Human Reference Atlas: ASCT+B Tables, 3D Reference Library & CCF User Interfaces

Katy Börner | @katycns Victor H. Yngve Distinguished Professor of Intelligent Systems Engineering & Information Science Luddy School of Informatics, Computing, and Engineering Indiana University, Bloomington, IN

CFDE April Cross-Pollination Event Virtual Event

April 6, 2021

HuBMAP

Vision

Catalyze the development of an open, global framework for comprehensively mapping the human body at cellular resolution.

https://commonfund.nih.gov/HuBMAP

Goals

- 1. Accelerate the development of the next generation of tools and techniques for constructing high resolution spatial tissue maps
- 2. Generate foundational 3D tissue maps
- 3. Establish an open data platform
- 4. Coordinate and collaborate with other funding agencies, programs, and the biomedical research community
- 5. Support projects that demonstrate the value of the resources developed by the program

HuBMAP Funded Groups

0

•

HuBMAP Contributing Sites

The Human Body at Cellular Resolution: The NIH Human Biomolecular Atlas Program. Snyder et al. Nature. 574, p. 187-192.

Assavs/ analysis Transformative technology development (TTD) and rapid technology Data compilation implementation (RTI) **Tissue mapping** centre (TMC) HuBMAP integration, visualization and engagement (HIVE) Map generation Data Dissemination/ storage access

Tissue collection

Fig. 1 | The HubMAP consortium. The TMCs will collect tissue samples and generate spatially resolved, single-cell data. Groups involved in TTD and RTI initiatives will develop emerging and more developed technologies, respectively; in later years, these will be implemented at scale. Data from all groups will be rendered useable for the biomedical community by the HuBMAP integration, visualization and engagement (HIVE) teams. The groups will collaborate closely to iteratively refine the atlas as it is gradually realized.

The Human Body at Cellular Resolution: The NIH Human Biomolecular Atlas Program. Snyder et al. *Nature*. 574, p. 187-192.

Fig. 2 | Key tissues and organs initially analysed by the consortium.

Using innovative, production-grade ('shovel ready') technologies, HuBMAP TMCs will generate data for single-cell, three-dimensional maps of various human tissues. In parallel, TTD projects (and later RTI projects) will refine assays and analysis tools on a largely distinct set of human tissues. Samples from individuals of both sexes and different ages will be studied. The range of tissues will be expanded throughout the program.

The Human Body at Cellular Resolution: The NIH Human Biomolecular Atlas Program. Snyder et al. *Nature*. 574, p. 187-192.

Fig. 3 | Map generation and assembly across cellular and spatial

scales. HuBMAP aims to produce an atlas in which users can refer to a histological slide from a specific part of an organ and, in any given cell, understand its contents on multiple 'omic levels—genomic, epigenomic, transcriptomic, proteomic, and/or metabolomic. To achieve these ends, centres will apply a combination of imaging, 'omics and mass spectrometry

techniques to specimens collected in a reproducible manner from specific sites in the body. These data will be then be integrated to arrive at a high-resolution, high-content three-dimensional map for any given tissue. To ensure inter-individual differences will not be confounded with collection heterogeneity, a robust CCF will be developed.

CCF ASCT+B Tables

CCF Requirements

Organ

Renal capsule

Renal pyramid

Renal cortex

Renal medulla

Renal calyx

Renal pelvis

The CCF must capture major **anatomical structures**, **cell types**, **and biomarkers** and their interrelations across **multiple levels of resolution**.

It should be **semantically explicit** (using existing ontologies, e.g., Uberon, CL) and **spatially explicit** (e.g., using 3D reference organs for registration and exploration).

Body

- Body
- Kidney (Left, Right)
- Aorta
- Renal artery
- Renal vein
- Ureter

Functional Tissue Unit

- Nephron
- Renal corpuscle
- Proximal convoluted tubule
- Loop of Henle
- Distal convoluted tubule
- Connecting tubule
- Collecting duct

FTU Sub-structure(s) Cellular

Bowman's capsule

Efferent arteriole

Afferent arteriole

Glomerulus

- Parietal epithelial cell
- Capillary
 - endothelial cell
- Mesangial cell
- Podocyte

ASCT+B Tables

Anatomical Structures, Cell Types, and Biomarkers (ASCT+B) tables aim to capture the partonomy of anatomical structures, cell types, and major biomarkers (e.g., gene, protein, lipid or metabolic markers).

Structure/Re	Substructure/Sub	Cell Type	Subset of Marker Genes
gion	region		
Renal	Bowman's Capsule	Parietal epithelial cell	CRB2*, CLDN1*
Corpuscle	Glomerulus	Podocyte	NPHS2*, PODXL*, NPHS1*
		Capillary Endothelial Cell	EHD3*, EMCN*, HECW2*,
			FLT1*, AQP1*
		Mesangial Cell	POSTN*, PIEZO2*, ROBO1*,
			ITGA8*

Partial ASCT+B Table from

• El-Achkar et al. A Multimodal and Integrated Approach to Interrogate Human Kidney Biopsies with Rigor and Reproducibility: The Kidney Precision Medicine Project. bioRxiv. 2019, Updated Aug 2020. doi:10.1101/828665

Table 3: Cell types and associated markers from KPMP Pilot 1

transcriptomic studies. Asterisk denotes genes detected by more than one technology. *Italics* genes detected by a single technology.

