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Motivation

e Domain
o How is the world of music and music experience
organized?
m \What kinds of themes emerge in this domain and
what is their structure?

e Challenges
o Collect and prepare high-dimensional social data
o Create a model large enough to faithfully represent the
domain
o Train a model of this substantial size
o Design a visualization that does justice to the richness of
the model
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Raw Data - Source

e Last.fm is a social Internet radio site
o Users share information about songs they are listening to
o They can also tag songs
m With any strings of text they like

Need new music?

Last.fm lets you effortlessly keep a record of what you
listen to® from any player. Based on your taste, Last.fm
recommends you more music and concerts!
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Raw Data - Summary

e Gathered during the first half of 2009
e 99,405 reqistered users
0 52,452 active
e 281,818 tags
e 1,393,559 songs

e 10,936,545 annotations
o An annotation is a (user, tag, song) triple, a tagging
event

Data originally collected for:

Schifanella, R., Barrat, A., Cattuto, C., Markines, B., and Menczer, F. (2010).
Folks in Folksonomies: Social Link Prediction from Shared Metadata. Proc. 3rd
ACM International Conference on Web Search and Data Mining (WSDM).
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Top Tags
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Tags Are More Than Just Genres

e Intensional
o From recognized genres to simple objective facts
m rock (rank 1)
m electronic (2)
m ..
m female vocalists (7)
m female vocalist (64)
m acoustic (51)
..
m title is a full sentence (101)
e Extensional
o A mix of social signals, properties of the user-song experience, and aides to
personal categorization
m seen live (3)
m beautiful (48)
m favorites (54)
m albums i own (97)
m altar of the metal gods (58)
m A case of graffiti?
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Raw Data - Thresholding

e The self-organizing map (SOM) method will not scale to
280,000+ tags/dimensions in raw form
o Not often used with more than hundreds of dimensions
e Consider only the 1,000 most frequently applied tags
o Keep only songs annotated by some user with any of

these tags

1,000 Most Frequently Applied Tags

00000
250000

00000

Rank by frequency of use
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Thresholded Data - Summary

Raw Thresholded
Tags 281,818 1,000
Songs 1,393,559 |1,088,761
(78% of original)
Annotations per song 7.8 6.8
(average)
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Approach

e Characterize each song as a vector over each tag
dimension
o Each coordinate is the number of annotations
m Summed across users

e A song is a piece of tag relationship evidence
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Method - Background

e Self-organizing maps
o Neural network training algorithm
o Unsupervised
o High-dimensional data

Low-dimensional discrete geometric model

o Goal:
m Proximity in the input space

Proximity on the map
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Self-Organizing Map Algorithm - Classical

1. Create a lattice of neurons
2. To each neuron assign an initial (often random) vector with
as many dimensions as the training data
3. For each training vector:
1. Identify the neuron of minimal distance according to the
input space metric (the "best-matching unit")
2. For each neuron:
1. Pull this neuron's vector toward the training vector in
proportion with this neuron's distance from the best-
matching unit
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Self-Organizing Map Algorithm -
Parallelized Implementation

e A previous project trained on twice as many data and twice
as many dimensions
o Completely intractable using widely available software
o Created our own implementation

m Divide the training data among muiltiple processes
m Each process holds a complete copy of the map
m Periodically synchronize process-local copies of

the map to create a new process-global map

e Adapted with several project-specific optimizations from:
o Lawrence, R.D., Almasi, G.S., Rushmeier, H.E. (1999). A Scalable
Parallel Algorithm for Self-Organizing Maps with Applications to Sparse
Data Mining Problems. Data Mining and Knowledge Discovery
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Training the Map

e 2D hexagonal lattice of neurons
o 180 on either side = 32,400 altogether

e Input space metric: cosine similarity
o Induced interpretation: Each training vector (and so
consequently each neuron vector) represents a direction

in the 1,000-dimensional tag space

O .
A-B 2?21 a‘l-z' X B’i

similarity = cos(f) = _

“'HI“B“ B \//Z?zl (:A.,-)Q > \/21;1 (B-z')Q
e 50 complete passes over the training data
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Computation

e 300 processes across 100 compute nodes of Big Red,
a supercomputer at Indiana University
e Parallel runtime = 13 hours
o Serial equivalent runtime = 5 months
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Visualization

e [ |Recall there is a corresponding vector to each neuron
which describes its position in the input space
e In other words, its position along each tag dimension

e Consider the n'" strongest tag association of each
neuron

e A contiguous swath of neurons sharing a
common n'" strongest tag association is termed a region

e As the map is trained over 1,000 tags, we have 1,000
distinct partitions of the map into such regions
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Interpretation

e Interpreters report a mix of

o Recognition

m Patterns of hierarchical and neighborhood

relationships among tags match expectations

o Discovery

m Opportunities to find new musical categories
o Surprise

m Relationship between rock, blues, and jazz
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Potential Applications

e Interactive music navigator and playlist generator
e Mapping portfolios as fields of neuronal activation
o For the set of songs associated with any entity, we can
see where in the world they belong
m A user: Their favorite songs
m A band: Their complete work
m A group of users: What is their turf?
o .. or look at the difference of any of these fields
m \What is the difference between The Who and The
Guess Who?
m How has this entity moved through the world of music
over time?
m Where have listeners like me headed next?
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