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Analyzing and Visualizing S&T

Mapping the Evolution of Co-Authorship Networks

Ke, Visvanath & Bérner. 2004. Won 1st prize at the IEEE InfoVis Contest.
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Mapping the Evolution of Co-Authorship Networks

Ke, Visvanath & Bérner. 2004. Won 1st prize at the IEEE InfoVis Contest.
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The Global 'Scientific Food Web'

Mazloumian, Amin, Dirk Helbing, Sergi Lozano, Robert Light, and Katy Bérner. 2013. "Global Multi-Level
Analysis of the 'Scientific Food Web'". Scientific Reports 3, 1167. s
Citation shares

http://cns.iu.edu/docs/publications/2013-mazloumian-food-web.pdf »._2000-2002
<, 2007-2009

Contributions:

Comprehensive global analysis of
scholarly knowledge production and
diffusion on the level of continents,
countries, and cities.

Quantifying knowledge flows
between 2000 and 2009, we
identify global sources and sinks of

. Reference shares ~
knowledge production. Our ; 2000-2002
knowledge flow index reveals, e i
where ideas are born and
consumed, thereby defining a global
‘scientific food web’.
While Asia is quickly catching up in
terms of publications and citation
rates, we find that its dependence
on knowledge consumption has
further increased.

Figure 2 | World map of the greatest knowledge sources and sinks, based on our scientific fitness index. Green bars indicate that the number of
citations received is over-proportional, red that the number of citations received is lower than expected (according to a homogeneous distribution of
citations over all citiesthat have published more than 500 papers). It can be seen that most scientific activity occurs in the temperate zone. Moreover, areas

of high fitness tend to be areas that are performing economically well (but the opposite does not hold). 8



Long-Distance Interdisciplinarity Leads to Higher Scientific Impact
Lariviére, VVincent, Stefanie Haustein, and Katy Borner. 2015. PLOS ONE DOI: 10.1371.

Data: 9.2 million
interdisciplinary

research papers published
between 2000 and 2012 .

Results: majority (69.9%) of
co-cited interdisciplinary pairs
are “win-win” relationships,
L.e., papers that cite them have
higher citation impact and
there are as few as 3.3% “lose-
lose” relationships.

UCSD map of science is used

to compute “distance.”
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CLICKSTREAM MAP

OF SCIENCE

Bollen, Johan, Herbert Van de Sompel, Aric Hagberg, Luis M.A. Bettencourt, Ryan Chute, Marko A.
Rodriquez, Lyudmila Balakireva. 2008. A Clickstream Map of Science.




Future and Emerging Technologies

Science Phylomemy

THE RISE AND FALL OF SCIENTIFIC FIELDS

Vi
—r 0y { . s . i
1 vl . |
ﬁ.. & ! : Logond far fialds ]
' e B ]
v il

NEUROPROSTHESIS - PROSTH ETIC SOCKET

]

Science Phylomemy - David Chavalarias and Jean-Philippe Cointet - 2013

Chenﬁcal ResearCh & Development ;2: gﬂggc[ltljt';?{] Chemical
Powers the U.S. Innovation Engine Sy

Macroecanomic Implications of Public and Private RA&D Investrments in Chemical &

FEDERAL
GOVERMNMENT

-
$T Billion " I $8 Billion

FEDERAL FUNDING TAXES
S

$5 Billion

INDUSTRY FUNDING

CHEMICAL
INDUSTRY

$1B $1B + $5 Bllhon $10 Billion $40 Billion e e

i YRS b 311 YEARS ——t—> GROWTH IN GNP

ol " non | CHEMICAL INDUSTRY
OPERATING INCOME

L
p———————— 20 YEARS 600’000

JOBS CREATED

Council for Chemical Research. 2009. Chemical R&D Powers the U.S. Innovation Engine.
Washington, DC. Courtesy of the Council for Chemical Research.




Ward Shelley . 2011. History of Science Fiction.