Structure/R egion	Sub structure/Sub region	Cell Type	Abbreviation	Subset of Marker Genes	Pertinent negatives/com ments	
	Bowman's Capsule	Parietal epithelial cell	PEC	CRB2*, CLDN1*		
Renal	Glomerulus	Podocyte	POD	NPHS2*, PODXL*, NPHS1*		
Corpuscle		Capillary Endothelial Cell	GC-EC	EHD3*, EMCN*, HECW2*, FLT1*, AQP1*		
		Mesangial Cell	MC	POSTN*, PIEZO2*, ROBO1*, ITGA8*		
	Proximal Tubule	Proximal Tubule Epithelial Cell (general)	PT	CUBN*, LRP2*, SLC13A1*, ALDOB*, GATM*		
		Proximal Convoluted Tubule Epithelial Cell Segment 1	PT-S1	SLC5A2*, SLC5A12*	The second se	
		Proximal Tubule Epithelial Cell Segment 2	PT-S2	SLC22A6*	 There is overlap among the commente 	
		Proximal Tubule Cell Epithelial Segment 3	PT-S3	PDZK1IP1*, MT1G*	 segments 	
	Loop of Henle, Thin Limb	Descending Thin Limb Cell (general)	DTL	CRYAB*, VCAM1*, AQP1*, SPP1*	CLDN10 low	
		Ascending Thin Limb Cell (general)	ATL	CRYAB*, TACSTD2*, CLDN3*	AQP1 low to none	
	Loop of Henle, Thick Limb	Thick Ascending Limb Cell (general)	TAL	SLC12A1*, UMOD*	SLC12A3 low to none	
		Cortex-TAL cell	C-TAL	SLC12A1*, UMOD*		
		Medulla-TAL cell	M-TAL	SLC12A1*, UMOD*		
		TAL-Macula Densa cell	TAL-MD	NOS1*, SLC12A1*		
	Distal Convolution	Distal Convoluted Tubule Cell (general)	DCT	SLC12A3*, TRPM6*		
Tubules		DCT type 1 cell	DCT-1	SLC12A3*, TRPM6	SLC8A1, HSD11B2 (low to none)	
		DCT type 2 cell	DCT-2	SLC12A3*, SLC8A1*, HSD11B2	Has CNT and DCT signature	
	Connecting Tubule	Connecting Tubule Cell (general)	CNT	SLC8A1*, CALB1, TRPV5		
		CNT-Principal Cell	CNT-PC	SLC8A1*, AQP2*, SCNN1G*	SLC12A3 low to none. IC or PC	
		CNT-Intercalated Cell	CNT-IC	SLC8A1*, CA2, ATP6VOD2*	without SLC8A1 could be in the	
		CNT-IC-A cell	CNT-IC-A	SLC8A1*, SLC4A1*, SLC26A7*	CNT structure	
		CNT-IC-B cell	CNT-IC-B	SLC8A1*, SLC26A4*, SLC4A9*		
	Collecting Duct	Collecting duct (general) cell	CD	GATA3*	GATA3 may be	
		CD-PC (general)	CD-PC		in subpopulation	
		C-CD-PC	C-CD-PC	AQP2*, AQP3*, FXYD4*,	of DCT, CNT	
		M-CD-PC	M-CD-PC	SCNN1G*, GATA3*	and vSMC/P.	
		Outer medulla-CD-PC	OM-CD-PC		SLC8A1,	
		Inner Medulla-CD cell	IM-CD	AQP2*, SLC14A2	CALB1, TRPV5	

		Transitional PC-IC cell	tRC,IC	FXYD4*, SLC4A9*/SLC26A7*	(low to none); Low to No
		CD-IC (general) cell	CD-IC	CA2, ATP6VOD2*	CALCA and KIT
		CD-IC-A (general) cell	CD-IC-A	SLC4A1, SLC26A7*, TMEM213*	in C-CD-IC-A. I may not be
		C-CD-IC-A cell	C-CD-IC-A	SLC26A7*, SLC4A1*	possible to
		M-CD-IC-A cell	M-CD-IC-A	SLC26A7*, SLC4A1, KIT*, CALCA	assign IC or PC to_CNT or CD
		CD-IC-B (general) cell	CD-IC-B		structures
		C-CD-IC-B cell	C-CD-IC-B	SLC4A9". SLC26A4"	without regional
		M-CD-IC-B cell	M-CD-IC-B	ocomo , ocozori	information of their source.
		Endothelial Cell (general)	EC	EMCN*, PECAM1*, FLT1*	
		EC-Afferent/Efferent Arteriole	EC-AEA	SERPINE2*, TM4SF1*	likely PALMD
	Endothelial Cells (<u>non-</u> glomerular)	EC-Peritubular capillaries	EC-PTC	PLVAP*	
Vessels		EC-Descending Vasa Recta	EC-DVR	TM4SF1*, PALMD	
		EC-Ascending Vasa Recta	EC-AVR	DNASEIL3*	low to none
		EC-Lymphatics	EC-LYM	MMRN1*, PROX1	
Structure/R egion	Sub structure/Sub region	Cell Type	Abbreviation	Subset of Marker Genes	Pertinent negatives/com ments
Interstitium	Stroma (non- glomerular)	Vascular Smooth Muscle/Pericyte (general)	VSMC/P	TAGLN*, ACTA2*, MYH11*, NTRK3, MCAM	
		vSMC/P-Renin	VSMC/P-REN	REN	1
		Fibroblast	FIB	DCN*, ZEB2, C7, LUM	
		Macrophages-Resident	MAC-R	CD163*, IL7R*	
	Immune	Macrophages-Resident			
	Immune	Macrophages-Resident	MAC	S100A9	-
	Immune				-
	Immune	Macrophage	MAC	S100A9	-
	Immune	Macrophage Natural Killer Cell Dendritic Cell Monocyte	MAC NKC	S100A9 NKG7 APOE C1QA, HLA-DRA	-
	Immune	Macrophage Natural Killer Cell Dendritic Cell Monocyte T lymphocyte (general)	MAC NKC DC MON T	S100A9 NKG7 APOE C1QA, HLA-DRA CD3	_
	Immune	Macrophage Natural Killer Cell Dendritic Cell Monocyte	MAC NKC DC MON	S100A9 NKG7 APOE C1QA, HLA-DRA	-

