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Authors are mortal. Papers are immortal.
Monsters = ‘the unknown’ or voids.

1 Impact of funding on science (yellow).
Good and bad years.

Hypothetical Model of the Evolution of Science - Daniel Zeller - 2007
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Science as accumulation of knowledge.
“Scholatly brick laying”.
Standing on the shoulders of giants.

Densely knit communities.
The importance of weak links.

Hypothetical Model of the Evolution of Science - Danzel Zeller - 200/

Large Trends in Science

MAPS OF SCIENCE

Chemistry

Maps of Science: Forecasting Large Trends in Science - Richard Klavans, Kevin Boyack - 2007
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Altlas of Science - Katy Borner - 2010
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HistCite™ Visualization of DNA Develgpment - Engene Garfield, Elisha Hardy, Katy Borner, Ludmila Pollock, Jan Witkowski- 2006 }




114 Years of Physical Review - Bruce W. Herr 11, Russell Dubon, Katy Borner, Elisha Hardy, Shashikant Penumarthy - 2007

Crust of science can represent “funding” or “usage”.

Hypothetical Model of the Evolution of Science - Daniel Zeller - 2007




CLICkSTREAM MaP
OF SCIENCE

A Clickstream Map of Science — Bollen, Johan, Herbert Van de Sompel, Aric Hagberg,
Luis M.A. Bettenconrt, Ryan Chute, Marko A. Rodriguez, Lyndmila Balakireva - 2008

| This drawing attempts to shows the “structure” of science.
g p

Many are interested to understand the “dynamics” of science.

Hypothetical Model of the Evolution of Science - Daniel Zeller - 2007
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Modeling of Science
Learning from Epidemiology

—elmpact or Air Travel on Global Sprecd OF Infechous Diseasese—
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Epidemic spreading pattern
changed dramatically after the
davelopment of modern
transpariation systams
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Impact of Air Travel on Global Spread of Infectious Diseases - Vittoria Colizza, Alessandro Vespignani - 2007
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Modeling Science
Learning from Economics

NEWS FEATURE

Meltdown modelling

Could agent-based computer models prevent another financial crisis? Mark Buchanan reports.

Self amplifying downward spiral | ‘systemic’ meltdown with intertwined breakdowns |
‘war room’ analyses | market wind tunnel |power market test bed |
Regulators feel duty—bound to adhere to generally accepted and well-vetted techniques

. while any new technical device or medical drug has extensive testing for efficiency, reliability and safety before it
ever hits the market, we still implement new economic measures without any prior testing.” Dirk Helbing
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Modeling Science
Learnine from Economics

Logicland Participative Global Simulation - Michael Ashauer, Maia Gusberti, Nik Thoenen - 2002 19

Mapping Science
Learning from Meteorology

Aug 30 2005

Named Storms, available online at http://svs.gsfc.nasa.gcov/vis/a000000/a003200/2003279
20




Patch-working Models/Studies/Maps of Science
Learning from Astronomy

"Aslmmelrg.nel

home | project summary | people | gallery | news | related links | bibliography | data | use

Gallery of Solved Images

In the images below, the red drodes are stars our algonithm sutomatically detects in the image, and the green
crcles are stars from our master index which appear in the query image. Mebulae, constellations and other
objects can be automatically overlayed on the image after it has been solved.

A shot of the Great Mebula, by Jerry Lodriguss (c.2008), from astropdx.com

http://www.astrometry.net/gallery.html

http://cosmo.nyu.edu/hogg/research/2006/09/28 /astrometry google.pdf
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Patch-working Models/Studies/Maps of Science
Learning from Seismology

-

CCICMIC UATADD

Tectonic Movements and Earthquake Hazard Predictions - Martin W. Hamburger, Lou Estey, Chuck Meertens, Elisha Hardy - 2005

22
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An introduction to modeling science: Basic model types, key definitions,

and a general framework for the comparison of process models
Katy Birner, Kevin W. Boyack, Stasa Milojevié, Steven Morris. (2011) In Scharnborst, Andrea, Borner, van den
Besselaar (Eds) Models of Science Dynamics. Springer Verlag.

