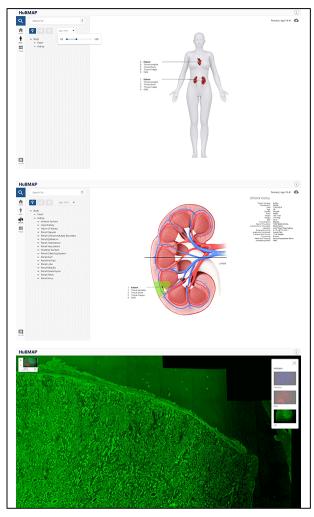
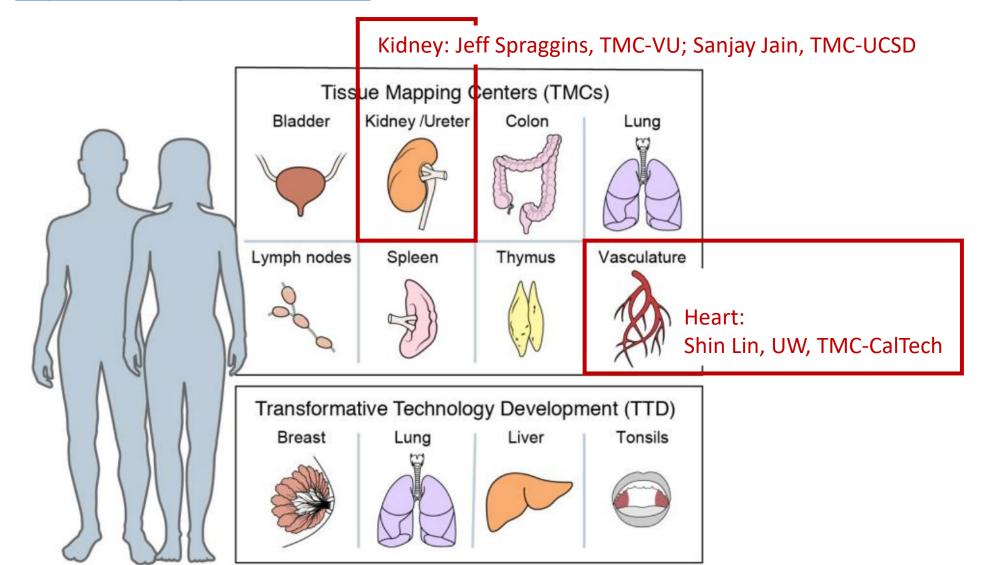

