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Map of Scientific Collaborations from 2005-2009

Olivier H. Beauchesne, 2011. Map of Scientific Collaboration

Mapping the Evolution of Co-Authorship Networks

Ke, Visvanath & Bdérner. 2004. Won 1st prize at the IEEE InfoVis Contest.
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Mapping the Evolution of Co-Authorship Networks

Ke, Visvanath & Bérner. 2004. Won 1st prize at the IEEE InfoVis Contest.
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The Global 'Scientific Food Web'

Mazloumian, Amin, Dirk Helbing, Sergi Lozano, Robert Light, and Katy Bérner. 2013. "Global Multi-
Level Analysis of the 'Scientific Food Web'". Scientific Reports 3, 1167.

Citation shares
http://cns.iu.edu/docs/publications/2013-mazloumian-food-web.pdf 2000-2002
A 2007-2009
Contributions:
Comprehensive global analysis of /

scholarly knowledge production and :
diffusion on the level of continents, )
countries, and cities.

Quantifying knowledge flows
between 2000 and 2009, we identify
global sources and sinks of
knowledge production. Our
knowledge flow index reveals,
where ideas are born and
consumed, thereby defining a global
‘scientific food web’.

While Asia is quickly catching up in
terms of publications and citation
rates, we find that its dependence
on knowledge consumption has
further increased.
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Figure 2 | World map of the greatest knowledge sources and sinks, based on our scientific fitness index. Green bars indicate that the number of
citations received is over-proportional, red that the number of citations received is lower than expected (according to a homogeneous distribution of
citations over all citiesthat have published more than 500 papers). It can be seen that most scientificactivity occurs in the temperatezone. Moreover, areas
of high fitness tend to be areas that are performing economically well (but the opposite does not hold).




Long-Distance Interdisciplinarity Leads to Higher Scientific Impact
Lariviére, Vincent, Stefanie Hanstein, and Katy Borner. 2015. PLOS ONE DOI: 10.1371.
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B1 number of papers citing lose-lose relationships (>100 citing papers)
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o CLicksTREAM MaP
S A OF SCIENCE

Bollen, Johan, Herbert Van de Sompel, Aric Hagberg, Luis M.A. Bettencourt, Ryan Chute, Marko A.
Rodriquez, Lyudmila Balakireva. 2008. A Clickstream Map of Science.




Language Communities
of Twitter

English
Portuguese
Spanish
Dutch
Russian
French

i ltalian
German
Turkish
Arabic
Swedish
Danish
Finnish
Catalan
Romanian
Norwegian
Lithuanian
Slovak
Czech
Greek

Hungarian
Polish
Slovenian
Albanian
Latvian
Galician
Hebrew
Croatian
Bulgarian

Language Communities of Twitter - Eric Fischer - 2012
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Ward Shelley . 2011. History of Science Fiction.
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Council for Chemical Research. 2009. Chemical R&D Powers the U.S. Innovation Engine.
Washington, DC. Courtesy of the Council for Chemical Research.




Excited for @cnscenter Places&Spaces at @galterlibrary! @katycns
NUCATSInstitute #unpackingcrates #vi

Places & Spaces at Northwestern University
May 14 - September 23,2015 17
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Elinor Ostrom - Nobel Prize in Economic Sciences 2009

Bor ugust 1933, New York. NY, USA

Affiliation at the time of the award: Indiana University, Bloomington, IN, USA,
Arizona State University, Tempe, AZ, USA

Prize motivation: “for her analysis of economic governance, especially

the commons"

Field: Economic govemance

Contribution: Challenged the conventional wisdom by demonstrating how
local property can be successfully managed by local commons without any
regulation by central authorities or privatization.
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View All

Science Map: How Scientific Disciplines Relate

Search

People & Topics

Interact

Select any location on the Geographic
Map location (by brushing your finger
over an area on the lectem’s touch
screen) and fopics studied in that area
will highlight on the Science Map: the
brighter a topic gl the more papers
on that topic onginated in the selected
area. Converstely, touching a scientific
area in the Science Map iluminates
places on the Geographic Map where
that topic is studied. Pecple and topic
buttons support the exploration of
publication output by selected Noble
laureates and particular lines of
research using MEDLINE data from
2000-2009.

