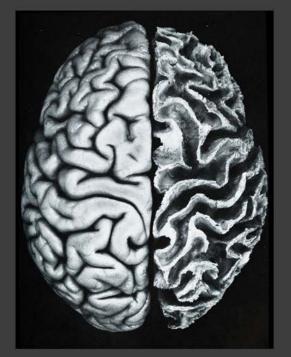

Self-portraits of the brain: Cognitive science, data visualization, and communicating brain structure and function

By Goldstone, Robert, Franco Pestilli, and Katy Börner. 2015. *Trends in Cognitive Sciences*, doi:10.1016.

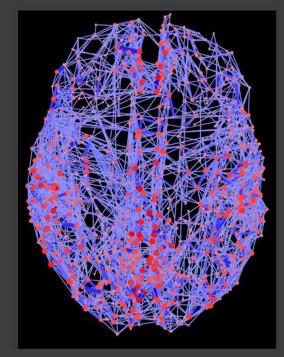
Presentation at http://events.brainhack.org/global 2017

3/4/2017

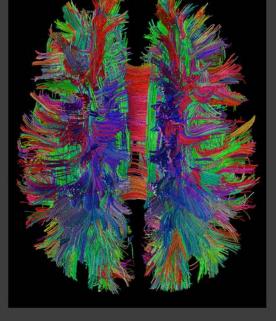


Overview

- A complete understanding of the brain must incorporate information about 3D neural location, activity, timing, and task.
- Data mining, high-performance computing, and visualization can serve as tools that augment human intellect.
- Visualizations must take into account human abilities and limitations to be effective tools for exploration and communication.


This review discusses key challenges and opportunities that arise when leveraging the sophisticated perceptual and conceptual processing of the human brain to help researchers understand brain structure, function, and behavior.

The Human Connectome


Anatomy

Klingler's method for fiber tract dissection uses freezing of brain matter to spread nerve fibers apart. Afterwards, tissue is carefully scratched away to reveal a relief-like surface in which the desired nerve tracts are naturally surrounded by their anatomical brain areas.

Connectome

Shown are the connections of brain regions together with "hubs" that connect signals among different brain areas and a central "core" or backbone of connections, which relays commands for our thoughts and behaviors.

Neuronal Pathways

A new MRI technique called diffusion spectrum imaging (DSI) analyzes how water molecules move along nerve fibers. DSI can show a brain's major neuron pathways and will help neurologists relate structure to function.

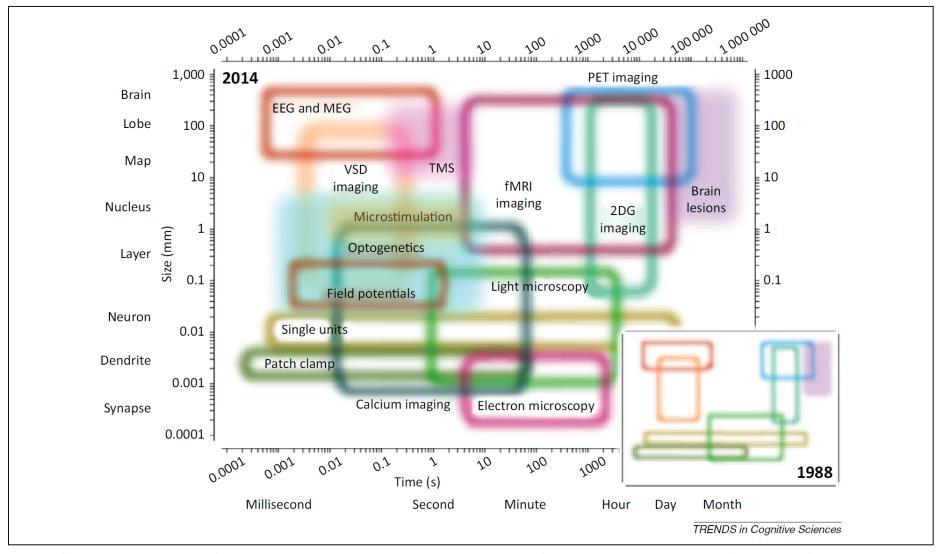


Figure 2. Spatiotemporal resolution of techniques in neuroscience. The spatiotemporal domain of neuroscience methods available for the study of the nervous system in 2014 is compared with that in 1988 [13] (inset). Colored regions represent the domain of spatial and temporal resolution for each method. Open regions represent measurement methods, and filled regions represent stimulation methods. The large gap in measurement resolution in the middle of the graph in 1988 has since been filled by the advent of *modern in vivo* neuroimaging measurements of the human brain. Reproduced, with permission, from [12].

