

Human Reference Atlas: Anatomical Structures, Cell Types & Biomarkers

Katy Börner | @katycns Victor H. Yngve Distinguished Professor of Intelligent Systems Engineering & Information Science Luddy School of Informatics, Computing, and Engineering Indiana University, Bloomington, IN

Seed Networks 2020 Annual Meeting *Virtual Event*

November 18, 2020

An atlas is an oversized, bound book of maps.

It has descriptive text, an index, possibly other data visualizations.

An human cell **atlas** might show a landscape of all cells, or

Maps of cells per tissue type/anatomical structure.

Article Published: 25 March 2020

Construction of a human cell landscape at single-cell level

Xiaoping Han 🖂, Ziming Zhou, [...] Guoji Guo 🖂

Nature 581, 303–309(2020) Cite this article 55k Accesses 32 Citations 409 Altmetric Metrics

A human reference **atlas** might use human anatomy as a '<u>basemap</u>,' or

an abstract space.

https://bodyworlds.com

Schemata der Leitungsbahnen des Menschen © Springer-Verlag Berlin Heidelberg 1978 Laubelavia sin eront ner Annus visceralis Ramus perietalis Rete Asastantasis SYSTEMA ARTERIARUM

Weber, 1978

Places & Spaces: Mapping Science Exhibit

1st Decade (2005-2014)

Maps

Iteration I (200 The Power of Maps	05)	Iteration II (2006) The Power of Reference Sy				
	₩.	03				137
0				<u>i en si</u>	10	4P

Iteration III (2007) The Power of Forecast

Iteration V (2009) Science Mans for Science Policy Makers

Iteration VI (2010)
Science Maps for Scholars

Iteration IV (2008)

Iteration VIII (2012)

Science Maps for Economic Decision Makers

10-

-	Ad :	00	
NNS/AN	<u>6</u>		

Iteration VII (2011)

Science Maps as Visual Interfaces to Digital Libraries Science Mans for Kids

Iteration IX (2013)

2nd Decade (2015-2024)

Macroscopes

Iteration XI (2015)

Iteration XIII (2017) Macroscopes for Playing with Scale

Iteration XII (2016) Macroscopes for Making Sense of Science

Iteration XIV (2018) Macroscopes for Ensuring our Well-being

100

MAPS

in large format, full color, and high resolution.

258 MAPMAKERS from fields as disparate as art, urban planning, engineering, and the history of science.

MACROSCOPE MAKERS including one whose job title is "Truth and Beauty Operator."

20

MACROSCOPES for touching all kinds of data.

DISPLAY VENUES from the Cannes Film Festival to the World Economic Forum.

http://scimaps.org

Acknowledgements

Exhibit Curators

The exhibit team: Lisel Record, Katy Börner, and Todd Theriault.

http://scimaps.org

Plus, we thank the more than 250 authors of the 100 maps and 20 interactive macroscopes.

Exhibit Advisory Board

Gary Berg-Cross Cognitive psychologist (PhD, SUNY-Stony Brook). Potomac, MD, USA

Donna J. Cox, MFA, Ph.D. Director of the Advanced Visualization Laboratory at the National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, IL, USA

Bonnie DeVarco Media X Distinguished Visiting Scholar at Stanford University, Palo Alto, CA, USA

Peter A. Hook Head of Digital and Scholarly Services and LawArXiv Administrator, Cornell Law Library. Ithaca, NY, USA

Lev Manovich

Professor, The Graduate Center, City University of New York; Director, Software Studies Initiative (big data, digital humanities, visualization)

André Skupin Associate Professor of Geography at San Diego State University, California

Freelance designer on the crossroads of data visualization, information aesthetics, and user interface design in Germany

Olga Subirós Curator of Big Bang Data and Founder of Olga Subirós Studio in Barcelona, Spain

Vice President of Science and Technology for the New York Hall of Science

The Visual Elements Periodic Table

This chart shows the 111 currently known and officially named elements that comprise the Periodic Table (IUPAC 2004). Each element is represented visually by an image produced for the Visual Elements project.

H Hydrogen

li

Th th

Periodic Table fits all the elements, with their widely diverse physical and chemical properties, into a logical pattern. There are eighteen vertical columns in the table which divide the elements into groups.

Be B Boron C Corbon N Nitrogen 0 Oxygen F systematic way through a period. Lithium Na Sodium Al Alum Mg Si Silicon P Phosphorus S Sulfur C X 7. K Potossiu Co Sc Fe Cu Zn Ga Gollium Se Br V ſr Co Ni Nicke Ge German As Arsenic Ti Mn E 4 Rb Rubidiu Cd Cod Sn Sb Antimony Sr Y Yitriur Zr Nb Mo Te Ru Ru Rh Pd Ag In Indium Te Tin Tellurius 2 At Cs Coesium Ba 0s lr 🛛 Hg TI Thallier РЬ Bi Bismuth Po Polonius La Hf Ta W Re Pt Au Leod Astatin T fr. Fr Franciur Ra Ac Actiniu Hs Rf Db Bh Mt Ds Rg displayed here, together with screensavers, postcards and chemical data for each element can be viewed on the Visual Elements web Ce Cerium Pr Pr Nd Pm Sm Eu Gd Tb Terbium Dy Er Tm Yb Lu Lutetium Ho Holmium Febium Np Neptunius Am Am Cm Cf Cali Es Pa Protoctinium U Urenium Pu Pluton Bk Berkelium Fm Md Me No Nobel lr I

6 a 1

© Murray Robertson/Royal Society of Chemistry 1999-2006

(And the second 1. .

He Helium

E)

Ne Neon

Ar Argan

Kr Krypton

()

Xe Xenan

Rn Redon

VII.6 Stream of Scientific Collaborations Between World Cities - Olivier H. Beauchesne - 2012

A Topic Map of NIH Grants 2007

on Hemodynamics, Sickle Cell Disease, and Aneurysms.

Bruce W. Herr II (Chalklabs & IU), Gully Burns (ISI), David Newman (UCI), Edmund Talley (NIH)

The National Institutes of Health (NHI) is organized as a multitude of Institutes and Centers whose missions are primarily focused on distinct diseases. However, disease etiologies and therapies flout scientific boundaries, and thus there is tremendous overlap in the kinds of research funded by each Institute. This creates a daunting landscape for decisions on research directions, funding allocations, and policy formulations. Shown here is devised an interactive topic map for analyzing this landscape, online at <u>www.nihaps.org.</u> Institute abbreviations can be found at <u>www.nihapov/rcd.</u>

Topic modeling, a statistical technique that automatically learns semantic categories, was applied to assess projects in terms used by researchers to describe their work, without the biases of keywords or subject headings. Grant similarities were derived from their topic mixtures, and grants were then clustered on a two-dimensional map using a force-directed simulated annealing algorithm. This analysis creates an interactive environment for assessing grant relevance to research categories and to NIH Institutes in which grants are localized.

Icrocilial Activation

Risk Factor Analysis Health and Economic Status Social/Environmental Factor Population Outcomes Assess HO/ Anti Hernes Simpley Vin uided Surgical Systems onal Monitoring Systems Recovery of Motor Function **Cardiac Diseases Research** Neural Circuits Research An area of the map focused on neural An area of the map focused on cardiovascular function and dysfunction. circuits, which shows the diversity of Cardiac Failure (primarily funded by topics and NIH Institutes that fund research in this area, such as: NHLBI) is topically clustered next to Stroke (NINDS), since these are the two Cardiorespiratory Regulation major medical emergencies associated primarily funded by NHLBI; Visual with ischemia, which results from a re-Processing, primarily funded by NEI; and stricted blood supply. Also localized in Epilepsy, primarily funded by NINDS this area are grants focused on Nitric For color coding, see legend in the Oxide (NOS) Signaling, a major biochemupper-left inset ical pathway for vasodilation, and grants

National Institute of Mental Health (NIMH) Top Io Topics Schizophenia Behavioral Intervention Studies Mental Health Cognitive-Behavior Therapy AIDS Prevention Genetic Linkage Analysis Adolescence

10 Childhood

The Social Sciences are the smallest and most diffuse of all the sciences. Psychology serves as the link between Medical Sciences (Psychiatry) and the Social Sciences. Statistics serves as the link with Computer Science and Mathematics.

s is our starting point, the purest of all sciences. It lies at the outer edge of the map. Computer Science, Electrical Engineering, and Optics are applied sciences that draw upon knowledge in Mathematics and Physics. These three disciplines provide a good example of a linear progression from one pure science (Mathematics) to another (Physics) through multiple disciplines. Although applied, these disciplines are highly concentrated with distinct bands of research communities that link them. Bands indicate interdisciplinary research.

We are all familiar with traditional maps that show the relationships between countries, provinces, states, and cities. Similar relationships exist between the various disciplines and research topics in science. This allows us to map the structure of science.

One of the first maps of science was developed at the Institute for Scientific Information over 30 years ago. It identified 41 areas of science from the citation patterns in 17,000 scientific papers. That early map was intriguing, but it didn't cover enough of science to accurately define its structure.

Things are different today. We have enormous computing power and advanced visualization software that make mapping of the structure of science possible. This galaxy-like map of science (left) was generated at Sandia National Laboratories using an advanced graph layout routine (VxOrd) from the citation patterns in 800,000 scientific papers published in 2002. Each dot in the galaxy represents one of the 96,000 research communities active in science in 2002. A research community is a group of papers (9 on average) that are written on the same research topic in a given year. Over time, communities can be born, continue, split, merge, or die.