Modeling Process

1. Formulation of a scientific hypothesis about the identification of a specific structure or
dynamics. Often, this hypothesis is based on analysis of patterns found in empirical data.

2. Algorithm design and implementation using either tools (e.g., Netl.ogo, RePast) or

custom codes that attempt to mathematically describe the structure or dynamics of
interest.

3. Simulated data are calculated by running the algorithm and validated by comparison with
empirical data.

4. Resulting insights frequently inspire new scientific hypotheses, and the model is iteratively
refined or new models are developed.

Model

Computer code
and parameters

Model Validation

Comparison of empirical
and simulated data

Simulated Data

Calculated model
result

Empirical Data

e.g., all publications
for one nation

4 A

Iterative model refinement "




An introduction to modeling science: Basic model types, key definitions,

and a general framework for the comparison of process models
Katy Borner, Kevin W. Boyack, Stasa Milojevié, Steven Morris. (2011) In Scharnhorst, Andrea, Borner, van den
Besselaar (Eds) Models of Science Dynamics. Springer Verlag.

Temporal Levels Data Types

Highly dynamic processes o—o Co-author network
(download activity) % [ lle)
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multi-perspective Slow processes (o) Topic similarity
(citation activity) O network
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Descriptive Models vs. Process Models

Descriptive Models

Aim to describe the major features of a (typically static) data set, e.g., statistical
patterns of article citation counts, networks of citations, individual differences in
citation practice, the composition of knowledge domains, and the identification of
research fronts as indicated by new but highly cited papers.

Bibliometrics, Scientometrics, or KDVis

Process Models

Aim to simulate, statistically describe, or formally reproduce the statistical and
dynamic characteristics of interest. Of particular interest are models that “conform to the
measured data not only on the level where the discovery was originally made but also at the level where
the more elementary mechanisms are observable and verifiable” (Willinger, Govindan, Jamin,

Paxson, & Shenker, 2002), p.2575.
Statistical Physics and Sociology
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Descriptive Models

Examples:

>

>
>

YV YV VY

Detect advances of scientific knowledge via "longitudinal mapping" (Gatfield,
1994).

Synthesis of specialty narratives from co-citation clusters (Small, 1986).

Identify cross-disciplinary fertilization via "passages through science" (Small, 1999,
2000).

Understand scholarly information foraging (Sandstrom, 2001).

Knowledge discovery in un-connected terms (Swanson & Smalheiser, 1997).

Determine areas of expertise for specific researcher, research group via "invisible

colleges" (note that researchers self definition might differ from how field defines
him/her) (Crane, 1972).

Identify profiles of authors, also called CAMEOS, to be used to for document
retrieval or to map an authot’s subject matter and studying his/her publishing
career, or to map the social and intellectual networks evident in citations to and
from authors and in co-authorships (White, 2001).

Ao e
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Identification of scientific frontiers http://www.science-frontiers.com/.

IST's Essential Science Indicators http://essentialscience.com

Import-export studies (Stigler, 1994).

Evaluation of 'big science' facilities using 'converging partial indicators' (Martin,
1996; Martin & Irvine, 1983).

Input (levels of funding, expertise of scientists, facilities used) - output
(publications, patents, Nobel prices, improved health, reduced environment
insults, etc. - influenced by political, economic, financial, and legal factors studies
(Kostroff & DelRio, 2001).

Determine influence of funding on research output (Boyack & Borner, 2002).

How to write highly influential paper (van Dalen & Henkens, 2001).

28




Process Models
=
At

Can be used to predict the effects of
» Latge collaborations vs. single author research on information diffusion.

» Different publishing mechanisms, e.g., E-journals vs. books on co-authorship,
speed of publication, etc.

» Supporting interdisciplinary collaborations (shallow science? or decrease in
duplication?).
» Many small vs. one large grant on # publications, Ph.D. students, etc.

