The Human Body Atlas: High-Resolution, Functional Mapping of Voxel, Vector, and Meta Datasets

Katy Börner Luddy School of Informatics, Computing, and Engineering Indiana University, Bloomington, IN

HCA Asia

October 22, 2020

Acknowledgements

HuBMAP Consortium (https://hubmapconsortium.org)

Thanks go to all the patients that agreed to volunteer healthy tissue and open use of their data.

Avinash Boppana

Research Consultant

Center Assistant

Sanjay Jain Jeffrev Spraggins TMC-UCSD TMC-Vanderbilt Vanderbilt University Washington University. St. Louis

TMCs

Clive Wasserfall TMC-UEL University of Florida

Marda Jorgensen TMC-UFL University of Florida

Kristen Browne Medical Imaging and 3D Modeling Specialist NIAID

3D Models

MC-IU HIVF Team

Katy Börner

MC-IU PI CNS Director

Andreas Bueckle

PhD Candidate

Paul Hrishikesh

Research Assistant

Griffin Weber

Assoc. Professor of Medicine

Leonard Cross

Sr, UX/UI Designer

Leah Scherschel

Research Assistant

Lisel Record

Ellen Quardokus

Sr. Systems Architect/PM

Sr. Research Analyst

Bruce Herr II

Adam Phillips Software Developer

Edward Lu Software Developer

HuBMAP

Vision

Catalyze the development of an open, global framework for comprehensively mapping the human body at cellular resolution.

Goals

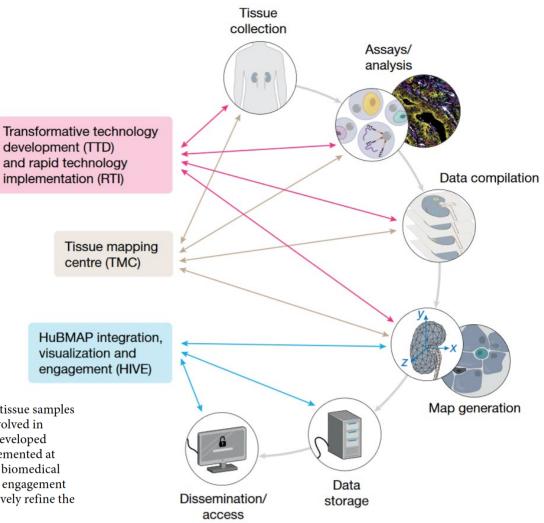
https://commonfund.nih.gov/HuBMAP https://hubmapconsortium.org

- Accelerate the development of the next generation for tools and techniques for constructing high resolution spatial tissue maps
- Generate foundational 3D tissue maps
- Establish an open data platform

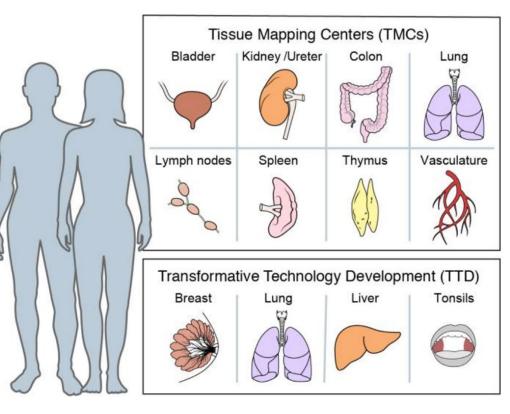
https://portal.hubmapconsortium.org

- Coordinate and collaborate with other funding agencies, programs, and the biomedical research community
- Support projects that demonstrate the value of the resources developed by the program

The Human Body at Cellular Resolution: The NIH Human Biomolecular Atlas Program. Snyder et al. Nature. 574, p. 187-192.


> Transformative technology development (TTD) and rapid technology

+ 11 new teams!


Tissue mapping centre (TMC)

HuBMAP integration, visualization and engagement (HIVE)

Fig. 1 | The HubMAP consortium. The TMCs will collect tissue samples and generate spatially resolved, single-cell data. Groups involved in TTD and RTI initiatives will develop emerging and more developed technologies, respectively; in later years, these will be implemented at scale. Data from all groups will be rendered useable for the biomedical community by the HuBMAP integration, visualization and engagement (HIVE) teams. The groups will collaborate closely to iteratively refine the atlas as it is gradually realized.

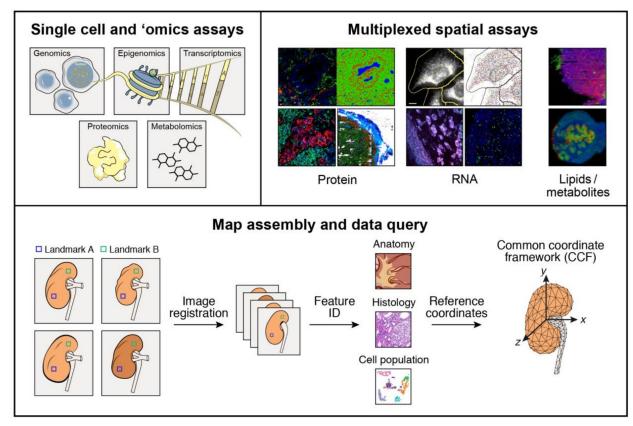

The Human Body at Cellular Resolution: The NIH Human Biomolecular Atlas Program. Snyder et al. *Nature*. 574, p. 187-192.

Fig. 2 \mid Key tissues and organs initially analysed by the consortium.

Using innovative, production-grade ('shovel ready') technologies, HuBMAP TMCs will generate data for single-cell, three-dimensional maps of various human tissues. In parallel, TTD projects (and later RTI projects) will refine assays and analysis tools on a largely distinct set of human tissues. Samples from individuals of both sexes and different ages will be studied. The range of tissues will be expanded throughout the program.

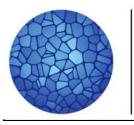

The Human Body at Cellular Resolution: The NIH Human Biomolecular Atlas Program. Snyder et al. *Nature*. 574, p. 187-192.

Fig. 3 | Map generation and assembly across cellular and spatial

scales. HuBMAP aims to produce an atlas in which users can refer to a histological slide from a specific part of an organ and, in any given cell, understand its contents on multiple 'omic levels—genomic, epigenomic, transcriptomic, proteomic, and/or metabolomic. To achieve these ends, centres will apply a combination of imaging, 'omics and mass spectrometry

techniques to specimens collected in a reproducible manner from specific sites in the body. These data will be then be integrated to arrive at a high-resolution, high-content three-dimensional map for any given tissue. To ensure inter-individual differences will not be confounded with collection heterogeneity, a robust CCF will be developed.

HUMAN CELL ATLAS

Program

Day 1: Thursday, October 22, 2020

10:30–11:50 Co-current session-1

Co-current #1-2: Computational analysis Chair: Jin Gu, Belinda Phipson	Rahul Satija Belinda Phipso Jinmiao Chen	MC-NYGC	<u>ZOOM-2</u>
Co-current #1-4: Atlas Chair: Jay Shin, Katy Borner	Katy Borner Longqi Liu Xinghua Pan] мс-і	<u>ZOOM-4</u>

Visible Human MOOC

HuBMAP Visible Human MOOC (VHMOOC)

Started Aug 4, 2020

To enroll, first log in. If you don't have an account, create an IU Guest account.

Register via: https://tinyurl.com/vhmooc

Ф INDIANA UNIVERSITY

Course Introduction

This 10h course introduces the HuBMAP project which aims to create an open, global reference atlas of the human body at the cellular level. Among others, the course describes the compilation and coverage of HuBMAP data, demonstrates new single-cell analysis and mapping techniques, and introduces major features of the HuBMAP portal.

Delivered entirely online, all coursework can be completed asynchronously to fit busy schedules. If you have questions or experience issues during registration, please email cnscntr@indiana.edu.

