
2.1 Common Coordinate Framework (CCF) Session

Organizers

- Katy Borner, <u>katy@indiana.edu</u>
- James Gee, gee@upenn.edu
- Peter Hunter, <u>p.hunter@auckland.ac.nz</u>

NIH-HCA Virtual Meeting

March 30, 2020

2.1 Common Coordinate Framework (CCF) Session

Subtopics

- (1) CCF User Interfaces & Anatomical Structures and Cell Types (ASCT) Tables Katy Börner
- (2) Computational physiology Peter Hunter
- (3) Data localizations to CCF James Gee

Overall Goal

Create cross-consortia collaborations and programs in areas where this community needs to build a stronger international ecosystem for single cell analysis work.

(1) CCF User Interfaces & Anatomical Structures and Cell Types (ASCT) Tables (Katy Börner)

Major anatomical terms and 3D structures in human

- Which organs are studied by which of the 12+ consortia attending the NIH-HCA meeting?
- What gross and micro anatomical terms are most important for the R&D in the 12+ consortia?
- What are common sampling sites from which tissue is sampled for the different organs?

Major human cell types, sizes, and "calling cards"

- What cell types are most important for the organs studied by the 12+ consortia attending the NIH-HCA meeting?
- Which of the 25+ sc assay types are most indicative for identifying these cell types?
- What is known about cell type sizes and distribution in human micro and macro anatomy?

Taxonomy nomenclatures and standardization

- What nomenclature conventions are available?
- Recognizing there won't be a 'perfect' solution, what are priorities to consider for cross-system cell class nomenclatures?

The Human Body at Cellular Resolution: The NIH Human Biomolecular Atlas Program. Snyder et al. *Nature*. 574, p. 187-192.

Landmarks are

- Anatomical structures
- Biomolecular markers

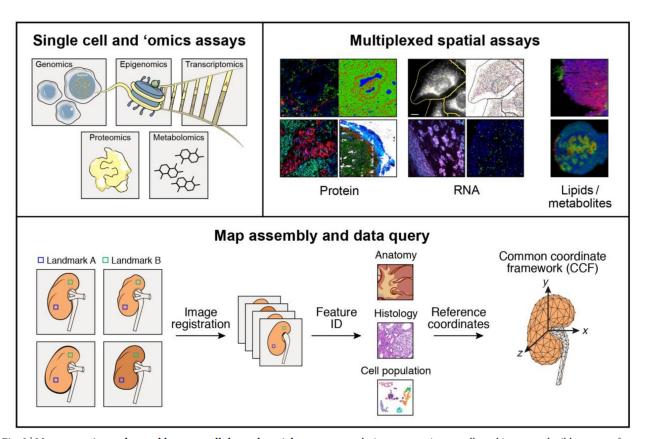
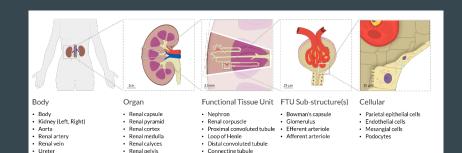
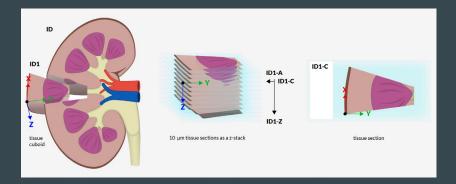



Fig. 3 | Map generation and assembly across cellular and spatial scales. HuBMAP aims to produce an atlas in which users can refer to a histological slide from a specific part of an organ and, in any given cell, understand its contents on multiple 'omic levels—genomic, epigenomic, transcriptomic, proteomic, and/or metabolomic. To achieve these ends, centres will apply a combination of imaging, 'omics and mass spectrometry

techniques to specimens collected in a reproducible manner from specific sites in the body. These data will be then be integrated to arrive at a high-resolution, high-content three-dimensional map for any given tissue. To ensure inter-individual differences will not be confounded with collection heterogeneity, a robust CCF will be developed.


Common Coordinate Framework (CCF)

A common coordinate framework (CCF) is a conceptual and computational framework for the storage, analysis, and (visual) exploration of spatially and semantically indexed data—across individuals, technologies, labs.

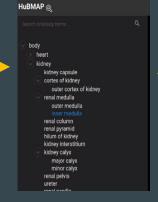
· Collecting duct

Semantic zoom from whole human body, to organ, to functional tissue units (FTUs), to single-cell level.

