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Hypothetical Model of  the Evolution of  Science  - Daniel Zeller - 2007

Authors are mortal. Papers are immortal.
Monsters = ‘the unknown’ or voids. 
Impact of  funding on science (yellow).
Good and bad years. 
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Atlas of  Science  - Katy Borner - 2010 4



Hypothetical Model of  the Evolution of  Science  - Daniel Zeller - 2007

Science as accumulation of  knowledge.
“Scholarly brick laying”.
Standing on the shoulders of  giants.

Densely knit communities. 
The importance of  weak links.
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Maps of  Science: Forecasting Large Trends in Science  - Richard Klavans, Kevin Boyack - 2007 6



In Terms of  Geography - Andre Skupin - 2005 7

Hypothetical Model of  the Evolution of  Science  - Daniel Zeller - 2007

Areas of  science are tube shaped.
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Atlas of  Science  - Katy Borner - 2010 9

HistCiteTM Visualization of  DNA Development  - Eugene Garfield, Elisha Hardy, Katy Borner, Ludmila Pollock, Jan Witkowski- 2006 10



114 Years of  Physical Review  - Bruce W. Herr II, Russell Duhon, Katy Borner, Elisha Hardy, Shashikant Penumarthy - 2007 11

Hypothetical Model of  the Evolution of  Science  - Daniel Zeller - 2007

Crust of  science can represent “funding” or “usage”.
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A Clickstream Map of Science – Bollen, Johan, Herbert Van de Sompel, Aric Hagberg, 
Luis M.A. Bettencourt, Ryan Chute, Marko A. Rodriquez, Lyudmila Balakireva - 2008 13

Hypothetical Model of  the Evolution of  Science  - Daniel Zeller - 2007

This drawing attempts to shows the “structure” of  science.

Many are interested to understand the “dynamics” of  science.
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Council for Chemical Research - Chemical R&D Powers the U.S. Innovation Engine. 
Washington, DC. Courtesy of  the Council for Chemical Research - 2009 15
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Modeling of  Science
Learning from Epidemiology

Impact of Air Travel on Global Spread of Infectious Diseases - Vittoria Colizza, Alessandro Vespignani - 2007 17

Self  amplifying downward spiral | ‘systemic’ meltdown with intertwined breakdowns | 
‘war room’ analyses | market wind tunnel |power market test bed | 
Regulators feel duty–bound to adhere to generally accepted and well-vetted techniques  

“… while any new technical device or medical drug has extensive testing for efficiency, reliability and safety before it 
ever hits the market, we still implement new economic measures without any prior testing.” Dirk Helbing

Modeling Science
Learning from Economics
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Modeling Science
Learning from Economics

Logicland Participative Global Simulation - Michael Ashauer, Maia Gusberti, Nik Thoenen - 2002 19

Named Storms, available online at http://svs.gsfc.nasa.gov/vis/a000000/a003200/a003279

Mapping Science
Learning from Meteorology
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http://www.astrometry.net/gallery.html

http://cosmo.nyu.edu/hogg/research/2006/09/28/astrometry_google.pdf

Patch-working Models/Studies/Maps of  Science
Learning from Astronomy
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Patch-working Models/Studies/Maps of  Science
Learning from Seismology

Tectonic Movements and Earthquake Hazard Predictions - Martin W. Hamburger, Lou Estey, Chuck Meertens, Elisha Hardy  - 2005 22
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An introduction to modeling science: Basic model types, key definitions, 
and a general framework for the comparison of process models
Katy Börner, Kevin W. Boyack, Staša Milojević, Steven Morris. (2011) In Scharnhorst, Andrea, Börner, van den 
Besselaar (Eds) Models of Science Dynamics. Springer Verlag.

Modeling Process
1. Formulation of a scientific hypothesis about the identification of a specific structure or 

dynamics. Often, this hypothesis is based on analysis of patterns found in empirical data. 
2. Algorithm design and implementation using either tools (e.g., NetLogo, RePast) or 

custom codes that attempt to mathematically describe the structure or dynamics of 
interest. 

3. Simulated data are calculated by running the algorithm and validated by comparison with 
empirical data. 

4. Resulting insights frequently inspire new scientific hypotheses, and the model is iteratively 
refined or new models are developed.
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An introduction to modeling science: Basic model types, key definitions, 
and a general framework for the comparison of process models
Katy Börner, Kevin W. Boyack, Staša Milojević, Steven Morris. (2011) In Scharnhorst, Andrea, Börner, van den 
Besselaar (Eds) Models of Science Dynamics. Springer Verlag.

