US -

T H E M E GA R E G I 0 N s 0 F T H E U s Explore the new geography of commuter connections in the US.

Tap to identify regions. Tap and hold to see a single location’s commuteshed.

R

Leaflet | Nelson & Rae CC BY 3.0

T = This is the Roanoke (Raleigh) megaregion.

Megaregions of the US —Garrett Dash Nelson and Alasdair Rae — 2016



‘ » Make Sense of Science » Smelly Maps
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Iteration XI (2015) Iteration XII (2016)

Macroscopes for Interacting with Science Macroscopes for Making Sense of Science
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Iteration X111 (2017) Iteration X1V (2018)
Macroscopes for Playing with Scale Macroscopes for Ensuring our Well-being
=R
Iteration XV (2019)

Macroscopes for Tracking the Flow of Resources

http://idemo.cns.iu.edu/macroscope-kiosk
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Call for Macroscopes: 18t" Iteration

What to Submit Review Process
Submissions will be reviewed and evaluated by

the exhibit advisory board (listed below) in
* Title of macroscope terms of their:

Each entry needs to include:

* Scientific rigor
* Value as a tool for data exploration
* Link to online site that features the macroscope tool or to « Ability to provide new, actionable insights

* Author(s) name, email address, affiliation, mailing address

executable code e Relevance for a general audience

* Macroscope tool description (300 words max): user group and
needs served, data used, data analysis performed, Important Dates
visualization techniques applied, and main insights gained « Submissions due: March 15, 2022

Notification to mapmakers: April 15, 2022
Submit final entries: May 30, 2022
Iteration ready for display: August 31, 2022

» References to relevant publications or online sites that should
be cited, links to related projects or works

* Tell us about the impact your data visualization has had on
public awareness, social policy, or political action.

https://scimaps.org/call
CNS g 19
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Multi-Level Graph Representation for Big
Data Arising in Science Mapping

Organizers

Katy Borner (Indiana University — Bloomington, US)
Stephen G. Kobourov (University of Arizona — Tucson, US)

For support, please contact
Susanne Bach-Bernhard for administrative matters
Shida Kunz for scientific matters
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The July/Aug 2022 special issue in IEEE
Comfauter Graphics and Applications on
“Multi-Level Graph Representations for
Big Data in Science”

Articles due for review:
December 29, 2021

Guest editors:

e Katy Borner, Indiana University,
Bloomington, US

* Stephen G. Kobourov, University of
Arizona, Tucson, US

https://www.computer.org/digital-
library/magazines/cg/call-for-papers-
special-issue-on-multi-level-graph-
representations-for-big-data-in-science

Call for Papers: Special Issue on
Multi-level Graph Representations for
Big Data in Science

CG&A seeks submissions for this upcoming special issue.

For centuries, cartographic maps have guided human exploration. While being rather imperfect initially, they helped explorers find
promised lands and return home safely. Recent advances in data, algorithms, and computing infrastructures make it possible to
map humankind’s collective scholarly knowledge and technology expertise by using topic maps on which “continents” represent
major areas of science (e.g., mathematics, physics, or medicine) and zooming reveals successively more detailed subareas.
Basemaps of science and technology are generated by analyzing citations links between millions of publications and/or patents.
‘Data overlays” (e.g., showing all publications by one scholar, institution, or country or the career trajectory of a scholar as a
pathway) are generated by science-locating relevant publication records based on topical similarity. Despite the demonstrated utility
of such maps, current approaches do not scale to the hundreds of millions of data records now available. The main challenge is
designing efficient and effective methods to visualize and interact with more than 100 million scholarly publications at multiple
levels of resolution.

This special issue invites researchers in cartography, data visualization, science of science, graph drawing, and other domains to
submit novel and promising new research on graph mining and layout algorithms and their application to the development of
science mapping standards and services. Topics of interest include:

» Science of science user needs and applications

« Efficient multi-level graph algorithms

« Network visualizations

« Effective user interfaces to large-scale data visualizations

Deadlines

Submissions due: 29 December 2021
Preliminary notification: 2 March 2022
Revisions due: 6 April 2022

Final notification: 11 May 2022

Final version due: 25 May 2022
Publication: July/August 2022


https://www.computer.org/digital-library/magazines/cg/call-for-papers-special-issue-on-multi-level-graph-representations-for-big-data-in-science
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The workshop on “Modeling the Structure and Evolution
of Science,” supported by the James S. McDonnell
Foundation was held at Indiana University in
Bloomington, Indiana in 2006.

Relevant scholarly work was published in special journal
issues—"Science of Science: Conceptualizations and
Models of Science” in Journal of Informetrics (2009);
“Modeling Science: Studying the Structure and
Dynamics of Science” in Scientometrics (2011); and
“Simulating the Processes of Science, Technology, and
Innovation” in Scientometrics (2016)—showcasing
research results and editorials that aimed to compare
different model classes and create synergies across
disciplinary boundaries.

The Springer book Models of Science Dynamics (2012)
provides a general introduction and diverse model
examples.
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Government, academic, and industry leaders discussed
challenges and opportunities associated with using big
data, visual analytics, and computational models in STI
decision-making.

@ Home Agenda Confirmed Speakers Organizers & Advisors Venue Register Contact

Modeling Science, Technology &
Innovation Conference

WASHINGTON D.C. | MAY 17-18, 2016

Conference slides, recordings, and report are available at
http://modsti.cns.iu.edu/report
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Modeling and Visualizing Science and Technology Developments

PROGRAMS
Arthur M. Sackler

COLLOQUIA

Sackler Colloquia

» About Sackler Colloquia

» Upcoming Colloquia Modeling and Visualizing Science and Technology

» Completed Colloguia DeV9|0pmentS

* Sackler Lectures CJj December 45, 2017; irvine, CA

» Video Gallery .s‘ Organized by Katy Borner, H. Eugene Stanley, William Rouse and Paul Trunfio
=

» Connect with Sackler
Colloguia )
Overview

» Give to Sackler Colloguia
B This colloquium was held in Irving, CA on December 4-5, 2017

Cultural Programs , ) . ) o ,
This colloquium brought together researchers and practitioners from multiple disciplines to present, discuss, and advance

computational models and visualizations of science and technology (S&T). Existing computational models are being applied by
academia, government, and industry to explore questions such as: What jobs will exist in ten years and what career paths lead to
success? Which types of institutions will likely be most innovative in the future? How will the higher education cost bubble burst
affect these institutions? What funding strategies have the highest return on investment? How will changing demographics,
alternative economic growth trajectories, and relationships among nations impact answers to these and other questions? Large-

Distinctive Voices

Kavli Frontiers of Science

Keck Futures Initiative scale datasets (e.g., publications, patents, funding, clinical trials, stock market, social media data) can now be utilized to simulate
the structure and evolution of S&T. Advances in computational power have created the possibility of implementing scalable,

LabX empirically validated computational models. However, because the databases are massive and multidimensional, both the data
and the models tend to exceed human comprehension. How can advances in data visualizations be effectively employed to

Sackler Forum communicate the data, the models, and the model results to diverse stakeholder groups? Who will be the users of next generation

models and visualizations and what decisions will they be addressing.
Science & Entertainment
Exchange

Videos of the talks are available on the Sackler YouTube Channel. https //WWW pnaS.Org/m Ode“ng
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Skill Discrepancies Between Research, Education, and
Jobs Reveal the Critical Need to Supply Soft Skills for the
Data Economy

Borner, Katy, Olga Scrivner, Mike Gallant, Shutian Ma,
Xiaozhong Liu, Keith Chewning, Lingfei Wue, and James A.
Evans. 2018. “Skill Discrepancies Between Research,
Education, and Jobs Reveal the Critical Need to Supply Soft
Skills for the Data Economy.” PNAS 115(50): 12630-12637.
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Skill discrepancies between research, education, and
jobs reveal the critical need to supply soft skills

for the data economy
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Edited by William B. Rouse, Stevens Institute of Technology, Hoboken, NJ, and accepted by Editorial Board Member Pablo G. Debenedetti September 12, 2018

(received for review March 14, 2018)

Rapid research progress in science and technology (S&T) and con-
tinuously shifting workforce needs exert pressure on each other
and on the educational and training systems that link them. Higher
education institutions aim to equip new generations of students
with skills and expertise relevant to workforce participation for
decades to come, but their offerings sometimes misalign with
commercial needs and new techniques forged at the frontiers of
research. Here, we analyze and visualize the dynamic skill (mis-)
alignment between academic push, industry pull, and educational
offerings, paying special attention to the rapidly emerging areas
of data science and data engineering (DS/DE). The visualizations
and computational models presented here can help key decision
makers understand the evolving structure of skills so that they can
craft educational programs that serve workforce needs. Our study
uses millions of publications, course syllabi, and job advertise-
ments published between 2010 and 2016. We show how courses
mediate between research and jobs. We also discover responsive-
ness in the academic, educational, and industrial system in how
skill demands from industry are as likely to drive skill attention in
research as the converse. Finally, we reveal the increasing impor-
tance of uniquely human skills, such as communication, negotia-
tion, and persuasion. These skills are currently underexamined in
research and undersupplied through education for the labor mar-
ket. In an increasingly data-driven economy, the demand for “soft”
social skills, like teamwork and communication, increase with
greater demand for “hard” technical skills and tools.

science of science | job market | data mining | visualization |
market gap analysis

Educuli()n has been a critical vehicle of economic growth and
social progress throughout the modern era. Higher education

doors. Some predictions say hundreds or even thousands of col-
leges and universities will close or merge in the coming years (4).

In addition, there seem to be major discrepancies and delays
between leading scientific research, job market needs, and edu-
cational content. This has been particularly expressed with re-
spect to science, technology, engineering, and mathematics jobs,
where scientific and technological progress is rapid. Strategic
decision making on what to teach, whom to hire, and what new
rescarch to fund benefits from a systematic analysis of the in-
terplay between science and technology (S&T) developments,
courses and degrees offered, and job market needs. Specifically,
stakeholders in US higher education urgently need answers to
the following questions. (i) Students: what jobs might exist in 5—
10 years? What educational trajectories will best achieve my dream
job? What core and specialized skills are required for what jobs
and offered by what schools and programs? (ii) Teachers: what
course updates are most needed? What balance of timely vs.
timeless knowledge should 1T teach? How can I innovate in
teaching and maintain job sccurity or tenure? (iif) Universities:
what programs should be created? What is my competition do-
ing? How do I tailor programs to fit workforce needs? (iv) Sci-
ence funders: how can S&T investments improve short- and
long-term prosperity? Where will advances in knowledge
also yield advances in skills and technology (5)? (v) Employers:
what skills are needed next year and in 5 and 10 years? Which
institutions produce the right talent? What skills are listed in job
advertisements by my competition? How do I hire and train

This paper results from the Arthur M. Sackler Colloquium of the National Academy of Sci-
ences, “Modeling and Visualizing Science and Technology Developments,” held Decem-

har A & IN17 ot tha Arnald and Mahal Badkman Cantar Af tha A Acan
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Study the (mis)match and temporal
dynamics of S&T progress, education and
workforce development options, and job
requirements.

Challenges:
» Rapid change of STEM knowledge
* Increaseintools, Al

 Social skills (project management, team
leadership)

* Increasing team size

Cyberinfrastructure for
Network Science Center

Biotechnology

Jobs
’ I, !\ 121,073,950

advertisements
from Burning

/I'l\ Glass Technologies

_ Courses
=t= 2,744,311 syllabi

from Open

m Syllabus Project

Publications
1,048,575 from
) —"4 Web of Science

A=

Fig. 1. The interplay of job market demands, educational course offerings,
and progress in S&T as captured in publications. Color-coded mountains (+)
and valleys (=) indicate different skill clusters. For example, skills related to
Biotechnology might be mentioned frequently in job descriptions and
taught in many courses, but they may not be as prevalent in academic
publications. In other words, there are papers that mention these skills, but
labor demand and commercial activity might be outstripping publication
activity in this area. The numbers of jobs, courses, and publications that have
skills associated and are used in this study are given on the right. 30
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.
Stakeholders and Insight Needs

» Students: What jobs will exist in 1-4 years? What program/learning trajectory is best to get/keep my
dream job?

« Teachers: What course updates are needed? What balance of timely and timeless knowledge (to get a
job vs. learn how to learn) should | teach? How to innovate in teaching and maintain job security or
tenure?

« Universities: What programs should be created? What is my competition doing? How do | tailor
programs to fit local needs?

« Science Funders: How can S&T investments improve short- and long-term prosperity? Where will
advances in knowledge also yield advances in skills and technology?

« Employers: What skills are needed next year and in 5 and 10 years? Which institutions produce the right
talent? What skills does my competition list in job advertisements?

« Economic Developers: What critical skills are needed to improve business retention, expansion, and
recruitment in aregion?

What is ROl of my time, money, compassion?

Cyberinfrastructure for
c N S Network Science Center 3 5



Urgency

« 35% of UK jobs, and 30% in London, are at high risk from automation over the

coming 20 years.
https://www?2.deloitte.com/content/dam/Deloitte/uk/Documents/uk-futures/london-futures-agiletown.pdf

* The aerospace industry and NASA have a disproportionately large percentage of
workers aged 50 and older compared to the national average, and up to half of
the current workforce will be eligible for retirement within the coming five

years.
Astronautics AIAA (2012) Recruiting, retaining, and developing a world-class aerospace workforce.
https://www.aiaa.org/uploadedFiles/Issues and Advocacy/Education and Workforce/Aerospace%20Work

force-%20030112.pdf

* Therise of artificial intelligence will lead to the displacement of millions of blue-

collar as well as white-collar jobs in the coming decade. Auerswald PE (2017) The Code
Economy: A Forty-thousand-year History; Beyer D (2016) The future of machine intelligence: Perspectives
from leading practitioners ; Brynjolfsson E, McAfee A (2014) The second machine age: Work, progress, and
prosperity in a time of brilliant technologies; Ford M (2015) Rise of the Robots: Technology and the Threat

of a Jobless Future.

Cyberinfrastructure for
c N S Network Science Center 3 6
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Year #Skills
Data Type #Records #Records with skills #Records without skills
All Courses 3,062,277 2,744 311 54,733
All Jobs 132,011,926 121,073,950 10,937,976
DSDE Jobs 69,405 65,944 3,461
All Publications 15,691,162 1,048,575 14,642,587
DSDE Publications 1,048,575 807,756 240,819
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Fig. 2. Basemap of 13,218 skills.
In this map, each dot is a skill,

triangles identify skill clusters, and
squares represent skill families
from the Burning Glass (BG)
taxonomy. Labels are given for all
skill family nodes and for the
largest skill cluster (NA) to indicate
placement of relevant subtrees.
Additionally, hard and soft skills
are overlaid using purple and
orange nodes, respectively; node
area size coding indicates base 10
log of skill frequency in DS/DE
jobs. Skill area computation uses
Voronoi tessellation.
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Fig. 3. Basemap of 13,218 skills
with overlays of skill frequency
in jobs, courses, and publications.
This figure substantiates the
conceptual drawingin Fig. 1
using millions of data records.
Jobs skills are plotted in blue,
courses are inred, and
publications are in green. Node
areasize coding indicates base
10 log of skills frequency. The
top 20 most frequent skills are
labeled, and label sizes denote
skill frequency.
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Android

Apache Hadoop
Document Management
Electrical Engineering
Energy Engineering
Environmental Science
Facebook

HRMS

Industrial Engineering
Marketing Analytics
Maximo

Social Gaming

Social Media

Storage Systems

Web Analytics

Skill bursts in Jobs |
Skill bursts in Publications [[NNENEGEGEGEGEEEEE

Skill co-bursts

2010 2011 2012 2013 2014 2015 2016

Fig. 4. Burst of activity in DS/DE skills in jobs and publications. Each burst is rendered as a horizontal bar with a start and an end date; skill term is shown on
the left. Skills that burst in jobs are blue; skills bursting in publications are green. Seven skills burst in both datasets during the same years and are shown in
gray. HRMS stands for human resources management system, and Maximo is an IBM system for managing physical assets.
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Fig. 5.

Structural and dynamic differences between skill distributions in jobs, courses, and publications for 2010-2013 and 2014-2016. (A) Poincaré disks

comparing the centrality of soft skills (orange) and hard skills (purple) across jobs, courses, and publications. (B) KL divergence matrix for jobs, courses, and
publications in 2010-2013 and 2014-2016. (C) The most surprising skills in publications and jobs; R is a scripting language, VTAM refers to the IBM Virtual

Telecommunication Access Method application, VS is the integrated development environment Visual Studio, and SAS is a data analytics software.
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. Strength of influence mapping. Top 200 most frequent skills in jobs (blue) and in publications (green) plotted on the skills basemap from Fig. 2.
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Fig. 7. Multivariate Hawkes
Process influence network of
DS/DE skills within job
advertisements 2010-2016.
Each of the 45 nodes
represents a top-frequency
skill (29 soft and 16 hard skills)
with a strong influence edge
from/to other skill(s) in job
advertisements between 2010
and 2016. Node and label size
correspond to the number of
times that the skill appeared in
a job advertisement. Thickness
of the 75 directed edges

indicates influence strength.
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Fig. 7. Hawkes influence
network of DS/DE skills within
job advertisements 2010-
2016. Each of the 45 nodes
represents a top-frequency skill
(29 soft and 16 hard skills) with
a strong influence edge from/to
other skill(s) in job
advertisements between 2010
and 2016. Node and label size
correspond to the number of
times that the skill appeared in
a job advertisement. Thickness
of the 75 directed edges
indicates influence strength.
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Results

* Novel cross-walk for mapping publications, course offerings, and job via skills.

