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1 800 000 0001,800,000,000
users

Key QuestionsKey Questions

• Can we make meaningful inferences aboutCan we make meaningful inferences about 
user behavior with available sources of 
data?data?

• What implications do patterns of network 
behavior have for its design and structure?behavior have for its design and structure?

• How can behavioral data be used to 
d t d d i t kunderstand users and improve network 

applications?



“how it acts” > “what it is”

Patterns > Payloads



Practicality

Privacy
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Weighted digraphWeighted digraph

Degree and strengthDegree and strength



DistributionsDistributions

• We can calculate 
probability density 
functions for degree, 
strength, etc.g
– Area under curve is 1
– Can calculate likelihood of 

a node being in some 
interval

• Shown here is an 
example of a very wide-p y
tailed distribution
– Best approximated by 

power law

Scaling relationsScaling relations

• We can alsoWe can also 
investigate how these 
distributions are 
correlated

• Shown here is a 
degree vs. strength
plot.



Other network propertiesOther network properties

• Spectral analysis: Looking at theSpectral analysis: Looking at the 
eigen{values,vectors} of the connectivity 
matrixmatrix.

• Clustering: Looking at the density of 
connections among neighbors of a nodeconnections among neighbors of a node.

• Assortativity: Looking at whether high-
d d t t th hi hdegree nodes connect to other high-
degree nodes.
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The Internet2/Abilene NetworkThe Internet2/Abilene Network

• TCP/IP network 
connecting research 
and educational
institutions in the U.S.

O 200 i iti– Over 200 universities 
and corporate 
research labs

• Also provides transit p
service between 
Pacific Rim and 
European networks

Why study Abilene?Why study Abilene?

• Wide-area network that includes both domestic 
and international traffic

• Heterogeneous user base including hundreds 
f h d f d dof thousands of undergraduates

• High capacity network (10-Gbps fiber-optic 
links) that has never been congestedlinks) that has never been congested

• Research partnership gives access to 
(anonymized) traffic data unavailable from (a o y ed) t a c data u a a ab e o
commercial networks

• Variety of traffic to both academic and 
commercial hosts



Introducing the “flow”Introducing the flow

Web

Introducing the “flow”Introducing the flow

Web



Flo collectionFlow collection

Flows are exported in Cisco’s 
netflow-v5 formatnetflow-v5 format
and anonymized before being 
written to disk.

Data dimensionsData dimensions

• In a typical day:In a typical day:
– Over 200 terabytes of data exchanged

Almost 1 billion flow records– Almost 1 billion flow records

– Over 40 gigabytes on disk

Over 20 million unique hosts involved– Over 20 million unique hosts involved



What can you do with a flow?What can you do with a flow?

• Standard answer:Standard answer:
– Treat a flow as a record in a relational 

databasedatabase
• Who talked to port 1337?

• What proportion of our traffic is on port 80?p p p

• Who is scanning for vulnerable systems?

• Which hosts are infected with this worm?

What can you do with a flow?What can you do with a flow?

• Graph-centric approach:Graph centric approach:
– Treat a flow as a directed, weighted edge



Multiple digraphsMultiple digraphs

Web P2P

Other







Where do flows come from?Where do flows come from?

• Architectural features of Internet routersArchitectural features of Internet routers
allow them to export flow data

• Routers can’t summarize all the data• Routers can t summarize all the data
– Packets are sampled to construct the flows

T i l li t i d 1 100– Typical sampling rate is around 1:100



)01.01(1 p(packet | 1 router)

3)01.01(1 p(packet | 3 routers)

p(flow | n packets) n3)01.01(1 p(flow | n packets) )01.01(1



Distribution RecoveryDistribution Recovery

Try to recover a power law exponent = 2Try to recover a power law, exponent = 2.

S d t h f 10 h tSend to each of 10 hosts:

• 256 10-packet flows

• 128 20-packet flows

• 64 40-packet flows64 40 packet flows

• (etc.)



Increase number of flows
by factor of 10

Increase duration of flows
by factor of 10



ResultsResults

• Nonlinear chance of flow detectionNonlinear chance of flow detection.