Keyword Search,
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Call for Macroscope Tools for the Places & Spaces: Mapping Science

Exhibit (2015)

http://scimaps.org/call

Themes for the upcoming iterations/years are:
o 11th Iteration (2015): Macroscopes for Interacting With Science
e 12th Iteration (2016): Macroscopes for Making Sense of Science
o 13th Iteration (2017): Macroscopes for Forecasting Science
o 14th Iteration (2018): Macroscopes for Economic Decision Makers
* 15th Iteration (2019): Macroscopes for Science Policy Makers
o 16th Iteration (2020): Macroscopes for Scholars 21
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Modelling Our Collective Scholarly
Knowledge

l NEWSFOCUS

Making Every Scientist a Research Funder

When it comes to using peer review to distribute research dollars, Johan Bollen
favors radical simplicity.

Over the years, many scientists have suggested that the current system
could be improved by changing the composition of the review panels, tweaking
the interactions among reviewers, or revising how the proposals are scored. But
Bollen, a computer scientist at Indiana University, Bloomington, would simply
award all eligible researchers a block grant—and then require them to give
some of it away to colleagues they judge most deserving.

That radical step, described in a paper Bollen and four Indiana colleagues
recently posted on EMBO Reports, retains peer review's core concept of tap-
ping into the views of the most knowledgeable researchers. But itwould elimi-
nate the huge investment in time and money required to submit proposals and
assemble panels to judge them.

Bollen’s process would be almost instantaneous: In a version of expert-
directed crowdsourcing, scientists would fill out a form once a year listing
their favored researchers, and a predetermined portion of their annual grant
money—a fotal of, say, 50%—would then be transferred to their choices.

“So many scientists spend so much time on peer review, and there’s a high
level of frustration,” Bollen explains. “We already know who the best people are.
And if you're doing good work, then you deserve to receive support.”

Others are skeptical. “I've known Johan for a long time and have the high-
est regard for his ability as an out-of-the-box thinker,” says Stephen Griffin, a
retired National Science Foundation (NSF) program manager who's now a vis-
iting professor of information sciences at the University of Pittsburgh in Penn-
sylvania. “But there are a number of issues he doesn’t address.”

Those sticking points include the likely mismatch between what research-
ers need and what their colleagues give them; the absence of any replacement
for the overhead payments in today’s grants, which support infrastructure at
host institutions; and the dearth of public accountability for the billions of dol-
lars that would flow from public coffers toindividuals. “Scientists aren't really
equipped fo be a funding agency,” Griffin notes.

Bollen acknowledges that the process would need safeguards to ensure
that scientists don't reward their friends or punish their enemies. But his analy-
sis suggests that the U.S. research landscape would not look all that different
if his radical proposal were adopted.

Drawing upon citation data in 37 million papers over 20 years, the Indiana
researchers conducted a simulation premised on the idea that scientists would
reallocate their federal dollars according to how often they cited their peers.
The simulation, he says, yielded a funding pattern “similar in shape to the
actual distribution” at NSF and the National Institutes of Health for the past
decade—at a fraction of the overhead required by the current system.

-JDM

Science 7 February 2014: Vol. 343 no. 6171 p. 598

DOI: 10.1126/science.343.6171.598

http://www.sciencemag.org/content/343/6171/598.full?sid=4f40a7f0-6ba2-4ad8-a181-7ab394fe2178

February 7, 2014
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From funding agencies to scientific agency: Collective allocation of

science funding as an alternative to peer review
Bollen, Johan, David Crandall, Damion Junk, Ying Ding, and Katy Birner. 2014. EMBO Reports 15 (1): 1-121.