Multi-level and 
multi-perspective 
models

It is often desirable 
to model a system 
at multiple levels 
using different 
vantage points.
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Descriptive Models vs. Process Models

Descriptive Models

Aim to describe the major features of a (typically static) data set, e.g., statistical 
patterns of article citation counts, networks of citations, individual differences in 
citation practice, the composition of knowledge domains, and the identification of 
research fronts as indicated by new but highly cited papers. 

Process Models

Aim to simulate, statistically describe, or formally reproduce the statistical and
dynamic characteristics of interest. Of particular interest are models that “conform to the
measured data not only on the level where the discovery was originally made but also at the level where
the more elementary mechanisms are observable and verifiable” (Willinger, Govindan, Jamin,
Paxson, & Shenker, 2002), p.2575.

Bibliometrics, Scientometrics, or KDVis 

Statistical Physics and Sociology 
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Descriptive Models

Examples:

 Detect advances of scientific knowledge via "longitudinal mapping" (Garfield, 
1994). 

 Synthesis of specialty narratives from co-citation clusters (Small, 1986).

 Identify cross-disciplinary fertilization via "passages through science" (Small, 1999, 
2000).

 Understand scholarly information foraging (Sandstrom, 2001).

 Knowledge discovery in un-connected terms (Swanson & Smalheiser, 1997).

 Determine areas of expertise for specific researcher, research group via "invisible 
colleges" (note that researchers self definition might differ from how field defines 
him/her) (Crane, 1972).

 Identify profiles of authors, also called CAMEOS, to be used to for document 
retrieval or to map an author’s subject matter and studying his/her publishing 
career, or to map the social and intellectual networks evident in citations to and 
from authors and in co-authorships (White, 2001).
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 Identification of scientific frontiers http://www.science-frontiers.com/.

 ISI's Essential Science Indicators http://essentialscience.com/

 Import-export studies (Stigler, 1994).

 Evaluation of 'big science' facilities using 'converging partial indicators'  (Martin, 
1996; Martin & Irvine, 1983).

 Input (levels of funding, expertise of scientists, facilities used) - output 
(publications, patents, Nobel prices, improved health, reduced environment 
insults, etc. - influenced by political, economic, financial, and legal factors studies 
(Kostroff & DelRio, 2001).

 Determine influence of funding on research output (Boyack & Borner, 2002).

 How to write highly influential paper (van Dalen & Henkens, 2001).

28



Process Models

Can be used to predict the effects of 

 Large collaborations vs. single author research on information diffusion.

 Different publishing mechanisms, e.g., E-journals vs. books on co-authorship, 
speed of publication, etc.

 Supporting interdisciplinary collaborations (shallow science? or decrease in 
duplication?).

 Many small vs. one large grant on # publications, Ph.D. students, etc.

 Resource distribution on research output.

 …

In general, process model provide a means to analyze the  structure and 

dynamics of science -- to study science using the scientific methods of science as 

suggested by Derek J. deSolla Price about 40 years ago.

We now do have the data, code and compute power to do this!

29

Process Models

In Sociology, several mathematical models of network evolution have been developed
(Banks & Carley, 95). Most assume a fixed number of edges.

Snijders’ Simulation Investigation for Empirical Network Analysis (SIENA) 
(http://stat.gamma.rug.nl/snijders/siena.html) is a probabilistic model for the 
evolution of social networks. It assumes a directed graph with a fixed set of actors.

Recent work in Statistical Physics aims to design models and analytical tools to analyze
the statistical mechanics of topology and dynamics of real world networks. Of
particular interest is the identification of elementary mechanisms that lead to the
emergence of small-world (Albert & Barabási, 2002; Watts, 1999) and scale free network
structures (Barabási, Albert, & Jeong, 2000). The models assume nodes of one type
(e.g., web page, paper, author).

Examples:

 Watts-Strogatz Model for Small World Networks

 Albert-Barabasi Model for Scale Free Networks
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The Watts-Strogatz Model for Small World Networks
First model that generates graphs with small average path length and high clustering 

coefficients.

 Starting configuration is a regular lattice.

 Each edge is examined and is redirected with a probability p to another target node (chosen 
randomly).

Regular network (left) drastically changes from a set of tiny isolated clusters of nodes to a giant 

cluster joined by almost everybody. 

(Source: D.J. Watts and S. Strogatz. Collective Dynamics of `Small-World‘ Networks. Nature, Vol. 393(6):pp. 440-442,

June 1998.)
31

C(p) and l(p) as a function 

of rewiring probability p.
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Dorogovtsev, S. N. & Mendes, J. F. F. (2002). Evolution of networks. cond-mat/0106144

Variations of the WS Model
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The Barabasi–Albert (BA) Model for Scale Free Networks

Many large networks are scale free, their degree distribution follows a power law for large k. 