The map of science can be used as a tool for science strategy. This is the terrain in which organizations and institutions locate their scientific capabilities. Additional information about the scientific and economic impact of each research community allows policy makers to decide which areas to explore, exploit, abandon, or ignore.

We also envision the map as an educational tool. For children, the theoretical relationship between areas of science can be replaced with a concrete map showing how math, physics, chemistry, biology and social studies interact. For advanced students, areas of interest can be located and neighboring areas can be explored.

Nanotechnology

Most research communities in nanotechnology are concentrated in and However, many disciplines in the Life and Medical Sciences also have nanotechnology applications.

Research communities in proteomics are centered in Biochemistry. In addition, there is a heavy focus in the tools section of chemistry, such as (The balance of the proteomics communities are widely dispersed among the Life and Medical Sciences.

Pharmacogenomics is a relatively new field with most of its activity in Medicine. It also has many communities in Biochemistry and two communities in the Social Sciences.

I.9 In Terms of Geography – André Skupin - 2005

Impact

The United States Patent and Trademark Office does scientists and industry a great service by granting patents to protect inventions. inventions are categorized in a taxonomy that groups patents by industry or use, proximate function, effect or product, and structure. At the time of this writing there are 160,523 categories in a hierarchy that goes 15 levels deep. We display the first three levels (13,529 categories) at right in what might be considered a textual map of inventions.

Patent applications are required to be unique and non-obvious, partially by revealing any previous patents that might be similar in nature or provide a foundation for the current invention. In this way we can trace the impact of a single patent, seeing how many patents and categories it affects.

The patent on Goretex—a lightweight, durable synthetic fiber—is an example of one that has had significant impact. The box below enlarges the section of the hierarchy where it is filed, and the red lines (arranged to start along a time line from 1981 to 2006) point to the 130 categories that contain 182 patents, from waterproof clothing to surgical cosmetic implants, that mention Goretex as "prior art."

The US Patent Hierarchy

Prior Art

New patents often build on older ideas from many different categories. Here, blue lines originate in the sixteen categories that contain patents cited as prior art for a patent on "gold nanoshells." Gold nanoshells are a new invention: tiny gold spheres (with a diameter ten million times smaller than a human hair) that can be used to make tumors more visible in infra-red scans; they have even helped cause complete remission of tumors in tests with laboratory mice. The blue lines show that widely separated

Keeping categories understandable is an important part of maintaining any taxonomy, including the patent hierarchy. Categories are easier to understand, search, and maintain if they contain elements that comfortably fit the definition of the category. The box above shows tiny bar charts, part of a Taxonomy Validator that reveals whether elements fit their categories. Categories may need to be redefined, and sometimes need to be split when they get too vague or large; a problem shared by many classification systems in this information-rich century. But how can we tell which ones to eliminate, add or revise—or how to revise them—in the complex, abstract

Something as simple as a bar chart helps people see how entities in a category relate to that category. Here, each bar encodes a 'distance to prototype": how much each patent differs from an idealized "prototype patent" for that category. A measure like this can be based on statistics, computational linguistics, or even human insight. Thus a category with mostly small bars is a good one, and a generally ragged one needs scrutiny or reorganization; but one that has only two or three tall bars may mean

Even simple visuals can make thinking easier by providing better distilled data to the eye: vastly more data than working memory can hold as words. They focus people on exactly the right issues, and support them with the comprehensive overviews they need to make more informed judgements.

VI.3 Diseasome: The Human Disease Network - Mathieu Bastian and Sébastien Heymann - 2009

III.8 Science-Related Wikipedian Activity - Bruce W. Herr II, Todd M. Holloway, Elisha F. Hardy, Katy Börner, and Kevin Boyack - 2007

Check out our Zoom Maps online!

Visit scimaps.org and check out all our maps in stunning detail!

(i) MACROSCOPES FOR INTERACTING WITH SCIENCE

MORE INFO

THE MEGAREGIONS OF THE US

Explore the new geography of commuter connections in the US. Tap to identify regions. Tap and hold to see a single location's commuteshed.

Smelly Maps – Daniele Quercia, Rossano Schifanella, and Luca Maria Aiello – 2015

Iteration XII (2016)

Macroscopes for Making Sense of Science

Iteration XIII (2017) Macroscopes for Playing with Scale

Iteration XIV (2018)

Macroscopes for Ensuring our Well-being

Iteration XV (2019)

Macroscopes for Tracking the Flow of Resources

Geoffrey West, distinguished professor and past president, Santa Fe Institute, introduces Börner's Betazone talk at the World Economic Forum, Davos, Switzerland

Places & Spaces maps on a touch table at the International Conference for High Performance Computing, Networking, Storage, and Analysis, New Orleans, LA

"New Trends in eHumanities Research" workshop at the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands

Ken Kennedy Institute for Information Technology, Rice University, Houston, TX

Illuminated Diagram display at the Smithsonian Folklife Festival, Washington, D.C.

100 science maps on display at the University of Miami, Coral Gables, FL

Katy Börner debuts the exhibit at the University of Miami, Coral Gables, FL

Maps on display at the European Commission, Directorate-General for Research and Innovation, Brussels, Belgium

Jax and the Big Data Beanstalk theater piece introduces visitors to data visualizations and science maps at the Science Museum of Minnesota, St. Paul, MN

Katy Börner presents "Maps & Macroscopes" at TEDxBloomington, Bloomington, IN

Proceedings of the National Academy of Sciences of the United States of America

Keyword, Author, or DOI

Advanced Search

Arthur M. Sackler Colloquium on Modeling and Visualizing Science and Technology Developments

Twin-Win Model: A human-centered approach to research success

Ben Shneiderman

PNAS

PNAS December 11, 2018 115 (50) 12590-12594; first published December 10, 2018. https://doi.org/10.1073/pnas.1802918115

Second structure of the second

FROM THE COVER

Katy Börner, William B. Rouse, Paul Trunfio, and H. Eugene Stanley PNAS December 11, 2018 115 (50) 12573-12581; first published December 10, 2018. https://doi.org/10.1073/pnas.1818750115

How science and technology developments impact employment and education

Wendy Martinez
PNAS December 11, 2018 115 (50) 12624-12629; first published December 10, 2018. https://doi.org/10.1073/pnas.1803216115

Scientific prize network predicts who pushes the boundaries of science

Yifang Ma and Brian Uzzi PNAS December 11, 2018 115 (50) 12608-12615; first published December 10, 2018. https://doi.org/10.1073/pnas.1800485115

The role of industry-specific, occupation-specific, and location-specific knowledge in the growth and

survival of new firms

C. Jara-Figueroa, Bogang Jun, Edward L. Glaeser, and Cesar A. Hidalgo PNAS December 11, 2018 115 (50) 12646-12653; first published December 10, 2018. https://doi.org/10.1073/pnas.1800475115

https://www.pnas.org/modeling

References

Börner, Katy, Chen, Chaomei, and Boyack, Kevin. (2003). **Visualizing Knowledge Domains.** In Blaise Cronin (Ed.), *ARIST*, Medford, NJ: Information Today, Volume 37, Chapter 5, pp. 179-255. http://ivl.slis.indiana.edu/km/pub/2003-borner-arist.pdf

Shiffrin, Richard M. and Börner, Katy (Eds.) (2004). **Mapping Knowledge Domains**. *Proceedings of the National Academy of Sciences of the United States of America*, 101(Suppl_1). <u>http://www.pnas.org/content/vol101/suppl_1</u>

Börner, Katy (2010) Atlas of Science: Visualizing What We Know. The MIT Press. <u>http://scimaps.org/atlas</u>

Scharnhorst, Andrea, Börner, Katy, van den Besselaar, Peter (2012) **Models of** Science Dynamics. Springer Verlag.

Katy Börner, Michael Conlon, Jon Corson-Rikert, Cornell, Ying Ding (2012) VIVO: A Semantic Approach to Scholarly Networking and Discovery. Morgan & Claypool.

Katy Börner and David E Polley (2014) Visual Insights: A Practical Guide to Making Sense of Data. The MIT Press.

Börner, Katy (2015) **Atlas of Knowledge: Anyone Can Map**. The MIT Press. <u>http://scimaps.org/atlas2</u>

Börner, Katy (2021) Atlas of Forecasts: Modeling and Mapping Desirable Futures. The MIT Press.

Visual Analytics Certificate

Advance your skills in one of the most in demand careers through this six-week (3 CEUs) online course focused on understanding and creating data visualizations that translate complex data into actionable insights.

FLYER REGISTER FOR JAN 18-FEB 28, 2021

Learn from Experts

Connect with industry professionals and leading researchers.

Gain forever knowledge and skill-up in powerful data visualization tools.

Evolve Yourself

Make a Difference

Embrace data-driven decision-making in your personal and professional life.

https://visanalytics.cns.iu.edu

US Employers which have sent students include The Boeing Company, Eli Lilly, DOE, CDC, NSWC Crane.

FAQS

Human Reference Atlas: Anatomical Structures, Cell Types & Biomarkers

Acknowledgements

HuBMAP Consortium (https://hubmapconsortium.org)

Thanks go to all the patients that agreed to volunteer healthy tissue and open use of their data.