Congress

S ¢

;g; a L?‘;’J L‘L
L4 Aohoh

i Py
i 000

Existing (left) and proposed (right) funding systems. Reviewers in blue; investigators in red.
In the proposed system, all scientists are both investigators and reviewers: every scientist receives a fixed
amount of funding from the government and discretionary distributions from other scientists, but each is

required in turn to redistribute some fraction of the total they received to other investigators.
25

Assume
Total funding budget in year y is 7

Number of qualified scientists is #

Congress
Each year, @
the funding agency deposits a fixed amount into each
account, equal to the total funding budget divided by ‘L..; ‘..; ‘L

the total number of scientists: fj/ .

Each scientist must distribute a fixed fraction of ‘f"JL/ "’\‘/"\JL

received funding to other scientists (no self-funding,

Ng¥ Xg”
COlIs respected). t JL\_’ ‘\* JL/?
Result ‘L‘ ‘L *‘L‘ ‘L

N 1
Scientists collectively assess each others’” merit based \JL"’“’ &f

on different criteria; they “fund-rank” scientists;
highly ranked scientists have to distribute more
money.

| SE T

26
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Example:
Total funding budget in year is 2012 NSF budget
Given the number of NSF funded scientists, each

receives a $100,000 basic grant. [ Congress |
Fraction is set to 50% @
\ 4
In 2013, scientist § receives a basic grant of $100,000 ‘
- 9 o
plus $200,000 from her peers, i.e., a total of $300,000. ‘L * ‘L

In 2013, S can spend 50% of that total sum, $150,000, ‘f . ‘.n( _:\ ‘/ '*\‘L

on her own research program, but must donate 50% to

other scientists for their 2014 budget. 1\‘L/ _: ‘ L ‘L/ ?

Rather than submitting and reviewing project proposals, ‘/*\‘L *\‘f* ‘L
S donates directly to other scientists by logging into a 7 /
centralized website and entering the names of the \ ‘L—v ‘-» ‘Lf

scientists to donate to and how much each should

receive. Scientific community

27

Model Run and Validation:
Model is presented in http://arxiv.org/abs/1304.1067

It uses citations as a proxy for how each scientist might
distribute funds in the proposed system.

Using 37M articles from TR 1992 to 2010 Web of Science .

(WoS) database, we extracted 770M citations. From the 9

same WoS data, we also determined 4,195,734 unique

author names and we took ‘L" ( ‘ "‘L
the 867,872 names who had authored at least one paper

per year in any five years of the period 2000-2010. ‘f —- ‘L/ __’\ */ _*\ ‘k
For each pair of authors we determined the number of R oy X/
times one had cited the other in each year of our citation t “4 0'— ‘L/ 1
data (1992-2010). 7 7
NIH and NSF funding records from 1U’s Scholatly ‘/‘*\‘L “’\*/‘* ‘L
Database provided 347,364 grant amounts for 109,919 \ 7 / f
unique scientists for that time period. ‘L-—b ‘-—» ‘L
Simulation run begins in year 2000, in which every scientist
was given a fixed budget of B = $100k. In subsequent | SE B Y
years, scientists distribute their funding in proportion to

their citations over the prior 5 years.

The model yields funding patterns similar to existing NIH

and NSF distributions. s

14



Model Efficiency:

Using data from the Taulbee Survey of Salaries Computer
Science (bttp:/ / cra.org/ resources/ tanlbee ) and the National
Science Foundation (NSF) the following calculation is
illuminating:

If four professors work four weeks full-time on a proposal
submission, labor costs are about $30k. With typical

[ Corgrse |
®
A

funding rates below 20%, about five submission-review i
> - 9 o
dh ™ ch ™ dh

cycles might be needed resulting in a total expected labor

cost of $150k. ‘f_’-#_*\‘/_,\-h

The average NSF grant is $128k per year.

U.S. universities charge about 50% overhead (ca. $42k), | 1\-L1 «5 ‘L- /?

leaving about $86k.