Random graph theory and the small world model cannot reproduce this feature.

(1) Growth: Starting with a small number (m0) of nodes, at every time step, we add a new node 
with m(<= m0) edges that link the new node to m nodes already present in the system.

(2) Preferential attachment: The probability p that a new node will be connected to node i 
depends on the degree ki of node i, such that

p( 

After t time-steps the network has N = t+m0 nodes and mt edges.

This network evolves into a stationary scale-free state with the probability that a node has k 

edges following a power law with an exponent BA = 3.

(Source: A.-L. Barabasi, R. Albert, Emergence of scaling in random networks, Science 286 (1999) 509512.)
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Reka Albert, Albert-Laszlo Barabasi (2002). Statistical mechanics of complex networks.
cond-mat/0106096: Evolving Networks

Alternative models that simulate 

preferential attachment



Information Diffusion Among Major U.S. Research Institutions
Börner, Katy, Penumarthy, Shashikant, Meiss, Mark & Ke, Weimao. (2006). Mapping the Diffusion of Information 
among Major U.S. Research Institutions. Scientometrics. Vol. 68(3), 415 - 426.

Questions:
1. Does space still matter in the Internet age, 

i.e., does one still have to study and work at 
major research institutions in order to have 
access to high quality data and expertise and 
to produce high quality research? 

2. Does the Internet lead to more global 
citation patterns, i.e., more citation links 
between papers produced at geographically 
distant research instructions?

Contributions:
 Answer to Q1 is YES.
 Answer to Q2 is NO.
 Novel approach to analyzing the dual role 

of institutions as information producers and 
consumers and to study and visualize the 
diffusion of information among them.

20-Year PNAS Dataset (1982-2001)
Coverage in terms of time span, total number of papers, and complete author’s work

time1982        2001

# papers

Papers cited by 
papers in X

Papers in X

Papers citing 
papers in X

Other
Publications

PNAS
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Citation Matrix 
Unsymmetrical direct citation linkage patterns among the top 500 institutions. High peak values in the 
diagonal reflect the high amount of self-citations for all institutions. Medium peak horizontal and 
vertical lines denote references from and citations to papers written at Harvard University.

Information Sources (Export) 
and Sinks (Import)
Calculate ratio of  the number of  
citations received by an institution 
divided by the sum of  received 
citations and references made, 
multiplied by 100. 

131 have a value between 0-40% 
acting mostly as information 
producers = information sources.

71 have a value between 60-100% 
and act mostly as information 
consumers – they reference a 
large number of  papers but the 
number of  citations they receive 
is comparably low = information 
sinks.
(Tobler, 1995)
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Geographic Location of Received Citations
Unsymmetrical direct citation linkage patterns among the top 500 institutions. High peak values in the 
diagonal reflect the high amount of self-citations for all institutions. Medium peak horizontal and 
vertical lines denote references from and citations to papers written at Harvard University.
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Information Flow Among the Top-5 Consumers and Their Top-10 Producers

U.S. states are color coded based on the total number 
of  citations received by their institutions 
(excluding self  citations).

Dots indicate the five producers.
Each has a different color, e.g., Harvard U is yellow. 
Dot area size depicts number of  citations.

Lines represent citations that interconnect producers 
and consumers shaded from colored (source of  
information) to white (sink of  information).

Paper also shows top-5 
producers and their top-

10 consumers.
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Changes in Citation Behavior Over Time
Unsymmetrical direct citation linkage patterns among the top 500 institutions. High peak values in the 
diagonal reflect the high amount of self-citations for all institutions. Medium peak horizontal and 
vertical lines denote references from and citations to papers written at Harvard University.

1982-1986: 1.94 (R=91.5%) 
1987-1991: 2.11 (R=93.5%)
1992-1996: 2.01 (R=90.8%)
1997-1901: 2.01 (R=90.7%)

As time progresses and the amount of  produced 
papers increases, space seems to matter more. 

Authors are more likely to cite papers generated by 
authors at close-by institutions.
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Modeling the Co-Evolving Author-Paper Networks 
Börner, Katy, Maru, Jeegar & Goldstone, Robert. (2004). The Simultaneous Evolution of 
Author and Paper Networks. PNAS. Vol. 101(Suppl. 1), 5266-5273.