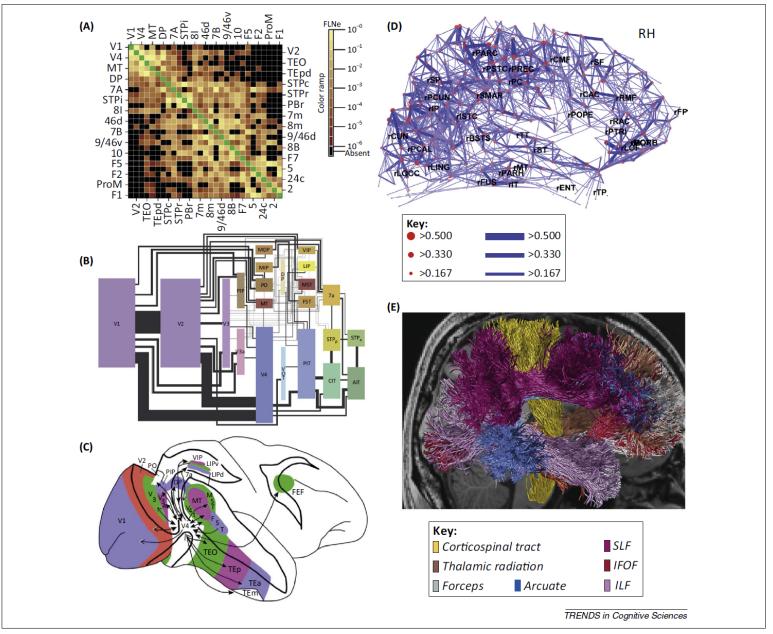


Figure 4. Visualization of connectivity data. (A) Tabular (asymmetric matrix) representation. Rows represent 29 tracer source areas, whereas columns represent 29 injected target areas. Color shows the strength of projection, whereby black indicates an absent connection and green indicates intrinsic projections (see color bar). (B) Coarse topological network layout. Schematic representation of 24 richly interconnected visual cortical areas in the macaque brain. (C) Neural projections to one brain region, mapped onto brain. Schematic representation of the connections of brain area V4 in the macaque brain. (D) Human connectome. Dorsal view of the connectivity backbone, node (red), and edges (blue). (E) Human white-matter tract anatomy. Seven of the major human white-matter fascicles are shown. Reproduced, with permission, from [100] (A), [63] (B), [64] (C), [65] (D), and [4] (E).

Box 1. Guided visualization design and frameworks

Making sense of data by designing appropriate visualizations is a complex process that involves not only human perception and cognition [88,89], but also data mining, visualization algorithms, and user interfaces. Different conceptualizations of the overall process have been developed to understand and optimize this process, and to improve human decision-making capabilities. Among others, process

models focus on key sense-making leverage points [90], the match between pre-conceptualizations and expectations of visualization designers and visualization readers [91], major data transformation and visual mappings [92], or describing visualization design and interpretation to support workflow optimization and tool design. Key visualization types are listed in Table I.

Name	Description	Examples ^a				
Tables	Ordered arrangements of rows and columns in a grid; grid cells may contain geometric, linguistic, or pictorial symbols	Figure 4A				
Charts	Depict quantitative and qualitative data without using a well-defined reference system	Examples are pie charts in which the sequence of 'pie slices' and the overall size of a 'pie' are arbitrary, or word clouds				
Graphs	Plot quantitative and/or qualitative data variables to a well-defined reference system, such as coordinates on a horizontal or vertical axis	Figures 2, 3A, 3C				
Maps	Display data records visually according to their physical (spatial) relations and show how data are distributed spatially	Figures 1A–F, 3B, 4C–E, 5A–C, 6A–D				
Network layouts	Use nodes to represent sets of data records, and links connecting nodes to represent relations between those records	Figure 4B; see also network overlays on brain maps in Figure 4C,D				
^a Figures cited refer to those in the main text.						

Table I. Key visualization types

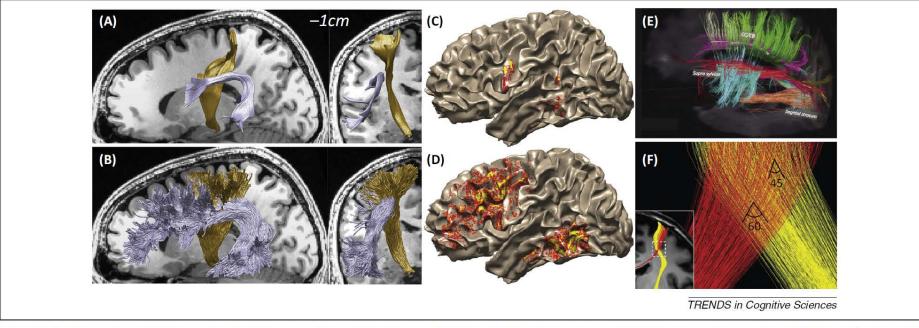


Figure 1. Anatomical visualization methods of human white matter. The panel on the left depicts trajectories of the human corticospinal tract (CST; gold) and arcuate fasciculus (AF; purple) identified using diffusion-weighted magnetic resonance imaging and deterministic (A) or probabilistic (B) tractography methods. The center panel depicts cortical projection zones of the AF estimated using deterministic (C) and probabilistic (D) tractography. The right-hand panel depicts white-matter fascicles apparently organized in sheaths with 90° crossings (E) [7] or crossing at different angles (F) [8]. Reproduced, with permission, from [4] (A–D), [7] (E), and [8] (F).