Learning Outcomes

- · Theoretical and practical understanding of different single-cell tissue analysis techniques.
- · Expertise in single-cell data harmonization used to federate data from different individuals analyzed using different technologies in diverse labs.
- · Hands-on skills in the design and usage of semantic ontologies that describe human anatomy, cell types, and biomarkers (e.g., marker genes or proteins).
- · Knowledge on the design and usage of a semantically annotated three-dimensional reference system for the healthy human body.
- . An understanding of how the HuBMAP reference atlas might be used to understand human health but also to diagnose and treat disease.

Module Topics Include

- . HuBMAP Overview: Project Goals, Setup, and Ambitions
- Tissue Data Acquisition and Analysis
- · Biomolecular Data Harmonization
- · Ontology, 3D Reference Objects, and User Interfaces
- HuBMAP Portal Design and Usage

Meet the Instructors

Katy Börner, Victor H. Yngve Distinguished Professor of Engineering and Information Science, Founding Director of the Cyberinfrastructure for Network Science Center at

Indiana University.

the Chemistry Department and Cyberinfrastructure for Network Science Center, SICE with expertise in molecular biology, microscopy, anatomy, and interdisciplinary communication

Andreas Bueckle, PhD Candidate in Information Science, performing research on information visualization. specifically virtual and augmented reality.

HuBMAP Overview

Project Goals, Setup, and Ambitions

Tissue Data Acquisition and Analysis

Behind the Scenes at Vanderbilt University

Biomolecular Data Harmonization

An Introduction to Seurat

CCF Ontology, 3D Reference Objects, and User Interfaces

Creating an Atlas of the Human Body

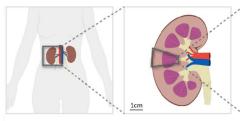
Portal Design and Usage

Datasets and Software in the 1st HuBMAP Portal Release

Open Consent Your Data

In Support of Research

What is a CCF?


The Common Coordinate System (CCF) consists of ontologies and reference object libraries, computer software (e.g., user interfaces), and training materials that

- enable biomedical experts to semantically annotate tissue samples and to precisely describe their locations in the human body ("<u>registration</u>"),
- align multi-modal tissue data extracted from different individuals to a reference coordinate system ("<u>mapping</u>") and,
- provide tools for searching and browsing HuBMAP data at multiple levels, from the whole body down to single cells ("<u>exploration</u>").

CCF Requirements

The CCF must capture major **anatomical structures**, cell types, and biomarkers and their interrelations across multiple levels of resolution.

It should be **semantically explicit** (using existing ontologies, e.g., Uberon, CL) and spatially explicit (e.g., using 3D reference organs for registration and exploration).

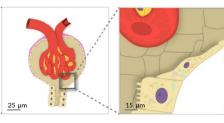
Body

- Body
- Kidney (Left, Right)
- Aorta
- Renal artery
- Renal vein
- Ureter

Organ

- Renal capsule
- Renal pyramid
- Renal cortex
- Renal medulla
- Renal calvx
 - Renal pelvis

Functional Tissue Unit


- Nephron
- Renal corpuscle

2.5 mm

- Proximal convoluted tubule
- Loop of Henle
- Distal convoluted tubule
- Connecting tubule
- Collecting duct

FTU Sub-structure(s) Cellular

- Bowman's capsule
- Glomerulus
- Efferent arteriole
- Afferent arteriole
- Parietal epithelial cell Capillary
 - endothelial cell
 - Mesangial cell
 - Podocvte

ASCT+B Tables

Anatomical Structures, Cell Types, and Biomarkers (ASCT+B) tables aim to capture the partonomy of anatomical structures, cell types, and major biomarkers (e.g., gene, protein, lipid or metabolic markers).

Structure/Re	Substructure/Sub	Cell Type	Subset of Marker Genes
gion	region		
Renal	Bowman's Capsule	Parietal epithelial cell	CRB2*, CLDN1*
Corpuscle	Glomerulus	Podocyte	NPHS2*, PODXL*, NPHS1*
		Capillary Endothelial Cell	EHD3*, EMCN*, HECW2*,
			FLT1*, AQP1*
		Mesangial Cell	POSTN*, PIEZO2*, ROBO1*,
			ITGA8*

Partial ASCT Table from

• El-Achkar et al. A Multimodal and Integrated Approach to Interrogate Human Kidney Biopsies with Rigor and Reproducibility: The Kidney Precision Medicine Project. bioRxiv. 2019; 828665. doi:10.1101/828665

Table 3: Cell types and associated markers from KPMP Pilot 1

transcriptomic studies. Asterisk denotes genes detected by more than one technology. *Italics* genes detected by a single technology.

Structure/R egion	Sub structure/Sub region	Cell Type	Abbreviation	Subset of Marker Genes	Pertinent negatives/com ments
	Bowman's Capsule	Parietal epithelial cell	PEC	CRB2*, CLDN1*	
Renal	Glomerulus	Podocyte	POD	NPHS2*, PODXL*, NPHS1*	
Corpuscle		Capillary Endothelial Cell	GC-EC	EHD3*, EMCN*, HECW2*, FLT1*, AQP1*	
		Mesangial Cell	MC	POSTN*, PIEZO2*, ROBO1*, ITGA8*	
	Proximal Tubule	Proximal Tubule Epithelial Cell (general)	PT	CUBN*, LRP2*, SLC13A1*, ALDOB*, GATM*	
		Proximal Convoluted Tubule Epithelial Cell Segment 1	PT-S1	SLC5A2*, SLC5A12*	The second se
		Proximal Tubule Epithelial Cell Segment 2	PT-S2	SLC22A6*	There is overlap among the segments
		Proximal Tubule Cell Epithelial Segment 3	PT-S3	PDZK1IP1*, MT1G*	segments
	Loop of Henle, Thin Limb	Descending Thin Limb Cell (general)	DTL	CRYAB*, VCAM1*, AQP1*, SPP1*	CLDN10 low
		Ascending Thin Limb Cell (general)	ATL	CRYAB*, TACSTD2*, CLDN3*	AQP1 low to none
	Loop of Henle, Thick Limb	Thick Ascending Limb Cell (general)	TAL	SLC12A1*, UMOD*	SLC12A3 low to none
		Cortex-TAL cell	C-TAL	SLC12A1*, UMOD*	
		Medulla-TAL cell	M-TAL	SLC12A1*, UMOD*	
		TAL-Macula Densa cell	TAL-MD	NOS1*, SLC12A1*	
	Distal Convolution	Distal Convoluted Tubule Cell (general)	DCT	SLC12A3*, TRPM6*	
Tubules		DCT type 1 cell	DCT-1	SLC12A3*, TRPM6	SLC8A1, HSD11B2 (low to none)
		DCT type 2 cell	DCT-2	SLC12A3*, SLC8A1*, HSD11B2	Has CNT and DCT signature
	Connecting Tubule	Connecting Tubule Cell (general)	CNT	SLC8A1*, CALB1, TRPV5	
		CNT-Principal Cell	CNT-PC	SLC8A1*, AQP2*, SCNN1G*	SLC12A3 low to none. IC or PC
		CNT-Intercalated Cell	CNT-IC	SLC8A1*, CA2, ATP6VOD2*	without SLC8A1 could be in the
		CNT-IC-A cell	CNT-IC-A	SLC8A1*, SLC4A1*, SLC26A7*	CNT structure
		CNT-IC-B cell	CNT-IC-B	SLC8A1*, SLC26A4*, SLC4A9*	
	Collecting Duct	Collecting duct (general) cell	CD	GATA3*	GATA3 may be
		CD-PC (general)	CD-PC		in subpopulation
		C-CD-PC	C-CD-PC	AQP2*, AQP3*, FXYD4*,	of DCT, CNT
		M-CD-PC	M-CD-PC	SCNN1G*, GATA3*	and vSMC/P.
		Outer medulla-CD-PC	OM-CD-PC		SLC8A1,
		Inner Medulla-CD cell	IM-CD	AQP2*, SLC14A2	CALB1, TRPV5