HuBMAP CCF User Interfaces

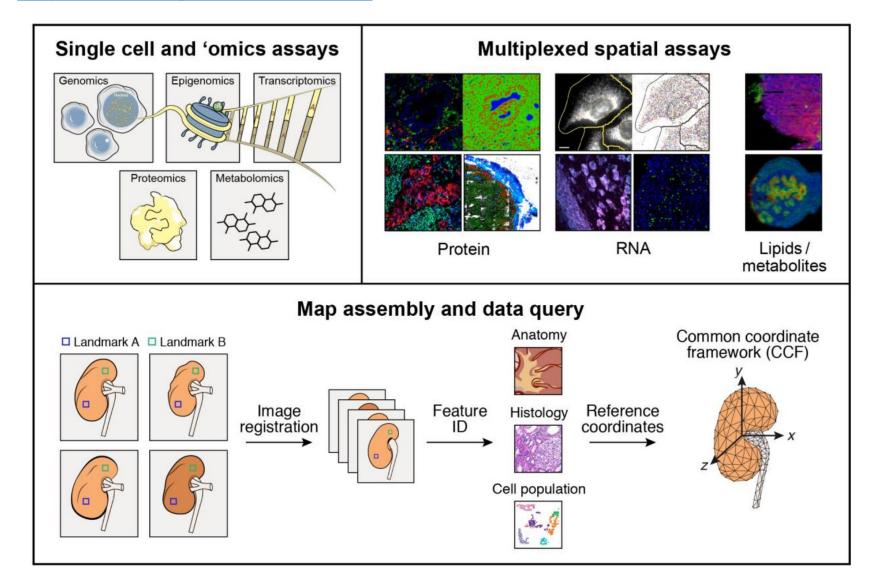

Katy Börner and the MC-IU HIVE HuBMAP Team

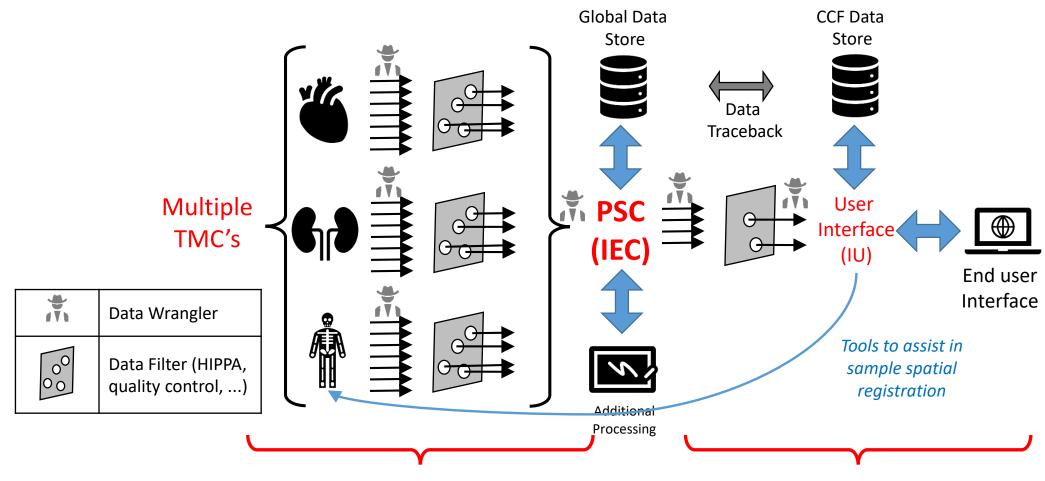
Intelligent Systems Engineering, SICE Indiana University, Bloomington, IN

HuBMAP CCF WS
Harvard Medical School, Boston, MA

June 27, 2019




HuBMAP CCF Data & User Interfaces


Mapping the Human Body at Cellular Resolution— The NIH Common Fund Human BioMolecular Atlas Program Tissue collection Snyder et al. https://arxiv.org/abs/1903.07231 Assays / Analysis Transformative Technology Development (TTD) and Rapid Technology Implementation (RTI) Data compilation Tissue Mapping Center (TMC) HuBMAP integration, visualization and engagement (HIVE) Map generation Data Dissemination / storage Access

Mapping the Human Body at Cellular Resolution— The NIH Common Fund Human BioMolecular Atlas Program Snyder et al. https://arxiv.org/abs/1903.07231

Mapping the Human Body at Cellular Resolution— The NIH Common Fund Human BioMolecular Atlas Program Snyder et al. https://arxiv.org/abs/1903.07231

- Provenance
- Patient
- Sample
- Sample Processing
- Technology (MS, IH, ...)
- Analysis
- Etc.

Propagate needs back to TMC's

 Only the data needed for the GUI

TMC: Tissue Mapping Center

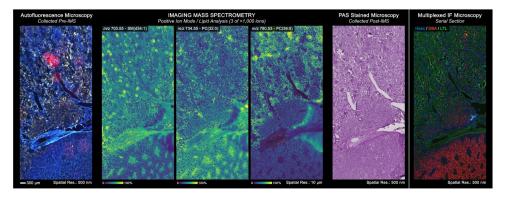
PSC: Pittsburgh Supercomputing Center

CCF User Interface (UI) Tissue Registration UI **CCF** Data **Global Data** Store Store Data Traceback Multiple **PSC** User Interface TMC's (IEC) (IU) End user Interface * Data Wrangler Tools to assist in 000 Data Filter (HIPPA, sample spatial quality control, ...) registration Additional Processing Provenance Only the data

- Patient
- Sample
- Sample Processing
- Technology (MS, IH, ...)
- Analysis
- Etc.

Propagate needs back to TMC's

Only the data needed for the GUI


TMC: Tissue Mapping Center

PSC: Pittsburgh Supercomputing Center

Data. Is very heterogeneous. Must provide guidance.

Kidney: Jeff Spraggins et al., VU

See data on Globus, BIOMIC_patient-64354

Clinical and Spatial Metadata (21 rows)

Cell Types, on right

Cell States (9 rows)

Cell states	Subset A
Proliferating cells	S-phase
	G2/M
Cell cyle arrest	G0
	G1/S
	G2/M

Cell type	Subset A	Subset B	Subset C
Tubular Epithelium	Proximal tubular cells	S1	
		S2	
		S3	
	Loop on Henle	Thin descending limg	
		Thin ascending limb	
		Thick limb	medullary
			cortical
		Macula Densa	
	Distal convoluted tubule		
	Connecting segment		
	Collecting duct	Principal cells	
		Intercalated cells	Type A
			Type B
Glomerulus	Epithelium	Visceral	
		Parietal	
	Mesangial cells		
Vasculature	Endothelium	Glomerular	
		Peritubular	
		Lymphatic	
	Pericytes		
	Juxta Glomerular Cells		
Interstitium	Fibroblasts	Myofibroblasts	
		EPO producing cells	
		Medullary fibroblasts	
	Mononuclear cells	Resident macrophages	
		Dendritic cells	
	Lymphocytes	T cells	
		B cells	
		NK cells	

Heart: Shin Lin, UW

<u>Year 1:</u> Tissue data for 1-2cm cubed volumes from 9 sites for 1 heart from 1 individual.