« Timing and strength of burst of activity for skills (e.g., Oracle, Customer Service) in
publications, course offerings, and job advertisements.

* Uniquely human skills such as communication, negotiation, and complex service provision
are currently underexamined in research and undersupplied through education for the
labor market in an increasingly automated and Al economy.

* The same pattern manifests in the domain of DS/DE where teamwork and communication
skills increase in value with greater demand for data analytics skills and tools.

« Skilldemands from industry are as likely to drive skill attention in research as the converse.
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Atlas of Forecasts: Models of (Desirable) Futures

Model Classes
[intentional abstraction]
Many different modeling approaches exist. The g TARGET SYSTEM )
table below by William B. Rouse shows exemplary (%} \ A
levels of modeling, issues needing to be addressed, 5 Thematician’s
d models that have been successtully applied to w i | ﬁ
and mo ¥ B =
T i Application
support decision-making,. = Non-formal model
o
Level Concern Models H
Society GDP, Supply/Demand, Policy Macroeconomic E Interpretation‘ﬁ
Economic Cycles System Dynamics g s FOR e
Intra-Firm Relations, Competition | Network Models
Organizations | Profit Maximization Microeconomic
5 e
Competition Game Theory
Executable model
Investment DCF, Options
[same model]
Processes | Patient, Material Flow Discrete-Event Models m
. . Programmer’s
Process Efficiency Learning Models specifications Elaente
Workflow Network Models Comp. Program
People Patient Behavior Agent-Based Models
Risk Aversion Utility Models
Disease Progression Markov, Bayes Models
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Modeling Goals

Models aim to capture key phenomena at the levels that are most relevant for
the understanding, communication, and management of systems. This spread
describes and exemplifies key phenomena that are commonly studied when
aiming to understand complex systems. Phenomena are roughly organized

by question type (temporal, geospatial, topical, and network) and complexity.
Models that use static reference systems and no feedback cycles are introduced
first, followed by phenomena that aim to capture evolving networks and activity
patterns unfolding over them, including feedback or causal loops.

exponential function.
Albert A. Bartlett

Phenomena of Interest

master list of key phenomena that could be used to
characterize a target system andJor comprehensively
define what system a model aims to capture. Yet any
modeling effort should start with tabulations of the
phenomena to be modeled, together with informa-
tion on target system simplifications that may or
may not be acceptable. Those tabulations can then
be used to choose model class and parameter values
(see Model Class Overview, page 24).

A model might have various aims: to answer
particular types of questions (e.g., temporal/when or
geospatial ‘where—see Questions Overview, page
68); to focus on a specific domain (e.g., education,
science, and/or policy—see Domains Overview,
page 70); and to capture diverse phenomena (such as
those discussed in this spread) at one or more scales,
from micro to macro {see Scales Overview, page 72).

Seasonality

Many systems have an inherent seasonality. For
instance, they might depend on changes in temper-
ature, precipitation, or daylight over the year. Asa
specific example, natural-gas consumption patterns
are predominantly driven by shifts in temperature.
“The largest net withdrawals occur in winter, when
gas is used for heating, see figure below.

Matural Gas Storage Withdrawals and Injections,
Jan. 2010-Jan. 2015 (Billion Citbic Feet per Day)
Ner Injections
n
01
-1
T

200 Jan2on JandN2 Ln2013

ime

2004 Jan 2005
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e greatest shorécoming of the human race is our inability to understand the

Oscillation

Any motion that repeats itselfis called an oscilla-
tion. Fxamples are a swing, or a ball on a spring
that oscillates using the energy minimum x; over
time . The figure below shows the latter example,
with a pen attached to the red ball and paper
moving from right to left as it records the move-
ment of the ball.

4—Mation of Faper

Mation | (=
of Pen

Periodic functions can be used to describe a
particular oscillation, with sine and cosine being
the most common functions used. For example,
the displacement oscillation of the red ball in the
figure sbove can be described by x{A=X cos (24
+@).

Alternatively, differential equations can be used
to describe oscillations (e.g., predator-prey systems
in which rabbit and fox populations oscillate with
a particular phase offset—see the example under
Basic Model in Lotka-Volterra Predator-Prey
Models, page 31).

Synchronization

Some events coordinate over time so they happen
simultaneously. Examples are fireflies that
periodically light up together, excitation patterns

of neurans, people clapping in unison at an
event, or the interdependent actions of traders
in financial markets.

Yoshiki Kuramoto proposed a simple, elegant
mathematical model in the 1970s that simulates
synchronization as a set of coupled oscillators,
represented by blue dots in the image below. Initially,
the oscillators change values thythmically—each
at its own frequency. When the oscillators are
connected, the oscillating nodes begin to influence
each other’s oscillation phases. When oscillators
freeze into sync, they line up only in time, not space.

Kuramoto Oscillators

Full

il Partial
Phase-Locking  Phase-Locking  Phase-Locking

K=1 K=t K-12

Tipping Point

A tipping point (also called a regime shift) refers to
a critical point when gradual changes in external
conditions (e.g., temperature or the availability of
food) lead t a rapid change between the alterna-
tive stable states of a system. The changes can be
irreversible {e.g, if wood burns to ashes or a species
goes extinct).

Some changes might be reversible but without
use of the ariginal path, as the thresholds for those
changes vary in different directions, which is known
as hysteresis. An example is the idealized seesaw
shown below, wherein two opposing states depend
on the position of the figure walking past the
midpaint (see nodes and images 3 and 7) and thus
creating a distance between the two tipping points.

DL U SNy
A e 5

Srate

i

3
A

Distance

Phase Transition

‘The transformation of a thermodynamic system
from one phase or state of matter to another

(e.g, from liquid to gas due to heat) is called

phase transition. Phase transitions also refer to
punctuated equilibria wherein periods of stability
are interrupted by phases of rapid change. The rapid
change is often due to positive feedback loops that

drive the system far from equilibrium and result in
exponential change. For example, the purposeful
rewiring of a network can change a 1D string of
nodes and links into a star-shaped network with
completely different nerwork diffusion dynamics
{see the discussion in Network Models, page 46).

Self~Organized Criticality

Also known as chain reaction, self-organized
criticality (SOC) refers to the fact that a system
is able to sustain only a limited amount of stress.
If stress exceeds a certain critical threshold, then
the system relaxes locally to an unstressed state,
and the stress is distributed to the neighborhood.
Examples of SOCs are earthguakes and nuclear
chain reactions. Another example is sand pile
avalanches, which have been studied experimentally
wsing physical sand piles {see the figure below) and
analytically using cellular sutomata (page 40).

Critical ,_Avalanche Occurs
Slope " Slope Decreases

sw}?ﬁf Increses—*
In 1987, Per Bak and colleagues chowed that

avalanches exhibit a power law distribution

of fls)-5-1 (see the log-log graph below of the

frequency of occurrence f13) of an avalanche of sizz

sversus avalanches rank-ordered by size, for a total

of 200 avalanches).

N

_[J_

[T

Both approaches can be applied to understand
the probability p that a path exists berween two
nodesfedges, or what fraction 1 of failures is
required for the network graph to become discon-
nected (see the model discussion in Cellular
Automara, page 40).

Adaptation and Learning

In evolution, adaptation is the process that species
use 0 become better suited to their environment.
There are phenotype changes (e.g., different bird
beaks exploit different food niches—see Gause’s
Law, page 33), and behavior changes (e.g, birds
adapting to life in urban environments), which are
also called learning. Phenotype and behavioral adap-
tation is often complementary, as can be seen in the
illustration below of dung beetles evolving to have
shorter homs (dashed arrow) that make it possible to
sneak past fighting male competitors (solid arrow) in
order to reach female mates (red symbol at bottom).

sively generated tree pattern, the slgorithm takes an
argument # and produces the five trees shown for
n=1,2, 3, 4, & respectively.

TYTAH

Fractals via Diffusion-Limited
Aggregation

Diffusion is a widely studied phenomenon and

the primary means of transport in many systems.
Diffusion-limited aggregation (DLA) models can
be applied to simulate system growth and behav-
ior, such as that of the sample model result below.
Exemplary systems are snowflakes, lightning, and
cities. The fractal chusters grown by DLA models
are ko called Brownian trees, as particles undergo
a random walk using Brownian motion until they
get within a certain critical range, whereupon they
are pulled into a cluster.

Reaction-Diffusion Dynamics

This phenomenon was initially studied in

Diffusion

Diffusion (also called spreading) can unfold over
discrete or continuous space, or via networks. It may
involve the spread of tangible objects (e.g., goods,
people, or even viruses) or intangible objects (e.g.,
medlia, news, or even bitcoin). Tn the 14th century, the
devastating Black Death (also known as the Plague)
spread throughout Europe via travel in waves—as fast
as one person could travel per day, arriving first at
the outskirts of populated areas (see map below).

Widespread availability and usage of the airline
transportation system has led to vastly different
diffusion patterns. Since the 20th century, many
diseases have traveled via air traffic routes—from
one major urban center to the next—quickly
endangering millions (see the figure below, which
shows virus path probability for SARS; see also
Tmpace of Air Travel on Global Spread of Infectious
Diseases in Arfas of Science, page 150).

37 chemistry for systems in which the concentration
204 of chemical substances changes due to local
= Fractals via Recursion chemical reactions, with diffusion then causing
S0 - A fractal is a pattern that continuously repeats at those substances to be converted into each other
H ™, different scales, such as can be seen in trees, rivers, and rransported in space. The same dynamics
e T T
w i w Inodeled using
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Hungarian mathematician Paul Erdés is shown
in the subsequent figure. The central purple node,
denoting Frdds, has the highest number of links;
orange nodes have more links than green ones.
As time progresses from A to €, nodes and edges
increase, as does the density of the network core.

Aen.

Braess’s Paradox

Adding a road to a congested ad traffic network
can increase overall journey time. This paradox
was discovered in 1968 by mathematician Dietrich
Braess. Models now exist to explain why building
new roads can increase traffic congestion, and
conversely why closing major roads might improve
traffic flow (see the Faster Is Slower example and
model in Game Theory, page 43).

Positive and Negative Feedback Cycles
Many systems exhibit feedback lnops—cyelic
structures of cause and effect that feed system
outputs back to system input, possibly via a series of
secondary processes. There are positive/reinircing
and nepative/balancing feedback cycles.

The book Limits te Groweh (1972) discusses a
number of feedback structures that aim to capture
changes in population size. A causal loop diagram
{sez Model Visualization, page 20) of a population
growth model is shown below: the central rectangle
indicates population size; on the left is the positive/
reinforcing cycle of births per year, parameterized
by average fertility, which accounts for the observed
exponential growth; on the right is the negative/
balancing cycle of death per year, parameterized by
average mortality.

.
Deaths

Births ~
' Per Year

Per Year '

Average Ferlicy Average Morrality
(Fraction of population  (Fractien of population
giving birth each year) dying each year)

Population growth rates for different stable and
unstable scenarios are given on page 7, while diverse
modeling approaches are discussed in Dynamical
Equations (page 32) and Agent-Based Models
{page 48).

Pare 2: Methods | 15
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Modeling Framework

When developing a model of a real-world system, many critical decisions must be
made regarding model components, their behavior, the environment, and system
dynamics evolving over time. Any model design should start with a specification of
stakeholders and their insight needs, followed by phenomena of interest, and finally
the success criteria that define when a model is fit for purpose. Model validation
and results communication must all be detailed. Diverse approaches have been
proposed to provide templates and standards for systematic model development
and documentation—in support of the replicability of results. This spread reviews
prior work on modeling frameworks and then introduces and expands the data
visualization framework presented in Ar/as of Knowledge, Part 2, to cover the
emergent phenomena discussed in the previous spread, as well as the expert-based,
descriptive, and predictive models discussed throughout the dtlas of Forecasts.

We cannot stap the march of history, but we can influence its direction.

Yuval Noah Harari

Prior Work

‘There exist many frameworks that aim to guide
novices and experts in the design, run, visualization,
and validation of models. Most are domain-specific,
focusing on a small number of model classes. Some
aim to develop a typology of impertant concepts,
while others try to codify the different process steps
involved in madeling

For example, the Open Collsboration for Policy
Modelling (OCOPOMO) project has developed and
d

Lo iy dovel el
a palicy process

p
that distinguishes six phases: (1) initial scenario
definition, (2) evidence-based, stakeholder-generated
scenario development, (3) development of concep-
tual modals, (4) programming of policy models, (5)
and generation of model-based scenar-

o5, and (6) evaluation. The model assumes a clase
collaboration between domain experts such as policy
planners and strategic decision-makers, stakehold-
ers, and modeling experts. In phase 5 of the process,
modeling experts instantiate simulation models
with particular variables, run the simulations, and
visualize the model results using text and graphs. The
visualizations help system comp
dependencies and what system behavior is derivable
from current scenario descriptions; as a result, domain
experts, stakeholders, and modeling experts can
provide feedback and help optimize model design
The NTH Cancer Intervention and Surveillance
Modeling Network (CISNET) aims to standard-
ize the description of models in support of model
comparison and rense. They suggest using a set of
seven documents: (1) Model Owerview—an over-
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view of the entire modeling effort, including the
questions that the model was designed to answer;
{2) Model Purpose—a description of the primary
and secondary purpases and problems for which the
model was designed; (3) Parameter Overview—an
overview of the parameters that inform the model;
{4) Assumption Overview—a preliminary aver-

Process @ Interaction Types
Validate &
Interpret

° Data Scale Types o Maodel Types

Typology
o o o o

Insight Neads Data Scales  Models. Visualizations
s s nominal  « descriptive table

» categorize/cluster  » ordinal » predictive  » chart

= order/rankfsort = interval » gragh
. * ratic * map

» oscillation * natwork

= synchronization
..

view for the model's assumptions, both explicit and
implicit; (5) Component Overview—a summary of
the model’s major process components; (&) Output
Owverview—an introduction to the types of outputs
generated by the model; and (7) Result Overview—
a starting point or “reader’s guide” to the various
maodal results.

Uri Wilensky, developer of the agent-based
programming language NetLogo, provides guid-
ance and templates for the proper documentation of
maodels: “What Is 1t2” encourages users to develop
a general description of the phenomens being
modeled; “How It Works™ explains the model;
“How to Use It” gives instructions on how to run
the model and use the interface elements of the
maodal; “Things to Notice™ advises how to describe
interesting phenomena that the model exhibits;
“Things to Try” explains how a user can manipu-
late the model to produce new results; “Extending
the Model” gives suggestions and challenges on
how to change the model to examine new features
and phenomena, similar to the furure work section
of a research paper; “Netlogo Features” discusses
particularly interesting features of NetLogo that are
used in the model; “Related Models™ provides links
to other related agent-based models; and *Credits
and References” directs how to reference whe
creared the model and where the user can go to find
maore information on the model. The templates have
been widely used, resulting in a rich and diverse set

» geometric = spatial » zmam
symbols position
» linguistic  retinal
symbols form
» pictorial color
symbols optics
metion

of well-documented models that are widely used in
research and teaching.

Volker Grimm and colleagues developed the
Owerview, Design concepts, and Details (ODD)
protocol to standardize the description of individ-
ual- and agent-based models (IBMs and ABMs,
respectively) in ecological modeling. ODD defines
how to group information: *Overview™ captures
the purpose of the model; defines model entities,
‘their states, and scales; and provides information on
the model process and run. “Design concepts™ aim
to capture the phenomena that the model aims o
reproduce. “Derails” describe model initialization,
input data, and submedels in a manner that supports
reproducibility. In “Pattern-Oriented Modeling
of Agent-Based Complex Systems,” Grimm and
colleagues argue to use phenomena such as growth
or diffusion patterns to characterize a real-world
system and its dynamics and o develop & model
that might simulate those patterns.