Three-step spatial registration of single cells in relation to reference organs.

VH Spleen

VH Kidney


Exploration User Interface (EUI) Semantic **Knowledge Graph** Partonomy Annotation kidney kidney capsule **UBERON** cortex of kidney outer cortex of kidney renal medulla **CCF Info Portal IEC Data Semantic Annotation via TMC** 3D Object Collision Anatomical **Store** Data - Cortex Structures and - Medullary Pyramids Cell Types (ASCT) - Calyces Registration User Interface (RUI) Medullary Pyramids Calyces Stage 1: Anatomical registration

ASCT Table

Ontology Design

Partonomy

Knowledge Graph

3D Object Design

← → ℃ む

Mesangial Cell

https://sandbox.babylonjs.com

... ☑ ☆

☆ 业 II\ ① ③ ≡

Structure/ Reg ion	Sub structure/Sub region	Cell Type
	Bowman's Capsule	Parietal epithelial cell
	Glomerulus	Podocyte
Renal Corpuscle		Capillary Endothelial Cell

A Multimodal and Integrated Approach to Interrogate Human Kidney Biopsies with Rigor and Reproducibility: The Kidney Precision Medicine Project https://www.biorxiv.org/content/10.1101/828665v1

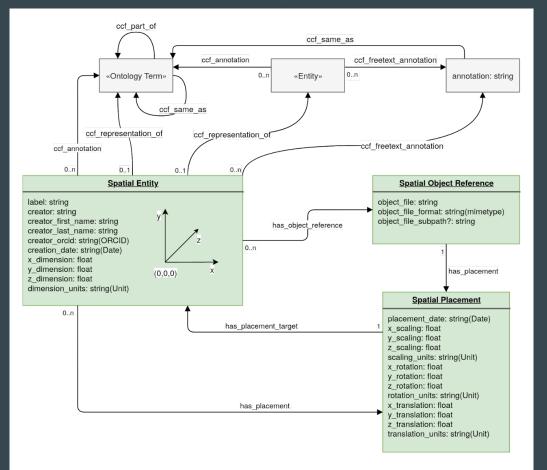
Table 5: Cell types and associated markers from KPMP Pilot 1 transcriptomic studies. Asterisk denotes genes detected by more than one technology. *Italics*, genes detected by a single technology.

Structure/Reg Sub structure/Sub region ion		Cell Type	Abbreviation	Subset of Marker Genes	Pertinent negatives/comm ents	
	Bowman's Capsule	Parietal epithelial cell	PEC	CRB2*, CLDN1*		
Renal	Glomerulus	Podocyte	POD	NPHS2*, PODXL*, NPHS1*		
Corpuscle		Capillary Endothelial Cell	GC-EC	EHD3*, EMCN*, HECW2*, FLT1*, AQP1*		
		Mesangial Cell	MC	POSTN*, PIEZO2*, ROBO1*, ITGA8*		
	Proximal Tubule	Proximal Tubule Cell (general)	PT	CUBN*, LRP2*, SLC13A1*, ALDOB*, GATM*		
		Proximal Convoluted Tubule Cell Segment 1	PT-S1	SLC5A2*, SLC5A12*	There is overlap	
		Proximal Tubule Cell Segment 2	PT-S2	SLC22A6*		
		Proximal Tubule Cell Segment 3	PT-S3	PDZK1IP1*, MT1G*	segments	
	Loop of Henle, Thin Limb	Descending Thin Limb Cell (general)	DTL	CRYAB*, VCAM1*, AQP1*, SPP1*	CLDN10 low	
Loop of H		Ascending Thin Limb Cell (general)	ATL	CRYAB*, TACSTD2*, CLDN3*	AQP1 low to none	
	Loop of Henle, Thick Limb	Thick Ascending Limb Cell (general)	TAL	SLC12A1*, UMOD*	SLC12A3 low to none	
		Cortex-TAL cell	C-TAL	SLC12A1*, UMOD*		
		Medulla-TAL cell	M-TAL	SLC12A1*, UMOD*		
		TAL-Macula Densa cell	TAL-MD	NOS1*, SLC12A1*		
	Distal Convolution	Distal Convoluted Tubule Cell (general)	DCT	SLC12A3*, TRPM6*		
		DCT type 1 cell	DCT-1	SLC12A3*, TRPM6	SLC8A1, HSD11B2 (low to none)	
		DCT type 2 cell	DCT-2	SLC12A3*, SLC8A1*, HSD11B2	Has CNT and DCT signature	
Tubules	Connecting Tubule	Connecting Tubule Cell (general)	CNT	SLC8A1*, CALB1, TRPV5		
		CNT-Principal Cell	CNT-PC	SLC8A1*, AQP2*, SCNN1G*	SI C12A2 low to	