Data Dictionary (115 rows)

Field # Sort Field Label Sort	Field Name Sort	Field Units	Field Data	Lookup Tal	Low Value 1	High Value	Valid value I	sNullable	SParent Fiel Pa	arent Fiel	Can Child b	ReadOnly Sor
9 Donor //ABO:	abo		char(3)	lkup_abo				TRUE				FALSE
10 Donor //Date of birth:	dob		datetime					TRUE				FALSE
11 Donor //Gender:	gender		char(1)	lkup_gende	er		M,F	TRUE				FALSE
12 Details //Age:	age_in_months		smallint		0	1188		TRUE			FALSE	FALSE
13 Details //Age Unit:	age_unit		char(1)	lkup_age_u	unit		M,Y	TRUE	age_in_mont	ths		TRUE
14 Details //Height:	hgt_cm	cm	decimal(5,	2)	1	241.3		TRUE				FALSE
15 Donor hgt_ft //	hgt_ft	ft	int		0	7		TRUE				TRUE
16 Donor hgt_in //	hgt_in	in	int		0	11		TRUE				TRUE
17 Details //Weight:	wgt_kg	kg	decimal(7,	4)	0.454	294.835		TRUE				FALSE
18 Donor wgt_lb //	wgt_lb	lbs	decimal(3,	0)	2	650		TRUE				TRUE
19 Donor //Ethnicity/race:	race		bigint	lkup_race_	subcat_mult	ti		FALSE				FALSE
30 Details //History of diab	e hist_diabetes		smallint	lkup_histdi	ab_dur			TRUE				FALSE
31 Donor //History of cano	e hist_cancer		smallint	lkup_histca	ncer_site			TRUE			FALSE	FALSE
32 Donor History of cancer	cancer_oth_ostxt		varchar(50))	1	50		TRUE	hist_cance	999		FALSE
33 Details //History of hype	er hypertension		smallint	lkup histhy	pe dur			TRUE			FALSE	FALSE

Cell Types (14)

endothelial cells						
	arterial					
	capillary					
	venous					
	lymphatic					
cardiomyocytes						
	atrial					
	ventricular					
	nodal					
fibroblasts						
	fibroblasts					
	myofibrob	asts				
immune cells						
	macrophag	ges				

Data: Clinical

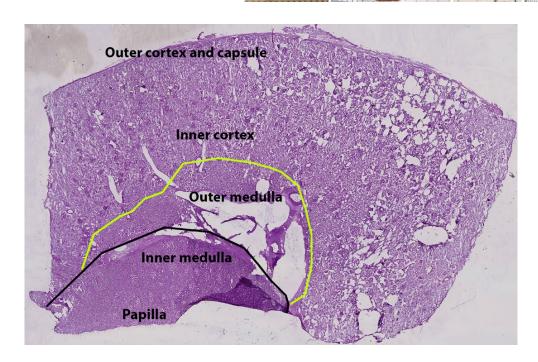
Kidney: Jeff Spraggins et al., VU

Clinical and Spatial Metadata (21 rows)

Sample Number:	20
Patient Number:	64354
Procedure ID:	66598
Date:	1/30/2019
Age:	38
Gender:	Female
Race:	White
Height:	165.1 cm
Weight:	115.2 kg
BMI:	42.3
Comorbidities:	Obesity
Type of Procedure:	Total Nephrectomy
Indications for Procedure:	Renal tumor
Laterality:	Left
Tissue Type:	kidney
Dimensions (mm):	L: 19 x W: 13 x H: 7
Anatomical Landmark:	Lower Pole
Distance from Tumor:	7 cm
Sample Processing:	Frozen
Method of Freezing:	Dry Ice/Isopentane Slurry
Embedding Media:	CMC

Heart: Shin Lin, UW

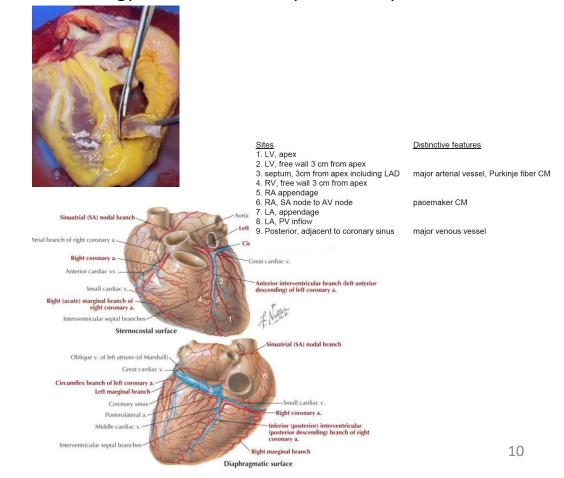
Data Dictionary (115 rows)