“The UK. Review of Qualiy dssurance of
Covernmens Analyical Madefs details four model
steps: (1) scope and specify, (2) build, (3) validate,
and {4) deliver and use. Given the simplicity and
broad UK. government usage of those steps, we have
attempted to align them with the data visualization
literacy framework (DVL) in Adlar of Knowfedge and
the ModelDVL-FW presented here. The first step
roughly corresponds to user needs acquisition, as
discussed on page 40 in Adas of Knowledge; step 2
corresponds to model design and run (page 185 swep
3 concerns model validation (page 22); and step 4
provides extensive detail on how to deliver and use
models in practice (partly covered on page 20)

Methodology

“The Atlas of Forecasts introduces a general modeling
framework called Model DV L-FW, which aims

o extend and build on the work shove. To our
knowledge, this ambitious endeavor has not been
attempted before, most likely since it would be
difficulr to implement for the following reasons:
existing frameworks have been developed for a vast
range of stakehold o licvmal

and practitioners; there exists no unified language
for core concepts, such as key phenomens; and
existing models have been developed in different
domains, amid different cultures, with various
needs, affordances, and terminclogies.

To overcome these challenges and to standard-
ize language usage and methods across domains,
we conducted a comprehensive review of more than
200 publications doc ing work by mat i
cians, statisticians, physicists, hiologists, ecologists,
and social scientists—in some cases even going back
ta seminal work from the 1600s. In addition, we

conducted a series of workshops and conferences,
bringing together world-leading experts to weigh in
on general modeling frameworks and their usage in
different domains (see Acknowledgements, page ).

‘The modeling framework presented here was
shared with experts and societies working on unify-
ing approaches o model design, execution, and
validation (see References & Credits, page 180).
The comments were incorporated to expand on the
coverage, internal consistency, utility, and usability
of the framework.

The resulting modeling framework aims to make
it easy to specify, design, run, validare, and visualize
the results of different types of models. It aims to
empower decision-makers to simulate, understand,
communicate, and manage education, science,
technology, and policy (ESTP).

More than 300 model applications are presented
throughout this Afas—uwith a focus on those thar
were applied in practice and that made a posi-
tive difference. Additional examples can be found
in special journal issues: “Science of Science:
Conceptualizations and Models of Science” in
Journal of Informeerics (2009), “Modeling Science:
Srudying the Strucrure and Diynamics of Science”
in Sciensometrics (2011), and *Simulating the
Processes of Science, Technology, and Innovation”
in Scientomerric (2016); in the Springer book Models
of Science Dynamics (2012); and in *Modeling and
Visualizing Science and Technology Developments”
published in Proceedings of the National Acacdemies of
Sciences of the United States of America (2018).

This spread introduces the modeling framework;
the remainder of Part 2 derails that framework and
applies it to introduce expert-based, descriptive, and
compuiational predictive modeling classes, which have
been successfully used in ESTP research and practice.

Modeling Framework

Analogous to the data visualization literacy frame-
work (DVL-FW) presented in Atlas of Knowledge
(pages 22-73) and in the associated *Data
Visualization Literacy: Definitions, Conceptual
Framewarks, Exercises, and Assessments” paper,
the modeling DVL framewark (Model DVL-FW)
defines a typology of key terminology, together
with the process of modeling and visualization
design. As the name suggests, ModelDVL-FW
extends the original DVL-FW to cover descrip-
tive and predictive models that aim to capture and
reproduce emergent phenomena introduced in the
previous spread (pages 14-15).

Tyjpolagy
The Model DVL-FW uses visualizations o help
design, optimize, and communicate the results of
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modeling efforts. It expands on the seven types
defined by the DVL-FW typology (see numbers
1-7 in the figure on the opposite page) by adding
Phenomena to Insight Needs under Tjpology (s sug-
gested by Grimm and colleagues) and replacing
Anaiyses (formerly shown) with Models, which are
specifically descriptive and predictive subtypes.
Conceptually, phenomena types are a special-
ized insight need; in addition to seeing distribu-
tions, clusters, or sortings, stakeholders might be
interested to identify oscillation or synchronization
patterns, or to understand the inner workings of
how networks grow and information diffuses.
Models now include descriptive subtypes to
analyze data {using temporal, geosparial, topi-
cal, and network approaches to help answer when,
where, what, and with whom types of questions)
and predictive subtypes to simulate data (1o help
answer questions about why a target system might
have a certain structure and/or dynamics).

Progess

The original DVL-FW process model supperts
descriptive models (page 28) that analyze past
and present dars to identify patterns, outliers, and
trends. In order to support the design, run, visual-
ization, and validation of computational predictive
madels, stakeholders must be empowered to iden-

tify and detail phenomena in the target system. In
the process shown on the opposite page, Madel now
appears instead of Analyze (formerly shown), thus
matching Models under Typology, while Validate
joins Inserpres as one step.

In practice, most modeling exercises start
with stakeholder-generated scenarios, or user
stories, that characterize real-world evidence.

The scenarios capture opinions, views, and
expectations by one or more stakeholder groups.
Scenarios may reflect alternative views of a real-
world rarget system; they may even contradict
each other, providing excellent prompts for rich
and meaningful discussions. Scenario develop-
ment is benefited by the presentation of real-world
dara and results from prior data analyses and
scenario design efforts. Data visualizations can
help capture model ideas (see Model Visualization,
page 20).

“The Modl process step covers the design, imple-
mentation, and run of a descriptive or predictive
model. Arlas of Knowiedge (pages 44-71) covered
the design of temporal, geospatial, topical, and
network analyses and visualizations. The subsequent
spread (pages 18-19) discusses the design and run
of computational predictive models, and presents
10 different classes of predictive models (further
discussed on pages 30-51).

As noted shove in Prior Work, model validation
is critical for any modeling effort (see also the itera-
tive model refinement figure in Which Model, page
4). During validation, empirical real-world data is
compared to analyses and visualizations of modeling
results. Comparable visualizations of empirical and
simulated dara make it possible for domain experts,
madeling experts, and model implementation experts
{computer scientists and programmers) to comment
on results and suggest model improvements, which
in turn may lead to a better match of simulated and
empirical data (see Model Validation, page 22).
Typically, iterative model refinement is required
to arrive at more accurate, easier-to-understand
mosdels that capture important patterns, trends, and
phenomena in real-world systems.

Data visualization is central to both the
DVL-FW and the Model DVL-FW. Given the
interdisciplinary nature of most data analysic
and modeling efforts, it is of utmost importance
to communicate model structure, dynamics, and
results effectively across disciplinary as well as
institutional boundaries—within academia, indus-
try, and government policymaking. The DVL-FW
generally provides a principled way to map data
variables to graphic symbols and their graphic vari-
ables. Visualization design starts with the selection
of a visualization type (e.g., a graph or map). Types
of graphic symbols and graphic variables are then
selected (see types 46 in the figure on the opposite
page, and types 5 and 6 in the wble at left). Graphic
symbols include geometric symbols {e.g., point,
line, area, surface, and volume) and also linguis-
tic and pictorial symbols. Graphic variables can be
grouped into spatial and retinal variables, with the
latter further subdivided into form, color, texture,
optics, and motion. Some graphic variables are
qualitative {e.g., shape, color hue, and pattern) and
are used to represent qualitative data (e.g., educa-
tion, training, and job type). Otthers are quantitative
{e.g, size, colior value or saturation, or speed) and
are commonly used to represent quantitative data
{e.g., weight, temperature, and diffusion patterns).
Atfas of Knowwledge details visualization types (page
30), graphic symbol types (page 32), and graphic
variable types (page 34), with discussion of which
graphic variables are preattentively processed (Le.,
recognized quickly and independently of cultural
influences) and which graphic variables most accu-
rately convey comparisons of data varisbles.

The subsequent pages introduce model design
and usage, and also model visualization and
validation, s puided by the typalogy and process
defined in the ModelDVL-FW.
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Model Visualization

Model assumptions, designs, and results should together be communicated in a
format that is appropriate for a wide range of modeling stakeholders and experts.
Visualizations can help domain, modeling, and programming experts to collaborate
closely in the conceptualization and design of models. With those visualizations of
model setup and run, the impact of different parameter values on model results—
including emergent phenomena—can be visually explored. Further visualizations may
help stakeholders compare and interpret model results, and then communicate them
to experts or general audiences. Visualizations can be static, dynamic, or interactive.

The beight of saphistication is simplicity.
Clare Boothe Luce

Visualization Types
The design of effective data visualizations requires
identifying insight needs and phenomenas; selecting
the appropriate data, analysis, model class, and
visualization types; and performing an accurate
‘mapping of data variables to graphic symbols, as
wwell as variables to interactivity design, if beneficial
(see the visualization and modeling frameworks
presented in Arlas of Knowiedge, Part 2, and
expanded here in Modeling Framework, page 16).
As discussed in Model Diesign and Run (page 18),
modeling often involves a team of experts, inchuding
decision-makers with deep domain knowledge, as
well as modeling experts, algorithm developers, and
interface designers. It is of utmost importance that
all team members have the same understanding of
model goals, structure, and dynamics.
Visualizations can play a major role in
communicating model assumptions, model design,
results, or model ison results.
‘They make it possible to keep track of a potentially
large set of model components and state variables, in
order to get an understanding of dynamic behavior,
and to compare multiple model runs or model
types. Simple, easy-to-read visualizations are best.
"This spread presents general visualization types
and examples that have been successfully used to
support model conceptualization, design, and run;

visualizations that communicate model results are
featured on pages 32-97.

Model Conceptualization

‘The O Protocol, intraduced on page 16, argues
that model conceptualization must define all the
relevant model entities, state variables, and scales.
Different types of visualizations can be used to
support that task.
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Iceberg Model

“The iceberg, model provides a systematic approach
for detailing what is observable sbout real-world
systems. As the figure below shows, the model
contains four parts: Events, Trends &5 Patterns,
Seruceures, and Mencal Models. Like an iceberg tip
above the water, Events are visible; like the under-
wrater base of that iceberg, the other three parts are
invisible and thus harder to capture.

Euvents indicate what has happened or what
was observed. Trends & Patserns refer to what is
changing; they intend to caprure changes in state
wariables as well as model structures and dynamics
that occur over time. Systens Structures refer to
the elements that support, create, and influence
the temporal and spatial patterns which lead to
system dynamics; with a focus on physical entities,
organizational structures, existing policies, or
rituals and their interrelations, they aim to answer
“What causes the patterns we are observing in the
empirical data?” Finally, Mensal Models seck to
capture the attitudes, beliefs, morals, expectations,
and values that drive behavior in a target system,

Visble React
—_— —
Trends & Parierns Anticipare

— Redei
/ Mental Models Regencrate

.

"The iceberg model allows for events, patterns,
and structures to be identified, and for changes in
mental models (e.g., power/incentive structures) to
be productively discussed.

Connected Circles

This method helps identify and interlink the major
components of a target system using either paper or
digital means. The paper example above shows how
major components, written on small pieces of paper,
may be placed around the outside of a large circle
according to their similarity. System components
can then be interlinked via lines 1o uncover
structural and dynamic relationships. Particularly
important parts can be highlighted or underlined.
Lines of different colors can be used to represent
different types of component relationships.

Model Design Visualizations
‘The structure and dynamics of models can be
characterized using conceptual models (causal
loop diagrams), mathematical formulas, computer
models (e.g., pseudocode or computer languages),
or physical models (ses examples in Which Madel,
page 4). Scripting languages such as NetLogo,
Repast, or Stellar help facilitate model design,
run, and verification by nonprogrammers, because
their code syntax more closely resembles natural
language than other programming languages Here,
we introduce different visualizations that support
model design.

Bebavior-Over-Time Graphs

Typically called BOTGs, these are line graphs that
communicate patterns of change over time, such as
the seasonality of a variable or the delays between
two variahles; see the example in Limits to Growth
Model (page 7) and the graph below

Cost Pressure

Product Cose

Product Quality

Time

‘The x-axis of 2 BOTG represents units of time;
there are well-defined start and end points, and 2
resolution (seconds, minutes, hours, days, years,
etc.) that is relevant for capturing system dynamics.
‘The y-axis represents one or more variables of
interest; it is labeled with that variable’s name,
has a well-defined scale thar can be numeric (e.g.,
income or funds spent per year on  scale of §0 to
$1 million) or descriptive (e.g., low vs. highl, and
includes a legend so that different variables can be
easily distinguished.

BOTGs might be used to understand if all
domain and/or modeling experts plot variable
change over time in the same way: Did they
all use the same general curve or shape (linear,
exponential, S-shape)? How do the slopes compare
(with steeper lines indicaring faster growth or
decay, and fat lines indicating no change)? Do they
start or end at around the same time, and are there

major differences in y values at those points?

If multiple variables are graphed, are they
interdependent, or are there causal relationships
between them (e.g., educational investment
eventually leads to higher incoms)? The interrelated
behavier of variables over time can be visualized
using causal loop diagrams (CLDs), 1s described
below. System lags (e.g., the sverage time it takes
from the completion of an educational degree
v a salary increase) can then be visualized and
discussed. Feedback cycles (e.g., more funding leads
o more publications and citations, increasing the
chances to win future funding) can be captured
and visualized using state-transition graphs {see the
opposite page).

BOTGs can also help identify the type of
data thar is most valuable for model design and
evaluation. Given a collective understanding of
why certain data is critical for modeling a target
system, resources might become available to acquire
such data for the most critical varisbles, rather than
using only data that is readily available.

Causal Logp Diagrams

In serial systems, each variable contimually impacts
the next. In other systems, there exist feedback
cycles, which may involve numerous varizbles—
causal loop diagrams (CLDs) can be used to repre-
sent those systems. Variables might have positive (+)
or negative (-) impacts on each other: positive feed-
back occurs when an increase in variable A increases
variable B; negative feedback, in contrast, is an
increase in variable A decreasing variable B. There
are also balancing feedback loops wherein positive
and negarive impacts result in a balanced dynamic
In addition, there can be external variables, or con-
straints, thar impact overall system behavior. For

instance, in the process capability model below,
cost pressure positively impacts product cost, which
negatively impacts product quality (the two verti-
cal parallel lines denoting a delay), which positively
impacts product cost. The dynamic behaviar of this
model can be plotted over time using 2 BOTG, as
shown on the opposite page.
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Another example of 1 CLID is given in Limits
to Growth Model {page 7).

Block Diagrams

Block diagrams are widely used in engineering
to describe systems at a general level (e.g., to
identify principal parts or functions and their
interrelationships). Graphic symbols inelude
rectangles that present mathematical or logical
operations, with arrows showing the relationships
between blocks. Each block has a single input,
output and transfer function; the outpur is the
product of the input and transfer functions.

A take-off point passes a signal to two or
more blocks or summing points. Each summing
point has two or more inputs and a single output;
it produces the algebraic sum of the positive or
negative inputs.

Shown below is a block diagram with two blocks
labeled 3(¢) and H(s), ane take-off point (in red),
and one summing point (in gold). The transfer
function G{#) reads Z{) and ourputs Z(AG(). Tn
this closed-loop control system, the output is fed
back to the input o control the desired outpur (see
the discussion in Control Theory, page 36).

Take-Off Point
LGl ¥

Xii)

Stock-and-Flow Diagrams

While CLDs enable a system to be qualitatively
understood, stock-and-flow diagrams can be used
o perform a detziled quantitative analysis. A stock
denotes any entity that accumulates or depletes
over time; & flow is the rate of change in that stock.
Stock-and-flow diagrams are usually built and
simulated using computer software. The figure
below uses the STELLA visual programming
language to model bank account dynamics: The

interest and the weekly deposits increase the
account balance, and the weekly withdrawals
decrease that balance. The interest rate, as well as
the deposits and withdrawals, might change over
time. In addition, the account halance is graphed
over time within the central block.

Tnrerest Rare

Tichdraiwls
Weekly Deposits

Another example using STELLA is given for
predator-prey models on page 31.

State-Transition Graphs
Also known as a state diagram, a state-transition
graph (STG) can be used to visualize the dynamics
of systems with discrete and finite states. The graph
i designed by first enumerating all the possible
states and state transitions of the system. Next,
states are represented by nodes in a network, and
state transitions by directed edges. Edges are
labeled by the input of the next state. The initial or
start state of the system is commonly represented
by an arrow with no origin pointing to the state.
“The final or accepting state is indicated by a double
circle. Not all systems have start and end states.
‘The example below shows a system with two
states and an acceptor for strings over {0,1]. 5, is the
start state, as indicated by the furthest left arrow.
If 3, is 0, the system transitions to §,. The system
remains in state §, until a 0 string returns the
system to §,. There is no end state.

An 8TG for a three-rype market system is
discussed on page 34.

Flowcharts

A flowchart is a graph that uses graphic symbols to
define different logic steps in a process {e.g., the
loops shawn in the subsequent two figures). Symbols
include a rounded rectangle to indicate the start or
end of a (sub)process; a rectangle denoting an
operation that changes dats; a diamond for any
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conditional operation that determines which of
two paths a program will take; a parallelogram to
represent data input and output (not used in figure
shown); and arrows to indicate the order of operution.

Flowcharts differ from STGs in that they
transition between nodes automatically upon
completion of activities, while STGs require
explicit external events to transition from ane

node to the next.