The TARL Model (Topics, Aging, and Recursive Linking) incorporates
 A partitioning of authors and papers into topics, 
 Aging, i.e., a bias for authors to cite recent papers, and 
 A tendency for authors to cite papers cited by papers that they have read resulting in a rich get richer 

effect. 
The model attempts to capture the roles of authors and papers in the production, storage, and 
dissemination of knowledge. 

Model Assumptions
 Co-author and paper-citation networks co-evolve.
 Authors come and go. 
 Papers are forever. 
 Only authors that are 'alive' are able to co-author.
 All existing (but no future) papers can be cited.
 Information diffusion occurs directly via co-authorships and indirectly via the consumption of other 

authors’ papers. 

 Preferential attachment is modeled as an emergent property of the elementary, local networking activity of 
authors reading and citing papers, but also the references listed in papers. 
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Aging function

Model Validation
The properties of  the networks generated by this 
model are validated against a 20-year data set (1982-
2001) of  documents of  type article published in the 
Proceedings of  the National Academy of  Science 
(PNAS) – about 106,000 unique authors, 472,000 co-
author links, 45,120 papers cited within the set, and 
114,000 citation references within the set.



(0000) (1000) Topics

(0100) Co-Authors (0010) References

The TARL Model: The Effect of Parameters

Co-authoring leads to fewer papers.

Topics lead to disconnected networks.
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Aging function

Counts for Papers and Authors

Counts for Citations
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Aging function

Co-Author and Paper-Citation
Network Properties

Power Law Distributions

Aging function

Topics: The number of topics 
is linearly correlated with the 
clustering coefficient of the 
resulting network: C= 
0.000073 * #topics. Increasing 
the number of topics increases 
the power law exponent as 
authors are now restricted to 
cite papers in their own topics 
area. 

Aging: With increasing b, and 
hence increasing the number of 
older papers cited as 
references, the clustering 
coefficient decreases. Papers 
are not only clustered by topic, 
but also in time, and as a 
community becomes 
increasingly nearsighted in 
terms of their citation 
practices, the degree of 
temporal clustering increases.

References/Recursive 
Linking: The length of the 
chain of paper citation links 
that is followed to select 
references for a new paper also 
influences the clustering 
coefficient. Temporal 
clustering is ameliorated by the 
practice of citing (and 
hopefully reading!) the papers 
that were the earlier 
inspirations for read papers.
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Börner, Katy. (March 2011). 

Plug-and-Play Macroscopes. 
Communications of the ACM, 
54(3), 60-69. 

Video and paper are at
http://www.scivee.tv/node/27704
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Sci2 Tool – “Open Code for S&T Assessment”
http://sci2.cns.iu.edu

OSGi/CIShell powered tool with NWB plugins and 
many new scientometrics and visualizations plugins.

Börner, Katy, Huang, Weixia (Bonnie), Linnemeier, Micah, Duhon, Russell Jackson, Phillips, Patrick, Ma, Nianli, Zoss, 
Angela,  Guo, Hanning & Price, Mark. (2009). Rete-Netzwerk-Red: Analyzing and Visualizing Scholarly Networks 

Using the Scholarly Database and the Network Workbench Tool. Proceedings of ISSI 2009: 12th International Conference 
on Scientometrics and Informetrics, Rio de Janeiro, Brazil, July 14-17 . Vol. 2, pp. 619-630. 

Horizontal Time Graphs

Sci Maps GUESS Network Vis
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Sci2 Tool

Geo Maps

Circular Hierarchy
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http://sci2.cns.iu.edu
http://sci2.wiki.cns.iu.edu
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Type of Analysis vs. Level of Analysis

Micro/Individual
(1-100 records)

Meso/Local
(101–10,000 records)

Macro/Global
(10,000 < records) 

Statistical 
Analysis/Profiling 

Individual person and 
their expertise profiles

Larger labs, centers, 
universities, research 
domains, or states

All of NSF, all of USA, 
all of science.

Temporal Analysis 
(When)

Funding portfolio of 
one individual

Mapping topic bursts 
in 20-years of PNAS

113 Years of Physics 
Research

Geospatial Analysis 
(Where)

Career trajectory of one 
individual  

Mapping a states 
intellectual landscape

PNAS Publications 

Topical Analysis 
(What)

Base knowledge from 
which one grant draws.

Knowledge flows in 
Chemistry research 

VxOrd/Topic maps of 
NIH funding

Network Analysis 
(With Whom?)

