

Type of Analysis vs. Level of Analysis

	Micro/Individual (1-100 records)	Meso/Local (101–100,000 records)	Macro/Global (100,000 < records)	
Statistical Analysis/Profiling			All of NSF, all of USA, all of science.	
Temporal Analysis (When?)			113 Years of Physics Research	
Geospatial Analysis (Where?)	Career trajectory of one individual	Mapping a states intellectual landscape	PNAS publications	
Topical Analysis (What?) Base knowledge from which one grant draws.		Knowledge flows in Chemistry research	VxOrd/Topic maps of NIH funding	
Network Analysis (With Whom?) NSF Co-PI network of one individual		Co-author network	NIH's core competency	

3

Type of Analysis vs. Level of Analysis

	Micro/Individual (1-100 records)	Meso/Local (101–100,000 records)	Macro/Global (100,000 < records)
Statistical Analysis/Profiling	Individual person and their expertise profiles	Larger labs, centers, universities, research domains, or states	All of NSE all of USA, all of so
Temporal Analysis (When?)	Funding portfolio of one individual	ic bursts in NAS	113 Years of Physics Research
Geospatial Analysis (Where?)	Career trajectory of one individual	intellectual ia	PNAS publications
Topical Analysis (What?)	Base knowledge from s.	f	VxOrd/Topic NIH funding
Network Analysis (With Whom?)	NSF CO-PI network of one	Co-author network	NIH's core com

Individual Co-PI Network Ke & Börner. 2006. *Jerone Buseneyer *James Wolker *James Wolker *James S McCorel Found | Network Analysis | *James South Supplement | Network Analysis | *Jerone Buseneyer | *James S McCorel Found | Network Analysis | *Jerone Buseneyer | *Jerone B

Mapping the Evolution of Co-Authorship Networks

Ke, Visvanath & Börner. 2004. Won 1st prize at the IEEE InfoVis Contest.

Mapping the Evolution of Co-Authorship Networks

Ke, Visvanath & Börner. 2004. Won 1st prize at the IEEE InfoVis Contest.

Studying the Emerging Global Brain: Analyzing and Visualizing the Impact of Co-Authorship Teams

Börner, Dall'Asta, Ke & Vespignani. 2005. Complexity 10 (4):58-67.

Research question:

 Is science driven by prolific single experts or by high-impact coauthorship teams?

Contributions:

- New approach to allocate citational credit.
- Novel weighted gr
- Visualization of th co-author networl
- Centrality measur impact.
- Global statistical analysis of paper production and citations in correlation with co-authorship team size over time.
- Local, author-centered entropy measure.

Spatio-Temporal Information Production and Consumption of Major U.S.

Research Institutions Börner, Penumarthy, Meiss, & Ke.

2006. "Mapping the Diffusion of Scholarly Knowledge Among Major U.S. Research Institutions." Scientometrics 68 (3): 415-426.

Research questions:

- 1. Does space still matter ucairs in the Internet age?
- 2. Does one still have to study and work

institutions in or high-quality data high-quality rese

Does the Interne patterns—i.e., n papers produced at geographically distant

research instructions?

Contributions:

- Answer to Qs 1 + 2 is YES.
- Answer to Qs 3 is NO.
- Novel approach to analyzing the dual role of institutions as information producers and consumers and to study and visualize the diffusion of information among them.

113 Years of Physical Review

http://scimaps.org/dev/map_detail.php?map_id=171

Herr II, Duhon, Hardy, Penumarthy & Börner.

Mapping Transdisciplinary Tobacco Use Research Centers Publications

Compare R01 investigator-based funding with TTURC Center awards in terms of number of publications and evolving co-author networks.

Stipelman, Hall, Zoss, Okamoto, Stokols, Börner, 2014. Supported by NIH/NCI Contract HHSN261200800812

Research Collaborations by the Chinese Academy of Sciences

Huang, Duhon, Hardy & Börner

Mapping Topic Bursts

Co-word space of the top-50 most frequent and bursty words used in the top-10% most highly cited *PNAS* publications in 1982-2001.

Mane & Börner. 2004. PNAS 101(Suppl. 1): 5287-5290.

Places & Spaces at Northwestern University May 14 - September 23, 2015

Illuminated Diagram Display on display at the Smithsonian in DC. http://scimaps.org/exhibit_info/#ID

Call for Macroscope Tools for the Places & Spaces: Mapping Science Exhibit (2015)

http://scimaps.org/call

Themes for the upcoming iterations/years are:

- 11th Iteration (2015): Macroscopes for Interacting With Science
- 12th Iteration (2016): Macroscopes for Making Sense of Science
- 13th Iteration (2017): Macroscopes for Forecasting Science
- 14th Iteration (2018): Macroscopes for Economic Decision Makers
- 15th Iteration (2019): Macroscopes for Science Policy Makers
- 16th Iteration (2020): Macroscopes for Scholars

Register for free at http://ivmooc.cns.iu.edu. Class restarts January, 2016.