Box 2. Guided visualization design and frameworks

Any visualization can theoretically be analyzed and interpreted as a path along the columns of Table I. For example, given a scientific question, the question type and detailed insight need is identified, then data of different scale(s) are acquired, a visualization type is selected, and relevant geometric symbol types are chosen and visually modified (e.g., color coded) using different graphic variable types. Finally, different interaction types might be implemented to facilitate the interactive exploration of the visualization.

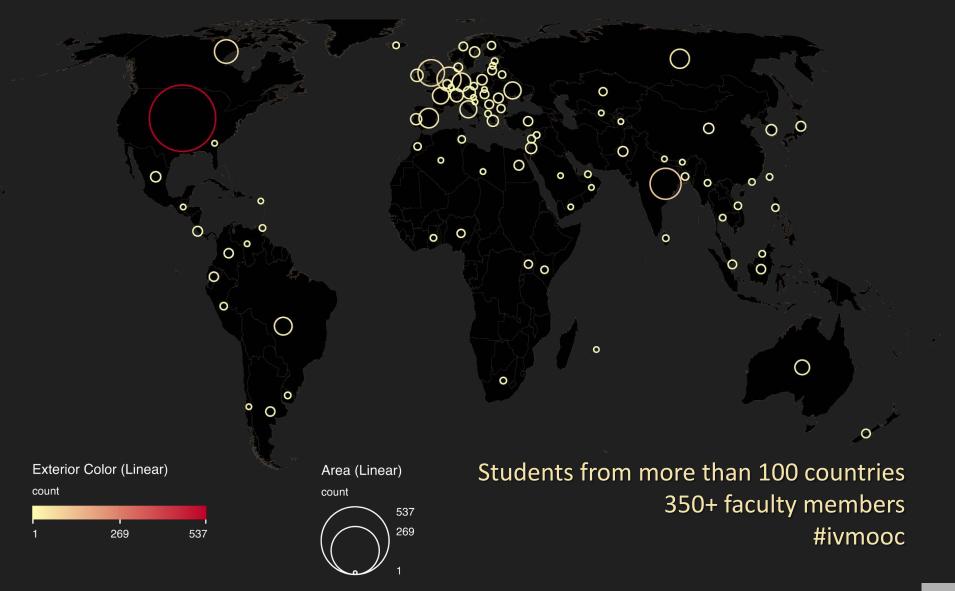
When visualizing the structure and function of the brain, the data that need to be represented are high dimensional and inherently complex. Many different types of visualization can be used and many different mappings of data attributes to visual attributes are possible. To ease the design of effective visualizations, different visualization frameworks (also called taxonomies or classifications) have been developed in statistics, information visualization, and graphic design [93–99]. Recent work [14] provides predefined types for the process of data visualization, including different task types, such as temporal (answering 'when' questions), spatial ('where'), topical ('what'), and trees and network layouts ('with whom'), and common insight need types (Table I, column 1).

Given well-defined general 'task types' and specific 'insight need types,' the final visualization will also depend on the type of data (see 'data scale types; Table I, column 2), the available 'visualization types (Table I, column 3), graphic symbol types (Table I, column 4), and 'graphic variable types' (Table I, column 5; Note that each type is further detailed in [14] (e.g., 'retinal: form' includes size, shape, rotation, curvature, angle and closure; 'retinal: color' subsumes value, hue, and saturation) that can be used, and the level of interaction required by the final visualization (Table I, column 6).

Insight need types	Data scale types	Visualization types	Graphic symbol types	Graphic variable types	Interaction types
 Categorize/cluster Order/rank/sort Distributions (also outliers, gaps) Comparisons Trends (process and time) Geospatial Compositions (also of text) Correlations/relationships 	 Nominal Ordinal Interval Ratio 	 Table Chart Graph Map Network layout 	 Geometric symbols point line area surface volume Linguistic symbols text numerals punctuation marks Pictorial symbols images icons statistical glyphs 	 Spatial position (x, y, z) Retinal form color optics motion 	 Overview Zoom Search and locate Filter Details on demand History Extract Link and brush Projection Distortion

Table I. Visualization framework designed to ease the selection and design of data visualizations^a

^aAdapted from [14].