		Transitional PC-IC cell	tRC,IC	FXYD4*, SLC4A9*/SLC26A7*	(low to none); Low to No
		CD-IC (general) cell	CD-IC	CA2, ATP6VOD2*	CALCA and KIT
		CD-IC-A (general) cell	CD-IC-A	SLC4A1, SLC26A7*, TMEM213*	in C-CD-IC-A. I may not be
		C-CD-IC-A cell	C-CD-IC-A	SLC26A7*, SLC4A1*	possible to
		M-CD-IC-A cell	M-CD-IC-A	SLC26A7*, SLC4A1, KIT*, CALCA	assign IC or PC to_CNT or CD
		CD-IC-B (general) cell	CD-IC-B		structures
		C-CD-IC-B cell	C-CD-IC-B	SLC4A9". SLC26A4"	without regional
		M-CD-IC-B cell	M-CD-IC-B	020110,0202011	information of their source.
		Endothelial Cell (general)	EC	EMCN*, PECAM1*, FLT1*	
		EC-Afferent/Efferent Arteriole	EC-AEA	SERPINE2*, TM4SF1*	likely PALMD
		EC-Peritubular capillaries	EC-PTC	PLVAP*	
Vessels	Endothelial Cells (non- glomerular)	EC-Descending Vasa Recta	EC-DVR	TM4SF1*, PALMD	
		EC-Ascending Vasa Recta	EC-AVR	DNASEIL3*	low to none
		EC-Lymphatics	EC-LYM	MMRN1*, PROX1	
Structure/R egion	Sub structure/Sub region	Cell Type	Abbreviation	Subset of Marker Genes	Pertinent negatives/com ments
Interstitium	Stroma (non- glomerular)	Vascular Smooth Muscle/Pericyte (general)	VSMC/P	TAGLN*, ACTA2*, MYH11*, NTRK3, MCAM	
		vSMC/P-Renin	VSMC/P-REN	REN	-
		Fibroblast	FIB	DCN*, ZEB2, C7, LUM	
	Immune	Macrophages-Resident	MAC-R	CD163*, IL7R*	
		Macrophage	MAC	S100A9	1
		Natural Killer Cell	NKC	NKG7	
		Dendritic Cell	DC	APOE	
		Monocyte	MON	C1QA, HLA-DRA	
		Monocyte T lymphocyte (general)	MON T	C1QA, HLA-DRA CD3	
		Monocyte	MON	C1QA, HLA-DRA	

El-Achkar et al. A Multimodal and Integrated Approach to Interrogate Human Kidney Biopsies with Rigor and Reproducibility: The Kidney Precision Medicine Project. bioRxiv. 2019; 828665. doi:10.1101/828665

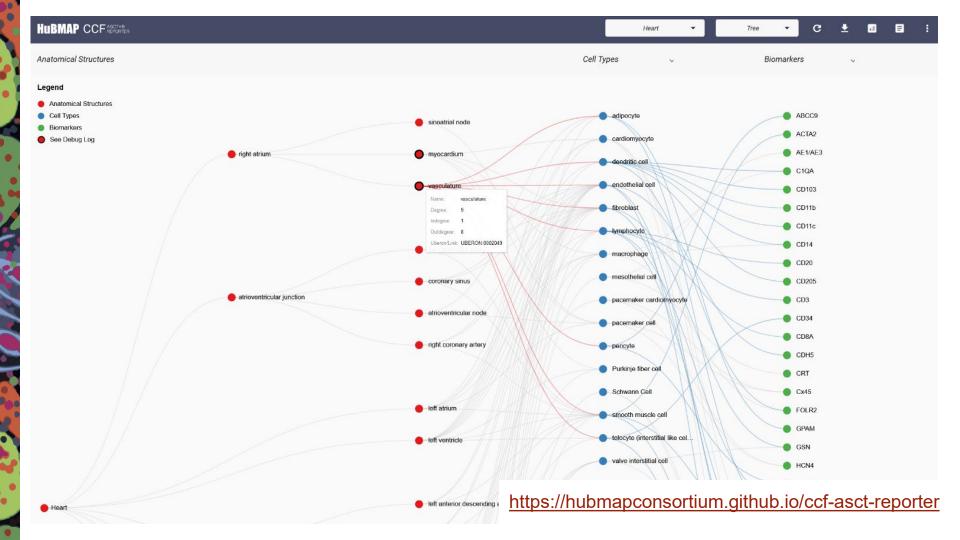
	HuBMAP	RBK	KPMP	SPARC	LungMAP	HTAN	HCA	GUDMAP	Gut Cell Atlas	BICCN	Allen Brain	TCGA	Wellcome	MRC	H2020	GTEx	Total
Kidney	1	1	1	0	0	0	1	1	0	0	0	1	1	1	0	1	9
Liver	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	3
Spleen	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	4
Heart	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	1	4
Lung	1	0	0	1	1	1	1	0	0	0	0	1	1	1	1	1	10
L intestine/Colon	1	0	0	1	0	1	1	0	1	0	0	1	0	0	0	1	7
S intestine	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2
Bladder	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	5
Ureters	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2
Thymus	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2
Lymph nodes	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	2
mediastinal lymph node	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Eye	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	3
Brain	0	0	0	0	0	0	1	0	0	1	1	1	0	0	1	1	6
Brain stem	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
Cerebellum	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	3
Spinal cord	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	2
Pancreas	0	0	0	0	0	1	1	0	0	0	0	1	0	0	1	1	5
Breast	0	0	0	0	0	1	1	0	0	0	0	1	1	0	0	1	5
Skin	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	3
Pediatric systems	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	2
Ovaries	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	2
Testes	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	2
Cervix	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
Uterus	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	5
Blood	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	2
Bone	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Placenta	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Decidua	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Embryo	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
esophagus	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	3
hematopoietic system	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	2
immune system bulk	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Stomach	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	3
Thyroid	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	2
Prostate	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	3
Adrenal gland	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	3
Totals	11	1	1	7	1	6	21	4	1	2	2	20	7	5	4	21	114

ASCT+B Table Design

The "CCF Session" at the NIH-HCA joint meeting in March 2020—co-organized with Peter Hunter (SPARC) and James Gee (BICCN)—brought together experts across consortia.

In follow-up meetings, 10 ASCT tables have been created via collaborations across consortia. Ontology experts, including Chris Mungall, David Osumi-Sutherland and Mark Musen, provided expert input.

ASCT+B Table Meetings

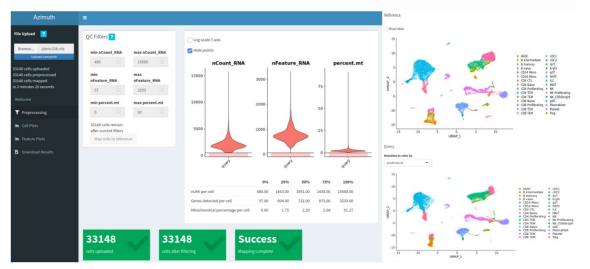

Meetings take place monthly to

- Review and approve tables.
- Formalize and unify table design language.
- Discuss table usage.

We are working on

- Converting tables into machine readable formats.
- Linking table entries to Uberon, CL, and other ontologies.
- Compare tables against cell types identified in harmonized HuBMAP data and data generated by other efforts.

Experts are welcome to <u>register</u>. Next meetings are on Nov 5 and Dec 3, 1:30p EST.



