

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

Appendix

References

Optimizing (Socio-)linguistic Analysis: Language Variation Suite Toolkit

Dr. Olga Scrivner

Research Scientist, CNS, SICE, IU Corporate Faculty, Data Analytics Graduate Program, HU CEWIT Faculty Fellow

April 12, 2018

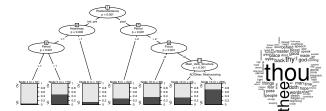
Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics


Inferential Analysis

Mixed Effects

Appendix

References

Provide researchers with a variety of quantitative methods to advance language variation studies.

Objectives

Introduction

- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- Appendix
- References

- Introduce a novel (socio)linguistic toolkit
- ② Develop practical skills
- **③** Understand and interpret advanced statistical models

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

What is LVS?

Introduction

- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- ${\sf Appendix}$
- References

Language Variation Suite

- It is a Shiny web application designed for data analysis in sociolinguistic research.
- It can be used for:
 - Processing spreadsheet data
 - Reporting in tables and graphs
 - Analyzing means, regression, conditional trees ... (and much more)

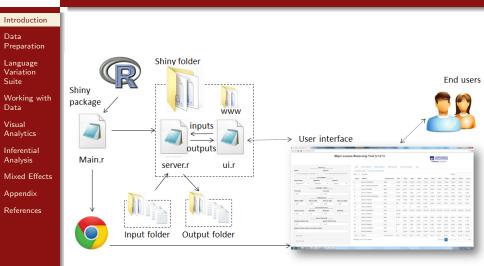
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ()

Background

Introduction

- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- Appendix
- References

LVS is built in R using Shiny package:


- R a free programming language for statistical computing and graphics
- **2** Shiny App a web application framework for R

Computational power of R + Web interactivity

Background

http://littleactuary.github.io/blog/Web-application-framework-with-Shiny/

Data Preparation

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

Appendix

References

Important things to consider before data entry:

- File format:
 - Comma separated value (CSV) faster processing
 - Excel format will slow processing
- Column names should not contain spaces
 - Permitted: non-accented characters, numbers, underscore, hyphen, and period

- One column must contain your dependent variable
- The rest of the columns contain independent variables

Α	B	C	D	E	F
Case	Number	R.Use	Lexical.Item	Style	Store
1	1	retention	Fourth	normal	Saks
1	2	retention	Fourth	normal	Saks
1	3	retention	Fourth	normal	Saks
1	4	retention	Fourth	normal	Saks
1	5	retention	Fourth	normal	Saks
1	6	retention	Fourth	normal	Saks
1	7	retention	Fourth	normal	Saks
1	8	retention	Fourth	normal	Saks

Workspace

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

Appendix

References

Browser

- Chrome, Firefox, Safari recommendable
- Explorer may cause instability issues

Accessibility

- PC, Mac, Linux
 - Data files will be uploaded from any location on your computer
- Smart Phone
 - Data files must be on a cloud platform connected to your phone account (e.g. dropbox)

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

Appendix

References

Since LVS is hosted on a server, Shiny idle time-out settings may stop application when it is left inactive (it will grey out).

https://languagevariationsuite.shinyapps.io/Pages/

	Disconnected from the server.	Reload
ect File		
file are you uploading?	The LVSuite is a sociolinguistic toolkit to analyze langu	age variation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Solution: Click reload and re-upload your csv file

Terminology Review

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

Appendix

References

- a. Categorical non-numerical data with two values
 - yes no; deletion retention; perfective imperfective
- b. Continuous numerical data
 - duration, age, chronological period
- c. Multinomial non-numerical data with three or more values

- deletion aspiration retention
- d. Ordinal scale: currently not supported

Terminology Review

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

Appendix

References

a. Categorical - non-numerical data with two values
yes - no; deletion - retention; perfective - imperfective

hunetical dat

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

b. Continuous - numerical data

c. Multinomial - n n-

duration, age, chronological period

- aspiration - retention

d. Ordinal - scale: currently not supported

Workshop Files

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

Appendix

References

https://languagevariationsuite.wordpress.com/

 categoricaldata.csv: categorical dependent - Labov New York 1966 study

 continuousdata.csv: continuous dependent - Intervocalic /d/ in Caracas corpus (Díaz-Campos et al.)

