Intelligent Image Captioning with Several Language Models
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Introduction

Why Is Image captioning useful?
* A huge help for visually impaired people
» Automatic game commentary

How do we approach the problem?
* Neural network:
» Object detection - Object recognition
» Language model:
 Caption generation
What do we use?
* Microsoft COCO data set
* TensorFlow
« HMM

Objectives

Determine If language models can be used
successfully to improve results of a modern
encoder-decoder approach to image captioning

Detect relational information more effectively

* Encoder-decoder tends to choose
'standing' for animate subjects even If a
more specific action Is conveyed In
Image

* Prepositions are often used in a

syntactically correct place but the correct
preposition is not used

|deally, we would want the caption to capture
more of the semantics of the image at the risk of
having a somewhat awkward sentence
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a Baseline & Language Models A T Examples A Results
» Encoder-Decoder baseline R 428 2.0 | The BLEU sores for each experiment setting:
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* VGG2016 classification model used with worsz | traimu many, large, viewy,  streety - Sy
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caption, use top 10 captions | | N e BLEU_3 0.196 0.106
» Tokenize the resulting captions using the BLEU_4 0.125 0.045

Stanford tokenizer

» At each word, select the next word such
that the likelihood of going from word tag
1 to word tag 2 Is maximized

» Reduce weight in the case of repeating
words

* The BLEU scores for the Greedy transition-based model is still
Improving as we speak. Adding handcrafted rules improve the
results greatly.

Conclusions

* Hidden Markov Model | | N
» Fewer epochs result in better object recognition

but the captions are largely ungrammatical

« Use caption data as training corpus

» Create an HMM-based part of speech
tagger

* Try a sampling of all possible paths
through the candidate captions

highest probability Is used

;’ * When RNN outputs ungrammatical sentences,
language models, both HMM-based and greedy
transition-based, are able to choose the correct
candidates from the candidate pool

e Path witl

* More epochs result in better language but the
objects are classified wrongly (seems to be
overfitting to training data)

* Both HMM and greedy transition-based help with
generating grammatical sentences given the
correct object recognition result
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Future Work

* Incorporate intelligent word embeddings instead
of pre-trained model

standing == on = a == field

» Optimize the model so It Is fast enough to do
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