Avinash Boppana

Research Consultant

Center Assistant

Sanjay Jain Jeffrev Spraggins TMC-UCSD TMC-Vanderbilt Vanderbilt University Washington University. St. Louis

TMCs

Clive Wasserfall TMC-UEL University of Florida

Marda Jorgensen TMC-UFL University of Florida

Kristen Browne Medical Imaging and 3D Modeling Specialist NIAID

3D Models

MC-IU HIVF Team

Katy Börner

MC-IU PI CNS Director

Andreas Bueckle

PhD Candidate

Paul Hrishikesh

Research Assistant

Griffin Weber

Assoc. Professor of Medicine

Leonard Cross

Sr, UX/UI Designer

Leah Scherschel

Research Assistant

Lisel Record

Ellen Quardokus

Sr. Systems Architect/PM

Sr. Research Analyst

Bruce Herr II

Adam Phillips Software Developer

Edward Lu Software Developer

The Human Body at Cellular Resolution: The NIH Human Biomolecular Atlas Program. Snyder et al. *Nature*. 574, p. 187-192.

Fig. 3 | Map generation and assembly across cellular and spatial

scales. HuBMAP aims to produce an atlas in which users can refer to a histological slide from a specific part of an organ and, in any given cell, understand its contents on multiple 'omic levels—genomic, epigenomic, transcriptomic, proteomic, and/or metabolomic. To achieve these ends, centres will apply a combination of imaging, 'omics and mass spectrometry

techniques to specimens collected in a reproducible manner from specific sites in the body. These data will be then be integrated to arrive at a high-resolution, high-content three-dimensional map for any given tissue. To ensure inter-individual differences will not be confounded with collection heterogeneity, a robust CCF will be developed.

Toward a Human Reference Atlas

Much recent research and ontology & reference organ design, including

- Rood, Jennifer E., Tim Stuart, Shila Ghazanfar, Tommaso Biancalani, Eyal Fisher, Andrew Butler, Anna Hupalowska, Leslie Gaffney, William Mauck, Gökcen Eraslan, John C. Marioni, Aviv Regev, and Rahul Satija. 2019. <u>"Toward a Common Coordinate Framework for the</u> <u>Human Body.</u>" *Cell* 179 (7): 1455–1467. doi: 10.1016/j.cell.2019.11.019.
- Weber, Griffin M., Yingnan Ju, and Katy Börner. 2020. <u>"Considerations for Using the Vasculature as a Coordinate System to Map All the Cells in the Human Body.</u>" Frontiers in Cardiovascular Medicine 7 (29). doi: 10.3389/fcvm.2020.00029.
- Allen Institute for Brain Science. 2020. <u>"Allen Human Reference Atlas 3D, 2020."</u> Version 1.0.0. <u>Allen Brain Map Community Forum</u>.
- Börner, Katy, Ellen M. Quardokus, Bruce W. Herr II, Leonard E. Cross, Elizabeth G. Record, Yingnan Ju, Andreas D. Bueckle, James P. Sluka, Jonathan C. Silverstein, Kristen M. Browne, Sanjay Jain, Clive H. Wasserfall, Marda L. Jorgensen, Jeffrey M. Spraggins, Nathan H. Patterson, Mark A. Musen, and Griffin M. Weber. 2020. <u>"Construction and Usage of a Human Body Common Coordinate Framework Comprising Clinical, Semantic, and Spatial Ontologies."</u> arXiv, July 28, 2020.

What is a CCF?

The Common Coordinate System (CCF) consists of ontologies and reference object libraries, computer software (e.g., user interfaces), and training materials that

- enable biomedical experts to semantically annotate tissue samples and to precisely describe their locations in the human body ("<u>registration</u>"),
- align multi-modal tissue data extracted from different individuals to a reference coordinate system ("<u>mapping</u>") and,
- provide tools for searching and browsing HuBMAP data at multiple levels, from the whole body down to single cells ("<u>exploration</u>").

CCF Requirements

The CCF must capture major **anatomical structures**, cell types, and biomarkers and their interrelations across multiple levels of resolution.

It should be **semantically explicit** (using existing ontologies, e.g., Uberon, CL) and spatially explicit (e.g., using 3D reference organs for registration and exploration).

Body

- Body
- Kidney (Left, Right)
- Aorta
- Renal artery
- Renal vein
- Ureter

Organ

- Renal capsule
- Renal pyramid
- Renal cortex
- Renal medulla
- Renal calvx
 - Renal pelvis

Functional Tissue Unit

- Nephron
- Renal corpuscle

2.5 mm

- Proximal convoluted tubule
- Loop of Henle
- Distal convoluted tubule
- Connecting tubule
- Collecting duct

FTU Sub-structure(s) Cellular

- Bowman's capsule
- Glomerulus
- Efferent arteriole
- Afferent arteriole
- Parietal epithelial cell Capillary
 - endothelial cell
 - Mesangial cell
 - Podocvte

	HuBMAP	RBK	KPMP	SPARC	LungMAP	HTAN	HCA	GUDMAP	Gut Cell Atlas	BICCN	Allen Brain	TCGA	Wellcome	MRC	H2020	GTEx	Total
Kidney	1	1	1	0	0	0	1	1	0	0	0	1	1	1	0	1	9
Liver	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	3
Spleen	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	4
Heart	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	1	4
Lung	1	0	0	1	1	1	1	0	0	0	0	1	1	1	1	1	10
L intestine/Colon	1	0	0	1	0	1	1	0	1	0	0	1	0	0	0	1	7
S intestine	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2
Bladder	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	5
Ureters	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2
Thymus	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2
Lymph nodes	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	2
mediastinal lymph node	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Eye	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	3
Brain	0	0	0	0	0	0	1	0	0	1	1	1	0	0	1	1	6
Brain stem	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
Cerebellum	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	3
Spinal cord	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	2
Pancreas	0	0	0	0	0	1	1	0	0	0	0	1	0	0	1	1	5
Breast	0	0	0	0	0	1	1	0	0	0	0	1	1	0	0	1	5
Skin	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	3
Pediatric systems	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	2
Ovaries	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	2
Testes	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	2
Cervix	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
Uterus	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	5
Blood	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	2
Bone	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Placenta	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Decidua	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Embryo	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
esophagus	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	3
hematopoietic system	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	2
immune system bulk	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Stomach	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	3
Thyroid	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	2
Prostate	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	3
Adrenal gland	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	3
Totals	11	1	1	7	1	6	21	4	1	2	2	20	7	5	4	21	114

Table compiled for, during, and after the NIH-HCA Joint Meeting in March 2020, https://hubmapconsortium.org/nihhca2020

Much data is becoming available, e.g.,

https://portal.hubmapconsortium.org

https://data.humancellatlas.org

ASCT+B Tables

Anatomical Structures, Cell Types, and Biomarkers (ASCT+B) tables aim to capture the partonomy of anatomical structures, cell types, and major biomarkers (e.g., gene, protein, lipid or metabolic markers).

Structure/Re	Substructure/Sub	Cell Type	Subset of Marker Genes			
gion	region					
Renal	Bowman's Capsule	Parietal epithelial cell	CRB2*, CLDN1*			
Corpuscle	Glomerulus	Podocyte	NPHS2*, PODXL*, NPHS1*			
		Capillary Endothelial Cell	EHD3*, EMCN*, HECW2*,			
			FLT1*, AQP1*			
		Mesangial Cell	POSTN*, PIEZO2*, ROBO1*,			
			ITGA8*			

Partial ASCT+B Table from

• El-Achkar et al. A Multimodal and Integrated Approach to Interrogate Human Kidney Biopsies with Rigor and Reproducibility: The Kidney Precision Medicine Project. bioRxiv. 2019, Updated Aug 2020. doi:10.1101/828665

Table 3: Cell types and associated markers from KPMP Pilot 1

transcriptomic studies. Asterisk denotes genes detected by more than one technology. *Italics* genes detected by a single technology.

LCOIT	nology. nanos, ge	fies deteoted by a singl	e reennology	•			
egion region		Cell Type	Abbreviation	Subset of Marker Genes	Pertinent negatives/com ments		
	Bowman's Capsule	Parietal epithelial cell	PEC	CRB2*, CLDN1*			
Renal	Glomerulus	Podocyte	POD	NPHS2*, PODXL*, NPHS1*			
Corpuscle		Capillary Endothelial Cell	GC-EC	EHD3", EMCN*, HECW2", FLT1*, AQP1*			
		Mesangial Cell	MC	POSTN*, PIEZO2*, ROBO1*, ITGA8*			
	Proximal Tubule	Proximal Tubule Epithelial Cell (general)	РТ	CUBN*, LRP2*, SLC13A1*, ALDOB*, GATM*			
		Proximal Convoluted Tubule Epithelial Cell Segment 1	PT-S1	SLC5A2*, SLC5A12*			
		Proximal Tubule Epithelial Cell Segment 2	PT-S2	SLC22A6*	among the		
		Proximal Tubule Cell Epithelial Segment 3	Proximal Tubule Cell Epithelial PT-S3 PDZK1IP1*, MT1G* Segment 3				
-	Loop of Henle, Thin Limb	Descending Thin Limb Cell (general)	DTL	CRYAB*, VCAM1*, AQP1*, SPP1*	CLDN10 low		
		Ascending Thin Limb Cell (general)	ATL	CRYAB*, TACSTD2*, CLDN3*	AQP1 low to none		
	Loop of Henle, Thick Limb	Thick Ascending Limb Cell (general)	TAL	SLC12A1*, UMOD*	SLC12A3 low to none		
		Cortex-TAL cell	C-TAL	SLC12A1* UMOD*			
		Medulla-TAL cell	M-TAL	SLC12A1* UMOD*			
		TAL-Macula Densa.cell	TAL-MD	NOS1* SLC12A1*			
	Distal Convolution	Distal Convoluted Tubule Cell (general)	DCT	SLC12A3*, TRPM6*			
Tubules		DCT type 1 cell	DCT-1	SLC12A3*, TRPM6	SLC8A1, HSD11B2 (low to none)		
		DCT type 2 cell	DCT-2	SLC12A3*, SLC8A1*, HSD11B2	Has CNT and DCT signature		
	Connecting Tubule	Connecting Tubule Cell (general)	CNT	SLC8A1*, CALB1, TRPV5			
		CNT-Principal Cell	CNT-PC	SLC8A1*, AQP2*, SCNN1G*	SLC12A3 low to none. IC or PC without SLC8A1		
		CNT-Intercalated Cell	CNT-IC	SLC8A1*, CA2, ATP6VOD2*			
		CNT-IC-A cell	CNT-IC-A	SLC8A1*, SLC4A1*, SLC26A7*	CNT structure		
		CNT-IC-B cell	CNT-IC-B	SLC8A1*, SLC26A4*, SLC4A9*	1		
	Collecting Duct	Collecting duct (general) cell	CD	GATA3*	GATA3 may be		
	-	CD-PC (general)	CD-PC		in subpopulation		
		C-CD-PC	C-CD-PC	AQP2*, AQP3*, FXYD4*,	of DCT, CNT		
		M-CD-PC	M-CD-PC	SCNN1G*, GATA3*	and vSMC/P.		
		Outer medulla-CD-PC	OM-CD-PC		SLC8A1,		
		Inner Medulla-CD cell	IM-CD	AQP2*, SLC14A2	CALB1, TRPV5		