El-Achkar et al. A Multimodal and Integrated Approach to Interrogate Human Kidney Biopsies with Rigor and Reproducibility: The Kidney Precision Medicine Project. bioRxiv. 2019, Updated Aug 2020. doi:10.1101/828665

.

•

CCF ASCT+B Reporter UI

https://hubmapconsortium.github.io/ccf-asct-reporter/

ASCT+B Tables

Anatomical Structures (AS), Cell Types (CT), and Biomarkers (B) or ASCT+B tables aim to capture the partonomy of anatomical structures, cell types, and major biomarkers (e.g., gene, protein, lipid or metabolic markers).

Ontology

ASCT Table

Structure/Region	Sub structure/Sub region	Cell Type			
	Bowman's (glomular) Capsule/parietal layer	Parietal epithelial Cell			
Renal Corpuscle	Bowman's (glomular) Capsule/visceral layer	Podocyte			
Renar Corpuscie	Glomerular Tuft	Capillary Endothelial Cell			
	Giomeratar Tare	Mesangial Cell			
	Proximal Tubule	Proximal Tubule Epithelial Cell (general)			
		Proximal Convoluted Tubule Epithelial Cell Segment 1			
		Proximal Tubule Epithelial Cell Segment 2			
		Proximal Tubule Epithelial Cell Segment 2			
	Loop of Henle, Thin Limb	Descending Thin Limb Cell (general)			
		Ascending Thin Limb Cell (general)			
	Loop of Henle, Thick Limb	Thick Ascending Limb Cell (general)			
Tubules		Cortex-TAL Cell			
		Medulla-TAL Cell			
		TAL-Macula Densa Cell			
	Distal Convolution	Distal Convoluted Tubule Cell (general)			
		DCT Type 1 Cell			
		DCT Type 2 Cell			
	Connecting Tubule	Connecting Tubule Cell (general)			
		CNT-Principal Cell			

Anatomical Structures Partonomy kidney kidney capsule cortex of kidney outer cortex of kidney renal medulla Cell Types Ontology connective tissue cell pericyLe cell mesangial cell extraglomerular mesangial cell glomerular mesangial cell

3D Reference

Overview of CCF 3D Reference Models

.

ASCT+B Table Working Group

Lead by Katy Börner and Jim Gee; Ellen M Quardokus serves as Knowledge Manager

Meetings take place monthly to review and approve tables, formalize and unify table design language, discuss and expand table usage, see <u>WG Charter</u>.

Upcoming meetings in **2021:** April 7, May 5, 11a-noon ET. Please <u>register</u> to receive invites and updates.

	HuBMAP	RBK	KPMP	SPARC	LungMAP	HTAN	HCA	GUDMAP	Gut Cell Atlas	BICCN	Allen Brain	TCGA	Wellcome	MRC	H2020	GTEx	Total
Kidney	1	1	1	0	0	0	1	1	0	0	0	1	1	1	0	1	9
Liver	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	3
Spleen	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	4
Heart	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	1	4
Lung	1	0	0	1	1	1	1	0	0	0	0	1	1	1	1	1	10
L intestine/Colon	1	0	0	1	0	1	1	0	1	0	0	1	0	0	0	1	7
S intestine	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2
Bladder	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	5
Ureters	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2
Thymus	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2
Lymph nodes	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	2
mediastinal lymph node	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Eye	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	3
Brain	0	0	0	0	0	0	1	0	0	1	1	1	0	0	1	1	6
Brain stem	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
Cerebellum	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	3
Spinal cord	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	2
Pancreas	0	0	0	0	0	1	1	0	0	0	0	1	0	0	1	1	5
Breast	0	0	0	0	0	1	1	0	0	0	0	1	1	0	0	1	5
Skin	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	3
Pediatric systems	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	2
Ovaries	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	2
Testes	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	2
Cervix	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
Uterus	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	5
Blood	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	2
Bone	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Placenta	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Decidua	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Embryo	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
esophagus	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	3
hematopoietic system	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	2
immune system bulk	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Stomach	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	3
Thyroid	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	2
Prostate	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	3
Adrenal gland	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	3
Totals	11	1	1	7	1	6	21	4	1	2	2	20	7	5	4	21	114