YOM

HOME NEWS PEOPLE RESEARCH PUBLICATIONS SEURAT JOIN/CONTACT

SINGLE CELL **GENOMICS DAY**

https://satijalab.org/azimuth

SOP for ASCT+B Tables

ASCT+B for 10 organs on 9/14/2020, 9:45am:

Organ Name	#AS	#CT	#B	#AS-CT	#CT-B
Brain	21	127	254	127	346
Heart	23	16	35	73	42
Kidney	39	53	83	55	135
Large Intestine	22	33	45	306	72
Liver	16	27	34	29	35
Lung	18	62	103	110	128
Lymph Nodes	34	30	50	63	110
Skin	14	32	57	37	99
Small intestine	20	32	48	196	57
Spleen	33	26	46	48	72

https://hubmapconsortium.github.io/ccf/pages /ccf-anatomical-structures.html

SOP for Construction, Review, Revision of Anatomical Structure and Cell Types and Biomarker (ASCT+B) Tables

Authors: Ellen M. Quardokus, Lisel Record, Bruce W. Herr II, Hrishikesh Paul, Katy Börner September 18, 2020

Introduction

Anatomical Structures, Cell Types, plus Biomarkers (ASCT+B) tables aim to capture the nested *part_of* structure of anatomical human body parts, the typology of cells, and biomarkers used to identify cell types (e.g., gene, protein, lipid or metabolic markers). The tables are authored and reviewed by an international team of anatomists, pathologists, physicians, and other experts.

Identification of Subject Matter Experts (SMEs)

- CCF Experts (cross-consortium team lead by MC-IU) invite leading organ experts to contribute to the design of ASCT+B tables.
- Leading organ experts submit information on their expertise and credentials via this online <u>form</u>.
- CCF Experts approve 3-5 experts per organ and give them access to the ASCT+B table forms so they can author and review the forms.

Construction by Subject Matter Experts (SMEs)

- MC-IU provide pre-populated initial ASCT+B table with UBERON and CL ontology IDs.
- A first set of organ experts authors the tables and indicates author contributions.
- Authors use the <u>ASCT+B Reporter</u> to identify/resolve naming and interlinkage issues.
- Completed tables are submitted to the CCF Experts for review.

Review by Subject Matter Experts (SMEs)

- The beginning of each month, all tables ready for review are submitted by CCF Experts to a second set of organ experts for review.
- Review criteria include: scientific rigor (citation of publications, data), coverage and quality of the ASCT+B tables.
- Review results comprise detailed comments together with a rating (accepted, accepted with minor or major revisions, rejected) and are shared back with the author team.

Review by CCF Experts

The begin of each month, all tables ready for review are cross-checked against

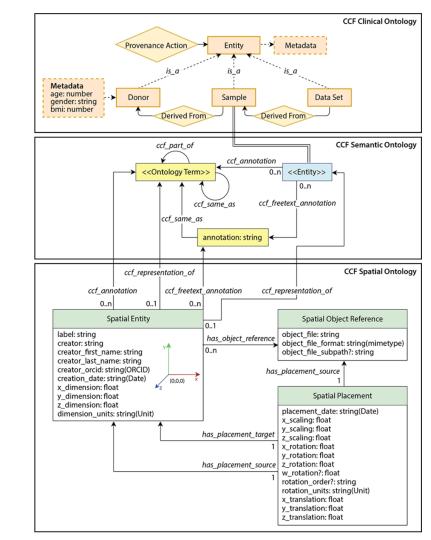
 existing ontologies, e.g., UBERON, CL, to identify any terms that might be missing or that might have different spelling. The goal is to arrive at ASCT+B tables that are in close alignment with existing ontologies so only few changes need to be requested from ontology owners.

ASCT+B Table Usage

ASCT+B tables guide **CCF Ontology** and **3D Reference Object Library** design that semantically name and spatially place tissue data from different donors into one CCF (i.e., <u>mapping</u>).

SCT Table			Ontology	3D Reference Object Library
structure/Region Renal Corpuscle	Sub structure/Sub region Bowman's Capsule Glomerulus Proximal Tubule	Cell Type Parietal epithelial Cell Podocyte Capillary Endothelial Cell Mesangial Cell Proximal Tubule Epithelial Cell (general) Proximal Convoluted Tubule Epithelial Cell Segment 1 Proximal Tubule Epithelial Cell Segment 2 Proximal Tubule Epithelial Cell Segment 2	Anatomical Structures Partonomy kidney kidney capsule cortex of kidney outer cortex of kidney renal medulla	
	Loop of Henle, Thick Limb Loop of Henle, Thick Limb Distal Convolution Connecting Tubule	Descending Thin Limb Cell (general) Ascending Thin Limb Cell (general) Thick Ascending Limb Cell (general) Cortex-TAL Cell Medula-TAL Cell TAL-Macula Densa Cell Distal Convoluted Tubule Cell (general) DCT Type 1 Cell DCT Type 1 Cell DCT Type 2 Cell Connecting Tubule Cell (general) CTT-Principal Cell	Cell Types Ontology connective tissue cell pericyte cell mesangial cell extraglomerular mesangial cell glomerular mesangial cell	

Tissue blocks are <u>registered</u> into the CCF using the Registration User Interface (RUI), and they can be <u>explored</u> via the Exploration User Interface (EUI).


CCF Ontology v1.5.0

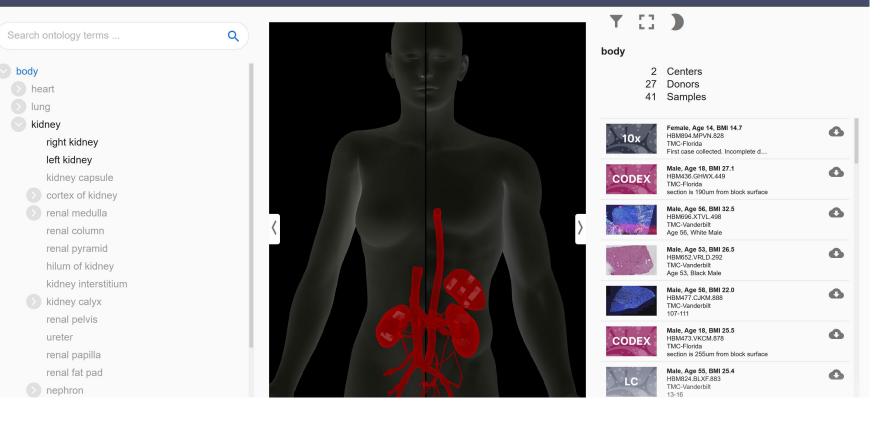
References

 Herr II, BW and Börner K. HuBMAP Common Coordinate Framework.
 https://bioportal.bioontology.org/optologies/C

https://bioportal.bioontology.org/ontologies/CCF/

- Herr II, BW, Quardokus EM, Cross LE, Record EG, Weber GM, and Börner K. <u>HuBMAP CCF Ontology</u> <u>Source Code Repository</u>.
- Börner K, Quardokus EM, Herr II, BW, Cross LE, Record EG, Ju Y, Bueckle A, Sluka JP, Silverstein J, Browne K, Jain S, Wasserfall CH, Jorgensen ML, Spraggins JM, Patterson NH, Weber GM. 2020.
 Construction and Usage of a Human Body Common Coordinate Framework Comprising Clinical, Semantic, and Spatial Ontologies.
 <u>https://arxiv.org/abs/2007.14474</u>.

Hubmap


0

•

.

•

Login

HUBMAP CCF Portal

https://hubmapconsortium.github.io/ccf/

The Human Body Atlas: High-Resolution, Functional Mapping of Voxel, Vector, and Meta Datasets

MC-IU team within the HuBMAP HIVE

The ultimate goal of the HIVE Mapping effort is to develop a common coordinate framework (CCF) for the healthy human body. This framework will support cataloging different types of individual cells, understanding the functions of and relationships between those cell types, and modeling their individual and collective function. During the initial two years of HuBMAP, the MC-IU team has built many elements of the CCF. We co-organized the design of ASCT+B Tables and implemented a CCF Ontology. We collaborated with NIAID at NIH on the design of a 3D Reference Object Library. Lastly, we developed two interactive user interfaces. The CCF Registration User Interface (RUI) supports tissue data registration. The CCF Exploration User Interface (EUI) supports exploration of semantically and spatially explicit data—from the whole body to the single cell level. For an introduction to HuBMAP goals, data, and code visit the Visible Human MOOC (VHMOOC).