Model Run Visualizations

Maddel results can be presented via tables, graphs,
and geospatial or topical maps—including 2D and
3 maps, which are used in computational drup
design (see the lower right figure on page 171) or

o show developments such as the spreading of
diseases (see Diffusion Phenomena, page 15), the
evolution of artificial life (page 41), and neural net-
work activations (SearCraft IF: A New Challenge for
Reinforcement Learning, page 51). Model results
can also be communicated using trees, such as to
trace the evolution of organizational hierarchies or
genealogies; or by networks, like those wsed 1o track
international air travel.

Visualizations might be static or dynamic/
animated; they can also be interactive—allowing
viewers, for instance, to speed up or slow down
time, or to zoom in and out of areas of interest
(see interactivity types in Modeling Framework,
page 16).

Simulation tools {e.g., NetLogo, Repast) support
changes in model parameters during model runs,
which makes it possible to explore system behavior
and on-the-fly dynamics.

Exemplarily, we discuss cobweb and state space
graphs here.

Cobweb Graphs

Cobweb graphs can be used to plot the evelution of
a state variable. For example, the subsequent figure
plots product price over quantity in convergent and

divergent modes (at left and right, respectively).

The supply function (diagonal black *5” line) is
denoted as 5 -5(¢-1); the demand function (diago-
nal red *IY" line) is denated as D =D(P). Market
equilibrium is reached when supply equals demand:
8= The convergent made (left graph) starts with
{a) low prices and low supply, which causes (b)
prices to rise; as (<) supply s increased, (d) prices
Fall; as more is sold, there is (¢) lower supply and
therefore (£) higher prices; when prices and supply
finally stabilize, (g) equilibrium is reached.
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Quantity Quantity
State Space Graphs

A system’s abstract state space, or phase space, can
be used to depict that system'’s state over time; a
sequence of states can then be animated o reveal
system dynamics. A state space is commonly repre-
sented using a graph in Euclidean space, with the
state variables indicated on the axes.

‘The state space of a temperature control unit is
shown below. The horizontal axis plots temperature;
the vertical axis plots control output. There are
two states: On when the temperature falls below a
«certain value; Off when the temperature is too high.
Hysteresis occurs when the temperature is between
68 and 70 degrees Fahrenheit; thus, the state
change threshold for Ofis lower than it is for On.

Hysteresis

On

Control Qutput

T i
EEF ToeF
Temperature

In the ball on & spring (oscillation) example on
page 14, the state space can be characterized by
the position and the momentum of the ball. In the
Lotka-Volterra differential equations discussed on
page 31, the state space plots the state of the system
a5 a vector within the space that is defined by the
number of predators and preys.

State space can be either discrete or continuous
in terms of time and space (see page 13).
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Model Validation

Models should aim to capture the behavior of real-world systems in a simple yet
useful manner that can be validated across scales. At the micro level, the type and
behavior of individual components (e.g,, agents for agent-based models or nodes for
network models) need to match up with their real-world counterparts. At the macro
level, the aggregate, emergent properties of the model (e.g., oscillation or adaptation)
must reflect the phenomena observed in the real world. Models must be evaluated
based on the accuracy and generality of their predictions. Evaluation results should
be used to increase the accuracy, specificity, or generality of the model, or to make
model results easier to understand and use by decision-makers.

The more any quantitative social indicator is used for social decision-making, the more

fect it will be to corruption pressur
corrupt the social proc
Donald T. Campbell

Quality Assurance Framework
Quality assurance ((YA) refers to processes that help
ensure (1} 2 model's inputs and outputs meet exist-
ing requirements; (2) model errors are understoad
and can be managed; and (3) the model is robust and
fit for purpose. The Review of Qualiey Avsurance of
Covernment Anaiyeical Modsis report, commissioned
by the UK. Department for Transport, identi-

fied major types of (A methods and graphed them
in terms of business risks versus model complexity
see the figure below right). QA techniques used by
industry, government, academic, and other leading
entities range from relatively simple version control
(in the lower left corner) to full external model audit
(in the top right corner); in between are developer
testing, periodic review, internal or external peer
review, and other techniques, which vary according
to model complexity and business risk.

Model Simplicity

Ovccam'’s razor principle states thar “Entities should
not be multiplied beyond necessity.” As applied to
modeling, that means if there are two models with
equal predictive pawer, the simpler one should be
chasen. That is, if any components, variables, param-
eters, rules, or assumptions can be eliminated from
the model without losing the model's explanatory
power, they should be omitted.

Model Robustness

The robustness of a model is determined by measur-
ing change in model predictions given minor varia-
tions in input data and/or parameter settings. Ideally,
variations and uncertainty in data, and their impact
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e more apt it will be to distort and
ex it i intended fo momnitor.

on model results, can be quantified and communi-
cated to model designers and users. Similarly, it is
important to analyze, visualize, and communicate
how sensitive a model is to particular parameters;
toward that end, parameter sweeps might be run
identify which model results are most sensitive, and
o which input and parameter changes.

Model Precision and Accuracy
Accuracy refers w the closeness of a measured value
to a standard or known (true) value. Precision refers
o the closeness of two or more measurements to
each other. Typically, the more that measurements
are made, the better the precision and the smaller
the error.

The image below illustrates combinations of low
and high precision and accuracy using a bullseye
graph. While there are no bullseye hits in the lower
left carner of low precision and accuracy, there are
many hits in the top right corner of high precision
and accuracy.

Cy
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Inen

Increasing Precision

The large gray arrow indicates decreasing random
and systematic error across the diagonal. Random
error (at the top left comer) decreases with more-
accurate data and better-parametrized models.
Systematic error, or bias (at the lower right corner),
makes all values wrong by a certain amount, which
can be due to many factors (e.g., wrong model
assumptions, imperfect data processing, or subop-
timal model parameters) leading to invalid results.
Maodel validation aims to identify and reduce both
rypes of errors to arrive at higher madel precision
and accuracy.

y Building on the simple QA " ExiemalModelAudt
Higher methods outlined below, mEp — -
bugainess sk complex models affecting c Internal Model Audit
major business decisions will —————
in addition justify rescurce Extermal Poerreview
intensive CA —— —
=
review
7 Pariodic
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ot an
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. ) __ Control i
business risk g proportionate >
Relatively Highly complex
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QA at Different Model Stages
As discussed in Model Design and Run (page 18),
there are various model stages, with appropriate
types of validation for each. Here, we discuss QA
for all four model stages: conceptualization, design,
build, and test and deliver. Detailed guidance

for the latter three, as identified in the Review of
Quality Assurance of Gevernment Analyical Models,
is listed in the text box on the opposite page.

Conceptualization

The most efficient and robust methods should be
used 1o support target system selection, delinea-
tion, abstraction, and documentation of the non-
formal model—and that nonformal medel should
be documented such that domain experts, model-
ing experts, and computer-scientist programmers
can understand, question, and advance the model
Consequently, model visualizations (page 20} are
often used to facilitate and validate the ideation,
abstraction, and translation process.

Design

When designing the formal model, modeling
experts should keep future model stages in mind

50 that implementation, deployment, and testing.
can be effectively performed. Internal or external
domain experts should conduct QA reviews—of
model structure, logic, and assumgptions—as well as
assessments of the quality, accuracy, completeness,
and suitability of input and cutput data.

Build

The formal model is then implemented by com-
puter-scientist programmers. Any differences from
the original design should be documented and com-
municated to model designers and domain experts.
“The completed model implementation should be
verified, and test results should be shared w ensure
the model is fit for purpose.

Test and Deliver

‘Computer-scientist programmers will test-run the
model and fully document results. In collaboration
with modeling experts, they will develop any needed
training materials, and finally test both (documen-

tation and training) with domain experts to ensure
i d 4

model assumptions and limi are

All Model Stages

During the model development process, all model
documentation must match model complexity and
risks. For instance, simple models with low busi-
ness risks will require far less documentation than
complex models with high business risks; the latter
might require extensive formal documentarion and

training materials, regular training sessions, and
continuous review o ensire proper usage.

Model Validation

Model validation is the process of determining
whether an implemented model is a reasonable rep-
resentation of some phenomenon in the real world;
that it reproduces system behavior with sufficient
fidelity to satisfy stakeholder needs; and that model
results are precise and accurate. It aims to ensure
the model has been correctly implemented and is
sufficiently general to capture new system states
(i.e., not overfitted or too closely adjusted to a spe-
cific set of real-world data or observations at the
cost of generalizability).

Model Verification

Model verification aims to make sure a model does
what it is intended to do. Target system abstrac-
tion, formal model design, and model code (see
page 18} all need to be verified. The former two
verifications benefit from expert reviews. Model
code verification uses technigues typically used

to develop, debug, or maintain large computer
programs. Examples are proper code version con-
trol; regular code reviews; logging code runs {e.g.,
recording and analyzing the number of compo-
nents/agents that are generated and terminated
during a model run, their local behavior, and any
emargent behavior); and keeping records of user
interactions (e.g., input data or parameter changes,
and accessing analysis results or visualizations) in
support of model and user interface optimization.

Model Replication

Replication occurs when a model result initially
published by one expert team is reproduced by
another, independent expert team. To make that
possible, model design and run should be docu-
mented at a level of detail that supports rede-
sign, reimplementation, and rerun by other teams.
Development and adoption of model documenta-
tion standards (see the discussion on page 19) make
writing and reading model descriptions easier, with
direct benefits to those using the standards.

Model Comparison

Modeling efforts conducted by different teams often
yield disparare results that are difficult or impos-
sible to reconcile. Common reasons are insufficient
documentation, proprietary data that cannot be
shared across teams, or differences in exactly how

a model is implemented and run. Comparative
modeling explores commonalities and differences
between two or more models in a systematic way.

It is commonly done as a joint collaboration across
teams; data and code-use agreements might need to
be put in place to ensure all teams have access to the
same resources. The teams agree on the target sys-
tem and the insight needs to be addressed—includ-
ing emergent phenomena to be modeled. The teams
might then pick the same or different model classes
and associated parameter settings. An agreed-upon
common set of intermediate and final model results
is considered; the results are compared to each other
and to empirical data (2.g., changes in model outpur
values over time).

Comparative modeling greatly enhances the
credibility of modeling results, as it helps identify
model errors and biases; communicates advantages
and disadvantages of different model classes for

Model Design QA

Developer testing—use of a range of developer
‘tools including parallel build 2nd analytical review
or sense check.

Intemnal peer review—obtaining a critical evalua-
tion from a third party independent of the devel-
opment of the model, but from within the same
organisation.

External peer review—formal or informal engage-
ment of a third party to conduct critical evaluation,
from outside the organisation in which the model
s being developed.

Use of version control—use of unique identifier for
different versions of a model.

Internal model audit—formal audit of a model
within the organisation, perhaps involving use of
internal audit functions.

Quality idelines and checki
development refers to department's guidance or
other documented QA processes [e.g., third-party
publications).

External model zudit—formal engagement

of external professionals to conduct a critical
evaluation of the model, perhaps imvohving audit
professionals.

Governance—at least one of planning, desizn and/
or sign-off of model for use is referred to a more
senior person. There is a clear line of accountability
for the model.

Transparency—mode! is placed in the wider domain
for scrutiny, and/or results are published.

Periodic review—meodel is reviewed at intervals to
ensure it remains fit for the intended purpose, if
used on an ongoing basis.

capturing well-defined target system behavior; and
results in more detailed model documentation that
increases reproducibility. Sometimes, model results
differ substantially, making it necessary to question
model assumptions and inspiring future research

Model Limitations

Every model is a simplification of a real-world tar-
get system that captures key system structure and
behavior; 1 perfect facsimile would be of limited
value for understanding the world. A literature
review by Mohamed Saleh and colleagues in “A
Survey on Futures Studies Methods™ identified

a list of typical model limitations, including: *(1}
You cannot know the future, but a range of pos-
sible futures can be known. (2} The likelihood of 2

Model Build QA

\iersion control—systems in place to manage the
development of the model and ensure any changes
are capturad.

future event or condition can be changed by policy,
and policy consequences can be forecasted. (3)
Gradations of foreknowledpe and probabilities can
be made; we can be more certain about the sunrise
than about the rise of the stock market. {4) Humans
will have more influence on the future than they
did in the past. (5) No single method should

be trusted by irself; cross-referencing methods
impraves foresight. (6) Anticipation and planning
must be dynamic and able to respond to new infor-
mation and insights.” Model designers and users are
strongly encouraged to document all known model
limitations and all validation results to ensure their
models and model results are used intelligently

and optimally.

Model Test and Deliver QA
Checking against data—checking model outputs
against available data, for example recreating
historical datasets.

Unit testing—i testing of c
of a model to ensure they are comectly coded and
give the right result.

Logic testing—the logic flow within the model
follows that defined at the mode! design stage,
(at the level of individual units, muitiple units or
the complete code).

Internal code review—independent review of
model coding may be worthwhile to ensure it
meets the specification and is as free from errors
as possible. This should be conducted by somecne
who is not part of the development team.

Internal test review—independent review of the
verification testing results to ensure results are
consistent with the mode! design specification.
This should be conducted by someone who is nat
part of the development team.

External code review—paer-review of model
logic, assumptions and coding to ensure the model
meets the specification and is as free from errors

as possible. This will generally be conducted by
someone external to the organisation.

Test review—independent review of the verifica-
tion testing results to ensure results are consis-
tent with the mode! design specification. This will
generally be conducted by somecne external to the
organisation; and

Farallel builds—for complex, high-risk models there
may be value in developing parallel builds to ensure
cross-checking of resuits.

checking that assump-
tions remain valid e.g. circumstances haven't
changed since the assumptions were originally set.
Limit testing—sample testing of the range of valid-
ity of all input variables—this may not be possible
for complex models, but parameter ranges of key
variables should be tested. Input values outside the
accepted ranges should also be included to test any
exception and error handling within the model.
Cross checking—checking model output with
similar independent models where available.
Internal independant testing—independent testing
of the full system may be advisable at this stage.
Reviewing cutputs—checking that outputs are
sufficient for the purpose of the decisions being
taken, including assessment of imitations, alterna-
tive scenarios, etc.

Transparency—publication of the model itself,
or the test schedule and results, may provide
additional extemal review if appropriate.

External independent testing—external peer-
review of the full system.

Internal audit—a formal audit conducted within the
organisation. This would need to be supported by
full model specification and test documentation.
External audit—a comprehensive formal model
audit supported by full model specification and test
documentation, although a results-oriented audit
might be 2 better altemative if model is regularly
updated and usage and “lower level” checks such
as intemal peer review are aiready in place.
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Cellular Automata (1940s)

Cellular automata (CAs) are mathematical models that can be used to simulate
complex systems or processes. CAs are applied in several fields—including
biology, physics, and chemistry—to analyze phenomena such as artificial life,
plant growth, or embryogenesis. CAs consists of elements called cells. Each cell
has a value, or state. Cells are connected to certain neighboring cells to form a
one- or multidimensional lattice. Cell states change at discrete time steps using
a set of predefined rules that take the previous states of connected neighboring

cells into account.

Brief History

Cellular automata ware developed by John von
Neumann and Staniskaw Ulam in the 1940s.
‘They were initially used to implement self-repro-
ducing machines, such as Rule 90 (discussed in
Basic Modals below) or Comway's Game of Life
(explained on the appasite page). Later, cellular
sutomata became 3 popular modeling framework
for simulating emergent behaviors and for describ-
ing nonlinear spatiotemporal dynamics in a simple
yet concise manner. Comprehensive studies of
cellular automata have been performed by Stephen
Walfram, as documented in his book 4 New Kind
of Science (2002)

Terminology

Cellular automara simulate 3 dynamical system
using a deterministic rule set, discrete time, and
a discrete state space. The rule set is implemented
using finite-state machines. The set of identical
finite-state machines is arranged in a regular prid
structure that can be 1D, 2D, or multidimen-
sional. Most 2D cellular automata use a square
grid (see Comway's Gameof Life on the opposite
page), but other grids are also possible (see the

In each discrete time step, cell states are updated
dynamically as a fanction of the old state of each
cell and finitely many of its neighbors. The rule is
the same for each cell, but the result of applying a
rule depends on the spatial context of a cell

The neighborhood in which cells affect one
another must be specified. The simplest choice is
nearest neighbors, whereby only those cells directly
adjacent to a given cell are affected st each time
step. In the case of a 2D cellular automaton on
a square grid, two neighborhood definitions are
common: the Moore square-shaped neighborhood
and the von Neumann diamond-shaped neighbor-
hood (see the figure below).

Von Neumann Moare

The range r defines how many cells are consid-
ered to compute the next state for a cell {the
central black cell in each image above). A larger
number of neighbors is less efficient to compute,
but often leads to better isotropy, or uniformity

resulting in the pattern shown in the second line.