» Resource distribution on tesearch output.

>

In general, process model provide a means to analyze the structure and
dynamics of science -- to study science using the scientific methods of science as

suggested by Derek J. deSolla Price about 40 years ago.

We now do have the data, code and compute power to do this!
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In Sociology, several mathematical models of network evolution have been developed
(Banks & Catley, 95). Most assume a fixed number of edges.

Snijders’ Simulation Investigation for Empirical Network Analysis (SIENA)
(http://stat.gamma.rug.nl/snijders/siena.html) is a probabilistic model for the

evolution of social networks. It assumes a directed graph with a fixed set of actors.

Recent work in Statistical Physics aims to design models and analytical tools to analyze
the statistical mechanics of topology and dynamics of real world networks. Of
particular interest is the identification of elementary mechanisms that lead to the
emergence of small-world (Albert & Barabasi, 2002; Watts, 1999) and scale free network
structures (Barabasi, Albert, & Jeong, 2000). The models assume nodes of one type
(e.g., web page, paper, author).

Examples:
» Watts-Strogatz Model for Small World Networks
> Albert-Barabasi Model for Scale Free Networks

30




The Watts-Strogatz Model for Small World Networks

First model that generates graphs with small average path length and high clustering
coefficients.

» Starting configuration is a regular lattice.

» Each edge is examined and is redirected with a probability p to another target node (chosen
randomly).

Regular network (left) drastically changes from a set of tiny isolated clusters of nodes to a giant

cluster joined by almost everybody.

(Source: D.J. Watts and S. Strogatz. Collective Dynamics of “Small-World* Networks. Nature, 1/ol. 393(6):pp. 440-442,
June 1998.)
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Figure 2. As the probability of rewiring increases in the Watts-Strogatz model, the characteristic path length falls off
long before the clustering coefficient drops. Results are from 2,000 random graphs, each with 300 vertices and 900 edges.

C(p) and 1(p) as a function

of rewiring probability p.

lattice-like regular <+ random
(several random
neighbors) effects
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Dorogovtsev, S. N. & Mendes, J. F. F. (2002). Evolution of networks. cond-mat/0106144

Variations of the WS Model

oL

rewiring of links

a)

b)

addition of links

FIG. 10. Small-world networks in which the crossover
from a regular lattice to a random network is realized. (a)
I'he original Watts-Strogatz model with the rewiring of links

[EI (b) The network with the addition of shorteuts ,.
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The Barabasi—Albert (BA) Model for Scale Free Networks
Many large networks are scale free, their degree distribution follows a power law for large k.

Random graph theory and the small world model cannot reproduce this feature.

(1) Growth: Starting with a small number (m,) of nodes, at every time step, we add a new node
with m(<= m) edges that link the new node to m nodes already present in the system.

(2) Preferential attachment: The probability p that a new node will be connected to node i
depends on the degree k; of node i, such that

b

Z,- k'

P(ki) =
After t time-steps the network has N = t+m, nodes and mt edges.

This network evolves into a stationary scale-free state with the probability that a node has k

edges following a power law with an exponent Yz, = 3.

(Source: A.-L. Barabasi, R. Albert, Emergence of scaling in random networks, Science 286 (1999) 509512.)
34




Figure 3. Model of Barabdsi, Albert and Jeong grows a graph by

adding both vertices and edges. In the example shown here, each 35
stage adds one new vertex and two new edges (yelloi).
Reka Albert, Albert-Laszlo Barabasi (2002). Statistical mechanics of complex networks.
cond-mat/0106096: Evolving Networks
Alternative models that simulate " "
. - . ol
preferential attachment N Vi
/\ a) 7\ / b)
/
.'(/.,
/)’
e
\_\
\
\_‘
FIG. 23. A simple deterministic growing graph. At time FIG. 21. Illnﬁrr..__l ion of a simple model of a scale-free
t = 0, the graph is a triangle. At each time step every edge growing network [l_]_hﬁ]_ In the initial configuration, ¢+ = 2.
0,1.2 (a). At cach increment