S LVS web site: www.languagevariationsuite.com

ψ

Language Variation Suite - Structure

Introduction

- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- Appendix
- References

Language Variation Suite (LVS) About Data Visualization Inferential Statistics

- 🕚 Data
 - Upload file, data summary, adjust data, cross tabulation
- Ø Visual Analysis
 - Plotting, cluster classification
- Inferential Statistics
 - Modeling, regression, conditional trees, random forest

Language Variation Suite - Structure

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

Appendix

References

Language Variation Suite (LVS) About Data Visualization Inferential Statistics

Data

- Upload file, data summary, adjust data, cross tabulation
- Ø Visual Analysis
 - Plotting, cluster classification
- Inferential Statistics
 - Modeling, regression, conditional trees, random forest

Upload File

Intr		

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

Appendix

References

File Upload Uploaded Dataset Summary Data Structure Cross Tabulation Frequency

Adjust Data

Language Variation Suite (LVS) About Demo Data Visual Analysis RBRUL Inferential Statistics

Upload movie_metadata.csv

Step1: Upload CSV File

Choose CSV File

Excel Format

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

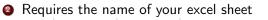
Inferential Analysis

Mixed Effects

 ${\sf Appendix}$

References

Slow processing


or Step1: Upload Excel File Choose EXCEL File (Will take long to upload)

Browse	No file selected
DI0#36	NO INC SCIECTED

Step3: Select excel sheet

Type the name of your excel sheet (ex. sheet1)

Type here

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

Save Excel as CSV Format

Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

 ${\sf Appendix}$

References

To optimize speed - Save as CSV prior upload

Common Formats Excel 97-2004 Workbook (.xls) Excel Template (.xltx) Excel 97-2004 Template (.xlt) Comma Separated Values (.csv) Web Page (.htm) PDF

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

Upload File

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

 ${\sf Appendix}$

References

Upload categoricaldata.csv

Step1: Upload CSV File

Choose CSV File

Uploaded Dataset

File Upload

Summary

Frequency

Adjust Data

Data Structure

Cross Tabulation

Uploaded Dataset

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

Appendix

References

The data content is imported as a table and allows for sorting columns.

Lexical.Item	
Fourth	

Fourth

Fourth

Fourth

Fourth

Show 25 \$ entries

R.Use

retention

retention

retention

retention

retention

retention retention Search:

Store

Saks

Saks

Saks

Saks

Saks

Fourth				norr	nal						Saks	
Fourth				non	nal						Saks	
	۰. ۱		ð	•	•	æ	•	æ	•	E	50	Ì

Style

normal

normal

normal

normal

normal

Summary

File Upload

Summarv

Data Structure

Cross Tabulation

Uploaded Dataset

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

Appendix

References

Summary provides a quantitative summary for each variable, e.g. frequency count, mean, median.

Data Summary provides the usual univariate summary information. Look for anything unusual, minimum and maximum values and levels

R.Use deletion :499 retention:231		Sty emphatic normal	:271	Sto Kleins Macys	5:216
recencionizor	1001011505	normate	1455	Saks	

Data Structure

- **1** Total number of **observations** (rows)
- Oumber of variables (columns)
- Variable types
 - Factor categorical values
 - Num numeric values (0.95, 1.05)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Int - integer values (1, 2, 3)

Analysis Mixed Effects

Appendix

References

Cross Tabulation

Cro

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

Appendix

References

Cross-tabulation examines the relationship between variables.

File Upload			
Uploaded Dataset	Instructions	Two-by-Two Cross Tabulation	Multiple-Cross Tabulation
Summary		Variable (Rows) itains your dependent	Select One Independent Variable (Columns) Variable for Column
Data Structure	variable?	•	NULL
Cross Tabulation			
Frequency			
Adjust Data			

Ψ

Cross-Tabulation: One Dependent and One Independent Variables

Introduction

- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- Appendix
- References

Which column contains your dependent variable?

R.Use	•
NULL	
R.Use ┥	
Lexical.Ite	em
Style	
Store	

Variable for Column

Lexical.Item		•
NULL		
R.Use		
Lexical.Item 🔫		
Style		
Store		

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

Cross-Tabulation Output

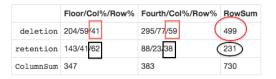
Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics


Inferential Analysis

Mixed Effects

Appendix

References

Raw frequency / Proportion by column / Proportion across row

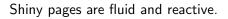
Language Variation Suite - Structure

Introduction

- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- Appendix
- References

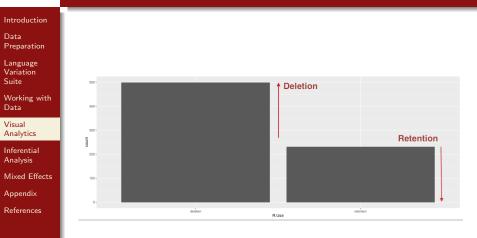
Language Variation Suite (LVS) About Demo Data Visual Analysis RBRUL Inferential Statistics