‘The rules are applied iteratively for as many time

steps as desired (rules 3, 4, 6, 7, and 8 are applied in
line 2, resulting in the pattern shown in line 3}—
13 times overall in the example

Fole1 Rule? Fuled Ruled Rdes Ruled Roe?  Ruled

-qlll. rl

Rule 232, known as the majority rule, creates a
different dynamic. When run on any finite set of
cells, it computes the value held by a majority of its
cells. For example, starting with  random distri-
bution of black/white cell patterns, in each time
step, each cell takes one of the finite discrete stares
and simultaneously turns to a state that is most
common within its local neighbarhood, leading

to the formation of a patchy pattern. Over time,
the pattern coarsens until the boundaries between
areas of different states (e.g., white/black) bacome
straight encugh. Different patterns emerge if the
number of states and the radius of the neighbor-
hoods i changed.

The figure below shows the result at steps 1, 2,
and 10 of the majority rule when applied to 2 2D
state space of 100 x 100 grid cells, with two differ-
ent stares and a radius of 1, as generated using the
Wolfram Demonstrations Project.

Step 10

Key Insights

CAs are used extensively for modeling phenomena
such as molecular dynamics, hydrodynamics, physi-
«al properties of materials, reaction-diffusion chem-
ical processes, growth and morphogenesis of living
organisms, ecological interaction and evolution of
populations, propagation of traffic jams, and social
and economic dynamics. They provide a valuable
framework for modeling percolation phenomena
and the concept of self-organized criticality (SOC),

among other phenomena_

Percolation

Percolation is studied by physicists and mathemati-
cians as a model for the flow of a substance, like oil
or water, through certain types of porous media,
like sand {see Modeling Goals, page 14).

In 1957, Simon Broadbent and John Hammersley
introduced a percolation model using the example of
a parous stone immersed in 2 bucket of water. Their
model helps answer: What is the probability that
the center of the stone becomes wet?

The figure below shows an example of site perco-
lation clusters on a square 20 x 20 grid-cell lattice
for p=0.29, $=0.59, and p=0.8. If the probability p is
low that a cell is black/wet, anly a few small chusters
are formed; if p is high, large interconnected clus-
ters are formed spanning the whale lattice. There
exists a critical intermediate p, or p, in which a
phase transition occurs.

=059 pe0d

Percolation models have also been used to help
understand the impact of nerwork structure on the

Conway’s Game of Life

In the late 19605, the British mathematician John H. Conway invenzed the
Game of Life, which was later papularized in Martin Gardner's “Mathematical
Recreations™ column in Scientific American. The game uses 2D grid of squares
on a (possibly infinite) plane. Each square can be alive (black) or dead (white). A
Moore neighborhood of range r=1 s used, whereby each cell has 8 alive or dead
neighbors adjacent orthoponally or disgonally.

“The rules are simple: If a live (black) cell has fewer than two live neighbors,
it dies (referred to as loneliness). Ifa live cell has more than three live nelghbors,
it dies (of overcrowding). Ifa live cell has either two or three live neiphbors, it
goes on living (with happiness). Ifa dead cell has exactly three live neighbors, it
comes alive (called reproduction).

‘The game proceeds in penerations—one generation per time step ¢. In the
initial eneration at =1, a finite number of cells are alive. In each successive
generation, cells come alive and die according to the rules—which can be
executed manually using pencil and paper, or run using a computer and
digital display:

Shown at right are 11 time steps; starting with the initial top pattern, the
rules are applied in each time step, resulting in 1 sequence of patterns that seem
alive or animated.

Eric Weisstein compiled an extensive tabulation of life forms and terms,
several of which are provided below—sorted by the number of live cells, from
three in the top row to seven in the bottom row: The Blinker has only three live
cells that keep chang-
ing from horizontal

Blinker Weisstein Tabulation
of Life Forms w vertical in subse-
- quent time steps; it is
the smallest oscil lator
Bluck Tub identified by Comway.

.:. The Glider has five live
cells that seem to move

diagonally on an empty
Boat Glider

background after each

.ﬁ 7 series of four time

steps. Interaction with
) Aircraft ) e 11 £ o
Snake Ship Carrier  Beehive  Barge other life forms might
result in ever more

B Py -::. diverse patterns.

Note that some life

Schelling’s Segregation Model (1971)

In 1971, the economist Thomas C. Schelling showed thar individual bias can lead to collective bias. His work
was informed by the fact that after the Civil Rights Act of 1964—even though housing discrimination was ille-
gal and racial prejudice was starting to decline—neighborhoads remained highly segregated. He hypathesized
that segregation does not need to be imposed {top-down) and does not reflect preferences (bottom-up), but self-
organizes through dynamic interaction. In 2005, Schelling was @ co-recipient of the Nobel Prize in Economic
Sciences for his work on conflict and cooperation through pame-theoretic analysis.

Schelling’s model shows that 2 small preference for one’s neighbors to be of the same race can lead to a large
collective bias and to total segregation. That is, a city can tip into high segregation levels (see alsa Tipping Point,
page 14) even if individuals have only mild preferences for having neighbors of their own race. The model uses
a 21D CA approach with twa states, and a radius of =1, The rules of the game are simple- Agents are *happy”
and stay put if more than a certain percentage of their neighbors are of the same race type. Agents are otherwise
“unhappy” and move to a random vacancy.

An example is given at right for 2 30% threshold
and a setup where empty cells are not counted when
computing threshalds. Agent A has five blue neigh-
bors {out of a total of seven) and is happy. Agent B has
only one blue neighbor {out of six), is unhappy, and thus
moves to 4 random vacancy.

Shown below left is a model with an initially random setup for two types of households {red and blue, in
similar numbers) and empty lots (white). In each round, the happiness of all household agents is compured,
and each unhappy agent moves to a random empty lot
Rounds continue until all agents are happy with their
location. Depending on the threshold, different patterns
emerge. With 2 15% threshold, 100% are happy after
only a few (often less than 10) rounds. Given a 30%
threshold, several more rounds are needed before every-
ane i happy and a patchy pattern emerges. With a 75%
threshold, it takes many more rounds, often hundreds,
to arrive at a highly segregated solution where everyone
is happy.

Vi Hart and Nicky Case designed an interactive
version of Schelling’s model that lets users set double
thresholds, and ratios for two populations and empty
space, see below screenshot. Users can play to under-
stand how harmless choices can make 3 harmful world. ‘They also learn that in a warld where bias ever existed,
being unbiased is not enough to arrive at less segregation—the past haunts the present. The model shows how
characteristics that are fixed and unchanging (e.g., race or ethnicity) can become highly correlated with other
characteristics that are mutable (e.g., education or income).
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Model Questions Overview

Given the constraints discussed in the previous six spreads, how can rich data
and validated models be used to provide actionable insights for different deci-
sion-makers? The remainder of Part 3 presents an overview of key questions,

four ESTP domains (education, science, technology, and policy), and three scales
(micro, meso, macro); examples are then given for all 12 domain-scale combi-
nations. This Azas expands on Atlas gf Knowledge—which introduced tempo-

ral, geospatial, topical, and network methods to answer when, where, what, and
with whom types of questions, respectively—by helping readers answer questions
regarding why or how. For instance, why is past system performance an indicator
for future performance, or how does knowledge about the evolution of a system

help us understand the future states of that system?

© Temporal Models—“When”

Adlas of Science and Adlas of Knowledge both focused
on descriptive models. Several studies and visu-
alizations fearured there are able to predict future
developments; the remainder of Part 3 features
many more models and visualizations that aim to
forecast the furure.

For example, regression models can be used to
project current trends into the future (see Machine
Learning Models, page 50; and Asdas of Knowiedge,
Statistical Studies, page 44)

Alan L. Porter and team employed a combina-
tion of expert opinion modeling (see Expert-Based
Madels, page 26) and technology mining to fore-
cast passenger vehicle sales from 2000 through
2050. The graph helow shows predicted compos-
ite world sales for different vehicle types, with a

table that lists numbers for electric vehicles (EVs)
and plug-in hybrid EVs (PHEVE). In 2009, that
41-year prediction of a fast-evolving market used
data by the International Energy Agency (IEA),
with a modeling approach that considered different
market segments and rechnology solutions. As of
2019, EVs had a 2.8% car market share, according
to McKinsey's proprietary Electric Vehicle Index
(EVI). In 30 years' time, it will be interesting to
compare the 2050 predictions with the figures of
actual sales.

Temporal studies of Twitter dara and other real-
time data were discussed in Adlas of Knowledge (page
173); insights gained from cyclic changes and general
trends can be used to communicate and optimize
system evolution or information diffusion over time.
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® Geospatial Models—“Where”

Geospatial position and context are significant.
Some countries are landlocked, with no direct
access to marine travel routes. Others are islands,
making them difficult or even impossible to reach
during the winter season (see ORBIS, page 154).
Countries that are centrally located are more
likely to be natural hubs of activity. The same logic
impacts individuals, corporations, and regions in
terms of how isolated or connected they are.

Many models zim to represent the environment
in which different agents operate (see Modeling
Overview, page 12). Some models present multiple
and possibly nested spatial environments (e.g.,
counties, states, countries, continents, the world).

Part 2 discussed models that can represent
discrete space, such as grids or lartices, (see Cellular
Automata, page 40; and Network Models, page
46). It also covered models that capture continuous
space and can be used to predict human migration
or the diffusion of information (see Continuous-
Field Models, page 445 Spatially explicit models
are also used in traffic optimization (see Braess's
Paradox: Faster Is Slower, page 43).

Work by Jason Owen-Smith and colleagues goes
one step further in that they not only study the
impact of existing space on system dynamics, but
also use computational predictive models to design
a built environment that optimizes desirable system
behavior. Specifically, the team aims to predict the
collaboration patterns that are likely w emerge from
different building layouts. The work is predicated on
the general understanding that distance increases
eoordination costs, and co-location increases

productivity; passive contacts increase as individu-
als share more required paths through their space,

increasing information diffusion and collaboration,
and thus influencing the dynamics and outcomes of
collaboration (see also Alan Carve, page 28).

“Thieir model aims to capture (1) the physical
or functional distance among occupants of a built
environment; (2) the mechanisms of action, such as
serendipity, prospecting, mobilization, and aware-
ness; and (3) science examples, as shared equip-
ment and facilities may Facilitate interdisciplinary
communication, co-location of interdisciplinary lab
members, and the location of principal investiga-
tors” offices relative to labs.

‘The model also captures the state spaces of
collaboration in terms of (a) scientific concepts
shared, (b) social links, (c) institutional units and

isciplines, (d) organizational c ication and
hierarchies, (¢) physical proximity, and (f) virtual
access via computer-mediated communication.

‘The mode! was validated using empirical data
from 172 faculty and research staff members in
three buildings on the University of Michigan
campus. Study results show the dramatic impact of
co-location on the increased likelihood of forming
new collaborations and obtaining joint funding. For
example, researchers who occupy the same build-
ing are 3% more likely to form new collaborations
than researchers wha occupy different buildings;
and researchers who occupy the same floor are 57%
maore likely to form new collaborations than those
who oceupy different buildings.

Interestingly, the linear distance between offices

was less important than the overlap in daily walking
paths; see the figure below of a floor plan and the
overlap of two persons” pathways from their offices
to research lab spaces.

Person 2s paths pass by Person 1's door
% Person 1's paths do NOT pass by Person 2's door.

Person 1's Aea —— Desson 1s Path - © Office
F7] Person Zs Ares  ——— Pesson 2% Pach - O Ressarch Lab
] Arcal Overlap === Path Overlap o Closest Elevarar
and Restronm

@ Topical Models—*“What”

Individuals with the same interests are more likely
o interact. Students and teachers who take or teach
the same classes are more likely to talk. Researchers
in the same discipline are more likely to collabo-
rate. In general, the academic or professional world
is organized into clusters of people, courses, jobs,
industry sectors, and policy areas, according to topi-
cal similarity.

Different ESTP topic areas have different
dynamics. For example, scholarly domains that
publish results viz e-prints are much faster in
communicating results than those that mostly
utilize books; interdisciplinary scholarly publi-
cations have a broader impact than those within
one domain (see Interdisciplinary Collaborations
Lead to Higher Scientific Impact, page 93).
Similarly, different industry sectors are differently
impacted by stock-market developments and also
by technology innovation, such as Al (see Macro:
Technology, page 94).

Global pandemics like COVID-19 have particu-
lar implications for different demographics, indus-
try sectors, and associated unemployment rates (see
Meso: Policy, page 88). Many types of literacy are
raught, all variously impacting workers' skills port-
folios (see Micro: Education, page 74).

Models should aim tw take the topical traits
of literacy types, scientific domains, and industry
sectors into account in order to better capture real-
world system behavior. Topical information might

be modeled as agent/node metadata and/or behav-
ior; it can also be represented by topical maps, such
a5 the map of science shown in Interdisciplinary
Collaborations Lead to Higher Scientific Impact,
page 93

As described on page 54, Shahar Ronen and
colleagues studied three global language networks
(GLNs) using book translations, multiple language
editions of Wikipedia, and Twitter to under-
stand the influence of various language writing
systems on the visibility and possible impact of its
speakers. Network layouts of the Wikipedia and
Tuwitter GLNs are given below. The nodes repre-
sent different languages and are each labeled with
the appropriate language name, color-coded per
language family, and size-coded per the number
of people that speak that language. The links
denote which languages are co-spaken, with link
weight indicating the number of co-occurrences.
In both networks, English is a global hub, with a
handful of intermediate hub languages, inchiding
Spanish, German, French, Russian, Portuguese,
and Chinese. Languages that are found in the
center of the network contribute to the visibility
of its speakers and the global popularity of the
cultural content they produce. For example, schol-
arly papers written in English are more likely to be
read, cited, and recommended than papers written
in languages that appear in the outer periphery of
the networks.
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@ Network Models—“With Whom

Network topology and node positions and attributes
(2., the mumber of node neighbers) have 3 major
impact on diffusion patterns as well as on network
growth (see Network Models, page 46).

Many network studies have been run and visu-
alizations designed to further the understanding of
social, collaboration, citation, and trade networks.
Results reveal the strong impact of such factors
as mentorship and co-authorship networks on
scientific success (see The Impact of Network Ties

Historical Progression

in Scientific Careers, page 77; and Best Author
Combinations for Innovation, page 85).
Networks change over time. The figure below
by Yaneer Bar-Yam shows the rising complexity
in network topologies, sizes, and interconnectiv-
ity patterns, from early-human hunter-gatherer

”

«communities o the global networked civilization.

As time progresses, specialization and diversity
increase, yet network efficiency is maintained via
decreasing hierarchy levels and more lateral links
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Domains Overview

Descriptive and predictive models can be applied to improve the understanding
and management of complex systems in many different domains. This spread
explores the four ESTP domains. Exemplary models in this spread and on

pages 74-97 were selected based on urility and impact as well as their capaci

to

highlight the traits of the 12 different domain-seale combinations. For each of the
four domains, we discuss major stakeholder groups, key insight needs, and unique
challenges and opportunities. Although certain needs and challenges are domain-
dependent, all domains are affected by rapid S&T progress, such as in robotics and
Al; and many questions require a cross-domain, multiscale approach to modeling.

® Education

Education refers to the process of acquiring
knowledge, skills, and values via formal classroom

instruction or informal learning in relevant settings.

Education is often facilitated by teachers, parents,
or other trusted guides, and might be supported by
technalogy, such as computer hardware and soft-
ware used to deliver interactive exercises.

Educational attainment impacts all areas of
life—from income to health and longevity. Scaling
up education to become globally accessible is critical
for ensuring a just society. Given today's rapid S&T
advances, innovation in education—along with the
development of and training in tools and human-
comguter interfaces that sugment human cognitive
and physical abilities—must be embraced to ensure
it amglifies the capabilities of all indivichuals

There are many different types of stakehold-
ers who care deeply about education. Among them
are students (and their parents), who must identify
which degreels) and courses to select; teachers, who
need to keep educational materials up to date and
select the appropriate instructional methods and
technologies; researchers interested in understand-
ing and documenting how people learn, so that both
teaching and learning can be optimized and person-
alized; and alse educational technology developers,
who aim to support effective course design and
delivery that scales to billions of people worldwide.

Major global education challenges were
discussed in Population: Health and Education
(page 56), and opportunities will be presented in
the Micro to Macro spreads on Fducation (pages
74,82, and 90). In general, there is a disconnect
between the S&T progress made thus far, the
knowledge and skills currently being taughe, and
the skills now required by industry. Tn fact, many
cutting-edge technology jobs canniot be filled due
to the lack of qualified spplicants.

Large-scale data abour scientific progress (e.g.,
publications), technological advances {e.g., patents,
news, and other documents), course offerings, and
job advertisements can be used to identify existing
gaps and enable educational offerings, both timely
and perennial, that can satisfy the industry needs
of today and tomorrow.