of the '_-,I'.l[i|l generates a new vertex which connects to both 1|||'1-1- vertices are present, s
ends of the edge. of time, a new vertex with two edges is added. These edges
are attached to the ends of a randomly chosen edge of the

network.
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Information Diffusion Among Major U.S. Research Institutions
Borner, Katy, Penumarthy, Shashikant, Meiss, Mark & Ke, Weimao. (2006). Mapping the Diffusion of Information
among Major U.S. Research Institutions. Scientometrics. 1'ol. 68(3), 415 - 426.

Questions:

1. Does space still matter in the Internet age,
i.e., does one still have to study and work at
major research institutions in order to have
access to high quality data and expertise and
to produce high quality research?

2. Does the Internet lead to more global
citation patterns, i.e., more citation links
between papers produced at geographically
distant research instructions?

Contributions: VA
»  Answer to Q1 is YES. Fissmme 2 1= B !
»  Answer to Q2 is NO. B o =5

- B
s s g gy, bt

»  Novel approach to analyzing the dual role
of institutions as information producers and
consumers and to study and visualize the
diffusion of information among them.

- i forven
=g e g bors o i gt s et b o e s
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o4 e 43
e 1973 s
el =

(M 7

20-Year PNAS Dataset (1982-2001)

Coverage in terms of time span, total number of papers, and complete author’s work

Papers citing
papers in X
Papers in X l

|

Papers cited by
papers in X 1

# papers Other

Publications

1982 2001 time
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Citation Matrix

Unsymmetrical direct citation linkage patterns among the top 500 institutions. High peak values in the
diagonal reflect the high amount of self-citations for all institutions. Medium peak hotizontal and
vertical lines denote references from and citations to papers written at Harvard University.

Information Sources (Export)
and Sinks (Import)
Calculate ratio of the number of

e citations received by an institution
g‘aooo A divided by the sum of received
Bl citations and references made,

: : multiplied by 100.
#2000 -
g | _ ._
£ 1500 | ikt § £ | K
= i 131 have a value between 0-40%

acting mostly as information
producers = information sources.

71 have a value between 60-100%
and act mostly as information
consumers — they reference a
large number of papers but the
number of citations they receive
is comparably low = information
sinks.

(Tobler, 1995)
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Geographic Location of Received Citations

Unsymmetrical direct citation linkage patterns among the top 500 institutions. High peak values in the
diagonal reflect the high amount of self-citations for all institutions. Medium peak hotizontal and
vertical lines denote references from and citations to papers written at Harvard University.

Harvard U

\,

Sranfor\d u
U Calif SF.4

| . - MIT
1 Johns Hopkins U

® 1505-1771
01,772-2,097
0 2,098-2529
© 2,530-3,039
@ 3040-4172
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Information Flow Among the Top-5 Consumers and Their Top-10 Producers

U.S. states are color coded based on the total number

of citations received by their institutions
(excluding self citations).

Dots indicate the five producers. :
Each has a different color, e.g., Harvard U is yellow.
Dot area size depicts number of citations.

Stanford U

Lines represent citations that interconnect producers
and consumers shaded from colored (soutce of
information) to white (sink of information).