Table compiled for, during, and after the NIH-HCA Joint Meeting in March 2020, https://hubmapconsortium.org/nihhca2020

Organ	#AS	#CT	#B Total	#BG	#BP	#AS-AS	#AS-CT	#CT-B
Bone Marrow & Blood/Pelvis	s 3	46	327	201	126	2	70	710
Brain	187	127	254	254	0	187	127	330
Heart	52	25	48	48	0	61	164	78
Intestine, Large	65	69	94	88	6	389	1,361	197
Kidney	68	63	152	152	0	67	59	257
Lung	161	92	176	172	4	1,633	12,094	286
Lymph Node	41	49	266	108	158	62	135	544
Skin	16	42	70	0	70	17	19	105
Spleen	46	66	255	80	145	68	172	414
Thymus	25	41	511	388	123	38	180	657
Vasculature	870	2	1	1	0	869	606	2
т	otals: 1,534	622	2,154	1,492	632	3,393	14,987	3,580

https://hubmapconsortium.github.io/ccf/pages/ccfanatomical-structures.html

.

•

https://hubmapconsortium.github.io/ccf/pages/ccf-3dreference-library.html (NLM VH organs) https://community.brain-map.org/t/allen-human-referenceatlas-3d-2020-new/ (brain) https://www3.cs.stonybrook.edu/~ari/ (male colon)

CCF Registration User Interface (RUI)

ASCT+B Table Usage

ASCT+B tables guide **CCF Ontology** and **3D Reference Object Library** design that semantically name and spatially place tissue data from different donors into one CCF (i.e., <u>mapping</u>).

ASCT Table	2			Ontology	3D Reference Object Library
Structure/Region	Sub structure/Sub region Bowman's Capsule	Cell Type Parietal epithelial Cell		Anatomical Structures Partonomy	
Renal Corpuscle	Glomerulus	Podocyte Capillary Endothelial Cell Mesangial Cell	\rightarrow	kidney kidney capsule	
	Proximal Tubule	Proximal Tubule Epithelial Cell (general) Proximal Convoluted Tubule Epithelial Cell Segment 1 Proximal Tubule Epithelial Cell Segment 2 Proximal Tubule Epithelial Cell Segment 2		cortex of kidney outer cortex of kidney renal medulla	
	Loop of Henle, Thin Limb	Descending Thin Limb Cell (general) Ascending Thin Limb Cell (general)			
	Loop of Henle, Thick Limb	Thick Ascending Limb Cell (general) Cortex-TAL Cell Medulla-TAL Cell TAL-Macula Densa Cell		Cell Types Ontology connective tissue cell pericyte cell	
	Distal Convolution	Distal Convoluted Tubule Cell (general) DCT Type 1 Cell DCT Type 2 Cell		mesangial cell extraglomerular mesangial cell	
	Connecting Tubule	Connecting Tubule Cell (general) CNT-Principal Cell		glomerular mesangial cell	

Tissue blocks are <u>registered</u> into the CCF using the Registration User Interface (RUI), and they can be <u>explored</u> via the Exploration User Interface (EUI).

Document the tissue extraction site by registering tissue blocks within a 3D reference organ.

Image provided by Sanjay Jain, TMC-UCSD

CCF Registration User Interface (RUI) v1.0.0

New Features:

- Organ carousel with 4 reference organs
- Support for tissue extraction sites
- Expanded ontology
- Semantic annotation via collision detection & manual annotation
- Support for non-HuBMAP usage

https://hubmap-ccf-ui.netlify.app/rui/

.

•

< BACK

Common Extraction Sites ③ Show Previous Registration Blocks

Kidney

Bisection Line

Spleen

- CC1
- CC2
- CC3

Colon

- Ascending Colon
- Descending Colon
- Transverse Colon
- Sigmoid Colon

Heart

Extraction Site Mapping

,	Left atrium, appendage	7
•	Left atrium, PV inflow	8
,	Left ventricle, apex	1
•	Left ventricle, free wall 3cm from apex	2
,	Septum, 3cm from apex including LAD	3
,	Posterior, adjacent to coronary sinus	9
,	Right atrium appendage	5
,	Right atrium, AV (atrioventricular) node	6a
,	Right atrium, SA (sinoatrial) node	6b
,	Right ventricle, free wall 3cm from apex	4

For the first HuBMAP portal release, 48 tissue blocks were registered.

ommon Extraction Sites				
 Bisection line 				
 Show Previous Registrati 	on Blocks			
natomical Structures	^			
 calyces 	20			
 capsule 	20			
) hilum				
medulla (renal columns)				-
outer cortex				
o papilla	20			
pelvis	20			2
o pyramids	20			
o ureter	20		6	-
Opacity			6	1
				X
				T
				. 1

BACK

Heart, male

⊙ CC1

⊙ CC2

⊙ CC3

Anatomical Structures

Heart, male Common Extraction Sites Left ventricle, apex (ii) Left ventricle, free wall 3cm from apex Septum, 3cm from apex including LAD ③ Right ventricle, free wall 3cm from apex ③ Right atrium appendage Right atrium, SA node to AV node D Left atrium, appendage ③ Left atritum, PV inflow Posterior, adjacent to coronary sinus

Show Previous Registration Blocks

Anatomical Structures

CCF Registration User Interface (RUI) v1.0.0 cont.