Field # Sort	Field Label Sort	Field Name Sort	Field Units	Field Data	Lookup Tal	Low Value	High Value	Valid value
9	Donor //ABO:	abo		char(3)	lkup_abo			
10	Donor //Date of birth:	dob		datetime				
11	Donor //Gender:	gender		char(1)	lkup_gende	er		M,F
12	Details //Age:	age_in_months		smallint		0	1188	
13	Details //Age Unit:	age_unit		char(1)	lkup_age_u	unit		M,Y
14	Details //Height:	hgt_cm	cm	decimal(5,	2)	1	241.3	
15	Donor hgt_ft //	hgt_ft	ft	int		0	7	
16	Donor hgt_in //	hgt_in	in	int		0	11	
17	Details //Weight:	wgt_kg	kg	decimal(7,	4)	0.454	294.835	
18	Donor wgt_lb //	wgt_lb	lbs	decimal(3,	0)	2	650	
19	Donor //Ethnicity/race:	race		bigint	lkup_race_	subcat_mu	lti	
30	Details //History of diabe	hist_diabetes		smallint	lkup_histdi	ab_dur		
31	Donor //History of cance	hist_cancer		smallint	lkup_histca	ancer_site		
32	Donor History of cancer,	cancer_oth_ostxt		varchar(50)	1	50	
33	Details //History of hyper	hypertension		smallint	lkup_histhy	/pe_dur		

Data: 3D Tissue

Kidney: Jeff Spraggins et al., VU

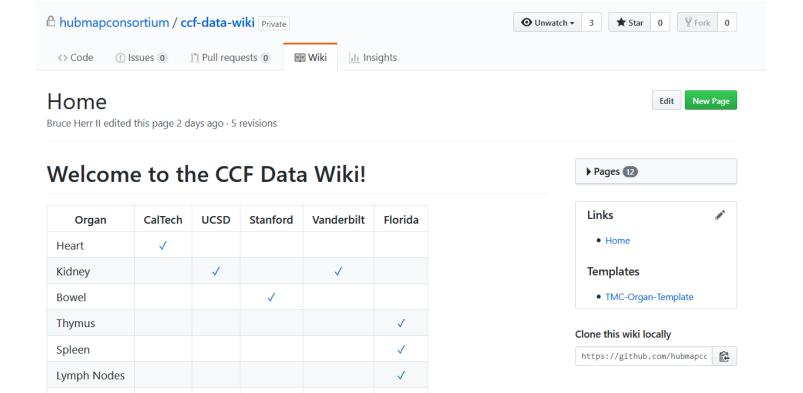
See data on Globus, BIOMIC_patient-64354



Heart: Shin Lin, UW

Year 1: Tissue data for 1-2cm cubed volumes from 9 sites for 1 heart from 1 individual.

Terminology; Coordinates and photos to spatialize


Data: TMCs x Organs x Data Types x Technologies

BUKMAP, Zhang Group

Organs (10) Da		ta Types (13)	Technologies (~25)					
1. Bladder	1.	Imaging - Proteins	CODEX;DART-FISHrp;IF;IHC;LRET-IF;MALDI Imaging MS;PER-DEI					
2. Blood Ve	ssel (Heart) 2.	Imaging - RNA	DART-FISH;LRET-ISH;MERFISH;PER-DEI;seqFISH;smFISH					
3. Breast	3.	Imaging - DNA	PER-DEI					
4. Colon	4.	Imaging - Other	Lipid and Metabolite MALDI Imaging MS					
5. Kidney	5.	scRNAseq	snDropseq;scRNAseq					
6. Liver	6.	scDNAseq	scATACseq;scTHSseq;SNAREseq					
7. Lung	7.	scProteomics	IMC					
8. Spleen	8.	bulk-Proteomics	LC-MS/MS					
9. Thymus	9.	bulk-RNA	?					
10. Tonsil	10.	bulk-DNA	?					
	11.	Metabolomics	LC-MS/MS;nano-POTS					
No Bone Marr	ow 12.	Lipids	LC-MS/MS;nano-DESI					
and Pancreas.	13.	Other	Autofluorescence; PAS stained microscopy					

CCF Data Wiki

Minimum Information Standard

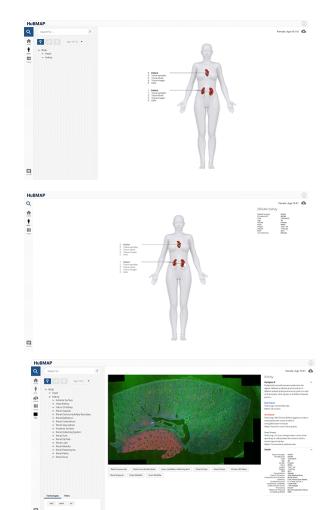
https://github.com/hubmapconsortium/ccf-data-wiki/wiki

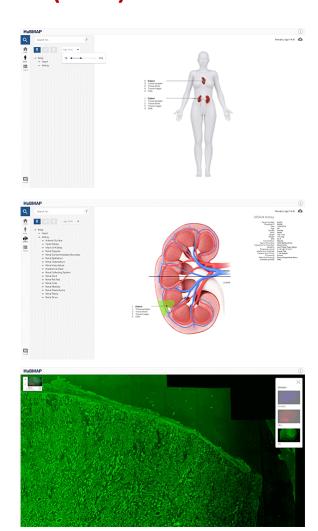
Legend:

