Visual Insights | Sentient Architectures ## Katy Börner @katycns Victor H. Yngve Distinguished Professor of Intelligent Systems Engineering & Information Science Director, Cyberinfrastructure for Network Science Center School of Informatics and Computing Indiana University Network Science Institute Indiana University, USA ISE Student Orientation August 17 2017 0000000 # Research # Interactive Visualizations using CNS WebVis Framework ## **Visualization: Twitter Network** Project: IAI demo.cns.iu.edu/client/iai/twitter.html # Visualization: Co-Author Networks (nanoHUB.org) Project: ERC # **Visualization: Sankey Diagram** Project: XDMoD This Sankey diagram displays a multivariate analysis of the relationship between IT resources, funding agencies, and publications. The width of each line represents grant dollars awarded to researchers. The configuration model allows for easy metric switching. ## **Visualization: Heatmap** Project: HSD ### demo.cns.iu.edu/client/hsd/static/heatmap_hour.html This visualization shows how white blood cell (WBC) laboratory tests correlate with three-year survival rates. The HSD dimension of the data (rows) is the time of the day of the test; and three-year survival rate (numbers and colors in the boxes) is an outcome variable. Aggregation level for the HSD time of day are shown— 24 hourly blocks on the right. The lowest survival rates are for patients with a low WBC value in the morning (specifically at 6am). In this project, we created data visualizations to explain HSD to users and to help them incorporate it into in their research. # **Visualization: Hex Map of Science** Project: ECON demo.cns.iu.edu/client/econ-hexmap Hex-style rendering of the UCSD map of science allows for easier investigation of metric bars within each hexagon node. This Interactive map allows the user to hover over a discipline label to highlight all its subdisciplines, and also hover over a subdiscipline to see all subdisciplines it is connected to. Luddy Hall Installation Indiana University Bloomington April 29 2017 UPPER ATRIUM Philip Beesley • Living Architecture Systems # Data Visualization Literacy: Research and Tools that Advance Public Understanding of Scientific Data NSF Org: DRL **Division Of Research On Learning** Initial Amendment Date: June 13, 2017 **Latest Amendment Date:** June 13, 2017 **Award Number:** 1713567 Award Instrument: Standard Grant **Program Manager:** Arlene M. de Strulle DRL Division Of Research On Learning EHR Direct For Education and Human Resources Start Date: August 1, 2017 End Date: July 31, 2021 (Estimated) **Awarded Amount to Date:** \$1,355,236.00 **Investigator(s):** Katy Borner katy@indiana.edu (Principal Investigator) Kylie Peppler (Co-Principal Investigator) Bryan Kennedy (Co-Principal Investigator) Stephen Uzzo (Co-Principal Investigator) Joe Heimlich (Co-Principal Investigator) Section 1. Control of the Sketch of the *Run* exhibit including data collection (top) and macroscope addon that lets interested visitors explore more complex data visualizations using table-top displays. xMacroscope general setup and activity—Raw data on left is converted to visualization on right by dragging and dropping (or connecting) column headers to axes, paint buckets, size, and shape. CSWS Session: Visualizing STEAM Data in Support of Smart Decision Making November 15-17, 2017, Tokyo, Japan. http://scws2017.org ## **Program Committee** - Katy Börner, Indiana University - Bob Evanich, Duke Energy - Chris Foreman, Purdue University - Brian King, IUPUI - Gerhard Klimeck, Purdue University - Oscar Moralez, Vision Tech - David Peter, Borg Warner - Lisel Record, Indiana University http://www.cis-ieee.org/encon2017 # Teaching ENGR-E 483/E-583 Information Visualization, http://ivmooc.cns.iu.edu ## (i) MACROSCOPES FOR INTERACTING WITH SCIENCE Earth Weather on a worldwide scale AcademyScope Exploring the scientific landscape #### **Mapping Global Society** Local news from a global perspective #### **Charting Culture** 2,600 years of human history in 5 minutes Iteration XI (2015): Macroscopes for Interacting with Science http://scimaps.org/iteration/11 # **Different Question Types** Terabytes of data Find your way Descriptive & **Predictive** Models Find collaborators, friends Identify trends #### **LEVELS Tasks** MICRO: Individual Level MESO: Local Level MACRO: Global Level about 1-1,000 records about 1,001-100,000 records more than 100,000 records page 10 page 6 page 8 nitan dipin dipin **TYPES** Statistical Analysis page 44 Number Productivity of scientists of Russian Knowledge versus life sciences Cartography population research and R&D costs page 135 versus GNP. page 105 page 103 WHEN: Temporal Analysis Key events page 48 Visualizing Increased in the decisiontravel and development making communication of the video processes speeds tape recorder page 95 page 83 page 85 WHERE: Geospatial Analysis page 52 Cell phone Victorian Ecological usage in poetry in footprint of Milan, Italy Europe countries page 109 page 137 page 99 WHAT: Evolving **Topical Analysis** patent Product space holdings Evolving page 56 showing of Apple co-export Computer, networks in patterns of Inc. and nanotechnology countries Jerome page 139 Technology Design Research Street page 93 Lemelson A PROPERTY OF THE PARTY WITH WHOM: Network Analysis page 60 World World-wide Electronic and Finance scholarly new media art Corporation collaboration networks network networks Atlas of Knowledge page 133 page 87 page 157 Anyone Can Map # Visualization Framework | Insight Need Types page 26 | Data Scale Types page 28 | | Graphic Symbol Types page 32 | Graphic Variable Types page 34 | Interaction Types page 26 | |---|---|--------------------------------------|---|---|---| | categorize/cluster order/rank/sort distributions (also outliers, gaps) comparisons trends (process and time) geospatial compositions (also of text) correlations/relationships | nominal ordinal interval ratio | table chart graph map network layout | geometric symbols point line area surface volume linguistic symbols text numerals punctuation marks pictorial symbols images icons statistical glyphs | spatial position retinal form color optics motion | overview zoom search and locate filter details-on-demand history extract link and brush projection distortion | # Graphic Variable Types Versus Graphic Symbol Types #### Graphic Variable Types Versus Graphic Symbol Types Grometric Symbols Linguistic Symbols Fictorial Symbols questilative quantitative size. NA Nat Applicable Text That curature ome table cells are left blank to encou questions clours substation specing combally **Fallery** quantitative crimitation credient Tampanno stading quantitative steroscopic copfit wixty detim Blinking paint feet. Sec. # Sci2 Tool Interface Components Implement Vis Framework Download tool for free at http://sci2.cns.iu.edu # Load **One** File and Run **Many** Analyses and Visualizations | Times
Cited | Publication
Year | City of Publisher | Country | Journal Title
(Full) | Title | Subject Category | Authors | |----------------|---------------------|-------------------|---------|--|---|---|--| | 12 | 2011 | NEW YORK | USA | COMMUNICATI
ONS OF THE
ACM | Plug-and-Play Macroscopes | Computer Science | Borner, K | | 18 | 2010 | MALDEN | USA | CTS-CLINICAL
AND
TRANSLATIONA
L SCIENCE | Advancing the Science of
Team Science | Research & Experimental Medicine | Falk-Krzesinski, HJ Borner,
K Contractor, N Fiore, SM Hall,
KL Keyton, J Spring, B Stokols,
D Trochim, W Uzzi, B | | 13 | 2010 | WASHINGTON | USA | | A Multi-Level Systems
Perspective for the Science
of Team Science | Cell Biology
 Research &
Experimental
Medicine | Borner, K Contractor, N Falk-
Krzesinski, HJ Fiore, SM Hall,
KL Keyton, J Spring, B Stokols,
D Trochim, W Uzzi, B | #### Statistical Analysis—p. 44 | Location | Count | # Citations | |----------------|-------|-------------| | Netherlands | 13 | 292 | | United States | 9 | 318 | | Germany | 11 | 36 | | United Kingdom | 1 | 2 | ## Temporal Burst Analysis—p. 48 #### Geospatial Analysis—p. 52 #### Geospatial Analysis—p. 52 # Load **One** File and Run **Many** Analyses and Visualizations | Times
Cited | Publication
Year | City of Publisher | Country | Journal Title
(Full) | Title | Subject Category | Authors | |----------------|---------------------|-------------------|---------|----------------------------------|---|---|--| | 12 | 2011 | NEW YORK | USA | COMMUNICATI
ONS OF THE
ACM | Plug-and-Play Macroscopes | Computer Science | Borner, K | | 18 | 2010 | MALDEN | USA | | Advancing the Science of
Team Science | Research & Experimental Medicine | Falk-Krzesinski, HJ Borner,
K Contractor, N Fiore, SM Hall,
KL Keyton, J Spring, B Stokols,
D Trochim, W Uzzi, B | | 13 | 2010 | WASHINGTON | USA | TRANSLATIONA | A Multi-Level Systems
Perspective for the Science
of Team Science | Cell Biology
 Research &
Experimental
Medicine | Borner, K Contractor, N Falk-
Krzesinski, HJ Fiore, SM Hall,
KL Keyton, J Spring, B Stokols,
D Trochim, W Uzzi, B | Co-author and many other bi-modal networks. LOCATIONS CONTACT #### Sentient Architecture — Sculptures that Listen and Talk 0000000 As the built environment becomes increasingly more complex and integrated with new technologies-including the emerging Internet of Things (IoT)—there is an urgent need to understand how embedded technologies affect the experience of individuals that inhabit these spaces. **View Sentient Architecture Camp** Join us at Bloomington's Makevention on Aug 26, 2017 All papers, maps, tools, talks, press are linked from http://cns.iu.edu These slides are at http://cns.iu.edu/presentations.html CNS Facebook: http://www.facebook.com/cnscenter Mapping Science Exhibit Facebook: http://www.facebook.com/mappingscience