Collision when Tissue Block hits Reference Organ

Tag Search behavior

Custom tag added to list

HuBMAP Upload Portal

•

BOES@pitt.edu | Edit Profile Logout

HuBMAP Display ID Generator

Generate unique identifiers which will be used consortium wide to track sample and associate data with samples.

Source HuBMAP ID *	TEST0005-RK	✓ Look up	
	HuBMAP display id type: Organ Organ Type: Kidney (Right) HuBMAP ID: HBM:264-TTT	name:	
	Description:	//30	
Fissue Sample Type *	FFPE block	·	
rotocol 1	protocols.io DOI *	https://dx.doi.org/10.17504/protocols.io.p9kdr4w	
	Protocol document *	Choose a file Browse doc, docx and pdf files only	
	Add Protocol	PF block samples	
	3	Lab IDs and Sample Locations can be assigned on the next screen after generating the HuBMAP IDs	
Description			
			6
Metadata	+ Add Metadata		
Image	+ Add Image	Make sure any uploaded images are de-identified	
	Generate ID	Cancel	

BOES@pitt.edu | Edit Profile Logout

HuBMAP Display ID Generator

Generate unique identifiers which will be used consortium wide to track sample and associate data with samples.

3 sample	ids were generated: TEST0005-RK-6 through TEST000	15-RK-8	
Type: FF	PE block		
	Assig	n Lab IDs and Sample Locations Return to Search	
		Assign Lab IDs and Sample Location	
	Lab Sample Id	Peoister Location SuccessView JSON	
EST0005-RK-6	TEST0005-RK-6-A	Register Location	0
EST0005-RK-7		Register Location	0
EST0005-RK-8		Register Location	Ð

Implemented by the HIVE IEC

CCF Registration User Interface (RUI)

HUBMAP CCF REGISTRATION USER INTERFACE

0

https://hubmapconsortium.github.io/ccf-ui/rui/

Top Orthographic (3) HuBMAP | VHM_Interventricular_Septum Centimeters User Perspective (3) HuBMAP | VHM_Interventricular_Septum

Đ

-

圕

ø

Front Orthographic (3) HuBMAP | VHM_Interventricular_Septum Centimeters

0

0

15 extraction sites by Kalyanam Shivkumar, UCLA (SPARC) 10 sites by Shin Lin, UW (HuBMAP)

Public private partnership panel with NIH, Google, Broad, Lilly and potentially Roche

Hacking the Kidney Hackathon

PARTICIPATION OPENS

TOTAL PRIZE MONEY **\$60,000** TO BE AWARDED TO THE WINNING TEAMS!

OUR SPONSORS

Google Deloitte Se CAS Pistoia Alliance Maven Wave DEERFIELD

https://innovationdigi.com/hubmap-hackathon

CCF Exploration User Interface (EUI)

CCF Exploration User Interface (EUI)

https://portal.hubmapconsortium.org/ccf-eui

0

HUBMAP

body

.

•

•

Logout

Register your data via <u>https://hubmap-ccf-ui.netlify.app/rui/</u> so it can be spatially/semantically explored in EUI.

http://gehlenborglab.org/research/projects/vitessce/

Human Reference Atlas CCF: Checklist

In support of Common Coordinate Framework (CCF) design (see <u>CCF Portal</u>):

- 1. Make sure the Anatomical Structures, Cell Types, and Biomarkers (ASCT+B) that you use/submit are listed in the <u>ASCT+B tables</u>. The tables are authored and reviewed by an international team of anatomists, pathologists, physicians, and other experts, see this <u>SOP</u>.
- 2. Spatially register all tissue samples using the CCF Registration User Interface (RUI) in the Ingest Portal. End of October 2020, kidney, spleen, heart, colon registration are supported. For other organs, see <u>SOP</u>.
- 3. After submitting data, review data in the <u>CCF Exploration User Interface</u> and make sure spatial, semantic, and other metadata are correct.
- 4. For functional tissue unit (FTU) segmentation, submit a list of FTUs for your organ(s) and make sure FTU names and all relevant cell types (CT) are captured in the ASCT+B table. Use assays/biomarkers (B) that make it possible to identify FTUs—initially manually, later automatically. Submit tissue with 1000 FTUs manually identified FTUs.
- 5. In support of the <u>Vasculature-based CCF</u>, provide cell segmentation data for blood vessels and different cell types.

For questions, email infoccf@indiana.edu.

Visible Human MOOC (VHMOOC)

VH Massive Open Online Course (VHMOOC)

Goals

- Communicate tissue data acquisition and analysis,
- Demonstrate single-cell analysis and CCF mapping techniques, and
- Introduce major features of the HuBMAP portal.