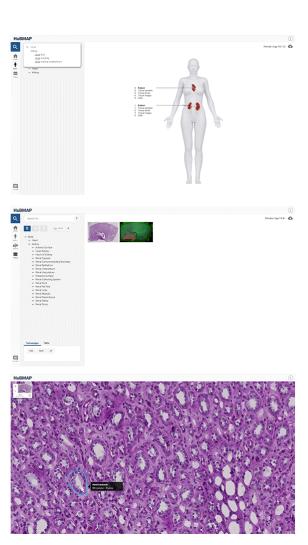
Colon

Lung

- ✓ Organ proposed and survey submitted
- x Organ was proposed, but no survey has been submitted


CCF User Interfaces (UI)


CCF User Interface (UI)



GitHub demo site: https://hubmapconsortium.github.io/ccf-ui/

CCF User Interface (UI)

CCF User Interface (UI)

MC-IU has released CCF user interface v0.5.0, a proof-of-concept version of the CCF UI. The user interface supports:

- Visual browsing of tissue samples and metadata at the whole body, organ, tissue, and cell level.
- Filtering by metadata (age, gender, TMC, and technology), results are presented at all views.
- Submission of questions and comments on the CCF UI.
- Semantic search by ontology, results are presented at all levels.
- Data download at the whole body, organ, tissue, and cell level, i.e., link to https://sampledata.hubmapconsortium.org.

See also:

Recorded demo: https://www.youtube.com/watch?v=rWMqKQc_00w&feature=youtu.be

GitHub link to code: https://github.com/hubmapconsortium/ccf-ui

GitHub demo site: https://hubmapconsortium.github.io/ccf-ui/

Original specs: https://drive.google.com/open?id=1tqUzmVLxwqcGprtRlevfY86YvHHPEsDR

Live Demo!

CCF User Interface (UI) Tissue Registration UI **CCF** Data **Global Data** Store Store Data Traceback Multiple **PSC** User Interface TMC's (IEC) (IU) End user Interface * Data Wrangler Tools to assist in 000 Data Filter (HIPPA, sample spatial quality control, ...) registration Additional Processing Provenance Only the data

- Patient
- Sample
- Sample Processing
- Technology (MS, IH, ...)
- Analysis
- Etc.

Propagate needs back to TMC's

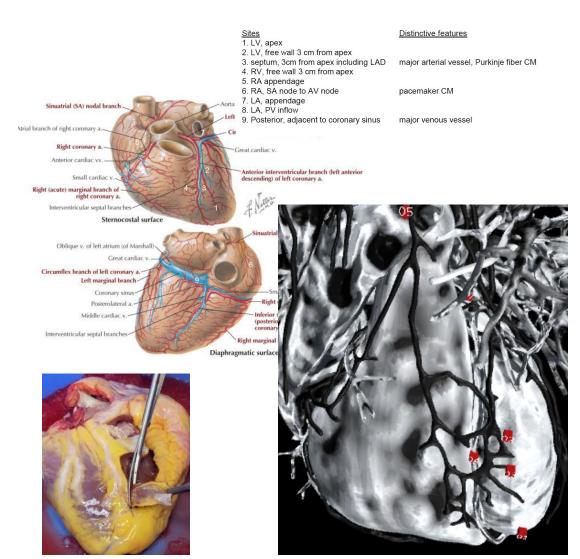
Only the data needed for the GUI

TMC: Tissue Mapping Center

PSC: Pittsburgh Supercomputing Center

Tissue Registration UI: Heart (depending data availability)