		Transitional PC-IC cell	URG IC	FXYD4*,	(low to none);
				SLC4A9*/SLC26A7*	Low to No
		CD-IC (general) cell	CD-IC	CA2, ATP6VOD2*	CALCA and KIT
		CD-IC-A (general) cell	CD-IC-A	SLC4A1, SLC26A7*,	in C-CD-IC-A. It
				TMEM213*	may not be
		C-CD-IC-A cell	C-CD-IC-A	SLC26A7*, SLC4A1*	possible to
		M-CD-IC-A cell	M-CD-IC-A	SLC26A7*, SLC4A1, KIT*, CALCA	assign IC or PC to_CNT or CD
		CD-IC-B (general) cell	CD-IC-B		structures
		C-CD-IC-B cell	C-CD-IC-B	SI C449* SI C2644*	without regional
		M-CD-IC-B cell	M-CD-IC-B	oconto , ocozoni	information of their source.
		Endothelial Cell (general)	EC	EMCN*, PECAM1*, FLT1*	
		EC-Afferent/Efferent Arteriole	EC-AEA	SERPINE2*, TM4SF1*	likely PALMD
	Endotholial Colls (non	EC-Peritubular capillaries	EC-PTC	PLVAP*	
Vessels glo	glomerular)	EC-Descending Vasa Recta	EC-DVR	TM4SF1*, PALMD	
		EC-Ascending Vasa Recta	EC-AVR	DNASEIL3*	low to none
		EC-Lymphatics	EC-LYM	MMRN1*, PROX1	
Structure/R egion	Sub structure/Sub region	Cell Type	Abbreviation	Subset of Marker Genes	Pertinent negatives/com ments
Interstitium	Stroma (non- glomerular)	Vascular Smooth Muscle/Pericyte (general)	VSMC/P	TAGLN*, ACTA2*, MYH11*, NTRK3, MCAM	
		vSMC/P-Renin	VSMC/P-REN	REN	
		Fibroblast	FIB	DCN*, ZEB2, C7, LUM	
	Immune	Macrophages-Resident	MAC-R	CD163*, IL7R*	
		Macrophage	MAC	S100A9	
		Natural Killer Cell	NKC	NKG7	
		Dendritic Cell	DC	APOE	
		Monocyte	MON	C1QA, HLA-DRA	
		T lymphocyte (general)	T	CD3	
		T Cytotoxic	T-CYT	GZMA	
		B lymphocyte	B	IGJ	

El-Achkar et al. A Multimodal and Integrated Approach to Interrogate Human Kidney Biopsies with Rigor and Reproducibility: The Kidney Precision Medicine Project. bioRxiv. 2019, Updated Aug 2020. doi:10.1101/828665

ASCT+B Table Working Group

Lead by Katy Börner and Jim Gee; Ellen M Quardokus serves as Knowledge Manager

Meetings take place monthly to review and approve tables, formalize and unify table design language, discuss and expand table usage, see <u>WG Charter</u>.

Next meetings: Dec 3, 1:30p EST. **In 2021:** Jan 6, Feb 3, March 3, 11a-noon ET. Please <u>register</u> to receive invites and updates.

SOP for ASCT+B Tables

ASCT+B for 10 organs on 9/14/2020, 9:45am:

Organ Name	#AS	#CT	#B	#AS-CT	#CT-В
Brain	21	127	254	127	346
Heart	23	16	35	73	42
Kidney	39	53	83	55	135
Large Intestine	22	33	45	306	72
Liver	16	27	34	29	35
Lung	18	62	103	110	128
Lymph Nodes	34	30	50	63	110
Skin	14	32	57	37	99
Small intestine	20	32	48	196	57
Spleen	33	26	46	48	72

https://hubmapconsortium.github.io/ccf/pages /ccf-anatomical-structures.html

SOP for Construction, Review, Revision of Anatomical Structure and Cell Types and Biomarker (ASCT+B) Tables

Authors: Ellen M. Quardokus, Lisel Record, Bruce W. Herr II, Hrishikesh Paul, Katy Börner September 18, 2020

Introduction

Anatomical Structures, Cell Types, plus Biomarkers (ASCT+B) tables aim to capture the nested *part_of* structure of anatomical human body parts, the typology of cells, and biomarkers used to identify cell types (e.g., gene, protein, lipid or metabolic markers). The tables are authored and reviewed by an international team of anatomists, pathologists, physicians, and other experts.

Identification of Subject Matter Experts (SMEs)

- CCF Experts (cross-consortium team lead by MC-IU) invite leading organ experts to contribute to the design of ASCT+B tables.
- Leading organ experts submit information on their expertise and credentials via this online <u>form</u>.
- CCF Experts approve 3-5 experts per organ and give them access to the ASCT+B table forms so they can author and review the forms.

Construction by Subject Matter Experts (SMEs)

- MC-IU provide pre-populated initial ASCT+B table with UBERON and CL ontology IDs.
- A first set of organ experts authors the tables and indicates author contributions.
- Authors use the <u>ASCT+B Reporter</u> to identify/resolve naming and interlinkage issues.
- Completed tables are submitted to the CCF Experts for review.

Review by Subject Matter Experts (SMEs)

- The beginning of each month, all tables ready for review are submitted by CCF Experts to a second set of organ experts for review.
- Review criteria include: scientific rigor (citation of publications, data), coverage and quality of the ASCT+B tables.
- Review results comprise detailed comments together with a rating (accepted, accepted with minor or major revisions, rejected) and are shared back with the author team.

Review by CCF Experts

The begin of each month, all tables ready for review are cross-checked against

 existing ontologies, e.g., UBERON, CL, to identify any terms that might be missing or that might have different spelling. The goal is to arrive at ASCT+B tables that are in close alignment with existing ontologies so only few changes need to be requested from ontology owners.

left anterior descending a

Heart

https://hubmapconsortium.github.io/ccf-asct-reporter

Table S1. Canonical cell types (45) in the human lung and their abundances, markers, and available expression data.