- 🚺 Data
 - Upload file, data summary, adjust data, cross tabulation
- Visual Analysis
 - Plotting, cluster classification
- Inferential statistics
 - Modeling, regression, varbrul analysis, conditional trees, random forest


◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ()

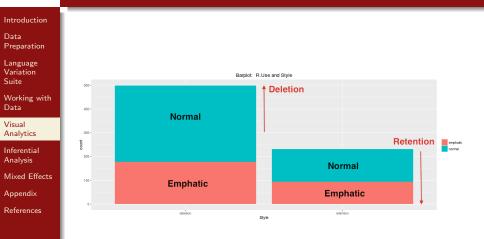
Adjusting Browser - Layout

- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- Appendix
- References



・ロト ・得ト ・ヨト ・ヨト

э

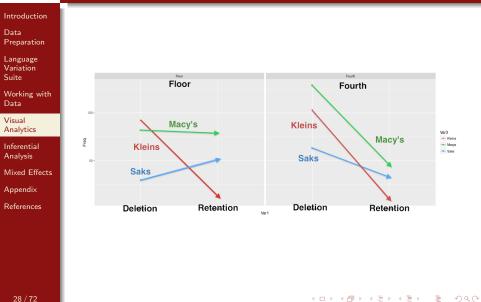

One Variable Plot

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

Two Variables Plot

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

Saving Plot


 ${\sf Appendix}$

References

Three Variables Plot

Cluster Plot

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis Mixed Effects

Appendix

References

- Classification of data into **sub-groups** is based on **pairwise similarities**
- Groups are clustered in the form of a tree-like dendrogram

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

Cluster Plot

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

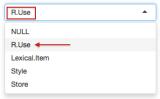
Inferential Analysis

Mixed Effects

Appendix

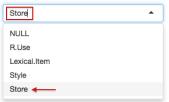
References

Variable must contain at least three values to be clustered.

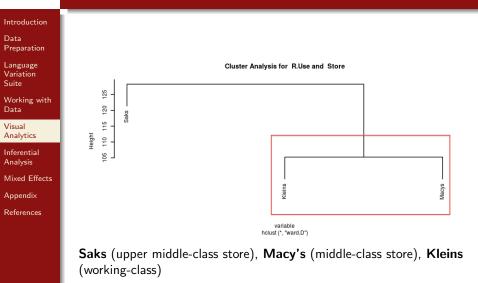

Your dependent variable

NULL

One independent variable for cluster


NULL 🔻

Your dependent variable


One independent variable for cluster

-

Cluster Plot

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Inferential Statistics

Introduction

- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- ${\sf Appendix}$
- References

ψ

Language Variation Suite - Structure

Introduction

- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- Appendix
- References

Language Variation Suite (LVS) About Demo Data Visual Analysis RBRUL Inferential Statistics

- 🚺 Data
 - Upload file, data summary, adjust data, cross tabulation
- Ø Visual Analysis
 - Plotting, cluster classification
- Inferential statistics
 - Modeling, regression, varbrul analysis, conditional trees, random forest

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ()

How to Create a Regression Model

Stepwise Regression

Modelina

Rearession

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

Appendix

References

Step 1 **Modeling** - create a model with dependent and independent variables

Varbrul Analysis

Conditional Trees

Bandom Forest

- Step 2 **Regression** specify the type of regression (fixed, mixed) and type of dependent variable (binary, continuous, multinomial)
- Step 3 Stepwise Regression compare models (Log-likelihood, AIC, BIC)
- Step 4 **Conditional Trees** apply non-parametric tests to the model

Modeling

Introduction Data Modeling Rearession Stepwise Regression Varbrul Analysis Conditional Trees **Random Forest** Preparation Language Variation Select one dependent variable Choose columns: Suite Choose one column: Lexical.Item Style Store Working with Data R.Use . **R**.Use Visual NULL Analytics R.Use 🚽 Inferential **Reference Level** Analysis Lexical.Item NULL . Mixed Effects Style NULL Appendix Store base level deletion -References retention

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

Modeling

Introduction Data Modelina Rearession Stepwise Regression Varbrul Analysis Conditional Trees **Random Forest** Preparation Language Variation Select one dependent variable Choose columns: Suite Choose one column: Lexical.Item Style Store Working with Data R.Use . **R**.Use Visual NULL Analytics R.Use 🚽 Inferential Reference Level Analysis Lexical.Item NULL . Mixed Effects Style NULL Store Appendix base level deletion -References retention

We are interested in RETENTION = Application

Regression Types

Introduction

- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- Appendix
- References

Model

- a.) Fixed effect
- b.) Mixed effect individual speaker/token variation (within group)

• Type of Dependent Variable

- a.) Binary/categorical (only two values)
- b.) Continuous (numeric)
- c.) Multinomial categorical with more than two values