Align 9 tissue samples in 3D heart using a combi of

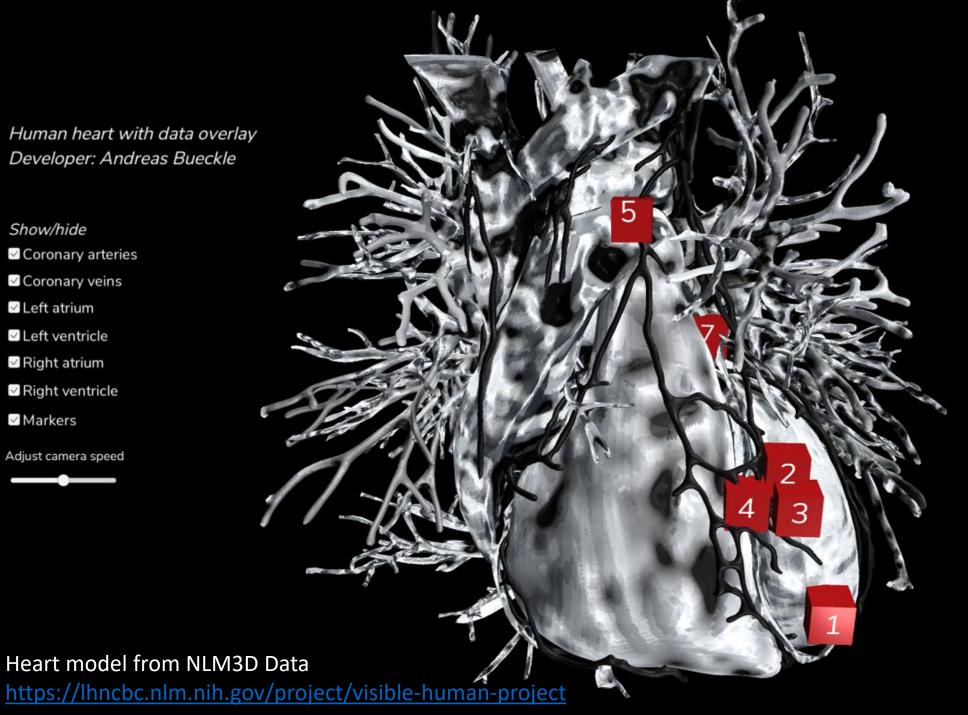

- Rough placement using human expertise/3D pattern matching and
- Fine adjustments using machine learning

Virtual tissue samples will be sized 1-2cm cubed, numbered (1 ... 9), and oriented (left-right, top and bottom tissue slice of z-stack).

Measure error from

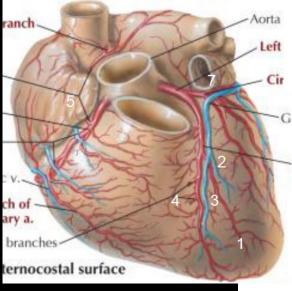
- precision of tissue sample procurement and
- placement in the 3D browser

We hypothesize that placement accuracy will improve when additional information (e.g., landmarks, major scaffolds, MR/CT scan of heart after 9 samples were extracted) is being visible in virtual organ.



Human heart with data overlay Developer: Andreas Bueckle

Show/hide

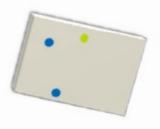

- ✓ Coronary arteries
- ✓ Coronary veins
- ✓ Left atrium
- ✓ Left ventricle
- ✓ Right atrium
- ☑ Right ventricle
- ✓ Markers

Adjust camera speed

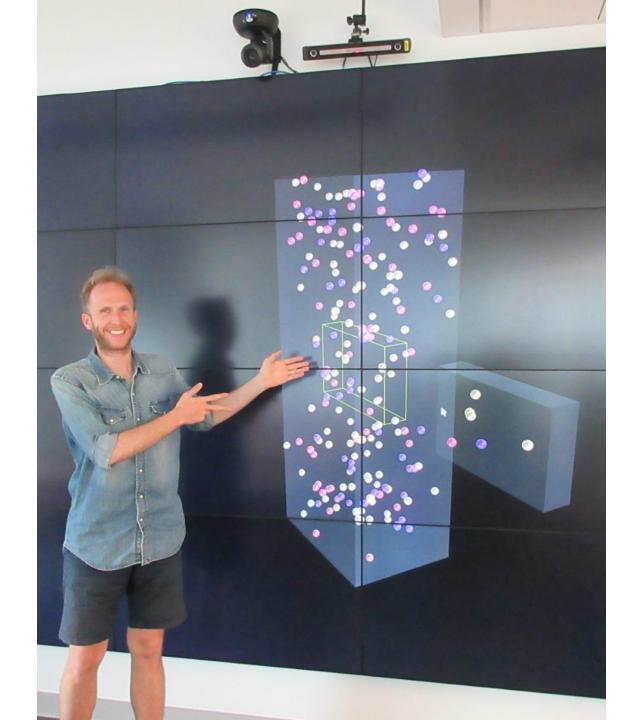
Currently Selected

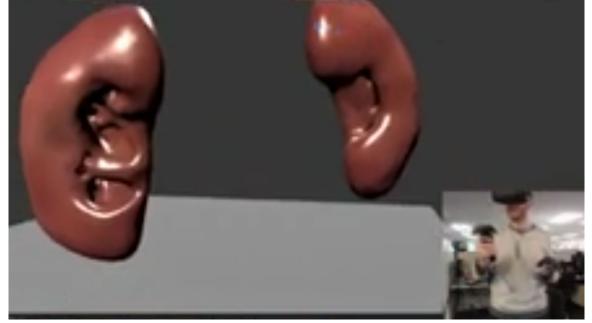
Please click any of the red markers!

Tissue Registration UI: Kidney


(depending data availability)

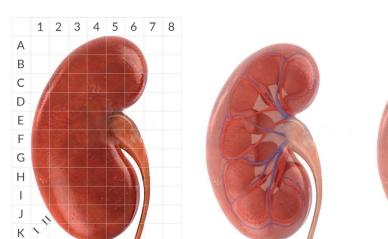
- Exploit human pattern recognition and fine motor skills (by surgeons) to register tissue in organs.
- Add info on anatomical landmarks (fiducial marks), cell types, molecular data to support alignment.
- LATER: Use human alignment data as training data for machine learning algorithms, to better support manual alignment OR to possibly fully automatize alignment.