	Cell type	Relative abundance (%)	Number (millions)*	Canonical markers ^b	Extant expre Single cell	ession profiles Primary	Expression accession codes	Abundance reference (method) ^d
	Epithelium							
	Club Cell	0.5	1,500	CYP2F2, SCGB3A2, CCKAR	Yes	Yes	MTAB-6149, E-MTAB-6653	Boers et al. 1999 (e)
	Ciliated Cell	2	6,000	FOXJ1, TUBB1, TP73, CCDC78	Yes	Yes	GSE122960	Raman et al. 2009 (e)
	Basal Cell	0.5	1,500	KRT5, KRT14, TP63, DAPL1	Yes	Yes	MTAB-6149, E-MTAB-6653	Boers et al. 1998 (e)
	Goblet Cell	0.2	500	MUC5B, MUC5AC, SPDEF	Yes	Yes	EGAS00001001755	Boers et al. 1999 (e)
	Mucous Cell	0.03	80	MUC5B			E. 0.00000 (00.1755	Dofe Widdicombe and Wine 2015 (e)
	Serous Cell	0.03	08	PRR4, LPO, LTF DS	Yes	Yes	EGAS00001001755	RCIS Basbaum et al. 1990 (e)
	Ionocyte	0.03	100	CFTR, FUXIT, ASUL3	Yes	Yes	EGA500001001755	Montoro et al. 2018 (e)
	Neuroendocrine Cell	0.01	40	CALCA, CHGA, ASOLI	Yes	res	EGA500001001755	Boers et al. 1996 (e)
	Alveolar Epitholial Type 1 Coll	12	200	ACED DDDN CLICE	Yes	Voc	G5E102300 MTAB 6140 E MTAB 6663	Chang et al. 1966, Montoro et al. 2016 (e)
	Alveolar Epithelial Type 7 Cell	13	40,000	AGER, PDPN, GLIGS	Yes	Yes	MTAD-0149, E-MTAD-0000	Crano et al. 1992: Eabronbach et al. 1994 (f)
	Total	23	70.000	3111 B, 3111 O, 3111 B, MOOT, 2113	103	103	052122500	orapo er al. 1962, i emendadir er al. 1994 (i)
	Endothellum Arten: Coll		3 000	CINE BMX	(bulk)	(outtured)	pho000008 v1 p1	Teursley et al. 0040; The Lune, Obertes 74 (a)
	Voin Coll		3,000	GJAJ, DWA	(Duik)	(cultureu)	priso00336.v1.p1	Townsley et al. 2012, The Lung, Chapter 74 (g) Townsley et al. 2019: The Lung, Chapter 74 (g)
			70,000	ACKA1				Cropp et al. 2012, The Lung, Chapter 74 (g)
	6		2,000	CA4				Deffeback et al. 1997 (a)
A molecular cell atlas of the human lun	ng from single cell KNA sequ	lencing	2,000	PROV1 PDPN	Vac	Vec	MTAR 6149 E MTAR 6653	Kambouchner et al. 2000: Sozio et al. 2012 (a)
			80,000	FROAT, FDFN	163	103	MTAB-6149 E-MTAB-6653	Kambouchner et al. 2005, 30210 et al. 2012 (g)
			00,000		(unani	notated)	EGAS00001001755	
🖤 Kyle J. Travaglini, 🖤 Ahmad N. Nabhan, Lolita Pen	iland, 🙂 Rahul Sinha, Astrid Gillich, R	ene V. Sit,						
Stephen Chang, Stephanie D. Conley, Yasuo Mori, Jun	Seita, Gerald J. Berry, Joseph B. Shra	zer, Ross J. Metzger,	5,000	CNN1, ACTA2, TAGLN, RGS5	Yes	Yes	GSE75990	Townsley et al. 2012; The Lung, Chapter 74 (h)
Christin S. Kuo, Norma Noff, Inving L. Waissman, Sta	shan P. Quaka Mark A. Kraanow		4,000	CNN1, ACTA2, TAGLN, DES, LGR6			GSE75990	Elliot et al. 1999; The Lung, Chapter 74 (h)
Christin 5. Kuo, Norma Nell, Irving L. vveissman, ste	phen R. Quake, Mark A. Krasnow		20,000	COL1A1, PDGFRA	Yes	Yes	EGAS00001001755	Crapo et al. 1982 (f,i)
doi: https://doi.org/10.1101/742320			20,000	COLIAI, PDGFRA, ELN, ACIA2	Yes	Yes	EGAS00001001755	Crapo et al. 1982 (f,i)
	Derieute	7	20,000	COLIAI, PDGFRA, PLINZ, APOE	(bulk)	(outpured)	00575000	Crapo et al. 1982 (f,i)
	Monothalial Call	0.2	20,000	MOLN LIDKOR WITH	(bulk)	(cultured)	G3L/3550	Michailous at al. 1902 (i,i)
	Total	30	90,000	MISLIN, UPK3B, WITT	(Dulk)	(cultureu)	MTAR-61/9 F-MTAR-6653	Michailova et al. 1997 (j)
	- ota		00,000		(unan	notated)	EGAS00001001755	
Ac are in Table S2	PNS							
	Intrinsic Neuron	0.0003	1	SNAP25				Fox et al. 1980; Sparrow et al. 1999 (j)
	Glial Cell	0.0002	0.5					Sparrow et al. 1999 (j)
	I otal	0.0005	1.5					
	Immune							
	B Cell	0.5	1,500	CD79A, CD24, MS4A1, CD19	Yes	Yes	E-MTAB-6701, E-MTAB-6678	Finkelstein et al. 1995; Banat et al. 2015 (k)
	Plasma Cell	0.7	2,000	CD79A, CD27, SLAMF7	Yes	Yes	E-MTAB-6701, E-MTAB-6678	Banat et al. 2015 (k)
	CD8+ Mem/Eff T Cell	1	3,000	CD3E, CD8A, GZMK, DUSP2	Yes	Yes	E-MTAB-6701, E-MTAB-6678	Finkelstein et al. 1995; Banat et al. 2015 (k,i)
	CD8+ Naive T Cell	1	3,000	CD3E, CD8, GZMH, GZMB	Yes	Yes	MTAB-6149, E-MTAB-6653	Finkelstein et al. 1995; Banat et al. 2015 (k,i)
	CD4+ Mem/Eff Cell	0.7	2,000	CD3E, CD8, COTL1, LDHB	Yes	Yes	E-MTAB-6701, E-MTAB-6678	Finkelstein et al. 1995; Banat et al. 2015 (k,i)
	CD4+ Naive T Cell	0.7	2,000	CD3E, CD4, CCR7, LEF1	Yes	Yes	MTAB-6149, E-MTAB-6653	Finkelstein et al. 1995; Banat et al. 2015 (k,i)
	Natural Killer Cell	1	3,000	KLRD1, NKG7, TYROBP	Yes	Yes	E-MTAB-6701, E-MTAB-6678	Marquardt et al. 2017 (I)
	Natural Killer T Cell	0.7	2,000	CD3E, CD8A, FCER1G, TYROBP	Yes	Yes	MTAB-6149, E-MTAB-6653	Marquardt et al. 2017 (k,i)
	Neutrophil	0.8	2,500	S100A8, S100A9, IFITM2, FCGR3B	Yes	Yes	EGAS00001001755	Finkelstein et al. 1995; Banat et al. 2015 (k)
	Basophil	0.3	1,000	MS4A2, CPA3, TPSAB1	Yes	Yes	MTAB-6149, E-MTAB-6653	Finkelstein et al. 1995 (k,i)
	Mast Cell	1	3,000	MS4A2, CPA3, TPSAB1	Yes	Yes	MTAB-6149, E-MTAB-6653	Finkelstein et al. 1995; Banat et al. 2015 (k)
	Eosinophil	0.3	1,000	SIGLEC8	(bulk)	(cultured)		Finkelstein et al. 1995 (k.i)
	Megakaryocyte	0.3	1,000	NRGN, PPBP, PF4, OST4	(bulk)	Yes		Dejima et al. 2018: Skoczynski et al. 2019 (m)
	Macrophage	7	20,000	MARCO, MSR1, MRC1	Yes	Yes	MTAB-6149, E-MTAB-6653	Crapo et al. 1982: Eehrenbach et al. 1994 (f)
	Plasmacytoid Dendritic Cell	0.3	800	LILRB4, IRF8, LILRA4	Yes	Yes	GSE94820	Banat et al. 2015 (k i)
	Myeloid Dendritic Cell 1	0.3	1 000	MHCILCLEC9A LAMP3	Yes	Yes	GSE94820	Banat et al. 2015 (k)
	Myeloid Dendritic Cell 2	0.1	200	MHCIL CD1C PLD4	Yes	Yes	GSE94820	Banat et al. 2015 (k)
	Classical Monocyte	0.1	4 000	CD14 S10048	Ves	Ves	E-MTAR-6701 E-MTAR 6679	Hance et al. 1985: Hoogsteden et al. 1999 (kii)
	Intermediate Monocyte	2	4,000	CD14 S100A8 CD16	(bulk)	Vac	CSE80095	Hance et al. 1903, Hougsteven et al. 1909 (K,I)
	Nonclassical Monocyte	4	3,000	CD14, 3100A0, CD10	(Duik)	Vec	GSE00093	Hance et al. 1905, Hoogsteden et al. 1989 (K,I)
	Total	20	5,000	0010	162	162	G9E34020	mance et al. 1965, moogsteden et al. 1989 (K)
	Total (all compartments)	100	300.000					

a, numbers of each type were calculated with their abundances and the total number of lung cells (estimated by comparing volume of lungs to the whole body). b, Canonical markers were obtained from referenced expression data or commonly used markers in the literature. c, Expression profiles captured immediately following tissue dissociation are considered primary. a, Alveoli were assumed to occupy - 30% of the total lung volume for all estimations. e, interred from mean relative abundance in proximal, medial and distal ainway epithelium. f, calculated by stereology G, Resin casts showed similar surface are of arteries and views. h, vascular smooth muscle is estimated to be setting way smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as mooth muscle is estimated to be setting as mooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle is estimated to be setting as the vascular smooth muscle

Capturing vasculature details from macro to micro scale is critically important for a vasculature based CCF

Weber, Griffin M, Yingnan Ju, and Katy Börner. 2020. "Considerations for Using the Vasculature as a Coordinate System to Map All the Cells in the Human Body". Frontiers in Cardiovascular Medicine 7 (29): doi: 10.3389/fcvm.2020.00029.