IVMOOC 2017

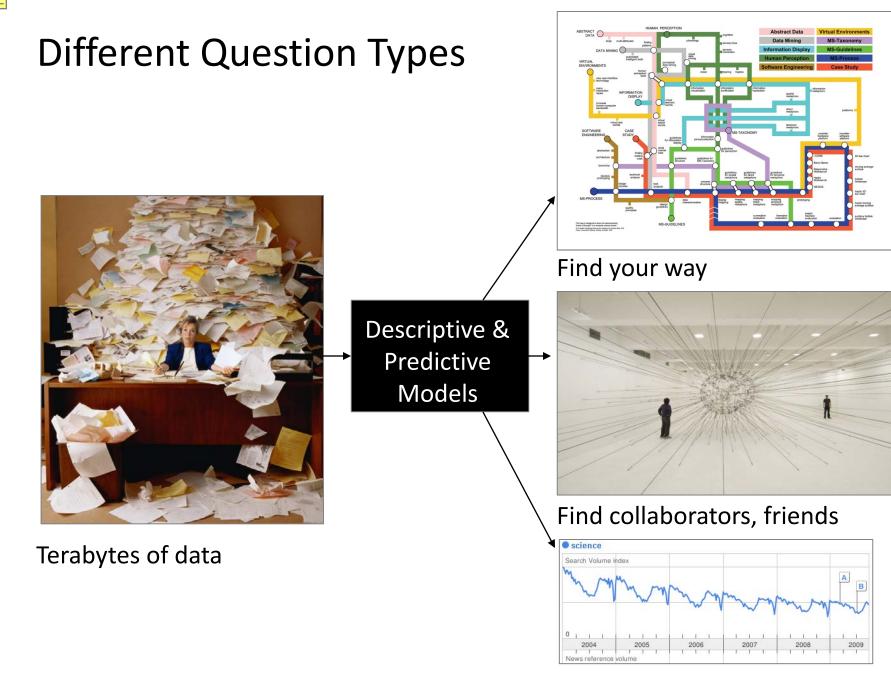
Register for free: <u>http://ivmooc.cns.iu.edu</u>. Class started Jan 10, 2017.

The Information Visualization MOOC ivmooc.cns.iu.edu

Course Schedule

Part 1: Theory and Hands-On

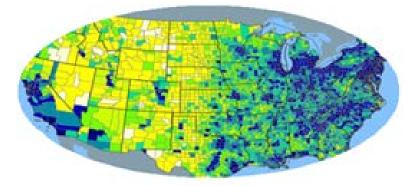
- Session 1 Workflow Design and Visualization Framework
- Session 2 "When:" Temporal Data
- Session 3 "Where:" Geospatial Data
- Session 4 "What:" Topical Data


Mid-Term

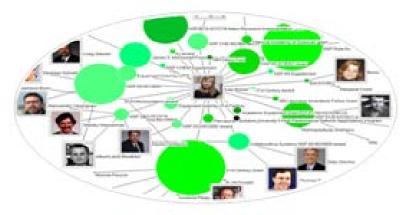
- **Session 5** "With Whom:" Trees
- **Session 6** "With Whom:" Networks
- Session 7 Dynamic Visualizations and Deployment
 Final Exam

Part 2: Students work in teams on client projects.

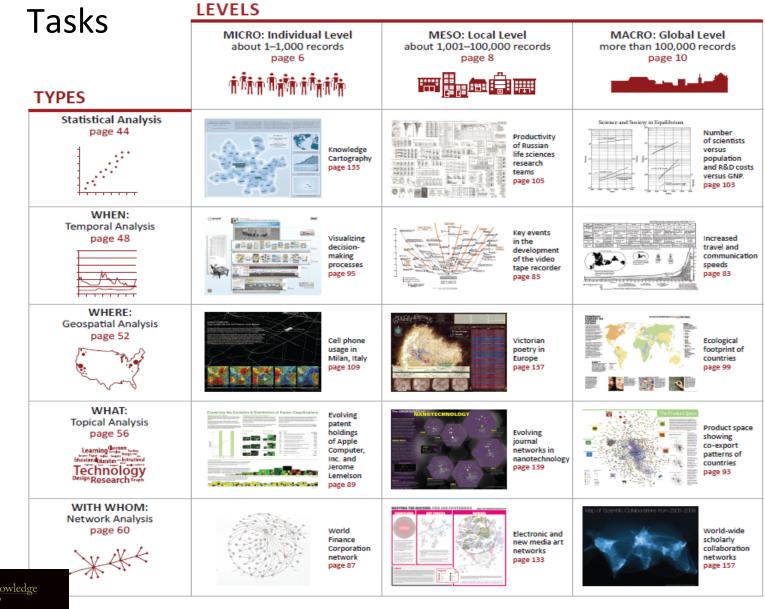
Final grade is based on Homework and Quizzes (**10%**), Midterm (**20%**), Final (**30%**), Client Project (**30%**), and Class Participation (**10%**).