How many of you have used a VIVE or space mouse?

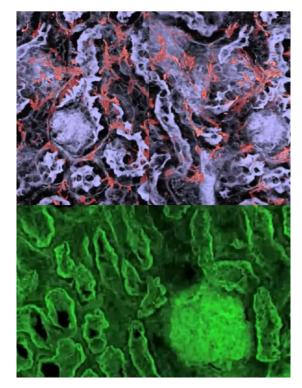
Kidney model from NLM3D Data

https://lhncbc.nlm.nih.gov/project/visible-human-project



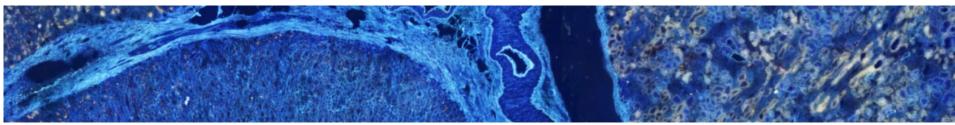
Kidney model from NLM3D Data https://lhncbc.nlm.nih.gov/project/visible-human-project

For the kidney, there exist no predefined tissue extraction sites. The current kidney Registration UI uses a grid system and a picture of a kidney slice to guide placement, see **Fig. 3 left and middle**. Funding of this GLUE grant will make it possible to use 3D image volumes collected from intact kidney tissue within KPMP that feature anatomically meaningful structures of different cell types, see **Fig. 3 right**.


Structural morphology of renal vasculature. Nordsletten et al. 2006.

https://doi.org/10. 1152/ajpheart.008 14.2005

Figure 3: 3D grid system (left), 2D image (middle), 3D tissue reconstructions from KPMP (right)


Using the 3D grid system, a user can use 3D coordinates to refer to a particular area in the kidney, e.g., A-4-II would correspond to the lower-middle part of the kidney, on the inside (occluded in this view). Using the 2D image, sample placement within a semi-transparent reference kidney object is guided by anatomical structures. Using KPMP data, it will be possible to show complex volumetric structures inside the 3D reference kidney to allow for more granular alignment at the molecular level.

KPMP GLUE grant proposal in progress.

Fig. 4. KPMP volumetric data. See presentation by Seth Winfree for details https://ccfws.cns.iu.edu

CCF Workshop (MC-IU, Jeff Spraggins, TMC-Vanderbilt, Sanjay Jain, TMC-UCSD)

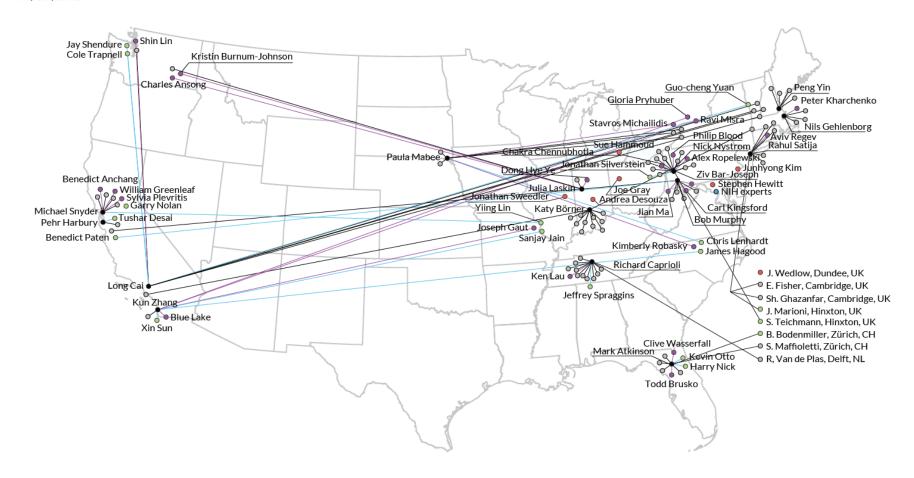
COMMON COORDINATE FRAMEWORK WORKSHOP CCFWS-01

Time & Date

9:00am-5:00pm EDT on May 9, 2019

All slides, video recordings are at https://ccfws.cns.iu.edu

Goals


HuBMAP will develop a common reference map or coordinate system called the Common Coordinate Framework (CCF). As stated in the Common Coordinate Framework Meeting (CCFM) document, a CCF makes it possible to uniquely and effectively define and name any location in the human body. A set of robust origin points (serving as landmarks) make it possible to reference organs, tissues, cells over different anatomical scales, tolerate human variability and function across lifespan and disease, and help integrate heterogeneous data layers and a wide range of reference maps such as whole body spatial maps, genetic variant maps, and coordinate systems that align with vascular pathways.