In other words, the four professors lose $150k-$86k=$64k “(-*\-L *\x* -h

of paid research time by obtaining a grant to perform the

Y o/, @¥ 7
research. ."* "’ “

That is, U.S. universities should forbid professors to apply

for grants—if they can afford to forgo the indirect dollars. Sceiceomingy

To add: Time spent by researchers to review proposals. In
2012 alone, NSF convened more than 17,000 scientists to
review 53,556 proposals.
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Tasks

TYPES

LEVELS

MICRO: Individual Level
about 1-1,000 records
page 6

about 1,001-100,000 records

MACRO: Global Level
more than 100,000 records
page 8 page 10

s kaiadll

MESO: Local Level

Statistical Analysis
page 44

WHEN:
Temporal Analysis
page 48

Geospatial Analysis
page 52

WHAT:
Topical Analysis
page 56

o,
0I6g

Tec
oeiseResearch i

WITH WHOM:
Network Analysis
page 60

Sy~

Knowledge
cartography
page135

Seioncs s ity Bkt

Key events
inthe

visualizing
decision- development
ing of the video
processes it
pagess pagess
cell phone Victorian ecological
usagein poetry in footprint of
Wiilan, taly Europe countries
page i0s page 137 pagess
product space
showis
co-export
patterns of
countries
pagess
World world-wide
Finance Fipieripit scholarly
Corporation netwons collaboration
network oS networks
page 87 page 157

See page 5

Micro: Individual Level
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See pages 6-7
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Insight Need Types Data Scale Types
page 26 page28
- categorize/cluster « nominal
- order/rank/sort - ordinal
- distributions - interval

(also outliers, gaps) - ratio
- comparisons
- trends

(process and time)
- geospatial
- compositions

(also of text)
- correlations/relationships

4 See page 24

Visualization Types
page 30

- table

- chart

- graph

- map

- network layout

Graphic Symbol Types
page32
- geometric symbols
point
line
area
surface
volume
- linguistic symbols
text
numerals
punctuation marks
- pictorial symbols
images
icons
statistical glyphs

Graphic Variable Types | Interaction Types

page 34

- spatial
position

- retinal
form
color
optics
motion

page26

- overview

- zoom

- search and locate
- filter

- details-on-demand
« history

- extract

- linkand brush

- projection

- distortion

33

Graphic Variable Types Versus Graphic Symbol Types

= = =
F === 1 1 ' ! a
H =
- I [ LN N |
- =. [ I LR
I~ = [/ /  _|mssee
1= =~ cCCcdrP®dDDO
i~ = IVILLPP®DODO
- =~ CCCCOPPLDDO
- 55 (111 | - ~-~-<7osss RN
i = T (|- - - - [sses®o '
- = (T[] |- -~~~ ewsw® vt g
- 00 E T v
- [T B 4 ]
i~ : ]| IS 0 | 345 L0 B 4 HE
- = am [ A M-
- =L Tewew
A R WA RN ssso
= i..........||||||| L )

1
34

17



Information Visualization MOOC 2015 woianavniversity GICNS M

Overview

IVMOOC: Information Visualization MO

This course provides an overview about the state of the art
in information visualization. It teaches the process of
producing effective visualizations that take the needs of
users into account.

The course can be taken for three Indiana University credits
as part of the Online Data Science Program, as part of the
Information and Library Science M.S. program, and as part
of the online Data Science M.S. Program offered by the
School of Informatics and Computing. Students seeking
enroliment information should contact Rhonda Spencer at
812-855-2018, ilsmain@indiana.edu or
datasci@indiana.edu.

Information Visualization MOOC ivmooc.cns.iu.edu

Register for Course

Already registered? Click here to go to the course.
Forgot your password? Click here to reset it.

Among other topics, the course covers:

® Data analysis algorithms that enable extraction of
patterns and trends in data

® Major temporal, geospatial, topical, and network
visualization techniques

® Discussions of systems that drive research and
development.

Register for free at http://ivmooc.cns.iu.edu. Class restarts January, 2016.
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All papers, maps, tools, talks, press are linked from http://cns.iu.edu
These slides will soon be at http://cns.iu.edu/presentations
CNS Facebook: http://www.facebook.com/cnscenter
Mapping Science Exhibit Facebook: http://www.facebook.com/mappingscience
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