A key challenge now is the preparstion of
students and workers for advanced human-Al
collsboration; see Modeling Opportunities
(page 170) for the Living with Robots, Human-
Machine , and Human i
discussions. The graph below by William B. Rouse
shows the numerous stakeholders (top), work
processes (middle}, and technolagies (bottom)
that are directly impacted by the transformative
progress of AL
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® Science

Science is defined as the systematic scholarly study
of the structure and behavior of the world through
observation and experiment. As humankind contin-
ues to impact nearly all aspects of the natural world,
it becomes ever more vital to study the effects of
social and technical systems on the world as we
know it. Frequently, there is a complex interplay of
infrastructure (including robots and AT) and human
behavior, making it necessary to study sociotechni-
cal systems (e.g., in factories or cities).

Many scholars have artempred to develop
conceptual models of science, featuring hasic
actorsfcomponents and fundamental categories of
symbolic capital. Adlas of Science discussed Pierre
Bourdiew’s symbolic capital categories (of social,
economic, and cultural caital) as well as Bruno
Latour and Steve Woolgar's Cycle of Credibility,
which illustrates the cyclic conversion of different
types of capital (e.g., scholarly recognition might be
converted into successful grant applications; fund-
ing is then converted into hiring excellent students
and also gaining access to equipment, data, and
software thar make it possible 1o develop arguments
and thearies, which can be written up in papers that
further increase scholarly recopnition—see page 59
in Atlas of Science).

Ben Shneiderman published 2 conceptual
model of the research ecosystem, shown at top
right, which promotes team-based research moti-
vated by real-world problems. The model aims to
deliver breakthrough thearies in published papers,
alongside validated solutions that are ready for
widespread dissemination—the so-called twin-
win successes. At the center are research teams,
comprised of faculty and students, who are hired
and rewarded by departments within universities.
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Research papers first published in journals and for
conferences are subsequently published by profes-
sional societies or commercial publishers, gaining
scholarly recognition and influence. Journalists
describe the results reported in papers to commu-
nicate scientific advances to larger audiences.
Importantly, research teams collaborate with busi-
ness, povernment laboratories, and nongovernmen-
tal organizations (NGOs), as indicated by the thick
double-headed arrow near the bottom; those insti-
tutions might hire students, increasing the diffusion
of knowledge and expertise into practice. Finally,
research teams are accordingly funded by govern-
ments, businesses, and philanthropies.

William B. Rouse developed Economics af
Research Universities, the conceptual model shown
below, which aims to interlink inputs and outputs
via costs and faculty—tenured (TT) and nonten-
wred (NTT)—in order to clarify (1} the impact of
brand value on the quality of student applications
and enrollments, and (2) the importance of research
outputs in generating that brand value, which can
be converted into tuition and other revenue (see

model details in Meso: Education, page 82).
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@ Technology

Technology can be defined as the application of
scientific knowledge for practical purposes (e.g, in
industry or business for innovation). Technology
opportunities arise by the pressure of scientific
discovery (push) and the demands of societal needs
(pull). Technology delivery requires access to
resources (e.gz, capital, skills, materials, and soft-
ware) but also the effective management of relation-
ships with customers, government bodies, competi-
tors, and other stakeholders.

Models are widely used in industry to optimize
supply chains, product development and optimiza-
tion, and delivery services, o to provide person-
alized experiences. The goal is to speed up the
conversion of capital (marerial and intellecrual) into
success (e g, market share, name recognition, and a
highly skilled and well-paid workforce). ‘The higher
the “conversion rate,” the faster the growth. Most
startups try to grow fast. Established corporations
typically fbcus on sustaining or slowly expanding
their market position and dominance.

‘While task specialization and divide-and-
congquer strategies were widely used in the industrial
age, a systems science approach to problem-solving
and interdisciplinary teamwork is needed to succeed
in the innovation age, when much of capital is
intangible (e.g., expertise and skills, patents, intel-
lectual property, and reputation) rather than rangi-
ble {e.g., buildings, machines, and trucks).

The expertise, skills, and attitudes of employ-
ees are more important than ever for developing
innovative products. The graph above right shows
the steady decline in the share of employment in
agriculture (dashed line) relative t manufacturing
(dotted line} and other sectors that produce tangible
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goods (solid black line}—while workforce needs

for intangible services {red line) steadily increase.
Ongoing progress in robotics may lead to further
decline in the share of employment for manufictur-
ing; in contrast, the share of work for physical and
cognitive nonroutine work that cannot be easily
automatized will likely increase (see the top image
on page 89).

Rapid S&T progress makes the survival of
companies less certain. A key measure ofa compa-
ny's survival is its tenure in a stock market index,
such as the S&P 500 (for the 500 largest [1.S.
companies). In 1937, the average number of years
that a company was listed in the S&P 500 was 75
years; in 2011, it was 15 years; and in 2025, it will
be 5 years as predicted by KPMG

Survival requires continuously evolving multi-
level system integration and management within o
complex ecosystem (see the figure below). For the
production and delivery of any product or service,
the relevant work practices, delivery operations,
system structures, and domain ecosystem in which
a company operates must be understood, managed,
and continuously optimized—ofien across various,
independent, and geographically dispersed organi-
zational units.

Domain Ecosystem

(Sociery)

Economic Models &
Incentive Structures

Comperitive Advantage &
Returns on [nvestments

Structure

System §

[Organizations)

Comperitive Positions &
Economic Investments

Exonomic Returns &
Performance Informarion

Deliver Operations
(Processes)

Work Capabilities &
Input Information

Work Completed &
Outcome Infarmation

Work Practices

(Peopleh

® Policy

Policymaking—or the process of formulating
policies in education, health, politics, or other
domains—might variously involve the need to
optimize resource distribution, improve safety,
ensure competitive advantage, reduce inequality,

or increase societal benefits.

While industry has embraced the power of
computational predictive models, policymakers
have been slower to adopt data-driven decision-
making. Typically, policy advice is provided
by senior researchers in wniversities, industry,
and government; yet rarely do experts employ
the high-quality, high-coverage data sets and
advanced data-mining and modeling tools that
are now available.

‘The conceptual model at top right describes the
two overlapping cycles of the strategic planning
process: In the internal, long-range planning cycle
on the right, setting goals leads to the implement-
ing, monitoring, and forecasting processes that
are needed to achieve those goals. In the external
perspective cycle on the left, results gained from
internal monitoring are used in external scanning,
with valuable input thus offered toward evaluating
ranking and forecasting, Plus, an external scan-
ning and evaluation exercise can be used to inform
internal planning.

Maodels are also valuable in overcoming the
regulatory challenges that arise when aiming to
develop more resilient and future-proof systems in
water supply, transportation, or health care. Models
enable policymakers to deal with asymmetric incen-
tives (e.g., if a system change results in some failure,
blame is appainted; yet lack of accountability might
prevent any system change, even if potentially bene-
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ficial); to deal with encrusted regulation (i.e., when
excessive rules lead to systems that are too difficult
to understand and manage); and to agree on ethical
values (e.g., whether to pursue genetic modification
to stop the transmission of unwanted genes from
maother to child).

Models and model visualizations can help
different decision-makers agree on the structure
and dynamics of a target system to be managed
and optimized, as well s on the roles that different
stakeholders might play in that process.

‘The conceptual model below by William
B. Rouse and colleagues shows the fragmented
system of U.5. health, education, and social
systems. Close collaboration between all the
listed entities—CMS (Centers for Medicare
and Medicaid Services), E {Education Services),
FDA (Food and Drug Administration), H
{Health Services), HHS (Department of Health
and Human Services), MHS (Military Health
System), § (Social Services), and VHA (Veterans
Health Administration}—is required to overcome
fragmentation in order to develop and implement
halistic solutions to universally improve services.
Those healih, education, and social services would
be funded by state and/or federal money, with the
appropriate separation of powers at the local, state,
and federal levels.
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Scales Overview

‘The models discussed in the A#/as trilogy span the micro (individual), meso
(team/institutional/regional), and macro (population/global) scales. Frequently,
multiple scales need to be considered to arrive at workable solutions that have the
intended effect. For example, social, cognitive, and behavioral factors at the micro
scale impact organizational factors at the meso scale, which impact global science
and entire nations at the macro scale. The reverse is also true: global or national
policies either restrict or enable activities at the meso or micro levels; institutional
rules and regulations impact individual behavior. This spread details and exem-
plifies the three main scales used in the Atlas trilogy, while arguing for a holistic
systems science approach to modeling,

Systems Science

Complex systems are ubiquitous—present around us
in nature and saciety, and within our cognition and
anatomy—and comprised of many components that
often span multiple scales. Systems science aims to
study these multilevel systems. Here, we focus on the
madels of the ESTP domains. The relevance of differ-
ent stakeholders varies according o scale. Some stake-
holders might be relevant for more than one scale, but
will likely have very different concerns at each scale.
One example is the education system: At the indi-
vidual level, there are concerns about learning perfor-
mance and engagement, literacy tests and grades, and
future-proof, labor-market-vahed skills and career
trajectories (see Micro: Education, page 74). At the
organizational level, there is interest in high enroll-
ment rates and rankings, low dropout and suicide rates,
arganizational learning curves, and alsa general apti-
mization of how peaple learn (see Micro: Technology,
page 78; and Meso: Educarion, page 82). At the global
level, there is the need to align educational offerings
with S&T trends and job market demands, and to stay
globally competitive (see Macro: Education, page 90).
Given the extensive diversity in data and stake-
holder concerns, the relevance of models largely
depends on insight needs and scale {see Model
Classes Overview, page 24). For example, models
that take individual behavior into sccount, such as
network models (page 46) and agent-based model-
ing (page 48), are more commeon at the individ-
ual or micro scale. Models that aim to optimize
collaboration and competition, as well as profit and
imization by organizations, might
employ control theory (page 36) and game theory
(page 42). Models st the global societal scale often
use experi-based models (page 26) and dynamical
equations {page 32) to capture general trends,
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() Micro Scale

In the Atlas trilogy, the micro scale refers to the
scale of one individual—their concerns, abili-

those within s locally based spatial, ropical, and
networked environment (e.g, close friends, family,

ties, and impact on a well-specified A
Network models (page 46} or agent-based models
(page 48), using one node to represent each person,
might be employed to understand the context in
which one individual is operating, and the emergent
behavior that arises when multiple individuals inter-
act with each other. Models might group individuals
into clusters according to either types of attributes
(e.:, age or gender) or a given network structure
(e, links denoting social, family, or business rela-
tionships). For example, the graph below shaws U.S.
bachelors degrees grouped by category; for each
category, the midrange salary is graphed within the
total salary range. Individuals can use the graph to
make more-informed career decisions.

In professional and private life, we frequently
seek o understand what influence an individual has
on their peers, family, community, or society. It is
just as important, conversely, to understand how the
behavior of an individual is impacted by their peers,
family, community, or society—as discussed on page
56, with specific regard to the impact of family and
social networks on an individual’s behavior, inchud-
ing (over)eating, smoking, and even happiness.

Chailenges and Opportunities

One person's life span of 80 years equals about

29,200 days, or 700,800 hours. Much of that time

may be spent on satisfying basic needs, such as ear-

ing and sleeping. Even so, a significant amount

of time could be spent on efforts that ultimately

advance both individual and collective well-being.
In reality, most human concerns are focused on

short time spans and immediate relationships—

and o - It is rare for individuals to have
a global perspective that extends to several future
generations (e.g., beyond their children's life-
time) and considers planetary challenges, or other
concerns within a broader geospatial and more
highly networked context.

Regardless, humankind's ability to cause
massive and passibly irreversible change on Earth
is steadily increasing.

Model Examples
Microscale ESTP models are discussed on pages
74-81

Micro: Education (page 74) considers the
impact of individual decisions on career trajectories,
and skill sets that are valued in the workforce.

Micro: Science (page 76) discusses inequality
in faculty production and hiring; productivity and
innovation; and the growth of scholarly networks
and their impact on scientific careers.

Micro: Technology (page 78) examines the
learning needed to optimize the manufacturing
process for one product.

Micro: Policy (page 80) explores the impact of
increased life expectancy on worker demopraphics
and associated policy challenges.

Different life stages, through retirement and
beyond, pose different opportunities and challenges
in terms of making favorsble individual decisions
{e.g., optimizing time spent on learning vs. work-
ing; evaluating income and spending patterns;
making efforts to understand the concems of
others; and contributing to society).
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(® Meso Scale

In the Atfas wilogy, the meso scale refers to the
level at which organizations, institutions, and
regions make decisions. For example, in educa-
tion, it might be beneficial to study and model
learning cohorts and thereby optimize teaching
and learning modules for differan learning styles.
In science, it is important to assemble productive
scholarly teams, often combining expertise from
different disciplines and involving representa-
tives from academia, industry, and government.
Industry collsborations within and across different
sectors are generally advantageous (e., o opti-
mize supply chains or improve customer service).
Government agencies routinely benefit from dara
and expertise exchange, as well as from the coor-
dinated implementation of new policies, within
and across regional houndaries

Challenges and Opportunities
Coordinating modeling efforts within and across
teams, organizations, and regions can be a hercu-
lean feat. Data is often held by multiple owners, and
privacy-preserving data sharing might be needed to
run meta-analyses using all data or to validate mod-
els against all data.

Similarly, algorithms and ather code that are
needed to implement a complete model might be
owned by different institutions, such thar license
and intellectual property issues must be resolved
before a computational model can be constructed
and run_

Different stakeholders typically have corre-
spondingly ditferent needs, expectations, cultures,
responsibilities, and capabilities. Agreeing
on mutually beneficial goals, finding a shared
language, and agreeing on the best process for
developing, implementing, validating, using, and
communicating 4 model can be time-consuming.
However, collective buy-in makes it possible to
benefit from the wisdom, resources, and (social)
networks of many experts; it can lead to transfor-
mational solutions that exploit existing synergies
for widespread benefit.

Model Examples
Mesoscale ESTP models are discussed on pages
82-89.

In the education domain (pages 82-83), modsls
are applied to understand how people learn and how
to scale up education in an equitable manner.

In the science domain (pages $4-85), models
are applied to identify cultural disconnects or gaps
in scholarly communication, and to determine the
most innovative author combinations or the factors
that decide which researchers have a long and
successtul career in science.

In the technology domain (pages 86—87),
maodels help identify and communicate the impact
of government funding on econamic success. They
can be used to compute how innovative different
regions and cities are, and also to understand the
impact of changes in product sales volume on busi-
ness process dynamics.

‘The policy domain (pages 88-89) greatly bene-
fits from the holistic understanding of a region or
city within the global and local context in which it
operates—see the sequence below of zooms from a
map of Eurape (panel A), into Ttaly (panel B), the
Lazio region (panel ), and finally Rome, Ttaly’s
capital (panel ). Examples presented in Meso:
Policy discuss the impact of pelicy decisions on
gross domestic product and unemployment rates,
as well as public attitudes, knowledge, and interest
with regard to educarion, science, technology, and
societal issues.

Just as there are different stakeholders and
concerns at different geospatial levels, there also
exist ditferent stakeholders and concerns ar different
levels of aggregation within education areas, scien-
tific disciplines, and industry sectors. Ultimately,
decision-makers should aim to understand and
involve all stakeholders that are affected when
revising an old or implementing 3 new model.

@® Macro Scale

In the Asas trilogy, the macro scale refers to global Model Examples

considerations at planetary scale. Models might Macroscale ESTP models are discussed an pages
study interactions between the Earth system and 9097,

i r‘ d
systemns such as cities, connected by street and air-
line transportation systems, power grids, and the
Internet (see Anthropocene Animation, page 65).
Long-term plobal monitoring and modeling efforts
require the development of new data recarding,
aggregation, mining, and visualization infrastruc-
tures (see International Science Observatory in
Atlas of Science, page 176) to properly manage

the complexity of the Earth system that supports
our existence

the anth

. wehich comprises I Incressing netwarked complesity (e.g., the
aggregation of people and corporations in large
cities) leads to ever-faster communication and
innovation, yet also more-complex interdependen-
cies based on global risks (see WEF Risk Trends
Nerwork, page 97). Faster transport, mainly
via densely connected cities and efficient airline
networks, leads to faster spreading of not only
informarion bur also, potentially, diseases
(see Epidemic Models, page 38).

Increased human life expectancy will impact
the workforce (see Changes in Working-Age
Population, page 81) and possibly also humankind's
global innovation potential (see Age Dynamics in
Scientific Creativity and Achievement, page 77;
Regional and Global Innovation Indexes, page
8T7; and AT Vibrancy in R&D), Economy, and
Inclusion, page 94).

Several indexes exist to model and monitor

Challenges and Opportunities
‘The globalization of education, science, business,
and government, as well as the challenges that
tumankind is increasingly facing (e.g., extreme
poverty, environmental depradation, and global
warming), require international and interdis-
ciplinary collaboration. Agreeing on priorities,
timelines, and the allocation of resources across
nations and institutional boundaries is a
major challenge.