Anatomical Structures and Cell Types (ASCT) Table Example for

Kidney

Also called Pathology and Cell Ontology Table in UK


ASCT Table compiled by Clive H. Wasserfall and Marda L Jorgensen Department of Pathology, University of Florida

Structure/Region	Substructu	re/Sub-reg	ion	Cell Types	Marker Subset	
Splenic Pulp	Red Pulp	Venous Sinuses	Pulp Arteries	Vascular endothelium	CD34, SMA	
			Penincillar Arterioles	Vascular endothelium	CD34	
			Sheathed Arterioles	Vascular endothelium, macrophages, sheath cells	CD34	
			Arterial Capillaries	Vascular endothelium	CD34	
			Sinuses	Littoral cells	CD8a, CD68, LYVE-1	
				Endothelial	CD141	
			Veins	Vascular endothelium	CD34	
			Stroma	Stromal Cells	Collagen IV, MadCAM-1, CD271	
		Splenic C	ords	Macrophages	CD68, CD163	
				Monocytes	CD11b, CD11c, CD14	
				Reticular Myofibroblasts	SMA, CK8/18, CD271	
				Erythrocytes	CD235a	
				B Lymphocytes	CD20, CD19	

Anatomical Structures and Cell Types (ASCT) Table Example for

Spleen

Entity Relationship Diagram of CCF Core Model

Current sources of ontology terms are: UBERON, Foundational Model of Anatomy (FMA), Kidney Tissue Anatomy Ontology (KTAO), and Cell Ontology (CL).

http://purl.org/ccf/latest/ccf.owl

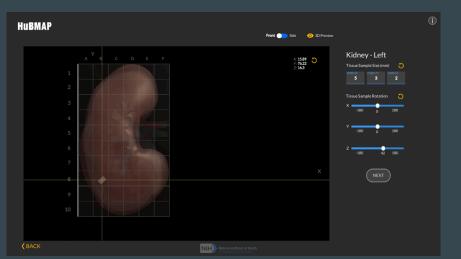
```
✓ body

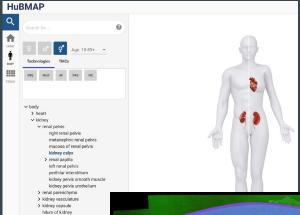
   > heart

✓ kidnev

✓ renal pelvis

            right renal pelvis
            metanephric renal pelvis
            mucosa of renal pelvis
            kidnev calvx
          > renal papilla
            left renal pelvis
            perihilar interstitium
             kidney pelvis smooth muscle
             kidney pelvis urothelium

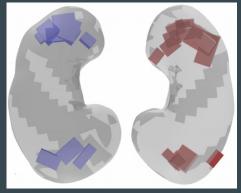

✓ renal parenchyma


          > cortex of kidney

✓ kidnev vasculature

          > kidney blood vessel
      A A 12 day and a second at
```

CCF Registration UI (RUI) and Exploration UI (EUI)

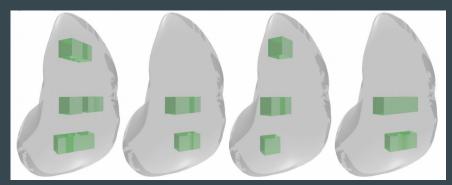


> kidney epithelium > renal medulla > renal sinus

RUI was designed for experts that collect human tissue and need to document the tissue extraction site. https://hubmapconsortium.github.io/ccf-3d-registration

EUI makes it possible to explore 2D/3D tissue samples semantically and spatially across multiple scales. https://hubmapconsortium.github.io/ccf-ui/

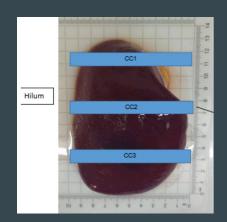
CCF Metadata Captured


Kidney: right left

Kidney data by VU:

25 tissue cuboids were registered using the RUI. Data is on Globus.

Spleen data by UFL: Data comes from 4 spleens. There exist 3 sampling sites (CC1-CC3).


All 25 + 24 = 49 cuboid registrations were confirmed with TMC experts.