Course Schedule

Part 1: Theory and Hands-On

- Session 1 Workflow Design and Visualization Framework
- Session 2 "When:" Temporal Data
- Session 3 "Where:" Geospatial Data
- Session 4 "What:" Topical Data

Mid-Term

- **Session 5** "With Whom:" Trees
- Session 6 "With Whom:" Networks
- Session 7 Dynamic Visualizations and Deployment

Final Exam

Part 2: Students work in teams on client projects.

Final grade is based on Class Participation (10%), Midterm (30%), Final Exam (30%), and Client Project(30%).

Books Used in the IVMOOC

Teaches timely knowledge:

Advanced algorithms, tools, and hands-on workflows.

Teaches timeless knowledge:

Visualization framework exemplified using generic visualization examples and pioneering visualizations.

33

Course Schedule

Part 1: Theory and Hands-On

- Session 1 Workflow Design and Visualization Framework
- Session 2 "When:" Temporal Data
- Session 3 "Where:" Geospatial Data
- Session 4 "What:" Topical Data

Mid-Term

- Session 5 "With Whom:" Trees
- Session 6 "With Whom:" Networks
- Session 7 Dynamic Visualizations and Deployment

Final Exam

Part 2: Students work in teams on client projects.

Final grade is based on Class Participation (10%), Midterm (30%), Final Exam (30%), and Client Project(30%).

Course Schedule

Part 1: Theory and Hands-On

- Session 1 Workflow Design and Visualization Framework
- Session 2 "When:" Temporal Data
- Session 3 "Where:" Geospatial Data
- Session 4 "What:" Topical Data

Mid-Term

- **Session 5** "With Whom:" Trees
- **Session 6** "With Whom:" Networks
- Session 7 Dynamic Visualizations and Deployment

Final Exam

Part 2: Students work in teams on client projects.

Final grade is based on Class Participation (10%), Midterm (30%), Final Exam (30%), and Client Project(30%).

Needs-Driven Workflow Design

Needs-Driven Workflow Design

Load One File and Run Many Analyses and Visualizations

Times Cited	Publication Year	City of Publisher	Country	Journal Title (Full)		Subject Category	Authors
12	2011	NEW YORK	USA	COMMUNICA TIONS OF THE ACM	Plug-and-Play Macroscopes	Computer Science	Borner, K
18	2010	MALDEN	USA	CTS- CLINICAL AND TRANSLATIO NAL SCIENCE		Research & Experimental Medicine	Falk-Krzesinski, HJ Borner, K Contractor, N Fiore, SM Hall, KL Keyton, J Spring, B Stokols, D Trochim, W Uzzi, B
13	2010	WASHINGTON	USA	SCIENCE TRANSLATIO NAL MEDICINE	,	Cell Biology Research & Experimental Medicine	Borner, K Contractor, N Falk- Krzesinski, HJ Fiore, SM Hall, KL Keyton, J Spring, B Stokols, D Trochim, W Uzzi, B

Load One File and Run Many Analyses and Visualizations

Times Cited	Publication Year	City of Publisher	Country	Journal Title (Full)	Title	Subject Category	Authors
12	2011	NEW YORK	USA	COMMUNICA TIONS OF THE ACM	Plug-and-Play Macroscopes	Computer Science	Borner, K
18	2010	MALDEN	USA	CTS- CLINICAL AND TRANSLATIO NAL SCIENCE		Research & Experimental Medicine	Falk-Krzesinski, HJ Borner, K Contractor, N Fiore, SM Hall, KL Keyton, J Spring, B Stokols, D Trochim, W Uzzi, B
13	2010	WASHINGTON	USA	SCIENCE TRANSLATIO NAL MEDICINE	A Multi-Level Systems Perspective for the Science of Team Science	Cell Biology Research & Experimental Medicine	Borner, K Contractor, N Falk- Krzesinski, HJ Fiore, SM Hall, KL Keyton, J Spring, B Stokols, D Trochim, W Uzzi, B

Co-author and many other bi-modal networks.

39

Course Schedule

Part 1: Theory and Hands-On

- Session 1 Workflow Design and Visualization Framework
- Session 2 "When:" Temporal Data
- Session 3 "Where:" Geospatial Data
- Session 4 "What:" Topical Data

Mid-Term

- **Session 5** "With Whom:" Trees
- **Session 6** "With Whom:" Networks
- Session 7 Dynamic Visualizations and Deployment

Final Exam

Part 2: Students work in teams on client projects.

Final grade is based on Class Participation (10%), Midterm (30%), Final Exam (30%), and Client Project(30%).

Visualization Frameworks

How to Classify Different Visualizations?

Ву

- User insight needs?
- User task types?
- Data to be visualized?
- Data transformation?
- Visualization technique?
- Visual mapping transformation?
- Interaction techniques?

• Or?