• Very small flows lead to an overestimate
of the exponentof the exponent.

• With large flows, a range of exponents can 
b d li blbe recovered reliably.

• Aggregation is necessary for accurate 
results.
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Source of Click Data

~100 K 
users

Web Requests
• Source MAC:  03:5a:66:17:90:5e

Web Requests

• Dest. MAC:   10:99:19:3f:51:2f

• Source IP:   192.168.39.190

• Dest. IP:    127.100.251.3

• Source Port: 9421

• Dest. Port:  80

• GET /index.html HTTP/1.1

• Agent: SuperCrawler-2009/beta

• Referer: http://www.grumpy-puppy.com/

• Host: www.happy-kitty.com



Web Requests
• Source MAC:  03:5a:66:17:90:5e

Web Requests

• Dest. MAC:   10:99:19:3f:51:2f

• Source IP:   192.168.39.190

• Dest. IP:    127.100.251.3

• Source Port: 9421
We have a Web request

• Dest. Port:  80
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Web Requests
• Source MAC:  03:5a:66:17:90:5e

Web Requests
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• Source IP:   192.168.39.190

• Dest. IP:    127.100.251.3

• Source Port: 9421
going from 

this URL
• Dest. Port:  80

• GET /index.html HTTP/1.1

this URL

• Agent: SuperCrawler-2009/beta

• Referer: http://www.grumpy-puppy.com/

• Host: www.happy-kitty.com

Web Requests
• Source MAC:  03:5a:66:17:90:5e

Web Requests
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Web Requests
• Source MAC:  03:5a:66:17:90:5e

Web Requests

• Dest. MAC:   10:99:19:3f:51:2f

• Source IP:   192.168.39.190

• Dest. IP:    127.100.251.3

• Source Port: 9421
using this agent• Dest. Port:  80

• GET /index.html HTTP/1.1

using this agent

• Agent: SuperCrawler-2009/beta

• Referer: http://www.grumpy-puppy.com/

• Host: www.happy-kitty.com

Click CollectionClick Collection



Structural properties: Degree (Link Count)p p g ( )



Structural properties: Strength (Site Traffic)Structural properties: Strength (Site Traffic)

Evaluation of PageRankEvaluation of PageRank

• PR is a stationary distribution• PR is a stationary distribution 
of visit frequency by a modified 
random alkrandom walk 

• Compare with actual site traffic    
(in-strength)

• From an application perspective,From an application perspective, 
we care about the resulting 
ranking of sitesranking of sites



PageRank Assumptionsg p

1 E l b bilit f f ll i1. Equal probability of following 
each link from any given node

2. Equal probability of teleporting 
to each of the nodesto each of the nodes

3 Equal probability of teleporting3. Equal probability of teleporting 
from each of the nodes

#1: Kendall’s Rank Correlation#1: Kendall s Rank Correlation



Local Link Heterogeneityg y
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#2: Teleportation Target Heterogeneityp g g y



#3: Teleportation Source p
Heterogeneity (“hubness”)

ss < s< sssoutout < s< sinin

teleport sourcesteleport sources
browsing sinksbrowsing sinks

-2

ssoutout > s> sinin

popular hubspopular hubs

Click data with retention of user identityy



Popularity is unbounded!

Session properties depend on timeout.



Where’s the “sweet spot” ?

All users are abnormal.



Timeout dependence is much 
weakerweaker.





Page TrafficPage Traffic

Empty Referrer Traffic



Link Traffic

Entropy

S i SiSession Size

Session DepthSession Depth
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ConclusionsConclusions

• Internet behavior is characterized byInternet behavior is characterized by 
extreme heterogeneity.

ConclusionsConclusions

• Behavioral analysis offers advantagesBehavioral analysis offers advantages 
over packet inspection.



ConclusionsConclusions

• We observe heterogeneity because usersWe observe heterogeneity because users 
are idiosyncratic, not pathologically 
eclecticeclectic.

Future DirectionsFuture Directions

• Relationship between traffic & substrateRelationship between traffic & substrate

• Community detection

Ch t i ti f li k• Characterization of links

• Validation of HITS

• Time-series analysis
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