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Regression

Introduction Data Preparation	Modeling Regression Stepwise Regression	Varbrul Analysis Conditional Trees Random Forest
Language Variation Suite		
Working with Data	Type of Regression Model	Type of Dependent Variable
Visual Analytics	Models	binary
Inferential Analysis	NULL	NULL
Mixed Effects	NULL	continuous
Appendix	Fixed Effect Model Mixed Effect Model	multinomial
References		

< □ > < □ > < Ξ > < Ξ > < Ξ > ○ < ⊙

Model Output

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

Appendix

References

```
Call:
glm(formula = as.formula(paste(v, paste(listfactors, collapse = "+"),
   sep = "~")), family = binomial, data = plotData(), na.action = na.omit)
Deviance Residuals:
   Min
            10 Median 30
                                    Max
-1,4534 -0,8549 -0,5164 1,0493 2,4455
Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
(Intercept)
                -1.6276 0.2596 -6.269 3.64e-10 ***
Lexical.ItemFourth -0.9912 0.1749 -5.666 1.46e-08 ***
Stylenormal -0.3197 0.1787 -1.789 0.0736 .
StoreMacys
                 1.8004 0.2615 6.884 5.81e-12 ***
StoreSaks
               2.2564
                             0.2817 8.011 1.13e-15 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 911.27 on 729 degrees of freedom
Residual deviance: 791.82 on 725 degrees of freedom
ATC: 801.82
Number of Fisher Scoring iterations: 5
```

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

Model Output

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

Appendix

References

```
Call:
glm(formula = as.formula(paste(v, paste(listfactors, collapse = "+"),
   sep = "~")), family = binomial, data = plotData(), na.action = na.omit)
Deviance Residuals:
   Min
             10 Median
                             30
                                     Max
-1,4534 -0,8549 -0,5164 1,0493 2,4455
Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
(Intercept)
                -1.6276 0.2596 -6.269 3.64e-10 ***
Lexical.ItemFourth -0.9912 0.1749 -5.666 1.46e-08 ***
               -0.3197 0.1787 -1.789 0.0736 .
Stylenormal
StoreMacys
                 1.8004 0.2615 6.884 5.81e-12 ***
StoreSaks
                 2,2564
                             0.2817 8.011 1.13e-15 ***
Signif, codes: 0 '*** 0,001 '**' 0,01 '*' 0,05 ',' 0,1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 911.27 on 729 degrees of freedom
Residual deviance: 791.82 on 725 degrees of freedom
ATC: 801.82
Number of Fisher Scoring iterations: 5
```

イロト 不得下 不同下 不同下

Interpretation

Introduction	
Data Preparation	
Language Variation Suite Working with Data Visual Analytics	Coefficients: Estimate Std. Error z value Pr(> z) (Intercept) -1.6276 0.2596 -6.269 3.64e-10 **** Lexical.ItemFourth -0.9912 0.1749 -5.666 1.46e-08 *** Stylenormal -0.3197 0.1787 -1.789 0.0736 . StoreMacys 1.8004 0.2615 6.884 5.81e-12 **** Signif. codes: 0 **** ' 0.001 '**' ' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Inferential Analysis	

- **Deletion** is the reference value
- Positive coefficient positive effect
- Negative coefficient negative effect

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Mixed Effects Appendix

References

Introducti Data Preparatic Language Variation Suite Working v Data Visual Analytics Inferential Analysis

Interpretation

uction	
	Coefficients:
ation	Estimate Std. Error z value Pr(> z)
	(Intercept) -1.6276 0.2596 -6.269 3.64e-10 ***
ige	Lexical.ItemFourth -0.9912 0.1749 -5.666 1.46e-08 ***
on	Stylenormal -0.3197 0.1787 -1.789 0.0736.
	StoreMacys 1.8004 0.2615 6.884 5.81e-12 ***
	StoreSaks 2.2564 0.2817 8.011 1.13e-15 ***
g with	
	Signif. codes: 0 '*** 0.001 '** 0.01 '*' 0.05 '.' 0.1 ' '

- Lexical item **Fourth** has a negative effect on **retention** compared to Floor and is significant
- Normal style has a slightly negative effect on retention but its coefficient is not significant
- Macy's and Saks have a positive and significant effect on retention. Saks (upper middle class store) is more significant than Macy's (middle class store)

Mixed Effects

Appendix

References

Analytics Inferential Analysis

Mixed Effects

Appendix

References

Interpretation

- Lexical item **Fourth** has a negative effect on **retention** compared to Floor and is significant
- Normal style has a slightly negative effect on retention but its coefficient is not significant
- Macy's and Saks have a positive and significant effect on retention. Saks (upper middle class store) is more significant than Macy's (middle class store)