Identify trends

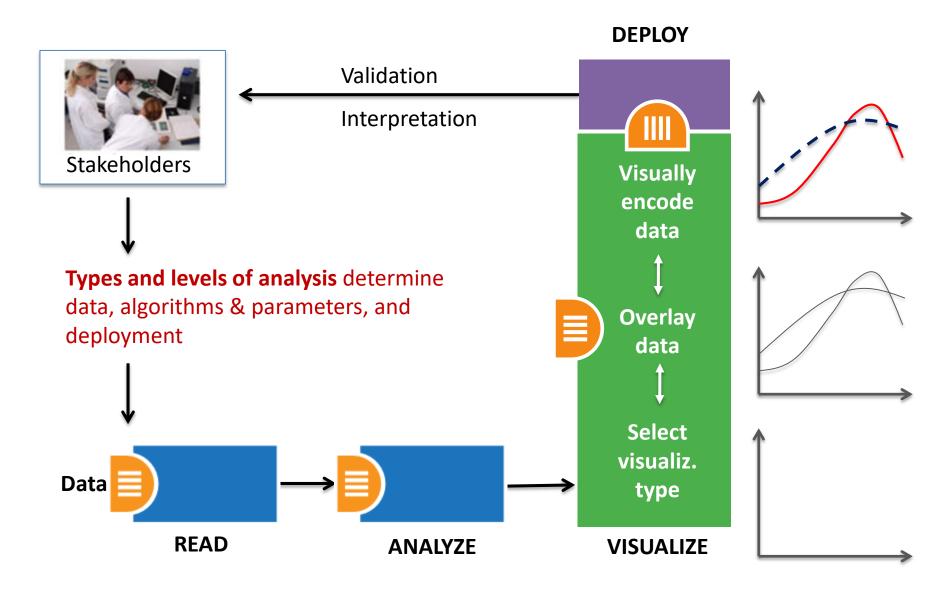

Different Levels of Abstraction/Analysis

Macro/Global Population Level

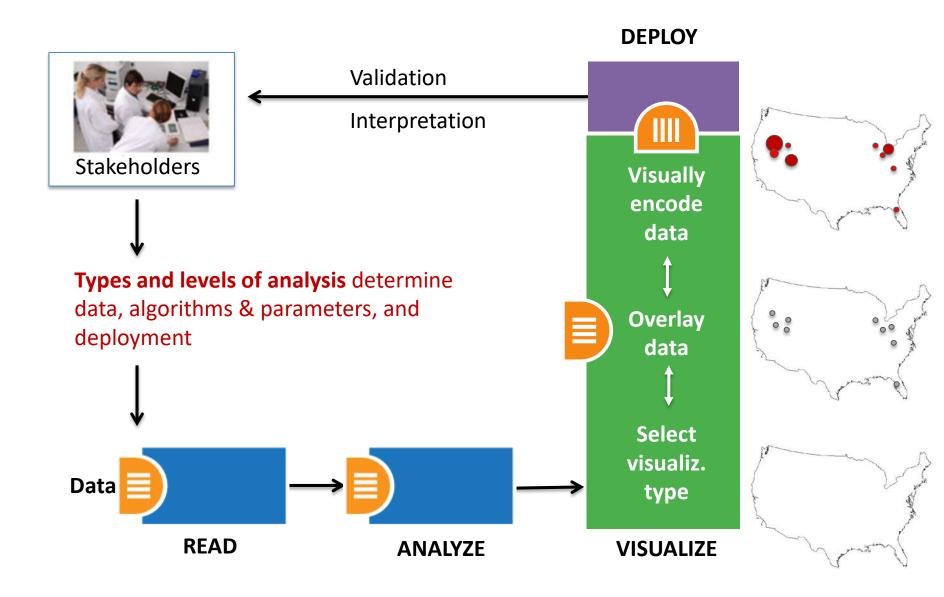


Meso/Local Group Level

Micro Individual Level



Atlas of Knowledge Anyone Can Map



Noods-Drivon Wa

Needs-Driven Workflow Design

Needs-Driven Workflow Design

Box 2. Guided visualization design and frameworks

Any visualization can theoretically be analyzed and interpreted as a path along the columns of Table I. For example, given a scientific question, the question type and detailed insight need is identified, then data of different scale(s) are acquired, a visualization type is selected, and relevant geometric symbol types are chosen and visually modified (e.g., color coded) using different graphic variable types. Finally, different interaction types might be implemented to facilitate the interactive exploration of the visualization.

When visualizing the structure and function of the brain, the data that need to be represented are high dimensional and inherently complex. Many different types of visualization can be used and many different mappings of data attributes to visual attributes are possible. To ease the design of effective visualizations, different visualization frameworks (also called taxonomies or classifications) have been developed in statistics, information visualization, and graphic design [93–99]. Recent work [14] provides predefined types for the process of data visualization, including different task types, such as temporal (answering 'when' questions), spatial ('where'), topical ('what'), and trees and network layouts ('with whom'), and common insight need types (Table I, column 1).