Learning modules come with

- Videos (incl. interviews, tool demos)
- Hands-on exercises
- Self-quizzes

Meet the Instructors

Katy Börner, Victor H. Yngve

Distinguished Professor of

Engineering and Information

Network Science Center at

Indiana University

research scientist

Science. Founding Director of the Cyberinfrastructure for

Ilen M. Quardokus, staff in

the Chemistry Department and

Cyberinfrastructure for Network

Science Center, SICE with

microscopy, anatomy, and

expertise in molecular biology

interdisciplinary communication

Course Introduction

This 10h course introduces the HuBMAP project which aims to create an open, global reference attas of the human body at the cellular level. Anong others, the course describes the compliation and coverage of HuBMAP data, demonstrates new single-cell analysis and mapping techniques, and introduces major features of the HuBMAP portal. Delivered entirely online, all coursework can be completed

Delivered entirely online, all coursework can be completed asynchronously to fit busy schedules. If you have questions or experience issues during registration, please email cnscntr@indiana.edu.

Learning Outcomes

- Theoretical and practical understanding of different single-cell tissue analysis techniques.
- Expertise in single-cell data harmonization used to federate data from different individuals analyzed using different technologies in diverse labs.
- Hands-on skills in the design and usage of semantic ontologies that describe human anatomy, cell types, and biomarkers (e.g., marker genes or proteins).
- Knowledge on the design and usage of a semantically annotated three-dimensional reference system for the healthy human body.
 An understanding of how the HUBMAP reference atlas might be used to understand human health but also to diagnose and treat disease

Module Topics Include

- HuBMAP Overview: Project Goals, Setup, and Ambitions
- Tissue Data Acquisition and Analysis
 Biomolecular Data Harmonization
- Biomolecular Data Harmonization
 Ontology, 3D Reference Objects, and User Interfaces
- HuBMAP Portal Design and Usage

Audience: Biomedical students and professionals interested in singlecell tissue analysis and visualization

Andreas Bueckle, PhD Candidate in Information Science, performing research on information visualization, specifically virtual and augmented reality.

https://expand.iu.edu/browse/sice/cns/ courses/hubmap-visible-human-mooc

•

•

1st HuBMAP Portal Release (Oct. 2020)

HuBMAP Overview

• Project Goals, Setup, and Ambitions

ASCT Table				Ontology	3D Reference Object Librar
horizo Ages	Ministration ages Assessment (and) Committee	Carlup Antor productor Nation Carlos Controlas (of Carlos Controlas (of	L	Anatomical Structures Partonomy Network Indexectantia	0
	Autor Sala	A send that (all is a grand Second reaction data of a grand Second reaction data of a grand Second Max (all is a second s	Ĺ	contex or collexy outer contex of todrey censil mediatio	
	cogettern, Trocine	Secondag Ten control general Accessing the control of general			and the second second
	unparticle Process	Transition of the second secon	Gell Types Onlogy maniform from world private cell mesangulant observations where mesangulated	a connective trape and	1.16
	OnalGreatation	Notice and an of parts			9.5
	County Cake	Country Made (of grand Of Stangard 1		glomonular mesangial cell	Sac. 0

CCF Ontology, 3D Reference Objects, and User Interfaces

• Creating an Atlas of the Human Body

Tissue Data Acquisition and Analysis

• Behind the Scenes at Vanderbilt University

Portal Design and Usage

Datasets and Software in the 1st HuBMAP Portal Release

Biomolecular Data Harmonization

• An Introduction to Seurat

Open Consent Your Data

• In Support of Research

2nd HuBMAP Portal Release (Dec. 2020)

Ontologies 101

• A gentle introduction on how to use ontologies to organize the world.

Anatomical Structures, Cell Types, and Biomarkers (ASCT+B) Tables

• What are ASCT+B tables and how they are used.

Forthcoming

- CODEX Data and Cell Segmentation by Gary Nolan
- Portal Design and Usage (Summer 2021 Update)

CCF Ontology, 3D Reference Objects, and User Interfaces-Creating an Atlas of the Human Body

Videos

Registration User Interface (RUI)

- RUI Application
- <u>RUI Intro Video</u> Intro Video

Exploration User Interface (EUI)

- EUI Application
- EUI Intro Video

NLM 3D

• Interview with Kristen Browne

CCF Ontology, 3D Reference Objects, and User Interfaces-Creating an Atlas of the Human Body

Get Involved!

Contribute your expert experience and time.

		Facetal optite fail Cell
		CapitaryEnderheitarCell
Rand Corporte		
	Freeinal Islate	Proximal Tubule Epimetial Cell (general)
		Provinal Tubule Epithelial Cell Segment 2
	Loop of Female, Thick Lands	
		Contex Mil Cell
		Converting Mode Cell (privat)

Author or Review ASCT+B Tables

Anatomists, pathologists, biomolecular and other experts are invited to author, edit and/or review Anatomical Structures, Cell Types, and Biomarkers (ASCT+B) tables. Please register to participate.

Explore 3D Reference Organs

Download kidney or spleen objects from the HuBMAP Reference Object Library, explore them in a webbased 3D viewer, answer a simple question. Optional: Provide expert comments on the reference organs.

Register Tissue Block via RUI

Use the Registration User Interface (RUI) Prototype to spatially and semantically register threedimensional tissue blocks within reference organs.

Manually Annotate Human Tissue

Learn how to visually identify functional tissue units in different organs, use human intelligence to annotate them in tissue samples. The resulting data will be used to train machine learning algorithms.