B Language Communities
== of Twitter

English
Portuguese
Spanish
Dutch
Russian
French
Italian
German
Turkish
Arabic
Swedish
Danish
Finnish
Catalan
Romanian
Norwegian
Lithuanian
Slovak
Czech
Greek
Hungarian
Polish
Slovenian
FALELIED]
Latvian
Galician
Hebraw
Croatian
Bulgarian

Language Communities of Twitter - Eric Fischer - 2012
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Goldstein, Susan Aman, Clark Freifeld, Sumiko Mekaru, Tammie O'Rourke, Stephen Morse, Christine Kreuder
Johnson, Jonna Mazet, and the PREDICT Consortium - 2014
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Places & Spaces at Northwestern University
May 14 - September 23, 2015

Places & Spaces Exhibit at the David J. Sencer CDC Museum, Atlanta, GA
January 25-June 17, 2016




[lluminated Diagram Display
on display at the Smithsonian in DC.
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Science Map: How Scientific Disciplines Relate
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Geographic Map: Where Science Gets Done
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Hidalgo, César A, Bailey Klinger, Albert-Lé=zl6 Barabési, and Ricardo Hausmann. 2007. See also The Product Space map from Phase | of Places & Spaces.

Call for Macroscope Tools for the Places & Spaces: Mapping Science
EX h{b It (2 01 5) Themes for the upcoming iterations/years are:

¢ 11th Iteration (2015): Macroscopes for Interacting With Science

http://scimaps.org/call

¢ 12th lteration (2016): Macroscopes for Making Sense of Science

¢ 13th lteration (2017): Macroscopes for Forecasting Science

¢ 14th lteration (2018): Macroscopes for Economic Decision Makers

» 15th Iteration [2019): Macroscopes for Science Policy Makers

¢ 14th Iteration (2020): Macroscopes for Scholars 26
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Making Every Scientist a Research Funder

When it comes to using peer review to distribute research dollars, Johan Bollen
favors radical simplicity.

Ower the years, many scientists have suggested that the current system
could be improved by changing the composition of the review panels, tweaking
the interactions among reviewers, or revising how the proposals are scored. But
Bollen, a computer scientist at Indiana University, Bloomington, would simply
award all eligible researchers a block grant—and then require them to give
some of it away to colleagues they judge most deserving.

That radical step, described in a paper Bollen and four Indiana colleagues
recently posted on EMBO Reports, retains peer review's core concept of tap-
ping into the views of the most knowledgeable researchers. But itwould elimi-
nate the huge investmentin time and money required to submit proposals and
assemble panels to judge them.

Bollen's process would be almost instantaneous: In a version of expert-
directed crowdsourcing, scentists would fill out a form once a year listing
their favored researchers, and a predetermined portion of their annual grant
money—a total of, say, 50%—would then be transferred to their choices.

“So many scientists spend so much time on peer review, and there’s a high
level of frustration,” Bollen explains. “We already knowwho the best people are.
And if you're doing good work, then you deserve to receive support.”

Others are skeptical. “I've known Johan for a long time and have the high-
est regard for his ability as an out-of-the-box thinker,” says Stephen Griffin, a
retired National Science Foundation (NSF) program manager who's now a vis-
iting professor of information sciences at the University of Pittsburgh in Penn-
sylvania. “But there are a number of issues he doesn’t address.”

Those sticking points include the likely mismatch between what research-
ers need and what their colleagues give them; the absence of any replacement
for the overhead payments in today's grants, which support infrastructure at
hast institutions; and the dearth of public accountability for the billions of dol-
lars that would flow from public coffers to individuals. “Scientists aren't really
equipped to be a funding agency,” Griffin notes.

Bollen acknowledges that the process would need safeguards to ensure
that scientists don't reward their friends or punish their enemies. But his analy-
sis suggests that the U.5. research landscape would not look all that different
if his radical proposal were adopted.

Drawing upon citation data in 37 million papers over 20 years, the Indiana
researchers conducted a simulation premised on the idea that scientists would
reallocate their federal dollars according to how often they cited their peers.
The simulation, he says, yielded a funding pattern “similar in shape to the
actual distribution” at NSF and the National Institutes of Health for the past
decade—at a fraction of the overhead required by the current system.