{Harsard U

Harvard 1

Consumers, i.e.,  #citations  Top ten producers, i.e., institutions that are cited by institution
citing institutions  made listed in first col dered by d ing number of citations
received.
Harvard U 13,552 MIT, Massachusetts Gen Hosp, Brigham & Womens Hosp,
Johns Hopkins U, Stanford U, U Calif San Francisco, Yale U,
Rockefeller U, U Washington, Washington U
U Calif SF 4,682  Harvard U, MIT, Stanford U, Johns Hopkins U, U
Washington, Washington U, U Calif Berkeley, U Texas, U
Calif SD, U Calif LA
MIT 4,655 Harvard U, Whitehead Inst Biomed Res, Johns Hopkins U,
Stanford U, U Calif 5F, Yale U, Rockefeller U, U Calif LA,
Massachusetts Gen Hosp, U Calif Berkeley
NCI (zip: 20814) 4,519 Harvard U, NCI (zip: 20205), NCI (zip: 21701}, MIT, Duke U,
Johns Hopkins U, NIAID NICHHD, Stanford U, U Calif SF Paper also shows top-5
Yale U 4,464  Harvard U, MIT, Stanford U, Rockefeller U, Johns Hopkins producers and their top-
U, Washington U, U Calif SF, U Washington, NCI,
Massachusetts Gen Hosp 10 consumers.
41
Changes in Citation Behavior Over Time
Unsymmetrical direct citation linkage patterns among the top 500 institutions. High peak values in the
diagonal reflect the high amount of self-citations for all institutions. Medium peak hotizontal and
vertical lines denote references from and citations to papers written at Harvard University.
\ Harvard U
@ 1505-1.771
5 10,000 01.772-2097
'Fg —— 1982 - 1985 0 2,098-2529
= — 1987 - 1991 0 2,530 - 3,039
g — 1992 - 1998 #3040-4.172
o 1000 1997 - 2001
3 1982-1986: 1.94 (R=91.5%)
E 1987-1991: 2.11 (R=93.5%)
B 100f 1992-1996: 2.01 (R=90.8%)
z 1997-1901: 2.01 (R=90.7%)
£
o
_é 10¢ As time progtesses and the amount of produced
2 papers increases, space seems to matter more.
s | Authors are more likely to cite papers generated by
[=13] —L — L . . . .
=) 1 10 100 authors at close-by institutions.
log of geographic distance 42




Modeling the Co-Evolving Author-Paper Networks
Barner, Katy, Marn, Jeegar & Goldstone, Robert. (2004). The Simultaneous Evolution of
Author and Paper Networks. PNAS. Vol. 101 (Suppl. 1), 5266-5273.

The TARL Model (Topics, Aging, and Recursive Linking) incorporates
» A partitioning of authors and papers into topics,

» Aging, i.e., a bias for authors to cite recent papers, and

» A tendency for authors to cite papers cited by papers that they have read resulting in a rich get richer

effect.

The model attempts to capture the roles of authors and papers in the production, storage, and

dissemination of knowledge.
Model Assumptions

Authors come and go.
Papers are forever.

VVVYYVYY

authors’ papers.

Y

Co-author and paper-citation networks co-evolve.

Only authors that are 'alive' ate able to co-author.
All existing (but no future) papers can be cited.
Information diffusion occurs directly via co-authorships and indirectly via the consumption of other

authors reading and citing papers, but also the references listed in papers.

Preferential attachment is modeled as an ewergent property of the elementary, local networking activity of
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The TARL Model: The Effect of Parameters

(0000) W ML (1000) Topics e
) \ _I:__-. * . 5-\‘_}._. —
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Table 2.
path len,

Properties of co-author & paper citation networks comprising number of nodes n, ape node degree <k,
gth |, cluster coeflicient C, and power kaw exponent v, Source references are given in the lefi column,

Network n k= | (8 ¥ Reference

Co-authorship networks

¥
by B8 #_co-potr s |

don - - —
11 Simulatise LANL 32,909 9 043 - Newnan,
MEDLIN 1520251 1.6 0,066 - (2001a;
=i 2001k; 2001c)
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Years Since Publication g o
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In{ncited) Infncited)
Rag d.f. r aigt B BL Rag  d.f. P omiaf B0 b1
N 70 497.88 .000 10.2251 -2.2978 -B4Z 114 1572.51 .000 9.5196 -2.054
T Talentin Topics: The number of topics

GEnerate #_ QNS PApOrS and SSgn & FnGOT f0ok 10 each pacer;
Gt o_puthors o 8 o

is linearly correlated with the
clustering coefficient of the

resulting network: C=
0.000073 * #topics. Increasing
congpme, the number of topics increases
ATt the power law exponent as
authors are now restricted to
cite papers in their own topics
area.