Insight Need Types page 26	Data Scale Types page 28	Visualization Types page 30	Graphic Symbol Types page 32	Graphic Variable Types page 34	Interaction Types page 26
categorize/cluster order/rank/sort distributions (also outliers, gaps) comparisons trends (process and time) geospatial compositions (also of text) correlations/relationships	nominal ordinal interval ratio	table chart graph map network layout	geometric symbols point line area surface volume linguistic symbols text numerals punctuation marks pictorial symbols images icons statistical glyphs	spatial position retinal form color optics motion	overview zoom search and locate filter details-on-demand history extract link and brush projection distortion

D 1067	Walana	F 2004	V 2011	D	Feedbal	Total Manua	Total Chart	Diamen
Bertin, 1967	Wehrend & Lewis, 1996	Few, 2004	Yau, 2011	Rendgen & Wiedemann, 2012	Frankel, 2012	Tool: Many Eyes	Tool: Chart Chooser	Börner, 2014
selection	categorize			category				categorize/ cluster
order	rank	ranking					table	order/rank/ sort
	distribution	distribution					distribution	distributions (also outliers, gaps)
	compare	nominal comparison & deviation	differences		compare and contrast	compare data values	comparison	comparisons
		time series	patterns over time	time	process and time	track rises and falls over time	trend	trends (process and time)
		geospatial	spatial relations	location		generate maps		geospatial
quantity		part-to- whole	proportions		form and structure	see parts of whole, analyze text	composition	compositions (also of text)
association	correlate	correlation	relationships	hierarchy		relations between data points	relationship	correlations/ relationships

See page 26

Insight Need Types page 26	Data Scale Types page 28	Visualization Types page 30	Graphic Symbol Types page 32	Graphic Variable Types page 34	Interaction Types page 26
categorize/cluster order/rank/sort distributions (also outliers, gaps) comparisons trends (process and time) geospatial compositions (also of text) correlations/relationships	nominal ordinal interval ratio	table chart graph map network layout	geometric symbols point line area surface volume linguistic symbols text numerals punctuation marks pictorial symbols images icons statistical glyphs	spatial position retinal form color optics motion	overview zoom search and locate filter details-on-demand history extract link and brush projection distortion

Visualization Types (Reference Systems)

- 1. Charts: No reference system—e.g., Wordle.com, pie charts
- **2. Tables:** Categorical axes that can be selected, reordered; cells can be color coded and might contain proportional symbols. Special kind of graph.
- **3. Graphs:** Quantitative or qualitative (categorical) axes. Timelines, bar graphs, scatter plots.
- **4. Geospatial maps:** Use latitude and longitude reference system. World or city maps.
- **5. Network layouts:** Node position might depends on node attributes or node similarity. **Trees:** hierarchies, taxonomies, genealogies. **Networks:** social networks, migration flows.

Types

Insight Need Types page 26	Data Scale Types page 28	Visualization Types page 30	Graphic Symbol Types page 32	Graphic Variable Types page 34	Interaction Types page 26
categorize/cluster order/rank/sort distributions (also outliers, gaps) comparisons trends (process and time) geospatial compositions (also of text) correlations/relationships	nominal ordinal interval ratio	table chart graph map network layout	geometric symbols point line area surface volume linguistic symbols text numerals punctuation marks pictorial symbols images icons statistical glyphs	spatial position retinal form color optics motion	overview zoom search and locate filter details-on-demand history extract link and brush projection distortion

Graphic Variable Types Versus Graphic Symbol Types

References

Börner, Katy, Chen, Chaomei, and Boyack, Kevin. (2003). Visualizing Knowledge Domains. In Blaise Cronin (Ed.), ARIST, Medford, NJ: Information Today, Volume 37, Chapter 5, pp. 179-255. http://ivl.slis.indiana.edu/km/pub/2003-borner-arist.pdf

Shiffrin, Richard M. and Börner, Katy (Eds.) (2004). **Mapping Knowledge Domains**. *Proceedings of the National Academy of Sciences of the United States of America*, 101(Suppl_1). http://www.pnas.org/content/vol101/suppl_1/

Börner, Katy (2010) Atlas of Science: Visualizing What We Know. The MIT Press. http://scimaps.org/atlas

Scharnhorst, Andrea, Börner, Katy, van den Besselaar, Peter (2012) **Models of Science Dynamics**. Springer Verlag.

Katy Börner, Michael Conlon, Jon Corson-Rikert, Cornell, Ying Ding (2012) VIVO: A Semantic Approach to Scholarly Networking and Discovery. Morgan & Claypool.

Katy Börner and David E Polley (2014) Visual Insights: A Practical Guide to Making Sense of Data. The MIT Press.

Börner, Katy (2015) **Atlas of Knowledge: Anyone Can Map.** The MIT Press. http://scimaps.org/atlas2

51

All papers, maps, tools, talks, press are linked from http://cns.iu.edu/docs/presentations
These slides are at http://cns.iu.edu/docs/presentations

CNS Facebook: http://www.facebook.com/cnscenter
Mapping Science Exhibit Facebook: http://www.facebook.com/mappingscience