Harmonizing KPMP / HuBMAP Data: **Developing Novel Common Coordinate Framework User Interfaces**

Bruce W. Herr II, Katy Börner, and MC-IU Team

Intelligent Systems Engineering, School of informatics, **Computing and Engineering** Indiana University, Bloomington, IN; Harvard Medical School, Boston, MA

KPMP Virtual Meeting

March 17, 2020

CNS projects and ambitions. science maps, MOOCs

Enjoys: Fashion design, movies, German food

Griffin M. Weber Associate Professor of Medicine and Biomedical Informatics Department of Medicine Harvard Medical School griffin weber@hms.harvard.edu

Lisel Record MC-IU PM CNS Assoc Director recorde@indiana.edu

Project management, user research, public outreach

Enjoys: Growing the perfect tomato

Ellen M. Ouardokus MC-IU Research Scientist ellenmg@indiana.edu

Molecular biology, microscopy, anatomy, scientific software, usability, interdisciplinary communication

Bruce W. Herr II CNS Senior System Architect / PM bherr@indiana.edu Scrum, visualization, technology

trends Enjoys: Meditation, hot sauce, family

Andreas Bueckle

Leonard Cross Senior Interaction Designer lecross@iu.edu

User interface specification and design

PhD Candidate in Information Science abueckle@indiana.edu HuBMAP RUL visualization, virtual reality, filmmaking

Enjoys: Traveling, photography, sailing

Matthew Martindale CNS Center Assistant masmarti@iu.edu

Travel, purchasing, event organization Enjoys: Spending time with family

The Human Body at Cellular Resolution: The NIH Human Biomolecular Atlas Program. Snyder et al. *Nature*. 574, p. 187-192.

Transformative technology development (TTD) and rapid technology Data compilation implementation (RTI) **Tissue mapping** centre (TMC) HuBMAP integration, visualization and engagement (HIVE) Map generation Data Dissemination/ storage

access

Tissue collection

Assays/

analysis

Fig. 1 | **The HubMAP consortium.** The TMCs will collect tissue samples and generate spatially resolved, single-cell data. Groups involved in TTD and RTI initiatives will develop emerging and more developed technologies, respectively; in later years, these will be implemented at scale. Data from all groups will be rendered useable for the biomedical community by the HuBMAP integration, visualization and engagement (HIVE) teams. The groups will collaborate closely to iteratively refine the atlas as it is gradually realized.

The Human Body at Cellular Resolution: The NIH Human Biomolecular Atlas Program. Snyder et al. *Nature*. 574, p. 187-192.

Landmarks are

- Anatomical structures
- Biomolecular markers

Fig. 3 | Map generation and assembly across cellular and spatial

scales. HuBMAP aims to produce an atlas in which users can refer to a histological slide from a specific part of an organ and, in any given cell, understand its contents on multiple 'omic levels—genomic, epigenomic, transcriptomic, proteomic, and/or metabolomic. To achieve these ends, centres will apply a combination of imaging, 'omics and mass spectrometry

techniques to specimens collected in a reproducible manner from specific sites in the body. These data will be then be integrated to arrive at a high-resolution, high-content three-dimensional map for any given tissue. To ensure inter-individual differences will not be confounded with collection heterogeneity, a robust CCF will be developed.

MC-IU: CCF Registration to CCF Exploration Workflow

MC-IU: Common Coordinate Framework (CCF)

A common coordinate framework (CCF) is a conceptual and computational framework for the storage, analysis, and (visual) exploration of spatially and semantically indexed data---across individuals, technologies, labs.

Renal calvces

Renal pelvis

Renal vein

Ureter

- Loop of Henle
- · Distal convoluted tubule
- Connecting tubule
- Collecting duct

- Endothelial cells Mesangial cells
- Podocytes

Semantic zoom from whole human body, to organ, to functional tissue units (FTUs), to single-cell level.

Three-step spatial registration of single cells in relation to reference organs.

VH Spleen

VH Kidney

MC-IU: CCF Relevant Metadata

HuBMAP

HuBMAP CCF Information Portal

This portal links to information that is critical for constructing Common Coordinate Frameworks (CCFs) for the National Institutes of Health Human Biomolecular Atlas Program (<u>HuBMAP</u>).

The information was provided by individual organ-specific Tissue Mapping Centers (TMCs), Transformative Technology Development (TTD), or Rapid Technology Implementation (RTI) efforts in close collaboration with the Mapping Component at Indiana University (MCHU).