This CCF workshop will focus on a kidney-specific CCF and atlas but also discuss other relevant CCF/atlas efforts. It will feature presentations and discussions on:

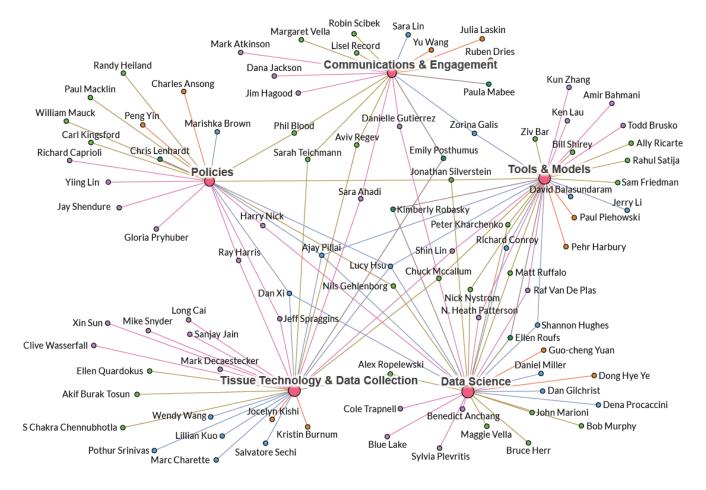
- CCF metadata—what data are currently captured, how can they be unified across tissue mapping centers (TMCs), what additional data are needed to meet stakeholder (research) needs.
- CCF ontologies—what ontologies exist and are used in what part of the data pipeline; what 'desirable properties' and 'success criteria' exist?
- CCF mapping and numerical construction—including dealing with human variation and using CCF user interfaces as a means to properly register data and review data completeness.
- General principles and processes that can inform CCF design for other organs and continuous adaptation of CCF to emerging technologies and ever changing user requirements.

Geospatial Layout of HuBMAP Teams

MC-IU within HuBMAP (http://hubmapconsortium.org) 04/16/2019

Legend

Label: Experts Color: Role Nodes and Edges


■ PI (Contact)
■ PI
■ EPC
■ Co-Investigator

How To Read This Visualization

This geospatial map shows the collaboration network of 134 experts. Principal investigators (PIs) are placed at their exact geolocation. Team members are placed nearby and are linked to PIs. Nodes and edges are colored according to their roles.

Bimodal Network of Experts and Working Groups

MC-IU within HuBMAP (https://hubmapconsortium.org) 04/09/2019

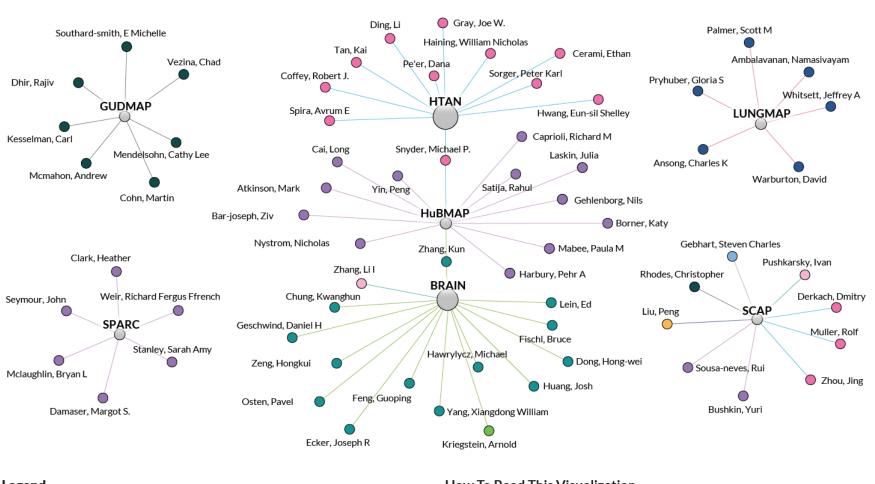
Legend

Label: Experts

Working Groups

Color: Team Type

Nodes and Edges TMC WGs


HIVE NIH CC TTD

How To Read This Visualization

This bimodal network represents a network between five working groups and 126 experts of those groups. Nodes and edges are colored according to the team type that expert belongs to. Working group nodes are sized by the total number of experts in the group.

Bimodal Network of PI (Contacts) and NIH Projects

MC-IU within HuBMAP (https://hubmapconsortium.org) 04/22/2019

Legend

Label: PI (Contacts) NIH Projects Maximum = 71,882,084 Minimum = 3,065,740

OD NHLBI
NIMH NCCIH
NCI NHGRI
NO NIDDK NIGMS

How To Read This Visualization

This bimodal network represents a network between six NIH projects and 73 PI (Contacts). Nodes and edges are colored according to the Funding Institute & Center that project of Pi (Contact) is financed from. NIH project's node sizes based on award amount.