Data and Code Published with 1st HuBMAP Portal Release in August 2020

ASCT+B Table Usage

ASCT+B tables guide **CCF Ontology** and **3D Reference Object Library** design that semantically name and spatially place tissue data from different donors into one CCF (i.e., <u>mapping</u>).

ASCT Table	2			Ontology	3D Reference Object Library
Structure/Region	Sub structure/Sub region Bowman's Capsule	Cell Type Parietal epithelial Cell		Anatomical Structures Partonomy	
Renal Corpuscle	Glomerulus	Podocyte Capillary Endothelial Cell Mesangial Cell	\rightarrow	kidney kidney capsule	
	Proximal Tubule	Proximal Tubule Epithelial Cell (general) Proximal Convoluted Tubule Epithelial Cell Segment 1 Proximal Tubule Epithelial Cell Segment 2 Proximal Tubule Epithelial Cell Segment 2		cortex of kidney outer cortex of kidney renal medulla	
	Loop of Henle, Thin Limb	Descending Thin Limb Cell (general) Ascending Thin Limb Cell (general)			
	Loop of Henle, Thick Limb	Thick Ascending Limb Cell (general) Cortex-TAL Cell Medulla-TAL Cell TAL-Macula Densa Cell		Cell Types Ontology connective tissue cell pericyte cell	
	Distal Convolution	Distal Convoluted Tubule Cell (general) DCT Type 1 Cell DCT Type 2 Cell		mesangial cell extraglomerular mesangial cell	
	Connecting Tubule	Connecting Tubule Cell (general) CNT-Principal Cell		glomerular mesangial cell	

Tissue blocks are <u>registered</u> into the CCF using the Registration User Interface (RUI), and they can be <u>explored</u> via the Exploration User Interface (EUI).

Document the tissue extraction site by registering tissue blocks within a 3D reference organ.

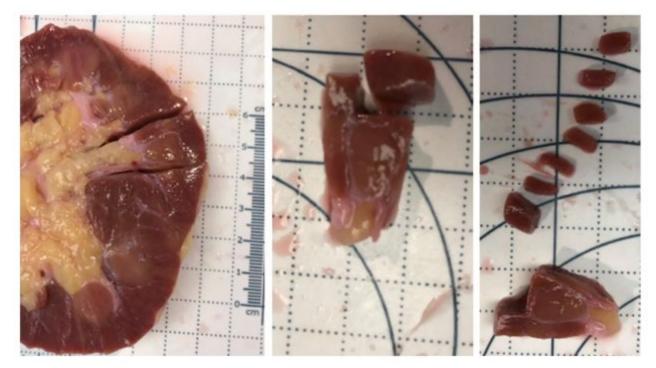
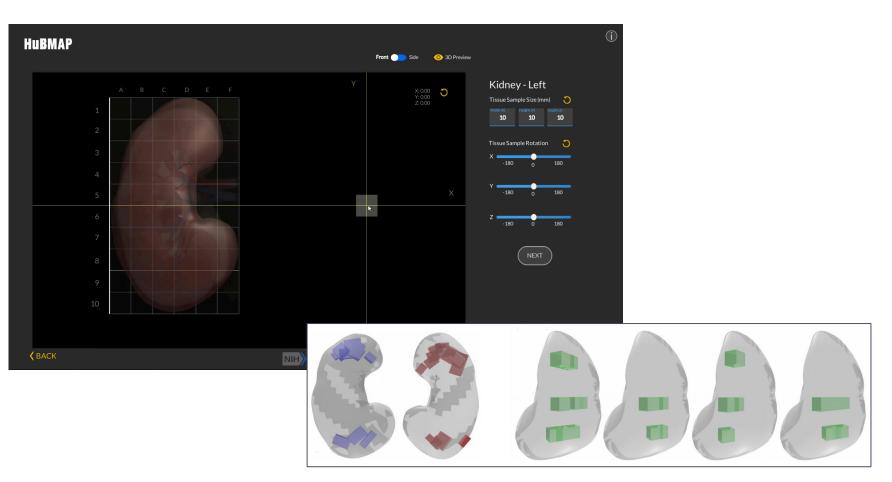
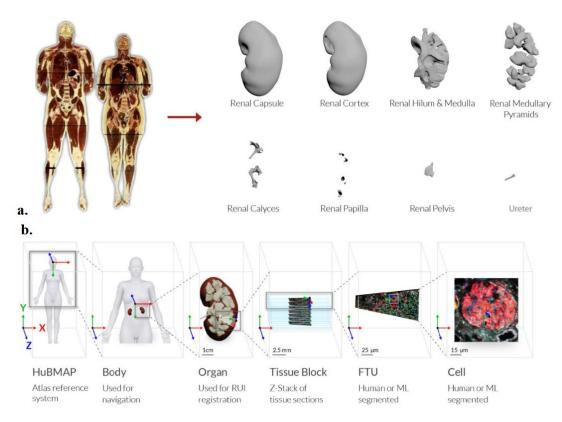
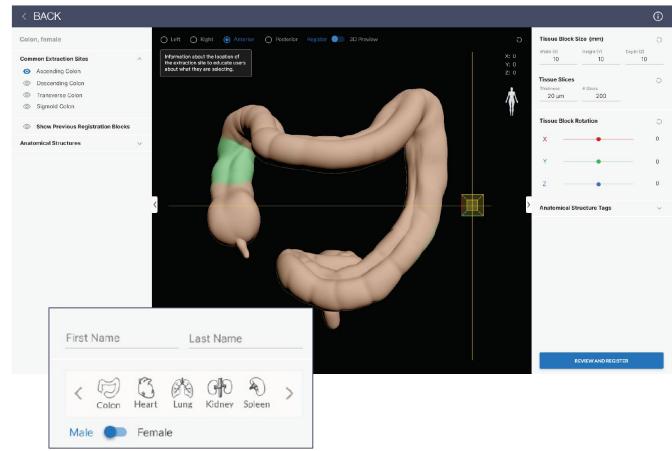
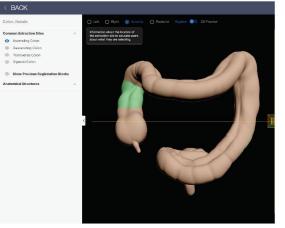




Image provided by Sanjay Jain, TMC-UCSD

For the first HuBMAP portal release, 48 tissue blocks were registered.

Figure 3. Spatial Representation of a Kidney. (a) The CCF Spatial Ontology leverages a 3D Reference Object Library to define the dimensions and shapes of ASTC entities in 3D space. (b) Construction of the CCF Spatial Ontology involves relative positioning of objects from whole body down to individual cells.




https://hubmapconsortium.github.io/ccf/pages/ccf-3d-reference-library.html

CCF Registration User Interface (RUI) v1.0.0

New Features:

- Organ carousel with 4 reference organs
- Support for tissue extraction sites
- Expanded ontology
- Semantic annotation via collision detection & manual annotation
- Support for non-HuBMAP usage

0

•

.

Common Extraction Sites ③ Show Previous Registration Blocks Anatomical Structures

Kidney

Bisection Line

Spleen

- CC1
- CC2
- CC3

Colon

- Ascending Colon
- Descending Colon
- Transverse Colon
- Sigmoid Colon

Heart

Extraction Site Mapping

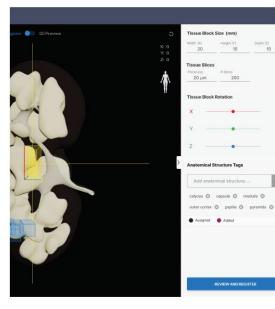
•	Left atrium, appendage	7
•	Left atrium, PV inflow	8
•	Left ventricle, apex	1
•	Left ventricle, free wall 3cm from apex	2
•	Septum, 3cm from apex including LAD	3
•	Posterior, adjacent to coronary sinus	9
•	Right atrium appendage	5
•	Right atrium, AV (atrioventricular) node	6a
•	Right atrium, SA (sinoatrial) node	6b
•	Right ventricle, free wall 3cm from apex	4

BACK Kidney, left, female Common Extraction Sites Bisection line Show Previous Registration Blocks Anatomical Structures ~ calyces capsule hilum medulla (renal columns) outer cortex papilla pelvis o pyramids o ureter

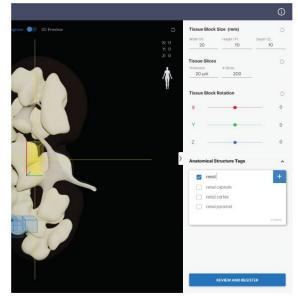
BACK

Heart, male

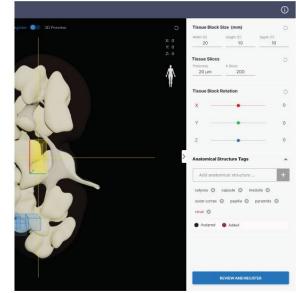
⊙ CC1


⊙ CC2

⊙ CC3



CCF Registration User Interface (RUI) v1.0.0 cont.