. X Ehors ks uenor. grous of 538 £ CoRahorss I,
Model Parsmeters (0®without, 1®with)
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0f1 consider References

] Aging Function
ST 20 i mew papers 1 the set of exsting pacers;

Model Initialization Values ek B Ik A0 Buchor nd Digee Informacion;

Aging: With increasing b, and

2z # Years : .
o & Authors in Seace vesr hence increasing the number of
5 # Papers in Start Year OldCI‘ papers Clth as .
2 # Papers Consumed (Referenced) per Paper —_— referen_ces, the clustering
1 # Papscs Producsd per Author ssch Yesr | St coefficient decreases. Papers.
5 # Topics are not only clustered by topic,
1 # co-author(s) per Author : e but also in time, and as a
1 # Levels References are Considered Simple Statistics : >
Network Properties gommt}mty becomes .
I increasingly _negrmghted in
S S terms of their citation
Aging function practices, the degree of
e temporal clustering increases.
120000 i

£ 100000 |] =t References/Recursive
8 soom | s Linking: The length of the
3 ooo00 I. [ chain of paper citation links
2 aoon 4 | that is followed to select
= 20000 references for a new paper also

0 influences the clusteting

1 4 7 10 1318 1922 25 28 31 34 37 40 43 46| coefficient. Temporal

ears Sinée Publicatien clustering is ameliorated by the
practice of citing (and
hopefully reading!) the papers
that were the earlier
inspirations for read papers. "




Four Parts:
Conceptualizing Science
. Model Inspirations from Other Sciences
. Models of Science

. Tools to Model and Map Science

COMMUNICATIONS

Borner, Katy. (March 2011).
Plug-and-Play Macroscopes.

Plug -and- Play Communications of the ACM,
Macroscopes JEEKE/NIEZ

W, by Katy Bérner
W

- .lﬁ.~L_;) C a

Video and paper are at




SRS Sci? Tool — “Open Code for S&T Assessment”
http://sci2.cns.iu.edu

arch & practice

Jaint Co-Authorship Network
p

OSGi/CIShell powered tool with NWB plugins and
many new scientometrics and visualizations plugins.

o, ! o ] 5 e g g Nodle S B¢ Cler Félge Sine B¢ Coler
Sa . = ML o)
‘ oo : ¥ .n...ncmu ‘: ;‘
i |
W Mclogy 1y g e |y 2 1 [F 1 n
1 Beoterhinodogy
e —— Sci Maps GUESS Network Vis

Horizontal Time Graphs

00 Dot Py A Db Fucey o bassy

Borner, Katy, Huang, Weixia (Bonnie), Linnemeier, Micah, Duhon, Russell Jackson, Phillips, Patrick, Ma, Nianli, Zoss,
Abngela, Guo, Hanning & Price, Mark. (2009). Rete-Netzwerk-Red: Analyzing and 1 isualizing Scholarly Networks
Using the Scholarly Database and the Network Workbench Tool. Proceedings of ISST 2009: 121h International Conference
on Scientometrics and Informetrics, Rio de Janeiro, Brazil, July 14-17 . 1ol. 2, pp. 619-630.
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Atool for

ol‘.'-cirm:c

W% Scif Tool

File Preprocessing Modeling Analysis [Visualization | Sci trics  Help

GUESS
‘Welcome to the Science of Science Tool (Sci GnuPlot
The development of this tool is supported in -
\Metwork Science center and the School of Li Radial Tree/Graph (prefuse alpha)

Indiana University, the National Science Foul

Radial Tree/Graph with Annotation (prefuse beta)
and [5-0715303, and the James 5. McDonnel

Cyberinfrastructure portal (http://scislisind Tree View (prefuse beta) . L
Tree Map (prefuse beta) L —— .
The primary investigators are Katy Bomer, In