-JDM

Science 7 February 2014: Vol. 343 no. 6171 p. 598

DOI: 10.1126/science.343.6171.598

http://www.sciencemag.org/content/343/6171/598.full?sid=4f40a7f0-6ba2-4ad8-a181-7ab394fe2178

From funding agencies to scientific agency: Collective allocation of

science funding as an alternative to peer review
Bollen, Joban, David Crandall, Damion Junk, Ying Ding, and Katy Borner. 2014. EMBO Reports 15 (1): 1-121.

®

Funding agencies

Existing (left) and proposed (right) funding systems. Reviewers in blue; investigators in red.

In the proposed system, all scientists are both investigators and reviewers: every scientist receives a fixed
amount of funding from the government and discretionary distributions from other scientists, but each is
required in turn to redistribute some fraction of the total they received to other investigators.

February 7, 2014
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Assume
Total funding budget in year y is A

Number of qualified scientists is 7

Each year,
the funding agency deposits a fixed amountintoeach ...~ :
account, equal to the total funding budget divided by JL* &_, iL '

the total number of scientists: z‘j/ .

Each scientist must distribute a fixed fraction of ‘ JL/ \i/ \dL

received funding to other scientists (no self-funding,

COlIs respected). T ‘L{Jx*iklt ;
LX) Ngv |
Result ** ***& !

H f [ / 4
Scientists collectively assess each others’ merit based \‘L***JL’

on different criteria; they “fund-rank” scientists;

highly ranked scientists have to distribute more s
money.

Example:

Total funding budget in year is 2012 NSF budget

Given the number of NSF funded scientists, each

receives a $100,000 basic grant.

Fraction is set to 50%

In 2013, scientist §' receives a basic grant of $100,000 ----------------- * ----- - * ----- 8
plus $200,000 from her peers, i.e., a total of $300,000. JL & iL

In 2013, § can spend 50% of that total sum, $150,000, " - JL/ __’\i/ —-b\ dL

on her own research program, but must donate 50% to

other scientists for their 2014 budget. T\ ‘L{__} x/i’ iL/ T
Rather than submitting and reviewing project proposals, *{-—h\ 4\*/-# iL ;

S donates directly to other scientists by logging into a 2 /
centralized website and entering the names of the \ ‘L—-b ‘ e JL’

scientists to donate to and how much each should

receive. Scientific community



Model Run and Validation:
Model is presented in http://arxiv.org/abs/1304.1067

It uses citations as a proxy for how each scientist might
distribute funds in the proposed system.

Using 37M articles from TR 1992 to 2010 Web of Science
(WoS) database, we extracted 770M citations. From the
same WoS data, we also determined 4,195,734 unique
author names and we took

the 867,872 names who had authored at least one paper
per year in any five years of the period 2000-2010.

For each pair of authors we determined the number of
times one had cited the other in each year of our citation
data (1992-2010).

NIH and NSF funding records from IU’s Scholarly
Database provided 347,364 grant amounts for 109,919
unique scientists for that time period.

Simulation run begins in year 2000, in which every scientist
was given a fixed budget of B = §100k. In subsequent
years, scientists distribute their funding in proportion to
their citations over the prior 5 years.

The model yields funding patterns similar to existing NIH
and NSF distributions.

Model Efficiency:

Using data from the Taulbee Survey of Salaries Computer
Science (b#1p:/ [ cra.oro/ resources/ taunlbee ) and the National
Science Foundation (NSF) the following calculation is
lluminating:

If four professors work four weeks full-time on a proposal
submission, labor costs are about $30k. With typical
funding rates below 20%, about five submission-review
cycles might be needed resulting in a total expected labor

cost of $150k.

The average NSF grant is $128k per year.

U.S. universities charge about 50% overhead (ca. $42k),
leaving about $86k.

In other words, the four professors lose $150k-$86k=$64k
of paid research time by obtaining a grant to perform the
research.