Collision when Tissue Block hits Reference Organ

Tag Search behavior

Custom tag added to list

1st Portal Release: Upload Portal

BOES@pitt.edu | Edit Profile Logout

HuBMAP Display ID Generator

Generate unique identifiers which will be used consortium wide to track sample and associate data with samples.

Source HuBMAP ID *	TEST0005-RK		6
	HuBMAP display id type: Organ Organ Type: Kidney (Right) HuBMAP ID: HBM:264-TTT. Description:	name:	
Tissue Sample Type *	FFPE block	ł	G
rotocol 1	protocols.io DOI *	https://dx.doi.org/10.17504/protocols.io.p9kdr4w	
	Protocol document *	Choose a file Browse	G
		doc, docx and pdf files only	
	Add Protocol		
	Generate IDs for multiple FF	Lab IDs and Sample Locations can be assigned on the next	
Description		screen after generating the HuBMAP IDs	
			6
			é
Metadata	+ Add Metadata		6
Image	+ Add Image	Make sure any uploaded images are de-identified	G
	Generate ID	Cancel	

BOES@pitt.edu | Edit Profile Logout

HuBMAP Display ID Generator

Generate unique identifiers which will be used consortium wide to track sample and associate data with samples.

e ids were generated: TEST0005-RK-6 through T	EST0005-RK-8	
PE block		
-	Assign Lab IDs and Sample Locations Return to Search	
	Assion Lab IDs and Samole Location	
Lab Sample Id TEST0005-RK-6-A	Breister Location SuccessView JSON Register Location	Ø
	Register Location Register Location	0
	PE block	Assign Lab IDs and Sample Locations Return to Search Assign Lab IDs and Sample Location Lab Sample M TEST0005-Rec4-A Register Location Register Location

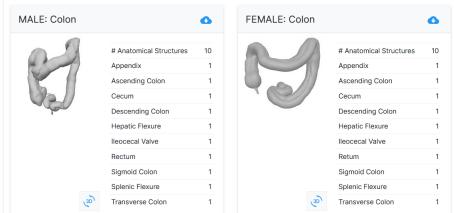
Implemented by the HIVE IEC

SOP for Approval of 3D Reference Objects

CCF 3D Reference Object Library

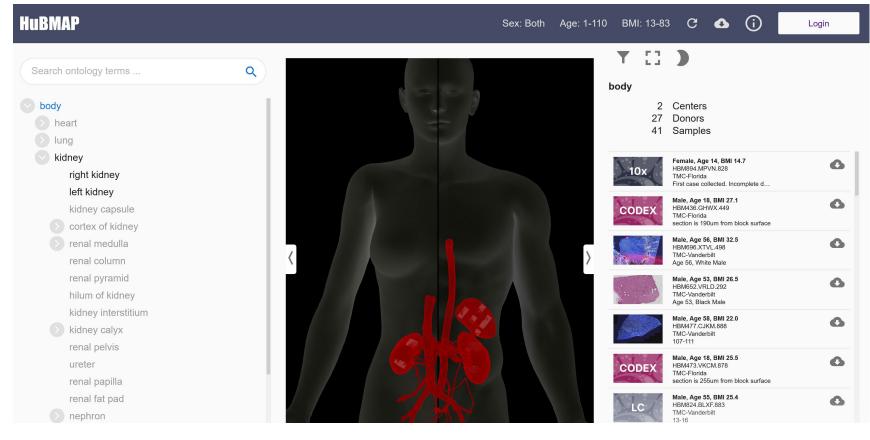
Overview

The CCF 3D Reference Object Library provides anatomically correct reference organs. The organs are developed by a specialist in 3D medical illustration and approved by organ experts, see SOP


Initially, reference objects were created using data from the Visible Human male and female datasets provided by the National Library of Medicine. The male dataset comprises 1,871 cross-sections at 1mm intervals for both CT and anatomical images at a resolution of 4,096 pixels by 2,700 pixels. The female data set has the same characteristics as the Visible Human Male but axial anatomical images were obtained at 0.33 mm intervals resulting in 5,189 cross-section anatomical images. The male was white, 180.3 cm (71 inch) tall, 199-pound and was 38 years old. The female was white, 171.2 cm (67.4 inch) tall, obese, and 59 years old.

For the 1st HuBMAP Portal Release, kidney and spleen reference organs are freely available in GLB format. They can be viewed and explored using free web browsers such as Babylon.js. Screenshots and major properties of the nested reference organ objects are given in table below.

For selected organs, 3D extraction site objects are provided. Some extraction sites resemble geometric objects (e.g., cuboids for heart) while others take the shape of one or more whole or partial anatomical structures (e.g., in spleen). The 3D extraction sites do not restrict registration to specific regions, instead they provide "expert defined landmarks" to help guide tissue registration. The extraction site objects are also used for automatic semantic annotation of tissue samples via collision detection during registration.


Reference Organs

COLON HEART KIDNEY SPLEEN

https://hubmapconsortium.github.io/ccf/dld/SOP-3D-Reference-Object-Approval-v1.0.1.pdf

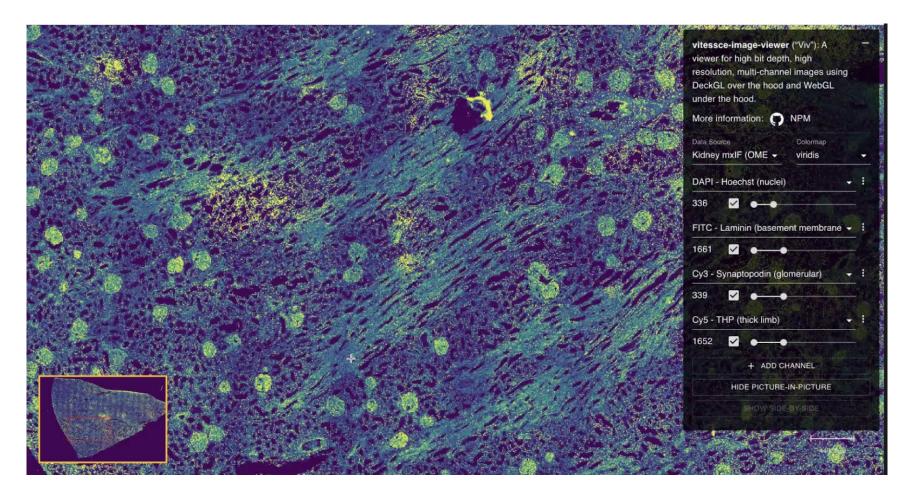
CCF Exploration User Interface (EUI)

https://portal.hubmapconsortium.org/ccf-eui

0

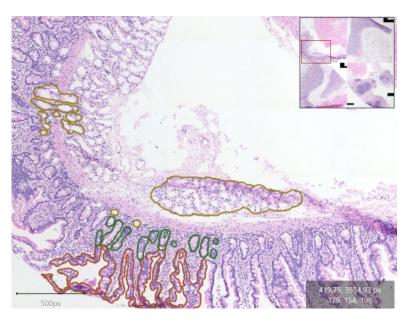
HUBMAP

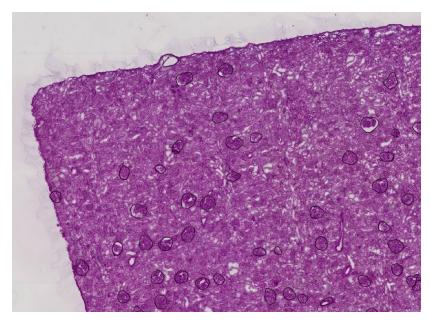

body


.