Conditional Tree

Introduction

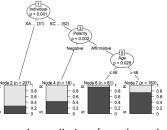
Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

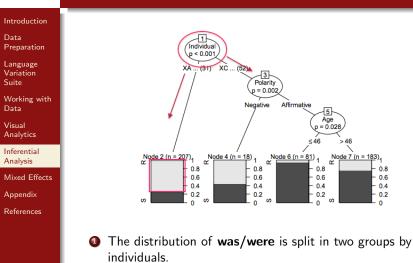

Mixed Effects

Appendix

References

Conditional tree: a simple non-parametric regression analysis, commonly used in social and psychological studies

- Linear regression: all information is combined linearly
- Conditional tree regression: visual splitting to capture interaction between variables

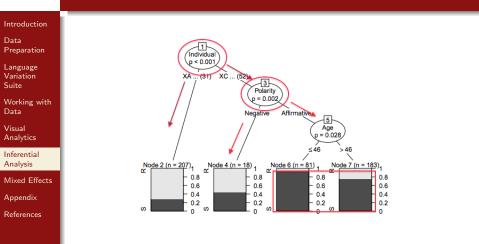


Recursive splitting (tree branches)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

ψ

Conditional Tree - Tagliamonte and Baayen 2012

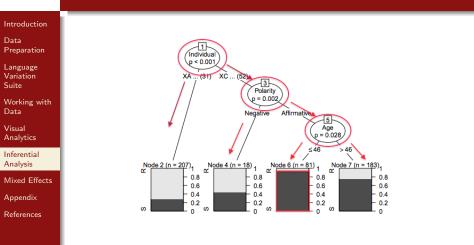


The variant were occurs significantly more frequently with the first group.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

ψ

Conditional Tree - Tagliamonte and Baayen (2012)



- **Polarity** is relevant to the second group of individuals.
- The variant were occurs significantly more often with negative polarity

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

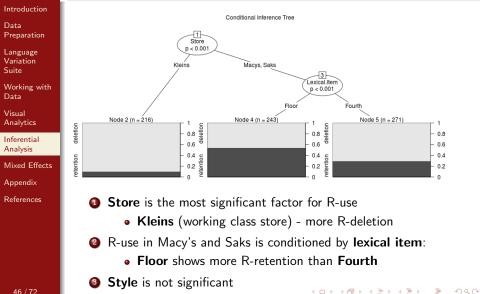
ψ

Conditional Tree - Tagliamonte and Baayen (2012)

- Optimizative Polarity is conditioned by Age.
- The variant was is produced significantly more often by Individuals of 46 and younger.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

= 900


Conditional Tree

Introduction									
Data Preparation									
Language Variation Suite									
Working with Data	Modeling Regression Stepwise Regression Varbrul Analysis Conditional Trees								
Visual	This method builds a tree by splitting on the values of your independent variables								
Analytics	First, you need to select one dependent variable and independent variables in "Modeling" and "Regression" type.								
Inferential Analysis	Select Apply O none O apply								
Mixed Effects									
Appendix	 "Dependent Variable: R.Use Independent Variables: Lexical.Item" "Dependent Variable: R.Use Independent Variables: Style" "Obeendent Variable: R.Use Independent Variables: Store" 								
References									

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Conditional Tree

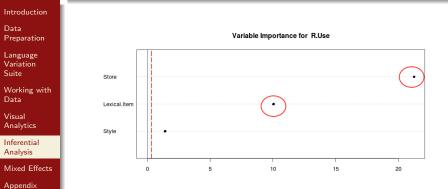
Random Forest

Introduction

- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- Appendix
- References

- Overlap and the second seco
- Product technique with small n large p data
- All predictors considered jointly (allows for inclusion of correlated factors)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○


Random Forest

Introduction	
Data Preparation	
Language Variation Suite	
Working with Data	Modeling Regression Stepwise Regression Varbrul Analysis Conditional Trees
Visual Analytics	Random Forests determine which variables are important in the variable classification. See refrences for more details. Select Apply
Inferential Analysis	 none apply
Mixed Effects	Predictors to right of dashed vertical line are significant. If the number of variables is very large, forests can be run once with all the variables, then run again using from the first run.
Appendix	
References	

Random Forest

References

- Store is the most important predictor
- 2 Lexical Item is the second predictor
- Style is irrelevant: close to zero and red dotted line (cut-off value).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

Fixed and Mixed Models

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

 ${\sf Appendix}$

References

Fixed Effects Model : All predictors are treated independent. Underlying assumption - no group-internal variation between speakers or tokens

Mixed Effects Model : Allows for evaluation of individual- and group-level variation