Measuring and optimizing ESTP progress is
nontrivial due to the systemic heterogeneity of
different educational systems and needs, scientific

global progress. The Global Competitiveness Index
(GCI 4.0), developed by the World Economic
Forum, identifies 12 main drivers of productivity,
called pillars, that are expected to grow in signifi-
cance over time. The table below shows regional
performance by pillar, and the four main catego-
ries {at top) used to classify those 12 indicators,
with darker shades indicating berrer performance.
Europe and North America perform well in many
of the pillars. East Asiaand the Pacific lead in
terms of Fimancial sysens. All regions score above
60% on Macroeconomic seabiliey and above 50% on

Busimess dymamism_

cultures and values, technological opportunities
and demands in different industry sectors, and the
context and history of different policy systems.
However, clear metrics and success criteria are
beneficial when aiming to model and optimize
co-evolving systems at the global scale.

Table 1: Regional performance, by pillar
Avarage score {0-100)
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©® Meso: Education

In the education domain, compurational predictive models are widely applied.
For example, logistic regression models are used to predict and reduce student
dropout or waning student engagement and performance. More advanced models
are under development to support personalized education. Given the success

of massively open online courses (MOOCs)—and the massive usage of online
education during the COVID-19 pandemic—it becomes more important to study
how people learn online.

Examples

Computational models of research universities can simulate the impact of
different funding and enrollment strategies—up to 20 years into the future.
MOQOCs make it possible to scale up education to millions of students, by
generating rich data that supports the development of learning analytics
models, which increase our understanding of how people learn and also offer
personalized learning support.

Key Insights

Innovation in education is required to ensure the survival of institutions, as well
as to scale up education so that billions can be educated for a future wherein
robots, Al, and humans can learn and work together.

74
76
78
80
82
84
86
B8
90
92
94
96

Micro: Education
Micro: Science
Micro: Technology
Micro: Policy

Meso: Education I

Meso: Science
Meso: Technology
Meso: Policy
Macro: Education
Macro: Science
Macro: Technology
Macro: Policy

Probable Futures of Public vs. Private and Large vs. Small

Research Universities

Hundreds of colleges and universities are in a financial crisis, according to the Hechinger Report. MOOCs
make it possible to teach thousands of students in one class, considerably reducing the costs (and income) per
student. Which institutions will survive?

William B. Rouse and colleagues developed a computational model to simulate different potential fistures
of the American academic research enterprise. They started with a conceprual economic model of a research
university {see the figure at lower right of page 70). Next, they collected empirical data to characterize the
resources available to the 160 best-resourced research universities, a small subset of the 2,285 U5, four-year,
nonprofit, higher education institutions. Then, they developed and ran a computational model for four types
of universities {i) large public, (ii) large private, {iii) small public, and (iv) small private. The large institutions
(i and ii} topped the list of 160 in terms of resources, leaving the small ones (jii and iv) near the bottom. The
model makes it possible to simulate three strategic scenarios: (87) status quo, or business as usual, (52) steady
decline in foreign graduate student enrollments, and (£3) downward tuition pressures from high-quality, online
professional master’s programs. Scenario 83 has three different instances, with an external force that is the same
for all three, but a different system response for each: Instance §3: $10K refers to some universities being able
to offer entire degrees for as little at §10,000, which is possible only by cannibalizing the income generated by
other professional master's degree programs; since revenue then decreases substantially while the number of
students to be taught stays the same, this instance is the worst-case scenario for all university types. Instances
§3: 10x and £3: 1K refer to a tenfold increase in students, and 1,000 students per class, respectively; both
instances lead to a substantially smaller number of faculty needed to teach (as does £2), which in turn reduces
publishing productivity and brand value.

All three scenarios were run for the four types of universities, and the predictions for year 20 of the model
run are shawn in the two graphs below. The left graph shows brand value computed using data on publications,
citations, and h-index, but not funding. Units are arbitrary, but useful for relative comparisons. The right graph
shows the net present value (NPV), a financial metric that equals the current value of projected future cash
flows, discounted by the interest rate due to cash flows being delayed. Typically, institutions will aim for a zero
NPV, so they bresk even.

Additional model projections make it clear thar the percentage of tenure-track (T'T) faculey has an enormous
impact. Non-TT faculty members are assumed to teach twice as many classes as TT faculty members at a lower
salary—substantially reducing costs. The predictions show that in some situations, it is beneficial for a university
to substantially reduce research activities in order to avoid the costs that these activities require.

In general, model results showcase the need to rethink and fundamentally change the economic business
model of universities, particularly for those institutions without large resources.
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Active Learning Increases Student Performance in Science,
Engineering, and Mathematics

What are the best learning formats for any given knowledge or skills? When is it best to use passive ve. active
learning? How can active listening and learning be encouraged?

‘The quality of science, technology, engineering, and mathematics (STEM) education, incliding the meth-
ods used, impacts learning outcomes. According to The Srase of Science and Engineering 2020, the National
Science Board biennial report of science and engineering indicators, the United States placed ninth in both

mathematics and science, when examining average scores in an international comparisons of 19 advanced
economies participating in the Trends in International Mathematics and Science Study (TIMSS) study.
Work by René F. Kizilcec and team shows comple-
i i Less-develo) H welo)
tion ates for 1.8 million learners taking 55 MODCs s © odewoped | More-deelo
a function of the United Nations Human Development H Iy

5

Index. The resules are graphed at right; each dot repre-
sents a country, size-coded by the number of learners.
MOOC completion rates are higher for learners from
more developed countries.

A number of metastudies have been conducted
to analyze which learning methods achieve the best
educational outcomes. Scott Freeman and his team
performed a metastudy analyzing the results of 225
studies that reported data on performance scores and
failure rates for STEM courses for traditional lectur-
ing that dominates U.5. STEM instruction vs. active
learning. They found that active learning results in
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increased performance, which raises average grades by half a letter, as shown in the two-part figure below.
Graph A plots the number of students over the percent change in the failure rate for active learning. As the
percentage of active learning increases, the failure rates decrease (in blue). The mean change at 12% is ploted as
4 dashed vertical line (in red). Graph B shows the density of students who fail class for active learning {in blue)
relative to lecturing (in orangs), with mean failure rates at 21.8% and 33.8%, respectively. As can be seen, active
learning substantially decreases failure rates. The team also shows that failure rates under traditional lecturing
increase by 55% relative to active learning, Their work argues for shandening traditional lecturing in favor of
active learning.

Matthew T. Hora critiques the study and results by pointing out that no apt definition of *lecturing” exists,
and commonly practiced lecturing might range from a teacher exclusively presenting while students consume
that content, to a teacher providing guidance and explanations while students actively work through materials.

Despite the critique, it seems highly desirable that teachers add active learning techniques to their pedagogi-
cal toolkit; choose the best (or explore alternative) pedagogic strategies for each learning module; and aim to
understand and support (or expand) the various study habits of students. Kylie Peppler and team explain how the
results of learning analytics and learning sciences can be used by course designers and instructors to better align
course assignments, learning objectives, and assessment measures with learner needs and interests.
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Visual Analytics of MOOCs

How do people learn? How can they learn most effectively online? What learning styles do different student
cohorts exhibit? How can course design be optimized to serve the needs of individual learners*

With the advent of MOOCs in 2008 and millions of students taking courses online, it becomes possible
to capture, analyze, and use teaching and learning data to understand human learning and to optimize teach-
ing. Data from MOOCs has been used to examine learners’ engagement, performance, and trajectories in
online courses.

‘The visualization below shows learning trajectories by 1,608 Boging engineers taking the MIT xPRO course
“Architecture of Complex Systems” delivered in fall 2016. More than 30 million separate events (students
accessing videos or assignments, submitting work, etc.) were captured and analyzed to create this figure. Graph
A plots the five-week course structure with pre- and post-assessment. Graph B shows instructors’ time estimates.
for different learning modules, with i (in red) and overestimarss (in blue)—and some discrep-
ancies when compared to the time students actually spent per medule on average. Graph C presents learning
modules via circles placed in sequence from left to right; modules are color-coded by module type (see legend).
Green arcs indicate students’ forward transitions, from one learning module to the next; purple arcs denote
backward transitions, to revisit earlier learning modules—typically when preparing for exams.
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©® Meso: Technology

Increasing international competition and shareholder demands for short-term
returns lead to ever-shorter product cycles. Higher costs for research and devel-
opment (R&D) make continuous innovation mandatory for survival. Industry-
university cooperation is beneficial to facilitate technological innovation as
well as innovation transfer (see Shneiderman’s twin-win success discussed on
page 70).

Examples

Data models and visualizations can be employed to analyze and communicate the
impact of science funding on the success of I'T sectors. Models can be applied to
compute how innovative different U.S. regions or counties are. Business dynamics
models advise how erroneous information from the customer end to other parts of
the supply chain can lead to devastating inefficiencies, including excessive inventory
investment, ineffective transportation, missed production schedules, poor product
quality and customer service, and lost revenues,

Key Insights

Edwin Mansfield explored eight industries during 1975-1994, concluding that
over 10% of the new products and processes introduced could not have been
developed without (substantial delays in the loss of) academic research. Thus,
research funded by government, academic, and charitable research institutions is
crucial for private-sector technology development and innovation.
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IT Sectors with Large Economic Impact

How do federal funding and scientific progress together impact industry R&D? Which research specifi-
cally led to the development of key products, and how large a market was created via those various lines

of research?

‘The 2016 “tire tracks” graph below—updated since its 2012 creation—vwas published in the Consfnuing
Innouation i Information Technolsgy workshop report by the Computer Science and Telecommunications
Board (CSTE), 2 unit within the National Academies of Sciences, Engineering, and Medicine. The visu-
alization shows the IT sectors that benefited from federal funding for fundamental research; that funding
helped create not only those I'T sectors but also firms and products with ultimately large and far-reaching
economic impact.

In the graph, time runs vertically upward, from 1965 t 2010. Eight R&D tracks are featured. Each track
shows how federally funded university research (in red) is joined by industrial R&D (in blue), which results in
the introduction of new product categories, some of which become hillian-dallar industries (black dots merging
into solid green lines). Arrows interlinking the tracks indicate documented, multidirectional flows of technology
within or across areas—showcasing the cross-fertilization of ideas, technologies, and people between academic
research, industry research, and product development. Above the tracks, in gray type, are the corporate brands
that have a major market share in the eight IT sectors.

‘The visualization was originally developed by the National Research Council to illustrate how federally
funded university research, together with industry R&D), precede the emergence of large IT industries by
decades (see also the discussion of a 20-year timeline in chemical science, from conception to commercial-
ization, in Atfas of Knowledge, Chemical R&D Powers the U.S. Innovation Engine, page 112). The graph
shows “old” areas like Microprocessors, which exceeded $1 billion in annual revenue in the early 1980s and then
exceeded §10 billion around 1995, It also features new areas like Robosics, which has reached $1 billion but not
yet $10 billion in annual revenue.

While necessarily incomplete, symbolic, and backward-looking in nature, the praph inspires reflection and
action. It has been used in National Academies workshap reports and other documents that aim to demonstrate
the impact of and make a case for federal investments in foundational research.
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Regional and Global Innovation Indexes
How innovative is the region in which you live, and how does it compare to ather regions? s it well connected
to both the local and global economic landscape?

Many development practitioners and other regional leaders need to answer such questions in order to properly
address economic challenges, strengthen capacity for innovation, and exploit new knowledge creation, technology
diffusion, and other similar opportunities

Diverse innovation indexes exist to help development practitioners and regional leaders make data-driven
decisions in their daily work. The Global Innovation Index {GI1) is published annually by Cornell University,
INSEAD, the World Intellectual Property Organization, and other partner organizations. It ranks the world’s
countries and economies by their capacity for, and success in, innovation.

‘The Innovation Index by StatsAmerica compares a region’s innovation performance to that of another stare
or region, o to averall U5, performance. The service is provided by the Indiana Business Research Center at
Indiana University's Kelley School of Business. The annual index is calculated from four component indexes thar
are differently weighted: human capital (30% weight), economic dynamics {30%}), productivity and employment
(300}, and economic wel-being (10%). The data used to comgpile the Innovation Index comes from government
statistical agencies as well as from private, proprietary sources, including Moody's Analytics, Decision Data
Resources, EMSI, and VentureDeal.

The Innovation Index 2.0/is an interactive online resource that incorporates new research on measuring
innovation, by taking into account regional knowledge spillovers, technology diffusion, and foreign direct
investment, as well as social capital. It was designed to help regional leaders arrive at a strong consensus on
future-proof strategies. Innovation Index 2.0 visualizations can be shared with all stakeholders to identify a
region's capabilities, shortfulls and potentials, and o guide complex decision-making in support of collective
action toward a common plan.

MagTool makes it possible to explore, spatially, any innovation metric—including prime working-age popu-
lation or business incubator spillover effects. The map below shows knowledge creation and technology diffusion
at the county level. The U.5. average is set at 10(); counties with a lower-than-average index (in beige) are mast
prevalent, while those with a higher index (all blue) contain areas of exceptionally high knowledge creation and
technology diffusion (in dark blue).

Decision-makers can examine their own region in the context of others, select one region as 1 standard
against which all others may then be compared, or zoom into detailed data. Any content can be downloaded
(as a spreadsheet or PDF) at the county, metro area, or Economic Development District (EDD) level for further
analysis and examination.

Knowledge Creation and Technology Diffusion by County
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Business Dynamics: Response to Sudden 10% Retail Sales Increase
Honw da changes in sales impact business process dynamics*

Jay W. Forrester was a founder of system dynamics, which aims to model the interactions between objects
in complex dynamic systems. In his 1961 book Induserial Dynamics, he introduced the use of system dynamics
to analyze industrial business cycles and the Forrester effect, better-known today as the bullwhip effect, which
describes the increasingly large demand distortions that tend to occur along the supply chain—from custom-
ers to retailers, distributors, manufacturers, and finally to suppliers. For instance, a predicted or actual 15-unit
(minor) increase in retail sales might lead to a 20-unit increase in warehouse stocks, an even larger unit increase in
safety or backup stock within the distribution center, and onward. As the *whip” moves away from the customer,
the effect amplifies, causing not only excess inventory but also quality control issues and other inefficiencies.
Similarly, as forecasting predictions move further away from the customer, or further upstream along the supply
chain, the less accurate they become. Poor communication and lack of visibility, along with process constraints
such as capacity, batch sizes, and time lags, all further increase demand distortion, oscillation in inventory levels,
and passibly supply shortages (also called a production Rywhee! effect—see Control Theory, page 36).

Exemplarily, the dynamic behavior of an inventory system is captured in the graph below. The figure shaws
unit-per-week changes in orders (in black}—including  10% increase in retail sales, which motivates an 18%
change in distributor orders, causing a 34% increase in factory orders, resulting in a 45% increase in factory
production cutput. Also graphed {in red, from top to bottom) are the inventory units for retailers, distributors,
and the factory warehouse. In 1961, when this graph was published,  mathematical model was used to describe
the target system, that model was run on some of the early computers, and the model results were used to plot
systemn behaviors.

A decade later, in 1972, Forrester and his students used the DYNAMO (DYNAmic MOdeling) simulation
language—which they had originally developed for analyzing problems such as inventory management in indus-
trial dynamics—to develop The Limits 5 Growth world model (page 7), one of the first computer models with
multiple feedback loops.

In World Diynamics (1971) and numerous papers, Forrester sought to model the world economy, population,
and ecology. He argued that computerized system models are far superior to simple debate—for capturing the
structure and dynamics of real-world systems, identifying the root causes of problems, and also determining the
likely effects of proposed systemic changes.

In System Diynamics: Syssems Thinking and Modeling for a Complex World (2000, John D). Sterman, a student of
Forrester, {re)introduced system dynamics models, together with tools for systems thinking, modeling, and test-
ing as lified by real-world exampl king it easier for many o use models effectively.
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Places & Spaces:
Mapping Science

Introduction to the Exhibit

Created by experts in science, humanities, and the arts, the works
collected in the Places &5 Spaces: Mapping Science exhibit convey the
excitement of scientific progress and discovery. Maps of science chart
the more abstract spaces of data and knowledge, helping us forecast new
fields of inquiry and enabling us to tell stories that we can all under-
stand and act upon. An interdisciplinary and international advisory
board chose each of these exhibited works as an outstanding example of
how visualization can bring patterns in data into focus.

As of 2020, 100 maps by 215 mapmakers have been displayed ar 396
venues, in more than 28 countries, on 6 continents. Each unique venue
adds its own value. Ultimately, the exhibit is like the eponymous stone
in the story of stone soup—with experts around the globe contributing
singular visualizations that ask new questions while offering solutions
to meet local contexts and needs.

‘The Atias of Forecasts features maps designed for kids—the next
generation of experts and leaders; maps showing trends and dynamics
in the past, present, and future; and maps that foreshadow the future
of science mapping. The 30 maps featured here communicate complex
data; help bridge gaps between experts in academia, industry, and
government; and help align forces toward the identification and imple-
mentation of desirable futures.