That is, U.S. universities should forbid professors to apply
for grants—if they can afford to forgo the indirect dollars.

To add: Time spent by researchers to review proposals. In
2012 alone, NSF convened more than 17,000 scientists to
review 53,556 proposals.
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Information Visualization Framework
&
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Micro: Individual Level
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Insight Need Types
page 26
- categorize/cluster
- order/rank/sort
« distributions
(also outliers, gaps)
-~ COmparisons
- trends
(process and time)
- geospatial
- compositions
(also of text)
- correlations/relationships

Data Scale Types
page 28

- nominal

- ordinal

- interval

- ratio

See pages 6-7

See page 24

Visualization Types

-

page 30
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Commertial Product Analytics

Graphic Symbol Types
page 32
- geometric symbols
point
line
area
surface
volume
- linguistic symbols
ext
numerals
punctuation marks
- pictorial symbols
images
icons
statistical glyphs

Graphic Variable Types
page 34
- spatial
position
- retinal
form
color
optics
motion

g
RSN S S
sl e ez ok ek, s

i

i

i‘!
i

[

i

et sl ine e proe e o -
vt e et it g e et
the chis e, e slgraters o e
srpced. sl the et e e the

P 1 Science and Teskwsiogy Facs | 7

37

Interaction Types
page26

- overview

« ZOOMm

- search and locate
- filter

- details-on-demand
- history

- extract

- link and brush

- projection

- distortion
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Graphic Variable Types Versus Graphic Symbol Types
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Overview

This course provides an overview about the state of the art
in information visualization. It teaches the process of
producing effective visualizations that take the needs of
users into account.

The course can be taken for three Indiana University credits
as part of the Online Data Science Program, as part of the
Information and Library Science M.S. program, and as part
of the online Data Science M.S. Program offered by the
School of Informatics and Computing. Students seeking
enrollment information should contact Rhonda Spencer at
812-855-2018, ilsmain@indiana.edu or

datasci@indiana.ed

Information Visualization MOOC ivmooc.cns.iu.edu

Among other topics, the course covers:

e Data analysis algorithms that enable extraction of
patterns and trends in data

e Major temporal, geospatial, topical, and network
visualization techniques

® Discussions of systems that drive research and

development.

Already registered? Click here to go to the course.
Forgot your password? Click here to reset it.

Register for free at http://ivmooc.cns.iu.edu. Class restarts January 12, 2016.
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' NS Cyberinfrastructure for
Network Science Center

B Research

-~ Open Data and Open
Code for Big Science
of Science Studies

B Development

B8 Behind the scenes of
the design and
development of
AcademyScope

B videos
2 I8 Watch Katy Borner's
L full presentation from
TEDxBloomington

All papers, maps, tools, talks, press are linked from http://cns.iu.edu

B Latest News

Put your money
=% where your citations

B are: a proposal for a
== - new funding system
(website accessed
9/05/13)

B Outreach

=4 See some of the most
’ 1= fascinating data

| visualizations

in the world.

B Teaching

Successful VMOOC
m will be offered again
_ in January of 2014

Understanding omples Spstens

Andrea Schamharst
Petervan den Besselaar Editors

Models of Science Dynamics

een Complexity Theory
and Information Sciences

VISUAL
INSIGHTS

of Knowledge

e Can Map

We work closely with
clients to provide
custom-made data,
visualization, and
software solutions

B Upcoming Events
Pelad Katy Borner attends
1 PIUG 2013 Northeast
Conference

1013 Katy Bamer presents Mapping
Science Exhibit at WSSF

10.15 Ted Polley & Google Team
present IVMOQOC at EDUCAUSE

10.22  Katy Barner presents at the
SCiELO 15 Years Conference

B Our Products

‘We work closely with
‘ ) clients to provide

custom-made data,
visualization, and

software solutions

These slides are at http://cns.iu.edu/docs/presentations

CNS Facebook: http://www.facebook.com/cnscenter

Mapping Science Exhibit Facebook: http://www.facebook.com/mappingscience
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