•

•


Logout


http://gehlenborglab.org/research/projects/vitessce/

Small Intestine Provided by Jeanne Shen, TMC-Stanford

Red brown: Small intestinal villus epithelium Green: Small intestinal crypt Brown: Small intestinal Brunner's gland

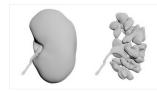
Kidney Provided by Heath Patterson, TMC-VU

Black: Glomeruli

Also used in HuBMAP Hackathon

Get Involved!

•


Contribute your expert experience and time.

Register via: https://tinyurl.com/vhmooc

tructure/Region	Sub-structure/Sub-region	Cell Type
	Bowman's Capsule	Parietal epithelial Cell
	Glomerulus	Podocyte
		Capillary Endothelial Cell
Renal Corpuscle		Mesangial Cell
	Proximal Tubule	Proximal Tubule Epithelial Cell (general)
		Proximal Convoluted Tubule Epithelial Cell Segment 1
		Proximal Tubule Epithelial Cell Segment 2
		Proximal Tubule Epithelial Cell Segment 2
	Loop of Henle, This Linb	Descending Thin Linb Cell (general)
		Ascending Thin Linb Cell (general)
	Loop of Henle, Thick Limb	Thick Ascending Linb Cell (general)
		Cortex-IAL Cell
		Modulla 3AL Cell
		TAL-Matula Densa Cell
	Distal Convolution	Distal Convoluted Tubule Cell (general)
		DCT type 1 Cell
		DCT type 2 Cell
	Connecting Tubule	Connecting Subule Cell (general)
		CNT-Principal Cell

Author or Review ASCT+B Tables

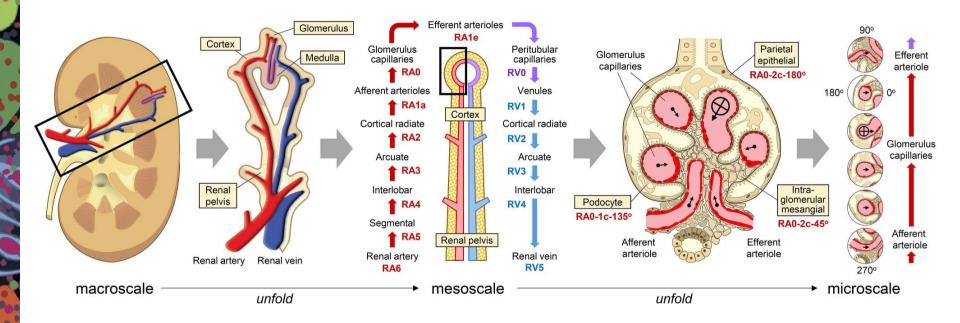
Anatomists, pathologists, biomolecular and other experts are invited to author, edit and/or review Anatomical Structures, Cell Types, and Biomarkers (ASCT+B) tables. Please register to participate.

Explore 3D Reference Organs

Download kidney or spleen objects from the HuBMAP Reference Object Library, explore them in a webbased 3D viewer, answer a simple question. Optional: Provide expert comments on the reference organs.

Register Tissue Block via RUI

Use the Registration User Interface (RUI) Prototype to spatially and semantically register threedimensional tissue blocks within reference organs.



Manually Annotate Human Tissue

Learn how to visually identify functional tissue units in different organs, use human intelligence to annotate them in tissue samples. The resulting data will be used to train machine learning algorithms.

QuPath, https://qupath.github.io

Capturing vasculature details from macro to micro scale is critically important for a vasculature based CCF

Weber, Griffin M, Yingnan Ju, and Katy Börner. 2020. "Considerations for Using the Vasculature as a Coordinate System to Map All the Cells in the Human Body". Frontiers in Cardiovascular Medicine 7 (29): doi: 10.3389/fcvm.2020.00029.