100 Fart 4: Science Maps in Action | 101
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Reducing Human Bias

Humans tend to be subjective, often acting according to biased opinions rather than
objective facts. Cognitive biases are systematic deviations from normative ratio-
nality in judgment, as studied in fields like psychology and behavioral econom-
ics. While many such biases have been confirmed in independently reproducible
research, controversies abound as to their possible origins and causes. In order to
make objective, well-informed decisions, we need to understand and proactively
neutralize existing biases. This spread explains some of the known biases, beliefs,
and behaviors, with suggestions for how to counteract them. Ultimately, biases
and beliefs have a major impact on life satisfaction. Understanding our own
biases is an important step toward experiencing a fulfilling present and future.

Al models are wrong, but some are us
George Box

To Err Is Human

‘Though human brains are powerful and efficient,
human error inevitably occurs at every level of soci-
ety. Some errors are systematic and systemic. Mamny
are self-reinforcing via positive or negarive feedback
cycles (see the figurs below and Modeling Goals,
page 14). Frequently, specific individual or institu-
tional actions (e.g, funding of highly funded schol-
ars) influence the structures and/or dynamics of the
environment (e.g., more funding created for already
highly funded scholars), leading in turn to rewards
for potentially erroneous actions (e.g., favoring older
vs. younger scholars; thus, older scholars are able to
further their impact, while younger scholars are not
afforded resources to perform high-end research,

which falsely confirms funding of older scholars as
the best strategy for maximizing the number of cita-
tions per dollar spent).

Agent
State | | Reward

Environment

Extensive literature exists on why human judg-
ment fails, particularly when long-term or global
decisions are at stake. In addition, considerable
research aims to uncover why people violate norms of
action through social misbehaviors (e.g., conforming
with false majority judgments or failing to help those

Action

in need) and norms of reasoning through cognitive
errars (e.g., polarized black-and-white thinking or
overgeneralization). The goal is enhanced under-
standing of the bases for good behavior and accurate
judgment, coherent explanations of occasional lapses,
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and theoretically grounded suggestions for improve-
ment. In-depth discussion on this subject, with
significant examples and theoretical models, can be
found in Nesworks, Crowds, and Markets: Reasoning
about a Highly Connscted Worid (2010) by David
Easley and Jon Kleinberg.

Data Bias
Any system modeling effort starts with data, which
is gathered by surveying human experts, retrieved
from darabases or the Internet, and collected via
10T sensors or other sources. Using the most appro-
priate and highest-quality data is crucial for arriv-
ing at actionable insights. Unfortunately, imperfect
data is frequently used with confidence.
Convenience sampling is often employed, drav-
ing on a part of the population that is close at
hand—such as colleagues, friends, or neighbors
with experiences and opinions similar to those of
the data collector—so that findings are thus more
likely to reflect the views of the data collector than
of the general population. This kind of nonproba-
bility sampling can be useful for pilot testing, but is
often not a good choice for designing, parametriz-
ing, or validating a model for a target system.
Other common data sampling mistakes include:
selective artention, whereby a person's limited
capacity allows for only certain stimuli to be noticed
‘while others are tuned out, when several occur
simultaneously; base-rate neglect, when a person
focuses heavily on new information without prop-
erly taking into scoount original or base assump-
tions; confirmation bizs, whereby new evidence is
interpreted according o existing beliefs or theories;
Simpson's paradox, in which separate sets of data

show ane particular trend that is reversed when
those sets are combined; and out-group devalua-
tion of an in-group based on out-group criteria {ie.,
when individuals outside of an in-group devalue
aspects in which they fare poorly relative to that
ir-group, but overvalue aspects in which they fare
well relative to their out-group). Sampling errors
carry over to subsequent dara use, model or visual-
ization design, and interpretations—and are nearly
impossible to detect and correct unless the proper
documentation of data sources is secured and data
preprocessing is performed.

Gender Bias

‘The well-known bias of pender stereotyping has
proven pervasive and difficult to overcome. Sheryl
Sandberg, author of Lean In: Women, Work, and the
Wil 49 Lead (2013), confirms that women are called
bossy when exhibiting the ssme behaviors for which
men are considered assertive. Sandberg, with psychol-
ogist Adam Grant, also points out how the workplace
expects a man to be ambitious, but a woman to be
helpful; ergo, if a man does niot help, he is *busy,” but
if a woman does not help, she is “selfish.” Similarly,
the words used to describe male and female college
faculty differ greatly. In analyzing the language

of abour 14 million reviews on RateMyProfessors.
com, Ben Schmidt found that, while male profes-
sors are typically regarded as brilliant, swesome, and
knovledgeable, fmale professors are characterized
as bossy, annoying, disorganized, and even beautiful
or ugly. Furthermore, students generally give profes-
sors much higher ratings when they believe them to
be male, regardless of their actual gender.

Gender bias regularly factors into performance
reviews and selection committees—women are far
maore likely than men to receive critical feedback,
and women leaders in particular are frequently
described as abrasive, aggressive, and emotional

Bias is also present in the grading of students’
assignments. Many teachers seem to have the

b1 Bachelor's Degrees Earmed by Women
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endogenous belief that girls are not as gnod as
boys in math and science; even when girls perform
similarly to boys, their work may be graded more
critically. Since that unconscious bias in turn has a
profound and systematic effect on whether female
students pursue degrees and professions in those
fields, such endogenous belief leads to self-fulfill-
ing prophecies.

Gender bias is also present in blinded grant
proposal reviews, as the fact that women tend to use
“weaker” language (e.g., “we hope to” instead of “we
will"; results “might be” rather than “will be”) leads
to their proposals being dismissed for sounding less
confident than those authored by males.

Nevertheless, in the past few decades, blind
hiring practices have led to progress—namely in
symphony orchestras. Though now widespread, the
practice of using screens in auditions to conceal
candidates from the jury was pradually imple-
mented. As a result, the percent of female musicians
in the five highest-ranked U.8. orchestras increased
from &% in 1970 to 21% in 1993; one study found
that blind auditions accounted for up to 46% more
female musicians by 1996. However, blind recruit-
ment is not viable in most industries; instead, many
institutions require members of job search commit-
tees to attend professional training sessions on
existing biases and how to remedy them.

Systematic, proactive efforts toward ensuring
more equitable cutcomes have resulted in an increas-
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ing fraction of U.§. bachelors degrees being awarded
to women in the science, technology, engineering,
and mathematics (STEM) fields (see top graph on
opposite page}—yer much work still needs t be
done to increase the number of graduate and PhD
degrees awarded, and the number of tenure-track

and leadership positions held by women.

Generational Bias

There are presumed to be major differences across
generations in terms of education, work ethics,
tech-savviness, and cost-effectiveness. The bot-
tom figure on left raphs the average view of 200
hiring managers on whether Generation X-ers
(born 1965-1980) or millennials (bom 1981-199¢)
are more likely to have certain qualities relevant
w performance and the workplace. Generational
differences and associated biases can easily lead
to mi ication and mi ings in
personal and professional life. Disparities across
multiple generations {e.g., between teenagers and
their can be even more

However, understanding differences is the first step
oward counteracting and overcoming them.

Own-Species Bias
Also called speciesism, this prejudice holds one’s
awn species as superior—essentially, humans favor-
ing humans {their own species) aver animals {other
species), even if their needs are equivalent.

In a world where humans and Al-empowered
robots and other machines live, learn, and work
together, it becomes important to understand our

and his tearn) can make
data access more effi-
cient, comprehensive,
and entertaining, while
improving data-driven
decision-making by
professionals, policymak-
ers, and citizens. The aim
of creating robots that look ever more humanlike
(see the information-desk android on page 179) is
to fully resolve the experience of “uncanny valley”
(when a robot's imperfect human resemblance
evokes unsettling feelings). Extensive interaction
with simulated game characters, consistent use of
life-tracking wearables, and reliance on smart-
phenes can all offer a profound sense of connec-
tivity; they seem to readily become part of our
identity, such that being without them can leave
us with a deep sense of anxiety or loss.

Self-Perpetuating Bias
As discussed earlier in “To Err Is Human,” deep-
seated beliefs in how the world works can inform
expectations that lead to self-fulfilling prophecies:
If one is inclined to grasp a particular situation in
a negative way, one might truly have a negative
experience; if that same scenario is seen in 3 posi-
tive light, it may well have a positive outcome. The
experience one has then further reinforces one’s
existing beliefs in how the world works.

‘That premise is central, for example, to Jayson
L. Lusk and Anne Rozan’s research on the deep
endogencus belief that many U.S. consumers have
about the safety of genetically modified (GM)
fiod, which in turn has implications on their
consumption of it. Using survey data, the experi-
menters developed an econometric model in which
beliefs about labeling policy, the safety of GM
food, and the willingness to consume GM food
are endogenously determined. They then assessed

and compared the artitudes of life scientists (who
Ik : SN

logical chaice by consumers and by firms, and the
localized nature of crime and political movements.
In & 1960s study on the drawing power of differ-
ent-size crowds, psychologists Stanley Milgram,
Leonard Bickman, and Lawrence Berkowitz had a
group of up to 15 people stand on a street corner,
with a select number staring up at the sky; they
then counted how many passersby stopped and
alsa looked up at the sky. When only one person
in 2 group was staring upward, very few passersby
stopped; with five people staring upward, more pass-
ersby stopped but few looked ups with all 15 people
staring upward, nearly halfof all passersby stopped
and also looked up at the sky. The experimenters
concluded thar soctal pressures, or social conformity,
ETOws stronger as group size increases. Extensive
general advice exists on how to neutralize the nega-
tives of peer pressure, such as by making friends with
those who resist peer pressure, asking for help when
necessary, and either getting out of the problem situ-
ation or providing your own positive pressure.
However, humans are social animals, and our
habits are reinforced by those we surround curselves
with. Nicholas A. Christakis and James H. Fowler
showed that behaviors such as smoking, obesity,
and cooperation, or even feelings of happiness, can
spread via social networks. For example, 3 married
person's chances of smoking were decreased by
7% when their spouse quit smoking; and people
surrounded by cooperative colleagues are likely 1 be
more cooperative, Study results have implications for
the composition of eams, clinical and public health
interventions, and personal relationship formations
Herd behavior also leads to the “paradox of
unanimity™—as described by Derek Abbott for
Lachlan ]. Gunn et al. —whereby certainty is not
definitively reliable. The researchers found, for
instance, that in a police lineup, the probabil-
ity of an individual’s guilt increases with the first
three unanimous witness identifications, but then
decreases with subsequent unanimous identifica-
tions In ather words, it is highly unlikely in such

to this new de species.
perceive them to be our creations and allies,
objects entirely artificial and separate from uf
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s for many people to all agree. In
his, the researchers cite how ancient
rescribed that a suspect on trial should
if found unanimously guilty. Though
this counterintuitive, the legislators of
d observed that unanimous agreement
d the presence of systemic error in the

More research is needed into people’s emd
and ethical response to smart environments,

wearsbles, and the like. Smart environments l?ﬂ I'I.-'Iodc]:[ng Dppﬂﬂuniﬂl{:s

that use augmented reality (AR) data visuali
tions to provide pertinent details (such as I
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Without necessarily understanding
ture of the error, they derived what for
fwarking solution.

tisfaction
nitive bias has been shown to have a
o an individual’s overall life sarisfac-

tion as it impacts motivation, engagement, perfor-
mance, and happiness.

“The figure below, from The Glabal Comperitivensss
Repart 2018 by the World Economic Forum
{WEF), shows life satisfaction for 135 coun-
tries, as measured on Cantril's Ladder of Life
Scale—whereby participants, using the numbers
0 {for worst possible life) to 10 (best possibile life),
answered the question, “How satisfied are you with
your life as a whole these days?” Finland, Denmark,
Norway, and the United States appear to have the
highest Global Competitiveness Index (GCI) 4.0
scores, while the Republic of Burundi, landlocked
in the African Great Lakes region, seems to score
lowest. As the WEF states, the fact thar life satis-
faction accounts for over two-thinds of differences
per the GGC1 4.0 scores is remarkable given how
wvastly distinct the 135 nations are otherwise, in
terms of culture, history, and politics.

How can positive cognitive bias be introduced
to educational, scholarly, industrial, or government
environments to arrive 1t even higher GCI values?
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Exposing Biases
People tend to be unaware of their own biases and
believe they make decisions objectively. Project
Implicit aims o educate individuals abour hid-
den bizses and to generate data for research.
Investigations using their data have found, for
example, that “states higher in racial bias spend less
on disabled Medicaid enrollees™ and that “Blacks
death rate due to circulatory diseases is positively
related to Whites' explicit racial bias.”™ The orga-
nization provides users with easy access to exer-
cises designed to expose implicit social cognition
{thoughts and feelings outside of conscious aware-
ness and control). Tt also allows anyone to test their
own biases by taking part in surveys related to race,
gender, ethnicity, obesity, age, religion, disability,

and sexual orentation. When biases are known,
they can be counteracted.
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Data Visualization Literacy

Borner, Katy, Andreas Bueckle, and Michael Ginda. 2019. Data visualization literacy: Definitions,
conceptual frameworks, exercises, and assessments. PNAS, 116 (6) 1857-1864.

Borner, Katy (2015) Atlas of Knowledge: Anyone Can Map. The MIT Press.




Data Visualization Literacy (DVL)

Data visualization literacy (ability to read, make, and explain data visualizations)
requires:

* literacy (ability to read and write text in titles, axis labels, legends, etc.),

« visual literacy (ability to find, interpret, evaluate, use, and create images and visual
media), and

« mathematical literacy (ability to formulate, employ, and interpret math in a variety of
contexts).

Being able to “read and write” data visualizations is becoming as important as being able to read
and write text. Understanding, measuring, and improving data and visualization literacy is
important to strategically approach local and global issues.

Cyberinfrastructure for
c N S Network Science Center 6 2



Data Visualization Literacy Framework (DVL-FW)

Consists of two parts:

DVL Typology
Defines 7 types with 4-17
members each.

Insight Needs

* categorize/cluster

« order/rank/sort

« distributions (also
outliers, gaps)

* comparisons

* trends (process
and time)

* geospatial

* compositions
(also of text)

« correlations/
relationships

c N S Cyberinfrastructure for
Network Science Center

Data Scales  Analyses Visualizations ~ Graphic Symbols Graphic Variables Interactions
* nominal « statistical * table * geometric symbols  « spatial *zoom
« ordinal * temporal * chart point position « search and locate
«interval * geospatial  *graph line « retinal « filter
* ratio « topical * map area form « details-on-demand
« relational * tree surface color « history
* network volume optics « extract
« linguistic symbols motion « link and brush
text * projection
numerals « distortion

punctuation marks
« pictorial symbols

images

icons

statistical glyphs

DVL Workflow Process
Defines 5 steps required to
render data into insights.

Deploy

Stake-
holders
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Data Visualization Literacy Framework (DVL-FW)

Consists of two parts that are interlinked:

DVL Typology +
DVL Workflow Process

c N S Cyberinfrastructure for
Network Science Center

Interaction Types

Deploy

Graphic Variable Types e

Insight
Sta ke' Need e
holders Types

Graphic Symbol Types e

Acquire Analyze Visualize Visualization Types e

Data Scale Types

eI Analysis Types
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Data Visualization Literacy Framework (DVL-FW

Implemented in Make-A-Vis (MAV) to support learning via horizontal transfer, scaffolding,

hands-on learning, etc.

= Make-A-Vis [

Data

~ B ISl Publications: (CSV)Preprocessed-wos

Title Authors Journal Year

» B Journals: (from IS| Publications)

Name #Papers  #Cites
BMC EVOL BIOL 1 7
FEBS) 2 0

NAT PHYS 3 18

c N S Cyberinfrastructure for
Network Science Center

#Cites

First Year

2006

2005

2005

®

v
Last Year
2006
2005
2006

Make Visualization

Temporal

Bar Graph

i

B AN

Scimap

Select Graphic Symbol Type(s)

Select Graphic Variable Types

Temporal Bar Graph €3

Machine

Smart
Form
Web
Computing |
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Application [N
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Graphic Variable Types

Graphic Symbol Types

Geometric Symbols Linguistic Pictorial
Point Line Symbols Symbols
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See Atlas of Knowledge
pages 36-39 for
complete table.

‘ Qualitative

Also called:

Categorical Attributes
Identity Channels

Quantitative

Also called:

Ordered Attributes
Magnitude Channels
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Graphic Variable Types Versus Graphic Symbol Types
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—Advam:‘e VOur skills in one of the most in demand careers through this six-week (§ , L
enllne course focused on understanding and creating data visualizations that translate

complex data into actionable insights.

( FLYER ) REGISTER FOR SEPT 20-OCT 30, 2021 ( FaQs )
. > . -

Learn from Experts Evolve Yourself
Connect with industry professionals and leading Gain forever knowledge and skill-up in powerful data sonal
researchers. Is.
https://visanalytics.cns.iu.edu US Employers which have sent students include

The Boeing Company, Eli Lilly, DOE, CDC, NSWC Crane.


https://visanalytics.cns.iu.edu/
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