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

Fixed and Mixed Models

Introduction

- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- ${\sf Appendix}$
- References

Fixed Regression Model - ignoring individual variations (speakers or words) may lead to Type I Error: "a chance effect is mistaken for a real difference between the populations"

Mixed Regression Model - prone to Type II Error:

"if speaker variation is at a high level, we cannot discern small population effects without a large number of speakers" (Johnson 2009, 2015)

Mixed Effect Regression

Introduction

- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- ${\sf Appendix}$
- References

$\label{eq:Mixed Model} \textbf{Mixed Model} = \textbf{fixed effects} + \textbf{random effects}$

Fixed-effect factor - "repeatable and a small number of levels" Random-effect factor - "a non-repeatable random sample from a larger population" (Wieling 2012)

- walk, sleep, study, finish, eat, etc
- event verb, stative verb
- speaker1, speaker3, speaker3, etc
- male, female

Mixed Effect Regression

Introduction

- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- Appendix
- References

$\label{eq:Mixed Model} \textbf{Mixed Model} = \textbf{fixed effects} + \textbf{random effects}$

Fixed-effect factor - "repeatable and a small number of levels" **Random-effect factor** - "a non-repeatable random sample from a larger population" (Wieling 2012)

- walk, sleep, study, finish, eat, etc
- event verb, stative verb
- speaker1, speaker3, speaker3, etc
- male, female

Preparing for Mixed Model

Introduction

- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- Appendix
- References

Download continuousdata.csv

Opload this file on LVS

File Upload
Uploaded Dataset
Summary

Data - Uploaded Dataset

Introduction

- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- ${\sf Appendix}$
- References

54 / 72

Uploaded Dataset Show 25 \$ entries		RANDO	м			
						Search:
Dependent	Subjects	Sex 👙	Age 🍦	Class	token	TokenFrequency
0.97	CA1HA	m	20-34	1	mudamos	45
0.98	CA1HA	m	20-34	1	edad	149
0.96	CA1HA	m	20-34	1	florida	20
0.95	CA1HA	m	20-34	1	edad	149
0.98	CA1HA	m	20-34	1	distanciados	2
0.98	CA1HA	m	20-34	1	cada	331

◆□ > ◆□ > ◆臣 > ◆臣 > □臣 = のへで

Mixed Effect Modeling

NULL

Introduction Data Preparation	Language Variation Suite (LVS) About Demo Data Visual Analysis RBRUL Inferential Statistics
Language Variation Suite Working with Data	Modeling Regression Stepwise Regression Varbrul Analysis Conditional Trees Random Forest
Visual Analytics	Select one dependent variable Fixed Effects - independent variables Choose one column: Choose columns: Dependent Sex Age TokenFrequency
Inferential Analysis	NULL Dependent Subjects
Mixed Effects	Subjects Class
Appendix	Sex token Age PrecedingContext
References	Class FollowingContext
	token totalDuration
	Reference Level

-

NULL when the dependent variable is continuous

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

Mixed Effect Modeling

Introduction						
Data Preparation	Modeling	Regression	Stepwise Regression	Varbrul Analysis	Conditional Trees	Random Forest
Language Variation				Type of Dependent Va		
Suite	Model S	Selection		continuous	•	
Working with	Mixed	Effect Model	^	NULL		
Data	NULL			binary		
Visual	Fixed Effect Model			continuous		
Analytics	Mixed	Effect Model		multinomial		
Inferential Analysis				INCL		

Mixed Effects - group-internal variation

Select Random Variable for Mixed Model (ex. Subjects or Tokens)

Subjects token	
NULL	
Dependent	
Sex	
Age	
Class	
PrecedingContext	
FollowingContext	Ă

Mixed Effects

Appendix

References

Regression Results

Sepled residuals.

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

Appendix

References

caled residuals:
Min 10 Median 30 Max
4.7906 -0.4281 0.1440 0.6619 1.8390
andom effects:
Groups Name Variance Std.Dev.
token (Intercept) 7.436e-06 0.002727
Subjects (Intercept) 1.455e-04 0.012064
Residual 9.616e-04 0.031010
lumber of obs: 517, groups: token, 301; Subjects, 12
ixed effects:
Estimate Std. Error df t value Pr(> t)
Intercept) 9.591e-01 7.495e-03 8.050e+00 127.964 1.31e-14 ***
exm 4.018e-03 7.490e-03 8.030e+00 0.537 0.6061
ge35-54 6.121e-04 9.167e-03 8.007e+00 0.067 0.9484
ge55+ -1.643e-02 9.172e-03 8.024e+00 -1.791 0.1110
okenFrequency 1.082e-05 3.853e-06 6.046e+00 2.807 0.0306 *
ignif. codes: 0 '****' 0.001 '** 0.01 '*' 0.05 '.' 0.1 ' ' 1
-