Spleen: UFL0001 UFL0002

UFL0003

UFL0004

Anatomical Structures and Cell Types (ASCT) Table - DRAFT!

10 Organs x 10 Consortia Effort to Agree on Anatomical Structures and Cell Types (ASCT) Tables for Human													
	HuBMAP	RBK	KPMP	SPARC	LungMAP	HTAN	HCA		ıt Cell Atl	BICCN	len Brain Atl	TCGA	Total
Kidney		S cells, organ		0	0	0	1	1	0	0	0	1	5
Liver	0	0	0	0	0	0	1	0	0	0	0	1	2
Spleen	1	0	0	0	0	0	1	0	0	0	0	0	2
Heart	1	0	0	1	0	0	1	0	0	0	0	0	3
Lung	1	0	0	1	1	1	1	0	0	0	0	1	6
L intestine/Colon	1	0	0	1	0	1	1	0	1	0	0	1	6
S intestine	1	0	0	0	0	0	0	0	. 0	0	0	0	1
Bladder	1	0	0	1	0	0	0	1	0	0	0	1	4
Ureters	1	0	0	0	0	0	0	1	0	0	0	0	2
Thymus	1	0	0	0	0	0	0	0	0	0	0	1	2
Lymph nodes	1	0	0	0	0	0	1	0	0	0	0	0	2
mediastinal lymph node	0	0	0	0	0	0	1	0	0	0	0	0	1
Eye	1	0	0	0	0	0	1	0	0	0	0	0	2
Brain	0	0	0	0	0	0	1	0	0	1	1	1	4
Cerebellum	0	0	0	0	0	0	1	0	0	0	1	0	2
Pancreas	0	0	0	0	0	1	1	0	0	0	0	1	3
Breast	0	0	0	0	0	1	1	0	0	0	0	1	3
Skin	0	0	0	0	0	1	0	0	0	0	0	1	2
Pediatric systems	0	0	0	0	0	1	0	0	0	0	0	0	1
Ovaries	0	0	0	0	0	0	0	0	0	0	0	1	1
Eyes	0	0	0	0	0	0	1	0	0	0	0	0	1
Testes	0	0	0	0	0	0	0	0	0	0	0	1	1
Cervix	0	0	0	0	0	0	0	0	0	0	0	1	1
Uterus	0	0	0	0	0	0	0	0	0	0	0	1	1
Blood	0	0	0	0	0	0	1	0	0	0	0	1	2
Bone	0	0	0	0	0	0	1	0	0	0	0	0	1
Placenta	0	0	0	0	0	0	1	0	0	0	0	0	1
Decidua	0	0	0	0	0	0	1	0	0	0	0	0	1
Embryo	0	0	0	0	0	0	1	0	0	0	0	0	1
esophagus	0	0	0	0	0	0	1	0	0	0	0	1	2
hematopoietic system	0	0	0	0	0	0	1	0	0	0	0	0	1
immune system bulk	. 0	0	0	0	0	0	1	0	0	0	0	0	1
Stomach	. 0	0	0	1	0	0	0	0	0	0	0	1	2
Thyroid	. 0	0	0	0	0	0	0	0	0	0	0	1	1
Postate	. 0	0	0	0	0	0	0	0	0	0	0	1	1
Adrenal gland	. 0	0	0	0	0	0	0	0	0	0	0	1	1
Totals	11	0	1	5	1	6	22	3	1	1	2	20	•
Totals	11	U	1	3	1	U	ZZ	3	1	1	2	20	

Please review table at https://tinyurl.com/ASCT10x10

Please suggest other

- consortia/efforts (columns)
- organs (rows)
 that should be added.

CCF User Interfaces & Anatomical Structures and Cell Types (ASCT)

Please review table at https://tinyurl.com/ASCT10x10

Major anatomical terms and 3D structures in human

- Which organs are studied by which of the 12+ consortia attending the NIH-HCA meeting?
- What gross and micro anatomical terms are most important for the R&D in the 12+ consortia?
- What are common sampling sites from which tissue is sampled for the different organs?

Major human cell types, sizes, and "calling cards"

- What cell types are most important for the organs studied by the 12+ consortia attending the NIH-HCA meeting?
- Which of the 25+ sc assay types are most indicative for identifying these cell types?
- What is known about cell type sizes and distribution in human micro and macro anatomy?

Taxonomy nomenclatures and standardization

- What nomenclature conventions are available?
- Recognizing there won't be a 'perfect' solution, what are priorities to consider for cross-system cell class nomenclatures?