NSF Co-PI network of 
one individual  

Co-author network NSF’s core competency 
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Sci2 Tool: Algorithms 

Preprocessing
Extract Top N% Records
Extract Top N Records
Normalize Text
Slice Table by Line
---------------------------------------------
Extract Top Nodes
Extract Nodes Above or Below Value
Delete Isolates
---------------------------------------------
Extract top Edges
Extract Edges Above or Below Value
Remove Self Loops
Trim by Degree
MST-Pathfinder Network Scaling
Fast Pathfinder Network Scaling
---------------------------------------------
Snowball Sampling (in nodes)
Node Sampling
Edge Sampling
---------------------------------------------
Symmetrize
Dichotomize
Multipartite Joining
---------------------------------------------
Geocoder
---------------------------------------------
Extract ZIP Code

Modeling
Random Graph
Watts-Strogatz 
Small World
Barabási-Albert Scale-Free
TARL

Analysis
Network Analysis Toolkit (NAT)
Unweighted & Undirected

Node Degree
Degree Distribution
---------------------------------------------
K-Nearest Neighbor (Java)
Watts-Strogatz Clustering Coefficient
Watts Strogatz Clustering Coefficient over K
---------------------------------------------
Diameter
Average Shortest Path
Shortest Path Distribution
Node Betweenness Centrality
---------------------------------------------
Weak Component Clustering
Global Connected Components
---------------------------------------------
Extract K-Core
Annotate K-Coreness
---------------------------------------------
HITS

Weighted & Undirected
Clustering Coefficient
Nearest Neighbor Degree
Strength vs Degree
Degree & Strength
Average Weight vs End-point Degree
Strength Distribution
Weight Distribution
Randomize Weights
---------------------------------------------
Blondel Community Detection
---------------------------------------------
HITS

Unweighted & Directed
Node Indegree
Node Outdegree
Indegree Distribution
Outdegree Distribution
---------------------------------------------
K-Nearest Neighbor
Single Node in-Out Degree Correlations
---------------------------------------------
Dyad Reciprocity
Arc Reciprocity
Adjacency Transitivity
---------------------------------------------
Weak Component Clustering
Strong Component Clustering
---------------------------------------------
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Sci2 Tool: Algorithms cont.

--------------------------------

Extract K-Core

Annotate K-Coreness

--------------------------------

HITS

PageRank

Weighted & Directed

HITS

Weighted PageRank

Textual

Burst Detection

Visualization
GnuPlot
GUESS
Image Viewer
---------------------------------------------
Radial Tree/Graph (prefuse alpha)
Radial Tree/Graph with Annotation 

(prefuse beta)
Tree View (prefuse beta)
Tree Map (prefuse beta)
Force Directed with Annotation 

(prefuse beta)
Fruchterman-Reingold with Annotation 

(prefuse beta)
---------------------------------------------
DrL  (VxOrd)
Specified (prefuse beta)
---------------------------------------------
Horizontal Bar Graph
Circular Hierarchy
Geo Map (Circle Annotation Style)
Geo Map (Colored-Region Annotation Style)
Science Map (Circle Annotation)

Scientometrics
Remove ISI Duplicate Records
Remove Rows with Multitudinous Fields
Detect Duplicate Nodes
Update Network by Merging Nodes
---------------------------------------------
Extract Directed Network
Extract Paper Citation Network
Extract Author Paper Network
---------------------------------------------
Extract Co-Occurrence Network
Extract Word Co-Occurrence Network
Extract Co-Author Network
Extract Reference Co-Occurrence 

(Bibliographic Coupling) Network
---------------------------------------------
Extract Document Co-Citation Network

Soon:
Database support for ISI and NSF data.



Type of Analysis vs. Level of Analysis

Micro/Individual
(1-100 records)

Meso/Local
(101–10,000 records)

Macro/Global
(10,000 < records) 

Statistical 
Analysis/Profiling 

Individual person and 
their expertise profiles

Larger labs, centers, 
universities, research 
domains, or states

All of NSF, all of USA, 
all of science.

Temporal Analysis 
(When)

Funding portfolio of 
one individual

Mapping topic bursts 
in 20-years of PNAS

113 Years of Physics 
Research

Geospatial Analysis 
(Where)

Career trajectory of one 
individual  

Mapping a states 
intellectual landscape

PNAS publciations 

Topical Analysis 
(What)

Base knowledge from 
which one grant draws.

Knowledge flows in 
Chemistry research 

VxOrd/Topic maps of 
NIH funding

Network Analysis 
(With Whom?)

NSF Co-PI network of 
one individual  

Co-author network NIH’s core competency 
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All papers, maps, tools, talks, press are linked from http://cns.iu.edu

CNS Facebook: http://www.facebook.com/cnscenter
Mapping Science Exhibit Facebook: http://www.facebook.com/mappingscience
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