Given well-defined general 'task types' and specific 'insight need types,' the final visualization will also depend on the type of data (see 'data scale types; Table I, column 2), the available 'visualization types (Table I, column 3), graphic symbol types (Table I, column 4), and 'graphic variable types' (Table I, column 5; Note that each type is further detailed in [14] (e.g., 'retinal: form' includes size, shape, rotation, curvature, angle and closure; 'retinal: color' subsumes value, hue, and saturation) that can be used, and the level of interaction required by the final visualization (Table I, column 6).

Insight need types	Data scale types	Visualization types	Graphic symbol types	Graphic variable types	Interaction types
 Categorize/cluster Order/rank/sort Distributions (also outliers, gaps) Comparisons Trends (process and time) Geospatial Compositions (also of text) Correlations/relationships 	 Nominal Ordinal Interval Ratio 	 Table Chart Graph Map Network layout 	 Geometric symbols point line area surface volume Linguistic symbols text numerals punctuation marks Pictorial symbols images icons statistical glyphs 	 Spatial position (x, y, z) Retinal form color optics motion 	 Overview Zoom Search and locate Filter Details on demand History Extract Link and brush Projection Distortion

Table I. Visualization framework designed to ease the selection and design of data visualizations^a

^aAdapted from [14].

Visualization Framework

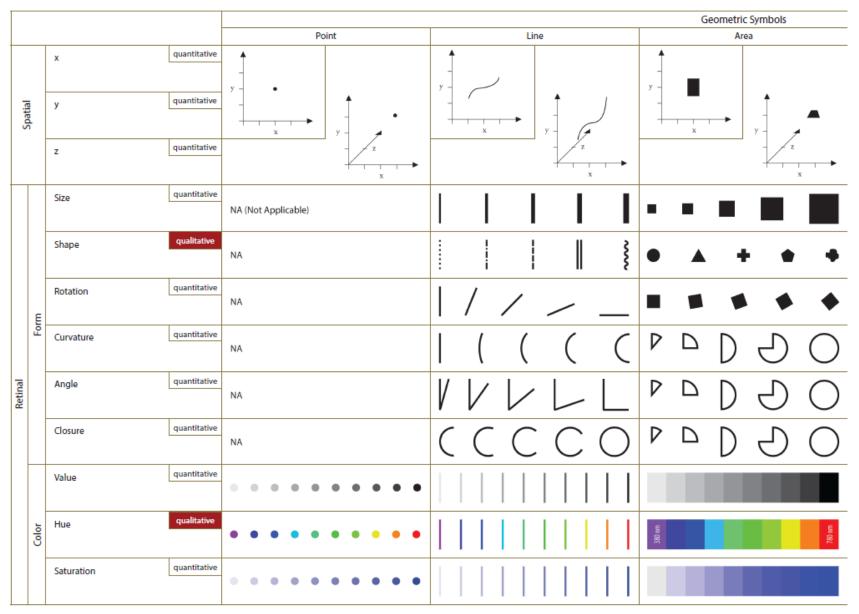
Insight Need Types	Data Scale Types	Visualization Types	Graphic Symbol Types	Graphic Variable Types	Interaction Types
page 26	page 28	page 30	page 32	page 34	page 26
 categorize/cluster order/rank/sort distributions (also outliers, gaps) comparisons trends (process and time) geospatial compositions (also of text) correlations/relationships 	 nominal ordinal interval ratio 	 table chart graph map network layout 	 geometric symbols point line area surface volume linguistic symbols text numerals punctuation marks pictorial symbols images	 spatial position retinal form color optics motion 	 overview zoom search and locate filter details-on-demand history extract link and brush projection distortion

Atlas of Knowledge Anyone Can Map Key Dimar

See page 24

Visualization Framework

Basic Task Typ	Basic Task Types							
Bertin, 1967	Wehrend & Lewis, 1996	Few, 2004	Yau, 2011	Rendgen & Wiedemann, 2012	Frankel, 2012	Tool: Many Eyes	Tool: Chart Chooser	Börner, 2014
selection	categorize			category				categorize/ cluster
order	rank	ranking					table	order/rank/ sort
	distribution	distribution					distribution	distributions (also outliers, gaps)
	compare	nominal comparison & deviation	differences		compare and contrast	compare data values	comparison	comparisons
		time series	patterns over time	time	process and time	track rises and falls over time	trend	trends (process and time)
		geospatial	spatial relations	location		generate maps		geospatial
quantity		part-to- whole	proportions		form and structure	see parts of whole, analyze text	composition	compositions (also of text)
association	correlate	correlation	relationships	hierarchy		relations between data points	relationship	correlations/ relationships