ASCT+B Table Example: Kidney vasculature

Vasculature	e re	enal atery [L/R]				Endothelia	l Cell (general)	EC	EMCN*, PECAM1*, FLT1*
			segmental arteries [supe	rior, inferior, anterior,	posterior]				
			interlobar aterties						
			arcuate aterties						
			cortical radiate ateries						
			{cortex}	afferent arterioles		EC-Afferen	t/Efferent Arteriole	EC-AEA	SERPINE2*, TM4SF1*
			. ,	{nephron}	glomerulus capillaries {glomerulus}	Capillary E	ndothelial Cell	GC-EC	EHD3*, EMCN*, HECW2*, FLT1*, AQP1*
				efferent arterioles		EC-Afferen	t/Efferent Arteriole	EC-AEA	SERPINE2*, TM4SF1*
				{nephron}	peritubular capillaries	EC-Peritub	ular capillaries	EC-PTC	PLVAP*
					descending vasa recta	EC-Descen	ding Vasa Recta	EC-DVR	TM4SF1*, PALMD
					ascending vasa recta	EC-Ascend	ing Vasa Recta	EC-AVR	DNASEIL3*
	re	enal vein [L/R)	cortical radiate veins	venules	-	Endothelia	l Cell (general)	EC	EMCN*, PECAM1*, FLT1*
			{cortex}						
			arcuate veins						
			interlobar veins						
Vasculature	renal artery	r [L/R]					Endothelial Cell (general)	EC	EMCN*, PECAM1*, FLT1*
Vasculature	renal artery	[L/K] segmental arterie	es [superior, interior, anterior,	posteriorj			Endothelial Cell (general)	EC	EMICN*, PECAMI1*, FLT1*
Vasculature	renal artery	[L/R] interiobal arteries	c3				Endothelial Cell (general)	EC	EMCN* PECAM1* FLT1*
Vasculature	renal artery	[L/R] cortical radiate a	rteries {cortex}				Endothelial Cell (general)	EC	EMCN*. PECAM1*. FLT1*
Vasculature	renal artery	[L/R] cortical radiate a	rteries {cortex}	afferent arterioles {nephr	on}		EC-Afferent/Efferent Arte	riole EC	-AEA SERPINE2*, TM4SF1*
Vasculature	renal artery	[L/R] cortical radiate a	rteries {cortex}	afferent arterioles {nephr	on} glomerulus capillaries	{glomerulus}	Capillary Endothelial Cell	GC	EHD3*, EMCN*, HECW2*, FLT1*, AQP1*
Vasculature	renal artery	[L/R] cortical radiate a	rteries {cortex}	efferent arterioles {nephr	on}		EC-Afferent/Efferent Arte	riole EC	-AEA SERPINE2*, TM4SF1*
Vasculature	renal artery	[L/R] cortical radiate a	rteries {cortex}	efferent arterioles {nephr	on} peritubular capillaries		EC-Peritubular capillaries	EC	-PTC PLVAP*
Vasculature	renal artery	[L/R] cortical radiate a	rteries {cortex}	efferent arterioles {nephr	on} descending vasa recta		EC-Descending Vasa Recta	e EC	-DVR TM4SF1*, PALMD
Vasculature	renal artery	[L/R] cortical radiate a	rteries (cortex)	efferent arterioles {nephr	on} ascending vasa recta		EC-Ascending Vasa Recta	EC	-AVK UNASEIL3*
Vasculature	renal vein [L	(P) cortical radiate v	eins (cortex)	venules {nephron}			Endothelial Cell (general)	EC	EIVICN*, PECAIVI1*, FLI1*
Vasculature	renal vein [L	(R) arcuate veins	enis (cortex)				Endothelial Cell (general)	EC	ENTENT, PECANIT, FLIT FMCN* PECAM1* FLT1*
Vasculature	renal vein [L	/R) interlobar veins					Endothelial Cell (general)	EC	EMCN*, PECAM1*, FLT1*
. abculatare	. endi vent [L						Line chenar cen (Beneral)	10	

Weber, Griffin M, Yingnan Ju, and Katy Börner. 2020. <u>"Considerations for Using the Vasculature as a Coordinate System to Map All the Cells in the Human Body"</u>. *Frontiers in Cardiovascular Medicine* 7 (29): doi: 10.3389/fcvm.2020.00029.

ASCT+B Table Usage

ASCT+B Table Usage

ASCT+B tables guide **CCF Ontology** and **3D Reference Object Library** design that semantically name and spatially place tissue data from different donors into one CCF (i.e., <u>mapping</u>).

ASCT Table			Ontology	3D Reference Object Library
Structure/Region Renal Corpuscle	Sub structure/Sub region Bowman's Capsule Glomerulus Proximal Tubule Loop of Henle, Thin Limb	Cell Type Parietal epithelial Cell Podocyte Capillary Endothelial Cell Mesangial Cell Proximal Tubule Epithelial Cell (general) Proximal Tubule Epithelial Cell Segment 1 Proximal Tubule Epithelial Cell Segment 2 Proximal Tubule Epithelial Cell (general) Descending Thin Limb Cell (general)	Anatomical Structures Partonomy kidney kidney capsule cortex of kidney outer cortex of kidney renal medulla	
	Loop of Henle, Thick Limb Distal Convolution Connecting Tubule	Ascending Thin Limb Cell (general) Thick Ascending Limb Cell (general) Cortex-TAL Cell Medulla-TAL Cell TAL-Macula Densa Cell Distal Convoluted Tubule Cell (general) DCT Type 1 Cell DCT Type 2 Cell Connecting Tubule Cell (general) CNT-Principal Cell	Cell Types Ontology connective tissue cell pericyte cell mesangial cell extraglomerular mesangial cell glomerular mesangial cell	

Tissue blocks are <u>registered</u> into the CCF using the Registration User Interface (RUI), and they can be <u>explored</u> via the Exploration User Interface (EUI).

CCF Ontology v1.5.0

References

 Herr II, BW and Börner K. HuBMAP Common Coordinate Framework.
 https://bioportal.bioontology.org/optologies/C

https://bioportal.bioontology.org/ontologies/CCF/

- Herr II, BW, Quardokus EM, Cross LE, Record EG, Weber GM, and Börner K. <u>HuBMAP CCF Ontology</u> <u>Source Code Repository</u>.
- Börner K, Quardokus EM, Herr II, BW, Cross LE, Record EG, Ju Y, Bueckle A, Sluka JP, Silverstein J, Browne K, Jain S, Wasserfall CH, Jorgensen ML, Spraggins JM, Patterson NH, Weber GM. 2020.
 Construction and Usage of a Human Body Common Coordinate Framework Comprising Clinical, Semantic, and Spatial Ontologies.
 <u>https://arxiv.org/abs/2007.14474</u>.

SATIJA LAB

HOME NEWS PEOPLE RESEARCH PUBLICATIONS SEURAT JOIN/CONTACT SINGLE CELL GENOMICS DAY

Azimuth

App for reference-based single-cell analysis

https://satijalab.org/azimuth

CT terms from ASCT+B linked to Cell Ontology

ASCT+B Table Usage

ASCT+B tables guide **CCF Ontology** and **3D Reference Object Library** design that semantically name and spatially place tissue data from different donors into one CCF (i.e., <u>mapping</u>).

ASCT Table				Ontology	3D Reference Object Library
Structure/Region	Sub structure/Sub region Bowman's Capsule Glomerulus	Cell Type Parietal epithelial Cell Podocyte Capillary Endothelial Cell Meseneila Cell		Anatomical Structures Partonomy kidney kidney capsule	
Kenar Corpuscie	Proximal Tubule	Proximal Tubule Epithelial Cell (general) Proximal Convoluted Tubule Epithelial Cell Segment 1 Proximal Convoluted Tubule Epithelial Cell Segment 2 Proximal Tubule Epithelial Cell Segment 2	Í	cortex of kidney outer cortex of kidney renal medulla	
	Loop of Henle, Thin Limb	Descending Thin Limb Cell (general) Ascending Thin Limb Cell (general)			
	Loop of Henle, Thick Limb	Thick Ascending Limb Cell (general) Cortex-TAL Cell Medulla-TAL Cell TAL-Macula Densa Cell		Cell Types Ontology connective tissue cell pericyte cell	
	Distal Convolution	Distal Convoluted Tubule Cell (general) DCT Type 1 Cell DCT Type 2 Cell		mesangial cell extraglomerular mesangial cell	
	Connecting Tubule	Connecting Tubule Cell (general) CNT-Principal Cell		glomerular mesangial cell	

Tissue blocks are <u>registered</u> into the CCF using the Registration User Interface (RUI), and they can be <u>explored</u> via the Exploration User Interface (EUI).

Document the tissue extraction site by registering tissue blocks within a 3D reference organ.

Image provided by Sanjay Jain, TMC-UCSD

For the first HuBMAP portal release, 48 tissue blocks were registered.

https://hubmapconsortium.github.io/ccf/pages/ccf-3d-reference-library.html

Public private partnership with NIH, Google, Lilly and other sponsors.

HUBMAP

Hacking the Kidney Hackathon

PARTICIPATION OPENS **NOV 5TH, 10:00 AM EST**

TOTAL PRIZE MONEY \$60,000 TO BE AWARDED TO THE WINNING TEAMS!