SciTech Strategies Inc. The Sci® tool was dews force Directed with i beta) ‘

J. Duhon, Patrick A. Phillips, Chintan Tank, a| Fruck Reingold with A tation (prefuse beta)

Cyberinfrastructure Shell (httpsficishell.org)

for Network Science Center (http:ffens.slis.in Dl (VacOrd)

=

Many algorithm plugins were denved from ¢ . =

(http:/nwb.slis.indiana.edu). Specihed (prefss beta) // .
Please cite as follows: ormonial Une Biapy // \\'\
Sci® Team. (2009). Science of Science Tool. Ir Circular Hierarchy /

| Strategies Inc., http:fiscislis.indiana.edu. ff

.......... Geo Map (circle an tions) ]

E Schedulel-_. | Geo Map (region colonng annotations) i

Rernove From List | || Rerove completed Image Viewer
RefMapper

. ! Algorithm Narme Date Time % Com|
& Extract Co-Author Netw...  09/03/2000 00:15:20 AM  —
& Load and Clean ISIFile 09/03/2008 00:15:05 AM |

Circular Hierarchy

[ i ] ) |
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Forgot your password?

To recover your sccount password, please visit our password recavery page

Not registered yet?

Register now

Katy Borner (2010) Science of Science Research and Tools (12 Tutonials). Reporting Branch, Office of Extramural Research/Office of the Director, Nahonal

Tuterials
Institutes of Health, Bethesda, MD

Secott Weingart,
Biberstine (2010
Science, Indiana Tutonal #01: Science of Science Research

Tutonal #02: Network Science / Information Visualization
Tutonal #03:

Tutorial #04: Tes

Tutonal #05: Geospatial A nd Mapping
Tutonal #06: Topical Ana i apping
Tutonal #07: Tree Analysis and Visualization
Tutonal #08: Network Analysis and Visualization
Tutorial #09 d ¥
Tutonal #10

Tutonal #11: VIVO National Researcher Networking
Tutonal #12: Future Developments

http://sci2.cns.iu.edu
http://sci2.wiki.cns.iu.edu

ization

Geetha Senthl (2010). Multidisciplinary Nature of Work With Reference to PIs and 1Cs Within a Portfolio. PA Group at NIH

NIH Office of Extramural Research and Katy Bomer (2010) Network Visualizations Using SPIRES Data and the Sci2 Tool. Office of Extramural

Research at NIH

Type of Analysis vs. Level of Analysis

Micro/Individual
(1-100 records)

Meso/Local
(101-10,000 records)

Macro/Global
(10,000 < records)

Statistical

Individual person and

Larger labs, centers,

All of NSF, all of USA,

Analysis/Profiling | their expertise profiles | universities, research | all of science.
domains, or states

Temporal Analysis | Funding portfolio of Mapping topic bursts | 113 Years of Physics

(When) one individual in 20-years of PNAS | Research

Geospatial Analysis | Career trajectory of one | Mapping a states PNAS Publications

(Where) individual intellectual landscape

Topical Analysis Base knowledge from Knowledge flows in | VxOrd/Topic maps of

(What) which one grant draws. | Chemistry research NIH funding

Network Analysis
(With Whom?)

NSF Co-PI network of
one individual

Co-author network

NSF’s core competency

54




Sci? Tool: Algorithms

Preprocessing
Extract Top N% Records
Extract Top N Records
Normalize Text

Slice Table by Line

Extract Top Nodes
Extract Nodes Above or Below Value
Delete Isolates

Extract top Edges

Extract Edges Above or Below Value
Remove Self Loops

Trim by Degree

MST-Pathfinder Network Scaling
Fast Pathfinder Network Scaling

Snowball Sampling (in nodes)
Node Sampling
Edge Sampling

Symmetrize
Dichotomize
Multipattite Joining

Geocoder

Extract ZIP Code

Modeling

Random Graph
Watts-Strogatz

Small World
Barabisi-Albert Scale-Free
TARL

Analysis
Network Analysis Toolkit (NAT)
Unweighted & Undirected

Node Degree

Degree Distribution

K-Nearest Neighbor (Java)
Wiatts-Strogatz Clustering Coefficient
Wiatts Strogatz Clustering Coefficient over K