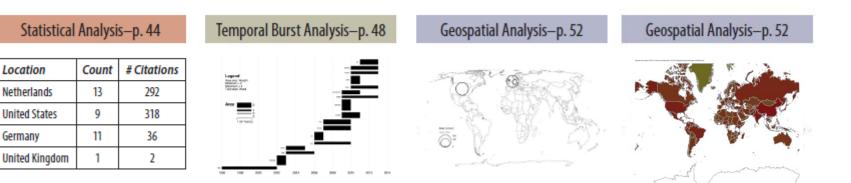

Visualization Framework

Insight Need Types	Data Scale Types	Visualization Types	Graphic Symbol Types	Graphic Variable Types	Interaction Types page 26
page 26	page 28	page 30	page 32	page 34	
 categorize/cluster order/rank/sort distributions (also outliers, gaps) comparisons trends (process and time) geospatial compositions (also of text) correlations/relationships 	 nominal ordinal interval ratio 	 table chart graph map network layout 	 geometric symbols point line area surface volume linguistic symbols text numerals punctuation marks pictorial symbols images icons statistical glyphs 	 spatial position retinal form color optics motion 	 overview zoom search and locate filter details-on-demand history extract link and brush projection distortion

Atlas of Knowledge Anyone Can Map Kry Bone

See page 24

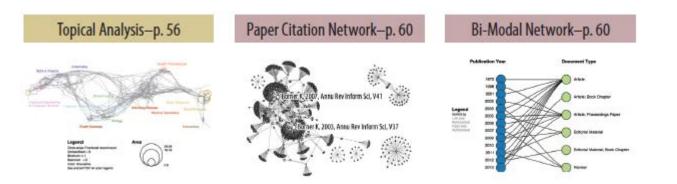
Graphic Variable Types Versus Graphic Symbol Types



Graphic Variable Types Versus Graphic Symbol Types

						Geometric Symbols			Linguistic Symbols	Pictorial Symbols
L				roit	Line	ATE	safas	volume	Test, Numerah, Punctuation Marks	Images, Icons, Statistical Glyphs
in the second	į	1 7 2	yanilaliye yanilaliye yanilaliye						Text	, , , , , , , , , , , , , , , , , , ,
Π		sias	qualitie	NA (Nat. Application)	 	• • • •	Intellegation Hap, page 50	In the Second Robel Map.	Mag. page 54	See Height of the House
		shape	-	964		• • • • •			Test Red Lat Text Ref	😳 😳 😳 ter da citra ta Angela
	:	actation	quellation	164	1///		>\		test the the list	🛔 calve 🗰 jaradi
	*		qualitie	на	((((▶ D D D O			Test Year Year	000000
New		Angle	qualitie	PAA	VVVLL	▶ D D D O		Some table cells are left blank to encourage future exploration of combinations.	Text Rost Rest Aber Aber	\odot \odot \odot \odot \odot
			qualities	164	CCCCO	000 <u>0</u>			A A A A A A A A A A A A A A A A A A A	
		Hale	-	· · · · · · · · · · ·					Test Test Test Test	* * * * *
	8		qualitie	••••		Re.			Test Test Test Test	🌲 (aleve) 🌲 (aleve)
Ц				••••••••					Test Test Test Test Test	italiou vatei 🇨 (deep vatei)
	ļ		quantitative				日間認問問	四國國際豐		
			querilation.					麗 怒 怒 🖬 🖬		
			yatikir yatikir	짧 땅 짧 踞 踞						※密目目
			querillative	NA.						See Fail Instorut Rendom Positions page 51
	\downarrow		querillelite		an an AN AN an				11111 /IIII /IIII /IIII /IIII /IIII	
in the second			querillative			466 66			Text Text Text Text Text Text	9 9 9 9 9 9 9 9 9 9 9 9
	dote	shading	querillative	•••••					Text Text Text Text Text	0 0 0 0 0 0 0 0 0 0 0
		sheroscapic cogith	querillative	Point in Instance of		Annin Annual	Surface In England	Volume in Exercicantbackground	Text is	lcores in
		speed	querillative	foreground _ background	torgoundbadgeound	Respond	Respond - background	Exegrand . balanced	Tongound . butground	Energoand - background
	1	wistly	querillative		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		المساجب المراجع والمسا		0+0,0+0 0	0.0.0.0
		dythm	querillative	Similary paint	Binking Inc. show	Binking area slow fait	Binking surface	Binking solame slow fast	Binlingtest slow fast	Binking icono show fazt
<u>ц</u>								I		