Regression Results

Age35-54

Age55+

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

Appendix

References

Scaled residuals	31				- 2	
Min 1Q	Median 3	Q Max				2
-4.7906 -0.4281	0.1440 0.661	9 1.8390				2
Random effects:						
Groups Name	Variance	Std.Dev.				
token (Inter	cept) 7.436e-0	6 0.002727				20
Subjects (Inter	rcept) 1.455e-0	4 0.012064				SU
Residual	9.616e-0	4 0.031010				
Number of obs: 5	517, groups: t	oken, 301;	Subject	is, 12		2
Fixed effects:						
	Estimate Std.	Error	df	t value	Pr(> t)	
(Intercept)	9.591e-01 7.4	95e-03 8.	050e+00	127.964	1.31e-14	***
Sexm	4.018e-03 7.4	90e-03 8.	030e+00	0.537	0.6061	

9.167e-03

9.172e-03

Signif. codes: 0 '*** 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8.007e+00

8.024e+00

6.046e+00

0.067

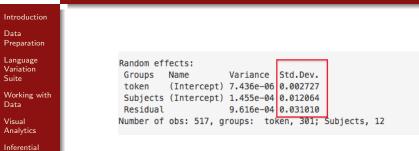
2.807

-1.791

0.9484

0.1110

0.0306 *


6.121e-04

-1.643e-02

TokenFrequency 1.082e-05 3.853e-06

Interpretation - Random Effects

- Analysis Mixed Effects
- Appendix
- References

- **Standard Deviation**: a measure of the variability for each random effect (speakers and tokens)
 - **Residual**: random variation that is not due to speakers or tokens (residual error)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ()

Interpretation - Fixed Effects

Introduction

- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- Appendix
- References

Fixed effects:						
	Estimate	Std. Error	df	t value	Pr(> t)	
(Intercept)	9.591e-01	7.495e-03	8.050e+00	127.964	1.31e-14 *	**
Sexm	4.018e-03	7.490e-03	8.030e+00	0.537	0.6061	
Age35–54	6.121e-04	9.167e-03	8.007e+00	0.067	0.9484	
	-1.643e-02	9.172e-03	8.024e+00	-1.791	0.1110	
TokenFrequency	1.082e-05	3.853e-06	6.046e+00	2.807	0.0306 *	1
						٢.,
Signif. codes:	0 '*** 0	.001 '**' 0.	01 '*' 0.05	5 '.' 0.1	1 ′ ′ 1	
Age35–54 Age55+ FokenFrequency 	6.121e-04 -1.643e-02 1.082e-05	9.167e-03 9.172e-03 3.853e-06	8.007e+00 8.024e+00 6.046e+00	0.067 -1.791 2.807	0.9484 0.1110 0.0306 *]

Estimate/coefficient: reported in log-odds (negative or positive)

イロト イポト イヨト イヨト ヨー わくや

P-value: tells you if the level is significant

Bonus - Word Clouds

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Frequency Plot

Visual Analytics	Select a	column with tokens list	Select a column	with token frequenc	cy data
Working with Data	One Variable Plot	Two Variables Plot	Three Variables Plot	Cluster Plot	Frequency Plot
Language Variation Suite	Visual Data Exploratio	n			
Data Preparation					
Introduction					

token	•
Sex	Č
Age	
Class	T I
token	
PrecedingContext	
FollowingContext	
totalDuration	
TokenErequency	Ţ

TokenFrequency	•
Sex	n
Age	- 11
Class	
token	
PrecedingContext	
FollowingContext	
totalDuration	Ų
TokenFrequency	Ŧ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

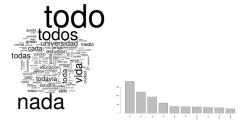
Inferential Analysis Mixed Effects Appendix References

Frequency Plot

Data Preparation

Language Variation Suite

Working with Data


Visual Analytics

Inferential Analysis

Mixed Effects

Appendix

References

Select a number for top frequent words (ex. 10 top frequent words)

10	•
10	1
20	
30	
40	
50	U
60	
70	
90	Ÿ

◆□> ◆圖> ◆ヨ> ◆ヨ> 「ヨ

Appendix 1: Density

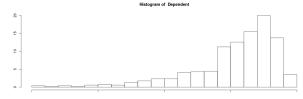
Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics


Inferential Analysis

Mixed Effects

Appendix

References

Visual Data Exploration				
One Variable Plot Two Variables Plot	Three Variables Plot	Cluster Plot	Frequency Plot	
Select one variable	Number of	bins can hav	ea	
NULL Dependent			on visualization	
Subjects Sex				
Age Class	Number of bins	in histogram (a	approximate):	
token	20		→ •	

▲ロト ▲歴 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()~.