For questions, please contact MC-IU via infoccf@indiana.edu

Organ	TMC	Technology
Cr) Kidney	TMC-Vanderbilt	MALDI Imaging Mass Spectrometry (MALDI IMS) LC-MS
Grð Kidney	TTD-Purdue	nanoDESI IMS LC-MS
G yð Kidney	TMC-UCSD	SNARE-seq2: <u>snRNAseq</u> SNARE-seq2: Chromatin Accessibility seq Bulk RNA-seq
Spleen	TMC-Caltech-UW	seq-FISH
Spleen	TMC-Florida	Light Sheet Microscopy (LSM) CODEX Imaging Wass (Ytometry (IMC) Single Cell (sc) RNA-Seq 10x Genomics
U Heart	TMC-Caltech-UW	seq-FISH
Lung	TMC-UCSD	Bulk RNA-seq SNARE-Seq2: <u>snRNAseq</u> SNARE-Seq2: Chromatin Accessibility seq
Large Intestine	TMC-Stanford	CODEX Bulk RNA-seq Bulk ATAC-seq Bulk Whole Genome Sequencing (WGS) Metabolomics/Lipidomics
Small Intestine	TMC-Stanford	CODEX srRNA-sea Bulk BNA-sea Bulk ATAC-sea scaTAC-sea Bulk Whole Genome Sequencing (WGS) Metabolomics
Small Intestine	TMC-Caltech-UW	SeqFISH
Bladder	TMC-UCSD	SNARE-seq2: Chromatin Accessibility seq
) Ureters	TMC-UCSD	SNARE-seq2: Chromatin Accessibility seq
Thymus	TMC-Florida	Light Sheet Microscopy (LSM) CODEX Imagin Wasc (yometry (IMC) Single Cell Isc) RNA-Seq 10x Genomics
Lymph Nodes	TMC-Florida	Light Sheet Microscopy (LSM) CODEX Imaging Mass Cytometry (IMC) Single Cell (sc) RNA-Seq 10x Genomics

Information critical for CCF design but not yet captured in the data on Globus is documented in the <u>CCF Info Portal</u>.

The CCF Info Portal also captures details for the CCF reference organs. Completed organs, approved by TMC organ experts:

- Kidney (left and right) for male and female Visible Human
- Spleen for male and female Visible Human

Anatomical and cell type data from the anatomical structures and cell types (ASCT) tables for the kidney and spleen have been linked to UBERON, Foundational Model of Anatomy (FMA), Kidney Tissue Anatomy Ontology (KTAO), and Cell Ontology (CL).

MC-IU: CCF Object Library

3D models by Kristen Browne, NIH. Rendering by MC-IU.

File Formats

Basic image/object: OME-Tiff (raster) and OBJ (vector) Regions: SVG annotations for 2D, OBJ regions in 3D (aligned with reference model for the organ)

Reference Organs

Kidney:Male and female kidneys from NLM VH
ImageVU 5/50/500 kidneys by Dec. 2019/Feb. 2020/June 2020Lung:Lung D175 (June 2020)

MC-IU: ER Diagram of CCF Core Model

Current sources of ontology terms are: UBERON, Foundational Model of Anatomy (FMA), Kidney Tissue Anatomy Ontology (KTAO), and Cell Ontology (CL).

http://purl.org/ccf/latest/ccf.owl

and total and a second second second

MC-IU: CCF Metadata Captured

Kidney: right

Kidney data by VU:

25 tissue cuboids were registered using the RUI. Data is on Globus.

Data comes from 4 spleens. There exist 3 sampling sites (CC1-CC3). Each CC is subdivided into 6 cuboids. 24 cuboids were registered.

All 25 + 24 = 49 cuboid registrations were confirmed with TMC experts.

MC-IU: CCF Registration UI (RUI) and Exploration UI (EUI)

RUI was designed for experts that collect human tissue and need to document the tissue extraction site. <u>https://hubmapconsortium.github.io/ccf-3d-registration</u>

EUI makes it possible to explore 2D/3D tissue samples semantically and spatially across multiple scales. <u>https://hubmapconsortium.github.io/ccf-ui/</u>

CCF Registration UI (RUI) DEMO

 Registration UI:
 https://hubmapconsortium.github.io/ccf-3d-registration

 RUI Tutorial:
 https://www.youtube.com/watch?v=-ABy5IeCEk4

 RUI Tech Demo:
 https://www.youtube.com/watch?v=E8GGcpPsohc

 RUI Semantic Annotation Using Colission Dectection:
 https://www.youtube.com/watch?v=6SLqUBEJALE

Acknowledgements

HuBMAP Consortium (https://hubmapconsortium.org)

Thanks go to all the **patients** that agreed to volunteer healthy tissue and open use of their data.

TMCs

Jeffrey Spraggins TMC-Vanderbilt Vanderbilt University

Saniav Jain TMC-UCSD Washington University St. Louis

Clive Wasserfall TMC-UFL University of Florida

Kristen Browne Medical Imaging and 3D Modeling Specialist NIAID

MC-IU HIVE Team

Katy Börner

MOULD

CNS Director

Yingnan Ju

PhD Student

Assoc Drofassor of Marlinina

Lisel Record MC-IU PM

Ellen Quardokus Sr. Research Analyst Sr. Systems Architect/PM

Griffin Weber

Hanvard Medical School

Bruce Herr II

Sr. UX/UI Designer

3D Models