Load **One** File and Run **Many** Analyses and Visualizations


Times Cited	Publication Year	City of Publisher	Country	Journal Title (Full)	Title	Subject Category	Authors
12	2011	NEW YORK	USA	COMMUNICATI ONS OF THE ACM	Plug-and-Play Macroscopes	Computer Science	Borner, K
18	2010	MALDEN	USA	CTS-CLINICAL AND TRANSLATIONA L SCIENCE	Team Science	Research & Experimental Medicine	Falk-Krzesinski, HJ Borner, K Contractor, N Fiore, SM Hall, KL Keyton, J Spring, B Stokols, D Trochim, W Uzzi, B
13	2010	WASHINGTON	USA	TRANSLATIONA	Perspective for the Science of Team Science	Cell Biology Research & Experimental Medicine	Borner, K Contractor, N Falk- Krzesinski, HJ Fiore, SM Hall, KL Keyton, J Spring, B Stokols, D Trochim, W Uzzi, B

Germany

Load One File and Run Many Analyses and Visualizations

Times Cited	Publication Year	City of Publisher	Country	Journal Title (Full)	Title	Subject Category	Authors
12	2011	NEW YORK	USA	COMMUNICATI ONS OF THE ACM	Plug-and-Play Macroscopes	Computer Science	Borner, K
18	2010	MALDEN	USA	CTS-CLINICAL AND TRANSLATIONA L SCIENCE	Advancing the Science of Team Science	Research & Experimental Medicine	Falk-Krzesinski, HJ Borner, K Contractor, N Fiore, SM Hall, KL Keyton, J Spring, B Stokols, D Trochim, W Uzzi, B
13	2010	WASHINGTON	USA	SCIENCE TRANSLATIONA L MEDICINE	A Multi-Level Systems Perspective for the Science of Team Science	Cell Biology Research & Experimental Medicine	Borner, K Contractor, N Falk- Krzesinski, HJ Fiore, SM Hall, KL Keyton, J Spring, B Stokols, D Trochim, W Uzzi, B

Co-author and many other bi-modal networks.

Table 1. Recommendations for visualization practices and examples from neuroscience

Recommendation	Examples
1. Devote a substantial amount of research time to creating illustrative visualizations; view visualizations not as superficial depictions of scientific understandings, but as devices for generating and communicating understandings	If you only have 60 h to do your research, spend 20 h collecting data, 20 h analyzing data, and 20 h finding the best visualization and communication method for your data analysis results
2. Consider the audience for, and purpose of, a visualization	More details for experts and exploration, but fewer details for novices and communication; display intact cortical surface for spatial fidelity, but inflate or explode surface to provide global overview of entire surface
3. Show uncertainty in visualizations	Depict uncertainty in data with error bars, opacity, saturation, thickness, ranges rather than points, and distributions rather than central tendencies
4. Use strategic simplifications and idealizations	Bundle together tracts or connectivity paths (Figure 1A, main text) to avoid overcomplicated networks; align multiple brains or trials and show their overlap by brightness, opacity, or size; display complex connectivity patterns with 2D matrices; further simplify connectivity matrices with multidimensional scaling; use latent factor methods (MDS, PCA, ICA, factor analysis, hidden Markov models, Expectation Maximization) to compress high-dimensional data sets
5. Show all critical information	Use exploded brain diagrams to show entire cortical surface without occlusion; translucency; projection of brain activity onto panels; be explicit about the conventions and tools used; user-controlled rotation
6. Align graphic symbol types and graphic variable types with data scale types to be visualized and the insight needs to be satisfied	Represent continuous dimensions by saturation, size, or position on x-axis; represent categorical dimensions by shape or color hue; use time in animation to represent time since stimulus onset; represent positive EEG voltages by displacement above, not below, a horizontal midline
7. Carefully consider how best to align data from different trials, brains, stimuli, and studies	Consider aligning brains by cortical surface and anatomical anchor points rather than volumetric coordinates; use multidimensional scaling techniques to establish second-order relational similarities between stimuli
8. Create and use interactive visualization tools that support exploratory data analysis and show how complex data unfold over time	Relevant tools include mrTools, Vistasoft, Brain Voyager, Explore DTI, Camino, FreeSurfer, PyCortex, MRI Studio, AFNI, BrainBrowser, BrainVisa, EEGLab, DSI Studio, Caret, VTK, Dipy, FLS, IPython. Connectome Visualization Utility, TrackVis, LONI, Neuroimagery that can be scanned, rotated, and scaled; user-controlled overlays on top of a base map; user-controlled animations representing brain activity over time
9. Establish infrastructures that allow for sharing of data, analysis methods, visualization algorithms, and experimental methods in support of replicable results and efficient research and training	Use Flickr to share brain imaging data and visualizations, GitHub to share code, Medline to share results, open journals such as <i>Scientific Data</i> to share data and workflows

ISE SUMMER CAMPS 2017 Come make and shape the future!

Explore wearables, sentient architecture, augmented reality, robotics, digital fabrication, drawing machines, and more.

For details and to apply: camps.engineering.indiana.edu