OUR SPONSORS

Maven Wave

Google Deloitte 😂 CAS

Pistoia Alliance

Roche

https://www.kaggle.com/c/hubmap-kidney-segmentation

Overview	Edit
Description	Our best estimates show there are over 7 billion people on the planet and 300 billion stars in the Milky
Supervised ML Evaluation	Way. By comparison, the adult human body contains 37 <i>trillion</i> cells. To determine the function and relationship among these cells is a monumental undertaking. Many areas of human health would be impacted if we better understand cellular activity. A problem with this much data is a great match for the
Judges Prize	Kaggle community.
Prizes Timeline Organizers & Sponsors	Program (HuBMAP) is a major endeavor. Sponsored by the National Institutes of Health (NIH), HuBMAP is working to catalyze the development of a framework for mapping the human body at a level of glomeruli functional tissue units for the first time in history. Hoping to become one of the world's largest collaborative biological projects, HuBMAP aims to be an open map of the human body at the cellular level.
	This competition, "Hacking the Kidney," starts by mapping the human kidney at single cell resolution.
+ Add Page	Your challenge is to detect functional tissue units (FTUs) across different tissue preparation pipelines. An FTU is defined as a "three-dimensional block of cells centered around a capillary, such that each cell in this block is within diffusion distance from any other cell in the same block" (de Bono, 2013). The goal of this competition is the implementation of a successful and robust glomeruli FTU detector.
	You will also have the opportunity to present your findings to a panel of judges for additional consideration. Successful submissions will construct the tools, resources, and cell atlases needed to determine how the relationships between cells can affect the health of an individual.

https://www.kaggle.com/c/hubmap-kidney-segmentation

OUR JUDGES

THOMAS FUCHS Founder and CSO of Paige. or Al, Director at Memorial Sloan Kettering Cancer Center,

Professor at Weill Cornell

AMY BERNARD Director, Science & Technology Strategy, Allen Institute

MAIGAN BRUSKO Department of Pathology, Immunology, and Laboratory Medicine at the University of Florida

JOHN MARIONI Research Group Leader, EMBL-EBI

ZORINA GALIS Chief, Vascular Biology and Hypertension, National Heart Lung and Blood Institute/National Institutes of Health, Bethesda, MD

BLUE LAKE

Integrative Genomics Group Department of Bioengineering University of California at San Diego

DAVID VAN VALEN Division of Biology and Bioengineering, California Institute of Technology

MATT NELSON Vice Precedent, Genetics and Genomics at Deerfield

ANDY PALMER CEO and co-founder of Tamr Inc.

LUCY COLWELL Research Scientist at Google

ALEX WOLF Head of Applied Machine Learning at Cellarity

https://www.kaggle.com/c/hubmap-kidney-segmentation

SOP for Approval of 3D Reference Objects

CCF 3D Reference Object Library

Overview

The CCF 3D Reference Object Library provides anatomically correct reference organs. The organs are developed by a specialist in 3D medical illustration and approved by organ experts, see SOP

Initially, reference objects were created using data from the Visible Human male and female datasets provided by the National Library of Medicine. The male dataset comprises 1,871 cross-sections at 1mm intervals for both CT and anatomical images at a resolution of 4,096 pixels by 2,700 pixels. The female data set has the same characteristics as the Visible Human Male but axial anatomical images were obtained at 0.33 mm intervals resulting in 5,189 cross-section anatomical images. The male was white, 180.3 cm (71 inch) tall, 199-pound and was 38 years old. The female was white, 171.2 cm (67.4 inch) tall, obese, and 59 years old.

For the 1st HuBMAP Portal Release, kidney and spleen reference organs are freely available in GLB format. They can be viewed and explored using free web browsers such as Babylon.js. Screenshots and major properties of the nested reference organ objects are given in table below.

For selected organs, 3D extraction site objects are provided. Some extraction sites resemble geometric objects (e.g., cuboids for heart) while others take the shape of one or more whole or partial anatomical structures (e.g., in spleen). The 3D extraction sites do not restrict registration to specific regions, instead they provide "expert defined landmarks" to help guide tissue registration. The extraction site objects are also used for automatic semantic annotation of tissue samples via collision detection during registration.

Reference Organs

COLON HEART KIDNEY SPLEEN

https://hubmapconsortium.github.io/ccf/dld/SOP-3D-Reference-Object-Approval-v1.0.1.pdf

CCF Registration User Interface (RUI) v1.0.0

New Features:

- Organ carousel with 4 reference organs
- Support for tissue extraction sites
- Expanded ontology
- Semantic annotation via collision detection & manual annotation
- Support for non-HuBMAP usage

https://hubmap-ccf-ui.netlify.app/rui/

0

•

.

Common Extraction Sites Show Previous Registration Blocks Anatomical Structures

Kidney

Bisection Line

Spleen

- CC1
- CC2
- CC3

Colon

- Ascending Colon
- Descending Colon
- Transverse Colon
- Sigmoid Colon

Heart

Extraction Site Mapping

•	Left atrium, appendage	7
•	Left atrium, PV inflow	8
•	Left ventricle, apex	1
•	Left ventricle, free wall 3cm from apex	2
•	Septum, 3cm from apex including LAD	3
•	Posterior, adjacent to coronary sinus	9
•	Right atrium appendage	5
•	Right atrium, AV (atrioventricular) node	6a
•	Right atrium, SA (sinoatrial) node	6b
•	Right ventricle, free wall 3cm from apex	4

BACK Kidney, left, female Common Extraction Sites Bisection line Show Previous Registration Blocks Anatomical Structures ~ calyces capsule hilum medulla (renal columns) outer cortex papilla pelvis o pyramids o ureter

BACK

Heart, male

⊙ CC1

⊙ CC2

⊙ CC3

CCF Registration User Interface (RUI) v1.0.0 cont.

Collision when Tissue Block hits Reference Organ

Tag Search behavior

Custom tag added to list

https://hubmap-ccf-ui.netlify.app/rui/

HUBMAP CCF REGISTRATION USER INTERFACE

https://hubmap-ccf-ui.netlify.app/rui/

HuBMAP Upload Portal

•

BOES@pitt.edu | Edit Profile Logout

HuBMAP Display ID Generator

Generate unique identifiers which will be used consortium wide to track sample and associate data with samples.

Source HuBMAP ID *	TEST0005-RK	Look up	
	HuBMAP display id type: Organ Organ Type: Kidney (Right) HuBMAP ID: HBM:264-TTT.	: TEST0005-RK name:	
	Description:		
issue Sample Type *	FFPE block	j	
otocol 1	protocols.io DOI *	https://dx.doi.org/10.17504/protocols.io.p9kdr4w	
	Protocol document *	Choose a file Browse doc, docr and pdf files only	
	Add Protocol ✓ Generate IDs for multiple FFI	PE block samples	
	3	Lab IDs and Sample Locations can be assigned on the next screen after generating the HuBMAP IDs	
Description			
Metadata	+ Add Metadata		
Image	+ Add Image	Make sure any uploaded images are de-identified	
	Generate ID	Cancel	

BOES@pitt.edu | Edit Profile Logout

HuBMAP Display ID Generator

Generate unique identifiers which will be used consortium wide to track sample and associate data with samples.

3 sample	ids were generated: TEST0005-RK-6 through TEST000	15-RK-8	
Type: FF	PE block		
	Assig	Lab IDs and Sample Locations Return to Search	
		Assign Lab IDs and Sample Location	
	Lab Sample Id	Peoister Location SuccessView JSON	
EST0005-RK-6	TEST0005-RK-6-A	Register Location	0
EST0005-RK-7		Register Location	0
EST0005-RK-8		Register Location	Ð

Implemented by the HIVE IEC

CCF Exploration User Interface (EUI)

https://portal.hubmapconsortium.org/ccf-eui

0

HUBMAP

body

.

•

•

Logout

http://gehlenborglab.org/research/projects/vitessce/

Hubmap

(i)

https://portal.hubmapconsortium.org/ccf-eui

Register your data via <u>https://hubmap-ccf-ui.netlify.app/rui/</u> so it can be spatially/semantically explored in EUI.

Cells of the adult human heart

Monika Litviňuková, Carlos Talavera-López, [...] Sarah A. Teichmann 🖂

Nature (2020) Cite this article

Published: 24 September 2020

Fig. 1 Cell composition of the adult human heart. a. Transmural samples were obtained from RA, LA, RV, LV, AX and SP from 14 individuals. Single nuclei (n = 14) and single cells (n = 7) were processed using Chromium 10X 3'DEG chemistry. **b**. Infographic shows donors (women, top; men, bottom), age, and contribution to cells and nuclei datasets (orange circle) (Data available in Supplementary Table 1) c. UMAP embedding of 487,106 cells and nuclei delineate 11 cardiac cell types and marker genes. **d**. Distribution of cell populations, identified from nuclei within atria (LA, RA) and ventricles (LV, AX, SP, RV) after subclustering analysis. Color code corresponds to **c** (Data available in Supplementary Table 2). **e**. Multiplexed smFISH of cell type-specific transcripts in RV (left): *TTN* (green, CM) and *CDH5* (red, EC) RA (middle): *NPPA* (green, aCM) and *DCN* (red, FB) and LA (right): *MYH11* (green, SMC) and *KCNJ8* (red, PC), nuclei are DAPI-stained (dark blue). Scale bar 20 µm. For details on statistics and reproducibility, please see **Methods**.

Cells of the adult human heart

Monika Litviňuková, Carlos Talavera-López, [...] Sarah A. Teichmann 🖂

Top Orthographic (3) HuBMAP | RA trabecular myocardium Centimeters User Perspective (3) HuBMAP | RA trabecular myocardium

£ ≱ 9i ⊞

ø

Front Orthographic (3) HuBMAP | RA trabecular myocardi Centimeters

Right Orthographic (3) HuBMAP | RA trabecular myocardium Centimeters

15 extraction sites by Kalyanam Shivkumar, UCLA (SPARC) 10 sites by Shin Lin, UW (HuBMAP) Top Orthographic (3) HuBMAP | VHM_Interventricular_Septum Centimeters User Perspective (3) HuBMAP | VHM_Interventricular_Septum

Đ

-

圕

ø

Front Orthographic (3) HuBMAP | VHM_Interventricular_Septum Centimeters

0

0

15 extraction sites by Kalyanam Shivkumar, UCLA (SPARC) 10 sites by Shin Lin, UW (HuBMAP)

3D extraction sites do not restrict registration to specific regions, instead they provide "expert defined landmarks" to help guide tissue registration.