Explore 3D Reference Organs

Started: Aug 30, 2020 at 11:30pm Quiz Instructions

0

•

.

.

Two 3D reference organs (kidney and spleen) have been made freely available as part of the 1st HuBMAP Portal Release.

The 3D reference objects files are provided in the GLB format, a binary form of the nested Graphics Library Transmission Format (https://www.khronos.org/gltf/ \mathcal{C}). These files can be viewed and explored using free web browser, **Babylon.js** (https://sandbox.babylonjs.com \mathcal{C}). If you are a programmer, note that these files can also be accessed programmatically via API-neutral runtime asset delivery of 3D scenes and models using the JSON standard.

To explore these 3D models in a web browser:

 First, visit the Hubmap Github project source objects (<u>https://github.com/hubmapconsortium/hubmap-ontology</u> /<u>tree/master/source_objects/</u> ^e), and download the GLB file for left female kidney (VHF_Kidney_L_Low.glb, 96KB).
 Next, visit the <u>Babylon.js</u> ^e website and view the 3D kidney by dragging and dropping the GLB file into the browser.
 In the Scene Explorer on left, click on + symbol to expand Nodes, root, VHF_Kidney_L_Low and other subtrees. Click on eye symbol to turn different parts of the 3D kidney model on/off. Click on square to turn on/off the bounding box (i.e., smallest 3D volume in which all object points lie) for each anatomical structure. To see inner structures, turn outer structures off.

While you explore the kidney, make sure to record the number of renal pyramids for the left female kidney, and report back your finding in the self-check quiz below.

CCF Ontology, 3D Reference Objects, and User Interfaces-Creating an Atlas of the Human Body

Get Involved!

Contribute your expert experience and time.

	Sub structure Sub region	Cell hor
Read Corpusite		Canitary Enterthelia Cell
		According Thire Linds Call (general)
Logist media, Thick Lands		
		Hestalia Ma, Cell
		DCT type 1 Cell
		Connecting Tubule-Cell (general)

Author or Review ASCT+B Tables

Anatomists, pathologists, biomolecular and other experts are invited to author, edit and/or review Anatomical Structures, Cell Types, and Biomarkers (ASCT+B) tables. Please register to participate.

Explore 3D Reference Organs

Download kidney or spleen objects from the HuBMAP Reference Object Library, explore them in a webbased 3D viewer, answer a simple question. Optional: Provide expert comments on the reference organs.

Register Tissue Block via RUI

Use the Registration User Interface (RUI) Prototype to spatially and semantically register threedimensional tissue blocks within reference organs.

Manually Annotate Human Tissue

Learn how to visually identify functional tissue units in different organs, use human intelligence to annotate them in tissue samples. The resulting data will be used to train machine learning algorithms.

Register Tissue Block via RUI

Due No due datePoints 5Questions 1Time Limit None

Instructions

0

•

•

The Registration User Interface (RUI) Prototype is a tool developed for HubMAP that supports the registration of threedimensional (3D) tissue blocks within 3D reference organs. Surgeons and others involved in the tissue procurement process can use the interface to size a virtual tissue block in three dimensions and then to position and rotate the 3D tissue block within a 3D reference organ so its placement mirrors the real-world tissue block extraction site.

The protoype RUI is freely available to use at: https://hubmapconsortium.github.io/ccf-3d-registration ☞

Registration data can be saved in JSON format to support spatial search and browsing of tissue data in the Exploration User Interface (EUI).

Figure 1. Example kidney tissue block

Please register the exemplary kidney tissue block, shown above, using the RUI using these steps (also shown in our tutorial:

CCF Ontology, 3D Reference Objects, and User Interfaces-Creating an Atlas of the Human Body

Get Involved!

Contribute your expert experience and time.

Sub-structure Sub-region	Cell Type
	Poderyte
Proximal Tubule	Proximal Rabake Epithetial Cell (general)
	Provinsi Subule Epithelial Cell Segnest 2
Goog-officients, Thir Links	Generaling Thirstend-Cell (general)
Log-official Thick Link	Thick Assending Limb Cell (general)

Author or Review ASCT+B Tables

Anatomists, pathologists, biomolecular and other experts are invited to author, edit and/or review Anatomical Structures, Cell Types, and Biomarkers (ASCT+B) tables. Please register to participate.

Explore 3D Reference Organs

Download kidney or spleen objects from the HuBMAP Reference Object Library, explore them in a webbased 3D viewer, answer a simple question. Optional: Provide expert comments on the reference organs.

Register Tissue Block via RUI

Use the Registration User Interface (RUI) Prototype to spatially and semantically register threedimensional tissue blocks within reference organs.

Manually Annotate Human Tissue

Learn how to visually identify functional tissue units in different organs, use human intelligence to annotate them in tissue samples. The resulting data will be used to train machine learning algorithms.

Manually Annotate Human Tissue

Unlimited Attempts

✓ Details

Machine learning algorithms can be used to identify and count the number of functional tissue units (FTUs) present in a tissue section. For the kidney, we are interested in identifying and counting the number of glomeruli. Glomeruli have a ball-shaped structure and are composed of capillary blood vessels that filter waste products out of blood to form urine, see Fig. 1.