Example: Converting tables into machine readable formats - Kidney vasculature

	e r	renal atery [L/R]	segmental arteries [superior, inferior, anterior, posterior]			Endothelia	Endothelial Cell (general)	EC	EMCN*, PECAM1*, FLT1*
1									
			interlobar aterties			-			
		arcuate aterties							
1			cortical radiate ateries						
			{cortex}	afferent arterioles			t/Efferent Arteriole	EC-AEA	SERPINE2*, TM4SF1*
			{nephron}	glomerulus capillaries {glomerulus}	Capillary Ei	ndothelial Cell	GC-EC	EHD3*, EMCN*, HECW2*, FLT1*, AQP1*	
				efferent arterioles {nephron}		EC-Descending Vasa Recta		EC-AEA	SERPINE2*, TM4SF1*
					peritubular capillaries			EC-PTC	PLVAP*
1					descending vasa recta			EC-DVR	TM4SF1*, PALMD
1					ascending vasa recta			EC-AVR	DNASEIL3*
1	r	renal vein [L/R)	cortical radiate veins	venules		Endothelia	l Cell (general)	EC	EMCN*, PECAM1*, FLT1*
1			{cortex} arcuate veins						
1									
1			interlobar veins						
Vasculature	renal arter	rv [I /R]					Endothelial Cell (general)	EC	EMCN*, PECAM1*, FLT1*
Vasculature				posterior]			Endothelial Cell (general)	EC	
Verenulations	renal arter	ry [L/R] interlobar arterti	es						
Vasculature		Vasculature renal artery [L/R] arcuate arteries					Endothelial Cell (general)	EC	
	renal arter	ry [L/R] arcuate arteries					Endothelial Cell (general) Endothelial Cell (general)	EC EC	EMCN*, PECAM1*, FLT1*
Vasculature Vasculature	renal arter	ry [L/R] cortical radiate a					Endothelial Cell (general) Endothelial Cell (general)	EC EC	EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1*
Vasculature Vasculature Vasculature	renal arter renal arter	ry [L/R] cortical radiate a ry [L/R] cortical radiate a	rteries {cortex}	afferent arterioles {nephr	•		Endothelial Cell (general) Endothelial Cell (general) EC-Afferent/Efferent Arte	EC EC riole EC-	EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1* AEA SERPINE2*, TM4SF1*
Vasculature Vasculature Vasculature Vasculature	renal arter renal arter renal arter	ry [L/R] cortical radiate a ry [L/R] cortical radiate a ry [L/R] cortical radiate a ry [L/R] cortical radiate a	rteries {cortex} rteries {cortex}	afferent arterioles {nephr	on} glomerulus capillaries	{glomerulus}	Endothelial Cell (general) Endothelial Cell (general) EC-Afferent/Efferent Arte Capillary Endothelial Cell	EC EC riole EC- GC-	EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1* AEA SERPINE2*, TM4SF1* EC EHD3*, EMCN*, HECW2*, FLT1*, AQP1*
Vasculature Vasculature Vasculature Vasculature Vasculature	renal arter renal arter renal arter renal arter	ry [L/R] cortical radiate a ry [L/R] cortical radiate a ry [L/R] cortical radiate a ry [L/R] cortical radiate a ry [L/R] cortical radiate a	rteries {cortex} rteries {cortex} rteries {cortex}	afferent arterioles {nephr efferent arterioles {nephr	on} glomerulus capillaries on}	{glomerulus}	Endothelial Cell (general) Endothelial Cell (general) EC-Afferent/Efferent Arte Capillary Endothelial Cell EC-Afferent/Efferent Arte	EC EC riole EC- GC- riole EC-	EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1* AEA SERPINE2*, TM4SF1* EC EHD3*, EMCN*, HECW2*, FLT1*, AQP1* AEA SERPINE2*, TM4SF1*
Vasculature Vasculature Vasculature Vasculature Vasculature Vasculature	renal arter renal arter renal arter renal arter renal arter	ry [L/R] cortical radiate a	rteries {cortex} rteries {cortex} rteries {cortex} rteries {cortex}	afferent arterioles {nephr efferent arterioles {nephr efferent arterioles {nephr	on} glomerulus capillaries on} on} peritubular capillaries	{glomerulus}	Endothelial Cell (general) Endothelial Cell (general) EC-Afferent/Efferent Arte Capillary Endothelial Cell EC-Afferent/Efferent Arte EC-Peritubular capillaries	EC EC riole EC- GC- riole EC- EC-	EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1* AEA SERPINE2*, TM4SF1* EC EHD3*, EMCN*, HECW2*, FLT1*, AQP1* AEA SERPINE2*, TM4SF1* PTC PLVAP*
Vasculature Vasculature Vasculature Vasculature Vasculature Vasculature Vasculature	renal arter renal arter renal arter renal arter renal arter renal arter	ry [L/R] cortical radiate a	rteries {cortex} rteries {cortex} rteries {cortex} rteries {cortex} rteries {cortex}	afferent arterioles {nephr efferent arterioles {nephr efferent arterioles {nephr efferent arterioles {nephr	on} glomerulus capillaries on} on} peritubular capillaries on} descending vasa recta	; {glomerulus}	Endothelial Cell (general) Endothelial Cell (general) EC-Afferent/Efferent Arte Capillary Endothelial Cell EC-Afferent/Efferent Arte EC-Peritubular capillaries EC-Descending Vasa Recta	EC Fiole EC- GC- riole EC- EC- EC- a EC-	EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1* AEA SERPINE2*, TM4SF1* EC EHD3*, EMCN*, HECW2*, FLT1*, AQP1* AEA SERPINE2*, TM4SF1* PTC PLVAP* DVR TM4SF1*, PALMD
Vasculature Vasculature Vasculature Vasculature Vasculature Vasculature Vasculature Vasculature	renal arter renal arter renal arter renal arter renal arter renal arter renal arter	ry [L/R] cortical radiate a	rteries {cortex} rteries {cortex} rteries {cortex} rteries {cortex} rteries {cortex} rteries {cortex}	afferent arterioles {nephr efferent arterioles {nephr efferent arterioles {nephr efferent arterioles {nephr efferent arterioles {nephr	on} glomerulus capillaries on} on} peritubular capillaries on} descending vasa recta	; {glomerulus}	Endothelial Cell (general) Endothelial Cell (general) EC-Afferent/Efferent Arte Capillary Endothelial Cell EC-Afferent/Efferent Arte EC-Peritubular capillaries EC-Descending Vasa Recta	EC Fiole EC- GC- riole EC- EC- A EC- EC-	EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1* AEA SERPINE2*, TM4SF1* EC EHD3*, EMCN*, HECW2*, FLT1*, AQP1* AEA SERPINE2*, TM4SF1* PTC PLVAP* DVR TM4SF1*, PALMD AVR DNASEIL3*
Vasculature Vasculature Vasculature Vasculature Vasculature Vasculature Vasculature Vasculature Vasculature	renal arter renal arter renal arter renal arter renal arter renal arter renal arter renal arter	ry [L/R] cortical radiate a [L/R) cortical radiate a	rteries {cortex} rteries {cortex} rteries {cortex} rteries {cortex} rteries {cortex} rteries {cortex} eins {cortex}	afferent arterioles {nephr efferent arterioles {nephr efferent arterioles {nephr efferent arterioles {nephr	on} glomerulus capillaries on} on} peritubular capillaries on} descending vasa recta	(glomerulus)	Endothelial Cell (general) Endothelial Cell (general) EC-Afferent/Efferent Arte Capillary Endothelial Cell EC-Afferent/Efferent Arte EC-Peritubular capillaries EC-Descending Vasa Recta EC-Ascending Vasa Recta Endothelial Cell (general)	EC EC GC- riole EC- EC- A EC- EC- EC	EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1* AEA SERPINE2*, TM4SF1* EC EHD3*, EMCN*, HECW2*, FLT1*, AQP1* AEA SERPINE2*, TM4SF1* PTC PLVAP* DVR TM4SF1*, PALMD AVR DNASEIL3* EMCN*, PECAM1*, FLT1*
Vasculature Vasculature Vasculature Vasculature Vasculature Vasculature Vasculature Vasculature	renal arter renal arter renal arter renal arter renal arter renal arter renal arter	y [L/R] cortical radiate a ry [L/R] cortical radiate a [L/R) cortical radiate a [L/R) cortical radiate a	rteries {cortex} rteries {cortex} rteries {cortex} rteries {cortex} rteries {cortex} rteries {cortex} eins {cortex}	afferent arterioles {nephr efferent arterioles {nephr efferent arterioles {nephr efferent arterioles {nephr efferent arterioles {nephr	on} glomerulus capillaries on} on} peritubular capillaries on} descending vasa recta	; {glomerulus}	Endothelial Cell (general) Endothelial Cell (general) EC-Afferent/Efferent Arte Capillary Endothelial Cell EC-Afferent/Efferent Arte EC-Peritubular capillaries EC-Descending Vasa Recta	EC Fiole EC- GC- riole EC- EC- A EC- EC-	EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1* AEA SERPINE2*, TM4SF1* EC EHD3*, EMCN*, HECW2*, FLT1*, AQP1* AEA SERPINE2*, TM4SF1* PTC PLVAP* DVR TM4SF1*, PALMD AVR DNASEIL3* EMCN*, PECAM1*, FLT1* EMCN*, PECAM1*, FLT1*

Weber, Griffin M, Yingnan Ju, and Katy Börner. 2020. <u>"Considerations for Using the Vasculature as a Coordinate System to Map All the Cells in the Human Body"</u>. *Frontiers in Cardiovascular Medicine* 7 (29): doi: 10.3389/fcvm.2020.00029.

Human Reference CCF Atlas: Data Checklist

Common Coordinate Framework (CCF) Design (see <u>CCF Portal</u>):

- 1. Make sure the Anatomical Structures, Cell Types, and Biomarkers (ASCT+B) that you use/submit are listed in the <u>ASCT+B tables</u>. The tables are authored and reviewed by an international team of anatomists, pathologists, physicians, and other experts, see this <u>SOP</u>.
- 2. Spatially register all tissue samples using the CCF Registration User Interface (RUI) in the Ingest Portal. End of October 2020, kidney, spleen, heart, colon registration are supported. For other organs, see <u>SOP</u>.
- 3. After submitting data, review data in the <u>CCF Exploration User Interface</u> and make sure spatial, semantic, and other metadata are correct.
- 4. For functional tissue unit (FTU) segmentation, submit a list of FTUs for your organ(s) and make sure FTU names and all relevant cell types (CT) are captured in the ASCT+B table. Use assays/biomarkers (B) that make it possible to identify FTUs—initially manually, later automatically. Submit tissue with 1000 FTUs manually identified FTUs.
- 5. In support of the <u>Vasculature-based CCF</u>, provide cell segmentation data for blood vessels and different cell types.

For questions, email infoccf@indiana.edu.

General Human Atlas Questions by Jay W. Shin

- How to build an "Anatomical Structure-based" Atlas?
- What is the strategy to define **Cell Types**, in the context of building a anatomical atlas?
- Are **Biomarkers** sufficient? Or how can we define cells and states (e.g. ontological) relative to 3D space, age, disease?

so we can better understand cell types, function and disease by establishing a global picture of the human body?

First Answers:

- Agree on AS, CT, B nomenclature—revise existing ontologies (e.g., Uberon, CL, HUGO) accordingly.
- Collaborate on 3D scaffolds.
- Register tissue using the RUI, explore tissues via the EUI.