The extraction site objects are also used for automatic semantic annotation of tissue samples via collision detection during registration.

Shown here: Heart extraction sites

15 SPARC

- 10 HuBMAP
- 6 "Cells of the Adult Human Heart"

Human Reference Atlas CCF: Checklist

In support of Common Coordinate Framework (CCF) design (see <u>CCF Portal</u>):

- 1. Make sure the Anatomical Structures, Cell Types, and Biomarkers (ASCT+B) that you use/submit are listed in the <u>ASCT+B tables</u>. The tables are authored and reviewed by an international team of anatomists, pathologists, physicians, and other experts, see this <u>SOP</u>.
- 2. Spatially register all tissue samples using the CCF Registration User Interface (RUI) in the Ingest Portal. End of October 2020, kidney, spleen, heart, colon registration are supported. For other organs, see <u>SOP</u>.
- 3. After submitting data, review data in the <u>CCF Exploration User Interface</u> and make sure spatial, semantic, and other metadata are correct.
- 4. For functional tissue unit (FTU) segmentation, submit a list of FTUs for your organ(s) and make sure FTU names and all relevant cell types (CT) are captured in the ASCT+B table. Use assays/biomarkers (B) that make it possible to identify FTUs—initially manually, later automatically. Submit tissue with 1000 FTUs manually identified FTUs.
- 5. In support of the <u>Vasculature-based CCF</u>, provide cell segmentation data for blood vessels and different cell types.

For questions, email infoccf@indiana.edu.

Visible Human MOOC

HuBMAP Visible Human MOOC (VHMOOC)

Started Aug 4, 2020

To enroll, first log in. If you don't have an account, create an IU Guest account.

Register via: https://tinyurl.com/vhmooc

Ф INDIANA UNIVERSITY

Course Introduction

This 10h course introduces the HuBMAP project which aims to create an open, global reference atlas of the human body at the cellular level. Among others, the course describes the compilation and coverage of HuBMAP data, demonstrates new single-cell analysis and mapping techniques, and introduces major features of the HuBMAP portal.

Delivered entirely online, all coursework can be completed asynchronously to fit busy schedules. If you have questions or experience issues during registration, please email cnscntr@indiana.edu.

Learning Outcomes

- · Theoretical and practical understanding of different single-cell tissue analysis techniques.
- · Expertise in single-cell data harmonization used to federate data from different individuals analyzed using different technologies in diverse labs.
- · Hands-on skills in the design and usage of semantic ontologies that describe human anatomy, cell types, and biomarkers (e.g., marker genes or proteins).
- · Knowledge on the design and usage of a semantically annotated three-dimensional reference system for the healthy human body.
- . An understanding of how the HuBMAP reference atlas might be used to understand human health but also to diagnose and treat disease.

Module Topics Include

- . HuBMAP Overview: Project Goals, Setup, and Ambitions
- Tissue Data Acquisition and Analysis
- · Biomolecular Data Harmonization
- · Ontology, 3D Reference Objects, and User Interfaces
- HuBMAP Portal Design and Usage

Meet the Instructors

Katy Börner, Victor H. Yngve Distinguished Professor of Engineering and Information Science, Founding Director of the Cyberinfrastructure for Network Science Center at

Indiana University.

the Chemistry Department and Cyberinfrastructure for Network Science Center, SICE with expertise in molecular biology, microscopy, anatomy, and interdisciplinary communication

Andreas Bueckle, PhD Candidate in Information Science, performing research on information visualization. specifically virtual and augmented reality.

HuBMAP Overview

Project Goals, Setup, and Ambitions

Tissue Data Acquisition and Analysis

Behind the Scenes at Vanderbilt University

Biomolecular Data Harmonization

An Introduction to Seurat

CCF Ontology, 3D Reference Objects, and User Interfaces

Creating an Atlas of the Human Body

Portal Design and Usage

Datasets and Software in the 1st HuBMAP Portal Release

Open Consent Your Data

In Support of Research

Poster Session on Thursday, 11/19:

The Human Body Atlas: High-Resolution, Functional Mapping of Voxel, Vector, and Meta Datasets

review. It combines two different types of Angular visualizations: A partonomy tree of anatomical structures and bimodal networks that lin

· Included

· Committee Index

• minimum

......

.....

· ······

.....

..... Ξ

8 mm 8 mm
8 mm 8 mm
8 mm 8 mm 8 mm 8 mm 8 mm 8 mm
8 mm 8 mm 8 mm

·

.....

· e e e

· coresa

· · · · · · ·

.....

· ·····

· ······

......

· · · · · · ·

......

......

.....

· · · · · · · · •*4*0

· · · · · · · · · · ·

· · · · · · ·

•44

· · hind · ·····

· ····· • (a ()

·

structures to cell types and cell types to biomarkers

Andrea III Colligan Maradan

ann ann 20274 (min Scottel - Comp ber attente .. RDRD

CCF Core Model, see https://hubmapconsortum.gthub.to/hubmap-ontology/ccl.owl

CCF Registration User Interface (RUI)

The RUI was designed for usage by experts that collect human tissue and need to document the tissue extraction site. It requires about 5 minutes of training time and 2 minutes for each tissue registration. Currently, the RU supports gross materinical tissue registration of tissue blocks. When biomolicital data becomes available, it will be entered on Support placement basid on biomolicital minutes and platterns. wailable, it will

DIII franctionality can be examined at https://befemanconsortium.ethub.in./cef.3d.registration

CCF Exploration User Interface (EUI)

The EUI makes it possible to explore 2D/3D tissue data semantically and spatially across multiple scales. Spatial data generated by the RUI is used to position tissue blocks. Call segmentation algorithm results will soon support cell positio and cell type exploration. Semantic and spatial search, browsing, filtering, and details on demand are supported.

Ul functionality can be examined at https://hubmapconsortium.git/lub.io/ccf-ui/

Publications

 Griffin M. Woher, Yingman Ju, Katy Börner. Considerations for Using the Vasculature as a Coordinate System
 to Map AI the Cells in the Human Body. Foroites in Cardineacular Medicine 7 (20): doi:10.3388/Jour.2020.00029
 Michael P. Styder et J., 2013. The Human Body of Cellater Resolution: The NH H Human Biomolocular Atlas Program. Nature. 574: 187192. doi: 10.1038/v41596-019-1629 x. Börner K., Quardokus EM, Herr II, BNC Cross LE. Record EG, Ju Y, Bueckle A, Sluka JP, Silverstein J, Browne K,

Jam S, Wasserfall CH, Jorgensen ML, Spraggins JM, Patterson NH, Weber CM. 2020. Construction and Usage of a Human Body Common Coordi https://antw.org/abs/2007.14474. Comprising Clinical, Semantic, and Spatial Onto

Acknowledgements

We dearly value close collaborations with the Lis GMAD TMCs and other LIME teams and the contributions by We despity wave cose conservations with the hasher' has and core HVML beams and the controllectors by former MCU. How membrans Rail Markin, Samariel Friedman, and James Salan. This research has been hunded in part by the NHI Common Fund through the Office of Strategic Coordinatory/Office of the NHI Director under award OT200026671, by the NIDOK Kidney Precision Medicine Project grant U2C0XI16886, and the NHI NUEL Oppartment of Health and Haman Services under BCSE Support Services Cortract H45K816203020006W/

Body Organ Functional Tassae Unit FTU Sub-structure(s) Cells. • Tody • Restorantia • National • Cells. • Today (1), Edit • Restorantia • Car
Anti Eleverina Paralicina Constativitari Cherenzarinio col Finalaria Parali Ilonio Alterrataria Manual Finalaria Parali Ilonio Ilonio Alterrataria Manual Finalaria Paralicitaria Ilonio Ilonio Ilonio Ilonio Ilonio Ilonio Concernigata Concernigata Concernigata Concernigata

of CCF data generation, exploration, and communication. The CCF and the interactive data visualizations are mul

evel and multi-scale. They support the registration and exploration of diverse types of data-from single cell to whole

here doint matrixes may supply the experiments and repose state of the percental entering and the experiments of the percentage of of th

A common coordinate framework (CCF) is a conceptual and computational framework for the storage, analysis, and vesual) exploration of spatially and semantically indexed data—across individuals, technologies, labs.

Common Coordinate Framework

In collaboration with Kristen Browne at National Institute of Allergy and Infectious Diseases (NIAID), NIH we are

CCF Registration to CCF Exploration Workflow

Inft) and 3D Object Library construction (lower Inft), and CCF User Interfaces (right). Arrows indicate data flow

Honio oniciated tubule trigitabale ingilact	Afferont antaniele	Mozangialicali Podocyte	•
Korval Ossove unit	ts (FTUs), to FTU sub s	tructures, to single-cell lev	ed.
ID1	A D1 C		
ssue Sectio Z-stack	ons Tissu	e Section	
			-

Number of semantic terms and linkages for 10 organs on 9/14/2020

organivane	##65	-	*0	#63'01	SCI-B
Brain	zı	127	254	127	346
Heart	23	16	35	73	42
Kidney	39	53	83	55	135
Large Intestine	22	33	45	305	n
Liver	16	27	34	29	35
Lung	18	62	103	110	128
Lymph Nodes	34	30	50	63	110
Skin	и	32	57	37	99
Small Intestine	20	32	48	196	57
Spleen	33	26	46	48	7