Figure 1. Example of a renal glomeruli

Machine learning algorithms benefit from training data, i.e., human annotations of tissue data that correctly identify glomeruli. For this assignment, please complete the following steps to annotate a kidney tissue sample to help generate machine learning training data and to measure and reduce variability in human annotation data.

1. Install QuPath (https://qupath.github.io/)

- If your installed version is lower than 0.2, please update the QuPath to the latest version by visiting the website or by selecting "Help – Check for updates (web)" in the tool menu.
- 2. To open larger images, update the setting for larger memory in QuPath from
 - o Navigate to help and select "Show setup options"

Help

Show setup options

Change the maximum memory from the required 16GB to our recommendation of 32GB.
 Memory

NEW Modules Released for XMas 2020

All Sections Dear all, We are proud to release 2 new modules for XMas 2020: Ontologies 101 A gentle introduction on ho	Posted on: Dec 18, 2020 at 9:17am
ASCT+B and RUI Onboarding Videos All Sections	Posted on:

Nov 19, 2020 at 1:28pm

Hello everyone! As you may know, we have had a big amount of new teams joining HuBMAP recently, so we ...

Azimuth: New App for Reference-Based Single-Cell Analysis Released

1/25	All Sections	Posted on:
	The Satija Lab, the developers of Seurat (an R toolkit for single cell genomics), has released an exciting new w	Nov 19, 2020 at 11:31am

HuBMAP "Hacking the Kidney" Kaggle Competition is now live!

All Sections Dear VHMOOC students, The Kaggle Competition titled HuBMAP: Hacking the Human Kidney is now live! V	Posted on: Nov 19, 2020 at 10:47am
Welcome to the equipal	

Welcome to the course!

All Sections	Posted on:
Dear Students, Welcome to the HuBMAP Visible Human MOOC, or VHMOOC! The course opened Tuesday,	Sep 1, 2020 at 9am

HUBMAP Visible Human MOOC

HuBMAP Visible Human MOOC (VHMOOC)

Started Aug 4, 2020

GO TO CANVAS COURSE

You are enrolled.

ψ INDIANA UNIVERSITY

0

•

2

20

Course Introduction

This 10h course introduces the HuBMAP project which aims to create an open, global reference atlas of the human body at the cellular level. Among others, the course describes the compilation and coverage of HuBMAP data, demonstrates new single-cell analysis and mapping techniques, and introduces major features of the HuBMAP portal.

Delivered entirely online, all coursework can be completed asynchronously to fit busy schedules. If you have questions or experience issues during registration, please email cnscntr@indiana.edu.

Learning Outcomes

- . Theoretical and practical understanding of different single-cell tissue analysis techniques.
- · Expertise in single-cell data harmonization used to federate data from different individuals analyzed using different technologies in diverse labs.
- · Hands-on skills in the design and usage of semantic ontologies that describe human anatomy, cell types, and biomarkers (e.g., marker genes or proteins).
- . Knowledge on the design and usage of a semantically annotated three-dimensional reference system for the healthy human body.
- . An understanding of how the HuBMAP reference atlas might be used to understand human health but also to diagnose and treat disease.

Module Topics Include

- . HuBMAP Overview: Project Goals, Setup, and Ambitions
- Tissue Data Acquisition and Analysis
- Biomolecular Data Harmonization
- · Ontology, 3D Reference Objects, and User Interfaces
- HuBMAP Portal Design and Usage

Katy Börner, Victor H. Yngve Distinguished Professor of Engineering and Information Science. Founding Director of the Cyberinfrastructure for Network Science Center at

Indiana University.

Meet the Instructors

the Chemistry Department and research scientist, Cyberinfrastructure for Network Science Center, SICE with expertise in molecular biology. microscopy, anatomy, and interdisciplinary communication.

Candidate in Information specifically virtual and

 (\bigcirc)

https://expand.iu.edu/browse/sice/cns/co urses/hubmap-visible-human-mooc

Biomedical students and professionals interested in singlecell tissue analysis and visualization

Length: 10 hours

Andreas Bueckle, PhD Science, performing research on information visualization. augmented reality.

Acknowledgements

HuBMAP Consortium (https://hubmapconsortium.org)

Thanks go to all the **patients** that agreed to volunteer healthy tissue and open use of their data.

National Institutes of Health

Jeffrev

Spraggins

Marda

TMC-UFL

Sanjay Jain TMC-UCSD Washington University, TMC-Vanderbilt St. Louis Vanderbilt University

Clive Wasserfall TMC-UFL Jorgensen University of Florida University of Florida

Kristen Browne Medical Imaging and 3D Modeling Specialist NIAID

MC-IU HIVE Team

Katy Börner

MC-IU PI

Andreas Bueckle

PhD Candidate

Bruce Herr II

Sr. Systems Architect/PM

Griffin Weber Assoc. Professor of Medicine Harvard Medical School

Lisel Record MC-IU PM CNS Associate Director

Ellen Quardokus Sr. Research Analyst

Yingnan Ju PhD Candidate

Edward Lu Software Developer

Kasturi Nikharge

Software Developer

Paul Hrishikesh Research Assistant

Leah Scherschel Research Assistant

Avinash Boppana Research Consultant Yashvardhan Jain Research Assistant

Software Developer

Matthew Martindale

Center Assistant