Diameter

Average Shortest Path
Shortest Path Distribution
Node Betweenness Centrality

Weak Component Clustering
Global Connected Components

Extract K-Core
Annotate K-Coreness

HITS

Weighted & Undirected
Clustering Coefficient
Nearest Neighbor Degree
Strength vs Degree
Degree & Strength
Average Weight vs End-point Degree
Strength Distribution
Weight Distribution
Randomize Weights

Blondel Community Detection

HITS

Unweighted & Directed
Node Indegree
Node Outdegree
Indegree Distribution
Outdegree Distribution

K-Nearest Neighbor
Single Node in-Out Degree Correlations

Dyad Reciprocity
Arc Reciprocity
Adjacency Transitivity

Weak Component Clustering
Strong Component Clustering

Sci? Tool: Algorithms cont.

Extract K-Core

Annotate K-Coreness

HITS

PageRank
Weighted & Directed

HITS

Weighted PageRank

Textual

Burst Detection

Soon:

Visualization
GnuPlot
GUESS

Image Viewer

Radial Tree/Graph (prefuse alpha)

Radial Tree/Graph with Annotation
(prefuse beta)

Tree View (prefuse beta)

Tree Map (prefuse beta)

Force Directed with Annotation
(prefuse beta)

Fruchterman-Reingold with Annotation
(prefuse beta)

DrL (VxOrd)
Specified (prefuse beta)

Horizontal Bar Graph

Circular Hierarchy

Geo Map (Circle Annotation Style)

Geo Map (Colored-Region Annotation Style)
Science Map (Circle Annotation)

Database support for ISI and NSF data.

Scientometrics

Remove IST Duplicate Records

Remove Rows with Multitudinous Fields
Detect Duplicate Nodes

Update Network by Merging Nodes

Extract Directed Network
Extract Paper Citation Network
Extract Author Paper Network

Extract Co-Occurrence Network

Extract Word Co-Occurrence Network

Extract Co-Author Network

Extract Reference Co-Occurrence
(Bibliographic Coupling) Network

Extract Document Co-Citation Network
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e o Atoal for

=i Type of Analysis vs. Level of Analysis

w8 ch & practice

Micro/Individual
(2-100 records)

Meso/Local

(101-10,000 records) | (10,000 < records)

Macro/Global

Statistical
Analysis/Profiling

Temporal Analysis
(When)

Geospatial Analysis

(Where) m“’
Topical Analysis o
(What)
Network Analysis
(With Whom?) %} P4

{a b= =

.

57

R Help

File [Compartmental Modeling | Network

visualization of epidemic processes. -~

Create a compartmental model
The Epi

Dr. Jim Sh

Chin Hd| | Weld Edit compartmental model ng, a

| EpiC uses the Cyberinfrastructure Shell (http://cishell.org) developed at the Cyberinfrastructure for

MNetwork Science Center (httpy//cns.slis.indi

| Gimstaton) v

R Help

Please cite as follows:

|EpiC Team. (2009). EpiC Tool. Indiana Univerd Single-Population

Exact
Network

& Scheduler|

7] Remove completed automatically | R all con

e NIH RM-07-004 award. The

hintan Tank, Joseph Biberstine,

= 0| DmManagerE =8|

[Visualization | R Help
1

| Line Graph

‘ ! Algorithm Name Date Time

Create an R Instance
Run Rgui

Import Table Into R

Export Table From R
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cyberinfrastructure for
ETWORK SCIENCE CENTER

All papers, maps, tools, talks, press are linked from http://cns.iu.edu

CNS Facebook: http://www.facebook.com/cnscenter
Mapping Science Exhibit Facebook: http://www.facebook.com/mappingscience
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