Histogram

Introduction Data Preparation	Density : a non-parametric model of the distribution of points based on a smooth density estimate
Language Variation Suite	Number of bins in histogram (approximate):
Working with Data	20
Visual Analytics	
Inferential Analysis	Histogram of Dependent
Mixed Effects	£ -
Appendix	۶-
References	

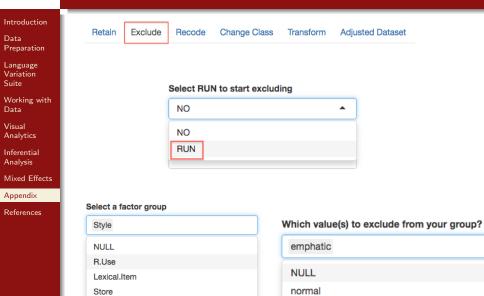
http://scikit-learn.org/stable/modules/density.html

Appenix 2 - Data Modification

Introduction					
Data Preparation					
Language Variation Suite					
Working with Data					
Visual Analytics	Table	Summary	Data Structure	Cross Tabulation	Frequency
Inferential Analysis	Adjust I	Data			
Mixed Effects					
Appendix					
References					
65 / 72				 < □ > < □ > < □ 	< E < ●

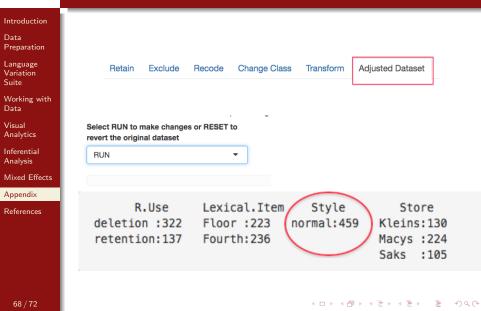
Adjust Data

- Introduction
- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- Appendix
- References


- Retain: Select data subset
- Exclude: Exclude variables from a factor group
- Recode: Combine and rename variables
- Change class: Numeric \rightarrow factor; factor \rightarrow numeric
- Transform: Apply log transformation to a specific column

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

- ADJUSTED DATASET:
 - Run to apply all above changes
 - Reset to reset to the original dataset


Exclude: Emphatic Style

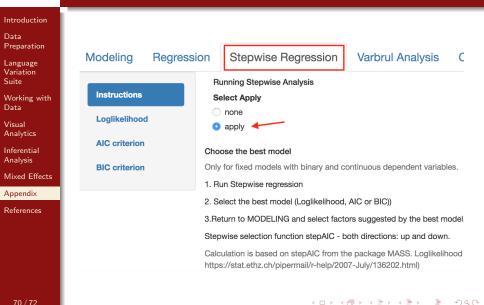
イロト イボト イエト イエト ヨー のくで

Adjusted Dataset

Adjusting Dataset

Introduction

- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- Appendix
- References


To revert to the original data, select **RESET**:

Select RUN to make changes or RESET to revert the original dataset

RESET	•
NULL	
RUN	
RESET	

Appendix 3 - Model Comparison

Thank you!

Introduction

Data Preparation

Language Variation Suite

Working with Data

Visual Analytics

Inferential Analysis

Mixed Effects

Appendix

References

obscrivn@indiana.edu

What features/analyses would you like to see in LVS?

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

References I

Introduction					

- Data Preparation
- Language Variation Suite
- Working with Data
- Visual Analytics
- Inferential Analysis
- Mixed Effects
- Appendix
- References

- [1] Baayen, Harald. 2008. Analyzing linguistic data: A practical introduction to statistics. Cambridge: Cambridge University Press
- [2] Bentivoglio, Paola and Mercedes Sedano. 1993. Investigación sociolingüística: sus métodos aplicados a una experiencia venezolana. Boletín de Lingüística 8. 3-35
- [3] Gries, Stefan Th. 2015. Quantitative designs and statistical techniques. In Douglas Biber Randi Reppen (eds.), The Cambridge Handbook of English Corpus Linguistics. Cambridge: Cambridge University Press
- [4] Labov, W. 1966. The Social Stratification of English in New York City. Washington: Center for Applied Linguistics

- [5] Schnapp, Jeffrey, and Peter Presner. 2009. Digital Humanities Manifesto 2.0.
- [6] http://gifsanimados.espaciolatino.com/x_bob_esponja_8.gif
- [7] https://daniellestolt.files.wordpress.com/2013/01/are-you-ready1.gif
- [8] http://www.martijnwieling.nl/R/sheets.pdf